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INTRODUCTION 

Bayesian Networks (BNs) are probabihstic graphical models used to represent and 
encode uncertain expert knowledge. BNs stand out for dealing with uncertainty in 
decision making and statistical inference, and many algorithms were described for 
inference in BNs, see Dechter (1996), Heckerman (1995), Jensen (1996), Lauritzen 
(1988), Pearl (1988), and Zang (1996). The parallel algorithm described in this paper 
is based on the sequential variable elimination algorithm of Cozman( 2000), using 
algebraic operations on potentials. These algebraic schemata for inference in BNs are 
not only relatively simple to understand and to implement, but also allow us to use 
the techniques, heuristics and abstract combinatorial structures from the sparse matrix 
factorizations literature, see George (1993) and Stem (1994, 2006, 2008). 

The main goal of this paper is to show how variations of the variable elimination 
algorithm can be combined with sparse matrix factorization methods to implement a 
fast and efficient parallel algorithm for inference in BNs. This goal is achieved with 
the complete separation between a first symbolic phase, and a second numerical phase. 
In the symbolic phase the proposed algorithm explores the graphical structure of the 
model, without computing or even accessing probabilistic information. The second 
numerical phase can be fully vectorized and parallelized using static data structures 
previously defined in the first phase. This is done examining the decoupling or separation 
operators of sparse matrix factorization algorithms and BNs inference procedures from 
a unified combinatorial framework. This unified framework is the key for implementing 
efficiently this parallel algorithm. 

INFERENCE WITH BAYESIAN NETWORK 

A BN, see Jensen (1996), is a graphical model that efficiently encodes the joint prob
ability distribution for a set (or hst) of random variables, X = {Xi,X2, ...,X„}, each of 
them having a finite number of possible states. A BN consists of two components: (i) 
A Directed Acyclic Graph (DAG) defining the network structure and encoding the con
ditional dependence relations between the variables in X; (ii) A set of local probability 
densities associated with each variable. Each node, /, of the DAG represents a random 
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variable, Xi. In order to make the notation lighter, we may write a node index, /, instead 
of its random variable, Xi, and vice versa. We also use the vectorized notation, Xs, for 
the subset {Xi},i e S. 

The DAG representing the BN structure has an arc from node / to node j , that is, / is a 
parent of j , i G pa(j), if the probability distribution of variable Xj is directly dependent 
on variable Xi, and the strength of this influence is expressed by conditional probability 
distributions. In many specific statistical models an arc can be interpreted as a direct 
influence or causal effect of X, on Xj, see Pearl (1988). 

Probability Densities: 
P(A), P(B I A) , P(C I B), P{D\A,C),PiE \ D) 
PiP\B) ,P(a\ F,H'),P{H'),P(I\ E'),P(J\ n,G) 

B and D are children of A 
C is child of B 
A and C are parents of D so A and C are spouses 
D and a are parents of y so _D and a are spouses 
G and J are descendants of F 
D ,E ,1 and J are descendants of C 
H is nondescendant of B 

Figure 1. Bayesian network example. 

The semantics of BNs implies a correspondence between the topology of a DAG 
and the network's probabilistic dependence relations, determined by the Markov con
dition: Every variable is independent of its nondescendants nonparents given its par
ents. Therefore, every Xi is associated with a local probability density, P(Xi |Xpa(i)), as 
showed in Fig 1. Based on this condition, a BN encodes a unique probabihty distribu
tion: P(X) = n i^(^ i I V ( 0 ) -

Inference in BNs is based on queries, where the posterior marginal distribution for a 
set of query variables, XQ, has to be computed given a set of observed variables, XE. 
This set of observed variables is the evidence in the network and establishes the values 
of the variables in XE. For example: e = {Xi = Xi,Xj = Xj} establishes the values of X, 
andXj, so E = {ij}. 

The posterior probabihty of Xg given e is: 

The expression X\Y indicates the set of all variables which belong to X but do not belong 
to Y, and the expression L x / ( ^ ' ^ ) indicates that all variables of X were eliminated or 
marginalized out, that is, were summed out from the function f{X,Y). 

Efficient computational algorithms rely on two important technical points: 
(I) Given a BN over variables X, an evidence e and a query XQ, not all variables of 

X may be required to compute P{XQ \e).lf the local probability density P{Xi |Xpa(i)) is 
required to compute P{XQ \ e), then Xi is a requisite variable, i G R. Fortunately there 
are simple polynomial algorithms able to identify the set R. We have used Bayes-Ball 
algorithm, see Shachter (1998). It is important to realize that the requisite variables, XR, 
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can be identified exploring only the DAG topology, without any numerical information 
concerning probabihty distributions. Hence, in order to reduce the problem dimension, 
the identification ofR should be done at the very first stage of inference calculation. 

(II) At intermediate computations, it is not necessary to compute the normalization 
constants, that is, the denominator P{e) of (1). We only need the numerator in (1), 

Hence, a basic rule for operation in BNs is: Compute the numerator P(XQ, e) and obtain 
normalization constant P{e) only in the last stage. This rule means that we can perform 
the intermediate computations with un-normahzed distributions, which are real-valued 
tables over a finite set of variables. These tables, (j>, are called potentials, see Jensen 
(1996). A potential's domain, dom(^), is its correspondent set of variables. In the 
following, we give some important properties of the algebra of potentials: 

(1) A variable Xi can be marginalized out of a potential ^ resulting in a new potential 
ĵf. = Y.Xi ^ over the domain dom(^jf.) = dom(^)\ {X,}. Marginalization follows: 

(la) the commutative law: Y.Xi L x ^ = Lx Lx; ^; and 
(lb) the distributive law: if X, ^ dom(^i), then Y.Xi ^i-^2 = ^i-Lx; ^2-

(2) Two potentials can be multiplied, resulting in a new potential with 
dom(^i.^2) = dom(^i) Udom(^). Multiplication follows: 
(2a) the commutative law: ^ i - ^ = ^2-^1; and 
(2b) the associative law: (^i.^2)-^3 = ^l•(^l•^3)• 

As an example, consider the BN in Figure 1. The BN joint probabihty distribution can 
be rewritten as: P{X) oc ^J^.^^.^C-^D-^E-^F-^G-^H-^I-^J, and the potentials specified for 
the network are: P{A) oc ^^(A),P(5|A) oc ^ B ( 5 , A ) , P ( C | 5 ) OC ^ C ( C , 5 ) , P ( £ ) | A , C ) OC 

(J>D{D,A,C) and so on. Computing P{I) can be accomphshed by marginalizing out of 
P{X) all the variables, except /. 

BNs are particularly useful for calculating new probabihties when we acquire new 
information. However, in the preceding calculations no evidence was entered into 
the network. Now, assume information e has been acquired, stating that "A = a", 
where A is a variable and at is the t-th state of A. Let A have s states with prob
ability distribution P(A) = (xi,...,Xi,...,Xj). This observed evidence e means that all 
states except tth one are impossible. So the new (un-normahzed) probability distri
bution is P{A,e) = (0,....,0,Xi,0,...,0) which is the result of multiplying P(A) with 
e^ = (0,...,0,1,0,...,0) in which only rth value is 1. The i-dimensional 0-1 potential 
e^ is called finding. 

In the current example, assume that we have the evidence A = a, H = h and / = j . 
This evidence e would be represented using three findings e^, e^ and ej. The posterior 
marginal P{I \ e) can be obtained normahzing P(/, E): 

P(^^') = llA,B,C,D,E,P,G,H,jP(^)-^A-eH-ej • (4) 

To avoid calculating the product of all potentials, we use the distributive law: 
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P{I\e) = Y,Y,M^,E).<j>E{E,D)Y,Y,<j>c{C,B).Y,<l>A{A)MB,A)-MDA,C). 
D E B C 

'£Y.MJ,D,G).ej'£<l>F{F,B).'£MG,F,H).<l>H{H)-eH. 
J G F H 

First, calculate ^^ = Y.H^G{.G,F,H).^H{.H).e_jj, then multiply (j>fj{F,G) on (j)f{F,B) 
and calculate (j>p = Y.F^F{.F,B).^JJ{F,G). The later result is multiply on (j)j{J,D,G).ej, 
to calculate (J>Q = Y.G^j{.J,D,G).^p{B,G).ej, and so forth. All the operations involved 
are represented in Figure 2. 

Because marginalization is commutative it can be done in any order. In the preceding 
calculation the marginalization, also called variable elimination, was done in a particular 
order, namely ig = [H,F,G,E,A,C,J,B,D]. 

s. \'pB(B,DyY 

S. 
P{1, E} • 

Z 
/J.S) 

sTX 

Z. 
U;(J^,B.£3) — 

X. ŝ  
•P^{F,G,H-) 

'P'jiB.D') 
4>ciB.D) 

S. 
s. 
4'c{C,B) 
AiB.C.D) 

S. 

Figure 2. The process of marginalizing down to / 

The diagram in Figure 2 also portrays the dependencies among potential operations 
to calculate P{I\e). Notice that some operations could be done simultaneously. For 
example, at very first stage, we could perform the required operations on A, H, and 
/, calculating ^^ = Y.A<l>A{A).<j>B{B,A)-<l>D{D,A,C).eA, etc. 

If a parallel computer is available, we can simultaneously execute all the marginaliza-
tions using already computed potentials. Hence, it is desirable to find: 
(i) An efficient way to specify all dependencies among these marginalization operations, 
(ii) A way to specify an elimination order entailing a "simple" dependence structure, so 
that many operations can be done simultaneously. 

The dependence structure of these operations is exactly the same as the dependence 
structure for "pivoting" operations appearing in numerical linear algebra, namely, in the 
Cholesky factorization of sparse matrices, see George (1993), Pissanetzky (1984), and 
Stem (1994, 2006, 2008). We describe only the aspects pertinent to this paper. 

An Undirected Graph (UG), ^ = [Y,£°), has undirected edges, {/, j } G £\ standing 
for pairs of opposite directed arcs, (/, j) and (j,/). The Moral Graph of a DAG, ^ , is 
the UG with the same nodes as ^ , and edges joining nodes / and j if they are immediate 
relatives in g .̂ The immediate relatives of a node in ĝ  include its parents, children and 
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spouses (but not brothers or sisters). / is a spouse of j is they have a child in common, 
that is, / G sp(j) o 3k \ i, j G pa(fe). 

The Markov Blanket of Xi, ^jiib(j) is defined as the minimal set of variables that 
makes a variable Xi independent from all other variables in the BN. This means that 
the Markov Blanket of a variable "decouples" this variable from the rest of network: 
P(Xi\X^^,j'.,Xj) = P{Xi\XJ^Y^,^^). It can be shown that the set of immediate relatives of 
node / is the Markov Blanket of node /. Figure 3a shows the Moral Graph of the BN in 
Figure 1. It is important to realize that if Xi and Xj are both in the same domain, of a 
variable X^ of the BN, then the edge {/, j} is in the Moral Graph. 

(a) LU (b) 
Figure 3. (a) Moral Graph (b) Filled Graph 

^ 

(2) (3) (4) 

Figure 4. Elimination graphs sequence 

©. I ® ® 

(5) (6) 

Given an UG, '^ = [f,£°), "V = {!,...«}, and an elimination order, q = 
[q{l),. ..q{n)], we define the elimination process of its nodes as the sequence of 
elimination graphs ^i = {'f'k^'S'k), for fe = ! . . . « , as follows: When eliminating node 
q{k), we make its neighbors a clique, adding all missing edges between them. 

'rk = {q{k),q{k+\),...q{n)}, S\ = S\ and, for fe > 1 , 

{ ; , j } e 4 o 
{ ' , j } e 4 - i , or 
{q{k- 1),/} G 4 - 1 and{^(fe- l ) , j} G 4 -

The Filled Graph is the graph {"V,.^), where .^ = U^^j4- The original edges 
and the filled edges in ^ are, respectively, the edges in <t and in ^\(f . There is a 
computationally more efficient form of obtaining the Filled Graph, known as simplified 
elimination: In the simphfied version of the elimination graphs, '!^^, when eliminating 
vertex q{k), we add only the clique edges incident to its neighbor, q{l), that is next in 
the elimination order. 
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The marginalization of variable X, out of P{X) corresponds to the elimination of the 
correspondent node in the elimination sequence. In order to marginalize on Xi, we have 
first to multiply all the potentials having X, in its domain, and than sum out X,. The 
domain of the resulting potential includes all the neighbors of Xi. In the Elimination 
Graphs, the corresponding elimination of Xi forms a chque with all of Xj's neighbors. 
Figure 3b and 4 show the Filled Graph and a synthetic version of the eliminations graphs 
for the order q = [H,F,G,E,A,C,J,B,D]. 

The Elimination Tree, see George (1993), Pissanetzky (1984), and Stem (1994, 2006, 
2008), portrays the dependencies among numeric operations on potentials, correspond
ing to dependencies in the node elimination process in the elimination graph. Hence, 
building the Elimination Tree for the corresponding Moral Graph makes it easy to see 
which variables can be eliminated simultaneously. Figure 5 shows the Elimination Tree 
for the order q = [H,F,G,E,A,C,J,B,D]. 

s t e p : G 

Figure 5. Elimination Tree for order q = [H,F,G,E,A,C,J,B,D] 

Figures 6 and 7. Nested Dissection. 

According to the Figure 5, six steps would be enough to eliminate all nodes: Variables 
/, H and A could be eliminated at first step and variables E, F and C at second one. Note 
that: (i) The Elimination Tree has the same structure of the tree of operations portrayed 
in Figure 2; (ii) A serial elimination would require 10 steps, one for each variable. 

Clearly the Elimination Tree depends on the chosen elimination order, and the sparse 
matrix hterature has many heuristics designed for finding good elimination orders. In 
this paper we adopted the an heuristic based on a nested dissections of the breadth-
first tree rooted at a pseudo-peripheral vertex which, in turn, was found using the Gibbs 
heuristic, see Figures 6 and 7. These procedures are described in detail in George (1993), 
Pissanetzky (1984) and Stem (1994, 2006, 2008). 
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PARALLEL VARIABLE ELIMINATION ALGORITHM 

The sequence of operations described in the previous section for inference in BNs can 
be summarized in the parallel variable elimination algorithm: 

1. Symbolic phase: 
1.1* Define the requisite variables XR using, for example, the Bayes-Ball algorithm; 
1.2 Build the Moral Graph (including only variables in XR); 
1.3 Choose a good elimination order using the Gibbs heuristics to find a pseudo-

peripheral vertex used as a root for the Nested Dissection heuristic; 
1.4 Symbolic Factorization: Execute the simplified elimination on the Moral Graph, 

and build the Elimination Tree; 
1.5 Allocate the computation resources and prepare the data structures to execute the 

numeric operations. 
2. Numeric phase: Using static data structures previously defined in the first phase: 
2.1 While the root of the Elimination Tree was not executed: Based on the Elimination 

Tree hierarchy, trigger simultaneously threads to execute all variable eliminations ready 
to be done, including its numeric operations of multiplication and marginalization; 

2.2 Normalize the remaining potential at the root. 

RESULTS AND CONCLUSIONS 

The proposed parallel algorithm was implemented and its performance was compared 
with a serial implementation. Both implementations were done in C and use the same 
functions to execute the basic operations for: Load the network; Multiply and marginal
ize potentials; and define the elimination order. The only difference between the two 
implementations is that the parallel version builds the Elimination Tree and, if possi
ble, eliminate two or more variables simultaneously. Following this strategy we hope to 
isolate the effect of parallelization. 

Table 1 displays some illustrative results. These experiments were done in a bi-
processed machine running Linux and consists of 100 inferences for 7 distinct queries 
using the Hailfinder25 network (55 variables). The set of experiments suggests that the 
parallel implementation is much faster than the serial one for larger experiments. Queries 
requiring more variables or with a branched structure in the Elimination Tree allow the 
simultaneous elimination of several variables, for example experiments 1 to 6. Queries 
(or models) requiring less variables, or with a more linear structure in the elimination tree 
allow less parallehzation of elimination operations. Consequently, in these examples, the 
serial implementation performed better due to the computational overheads imposed by 
the parallel version, namely, building of the Elimination Tree and the heavy context 
switch during execution. This was the case of experiment 7 in which the relations of 
dependence between the operations reduce the possibihties of parallehzation. 

Practitioners always want to solve larger models, most large models used in practice 
are sparse, and parallel or distributed computer are increasingly available. Hence, we see 
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1 
2 
3 
4 
5 
6 

N.R. 

44 
44 
45 
46 
46 
48 

P.T. 

174 
95 
71 
74 
104 
106 

S.T. 

812 
125 
155 
155 
126 
125 

P.C.S. 

6498 
6514 
6553 
6681 
6817 
7067 

S.C.S. 

901 
142 
183 
164 
138 
152 

great potential for the parallel algorithm presented in this article. 

Q.E. N.R. P.T. S.T. P.C.S. S.C.S. Table 1: 
Query example. 
Numb, or requisite vars., 
Parallel time. Serial Time, 
Parallel context switches. 

22 98 66 2948 78 Serial context switches. 
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