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The full Bayesian significance test (FBST) was introduced by Pereira and Stern for measuring the evi-
dence of aprecise null hypothesis. The FBST requires both numerical optimization and multidimensional
integration, whose computational cost may be heavy when testing a precise null hypothesis on a scalar
parameter of interest in the presence of alarge number of nuisance parameters. In this paper we propose
a higher order approximation of the measure of evidence for the FBST, based on tail area expansions of
the marginal posterior of the parameter of interest. When in particular focus is on matching priors, further
results are highlighted. Numerical illustrations are discussed.
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1. Introduction

Consider a sampling mode! f (y; #), with parameter # € ® C RY, d > 1, and let L(9) = L(6;Y)
denote the likelihood function for 6 based on datay. Let 7 (9) be aprior distribution for 6 and let
(0 |Yy) o w(0)L(0) bethe posterior distribution. In many applicationsit is usual to distinguish
between quantities of primary interest and others not of direct concern by writing 6 = (¥, 1),
with ¢ being scalar parameter of interest and A.(d — 1)-dimensional nuisance parameter. We are
interested in testing the precise (or sharp) null hypothesis Hg : ¥ = v versus Hy : v # vo. A
possible example occursin regression problems, when the parameter of interest i isaregression
coefficient, thenull hypothesisisHo : ¢ = 0, and thenuisance parameter isgiven by theremaining
regression coefficients and possible variance parameters.

The usual Bayesian procedure for testing or model selection is based on the well-known Bayes
factor (BF), whichisdefined astheratio of the posterior to the prior oddsin favour of Hg. Wedecide
in favour of Hy whenever the BF, or the corresponding weight of evidence log(BF), assumes high
value. However, it iswell known that, when the null hypothesisis precise and improper or vague
priorsare assumed, the BF can be undetermined, and it can lead to the so-called Jeffreys-Lindley’s
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paradox; see, e.g. Kass and Raftery.[1] Moreover, the BF isnot calibrated, i.e. itsfinite sampling
distribution is unknown and it may depend on the nuisance parameter.

Alternative to the BF, Pereira and Stern [2,3] provide an intuitive measure of evidence for the
full Bayesian significance test (FBST) in favour of Ho. This measure is the posterior probability
related to the less probable points of the parametric space, and it favours the null hypothesis
whenever it is large; see, e.g. Madruga et al. [4,5] and Pereira et a.,[6] and references therein.
Moreover, the FBST is based on a specific loss function,[4] and thus the decision made under this
procedure is the action that minimizes the corresponding posterior risk.

When testing the null hypothesis Hp : ¥ = v, the FBST requires numerical optimization
and multidimensional integration (see, e.g. [3,6]), which may be heavy or timely consuming in
particular when the dimension of the nuisance parameter islarge. These computational steps make
the FBST a computationally intensive procedure.

In this paper we discuss asimple approximation of the FBST based on the higher order tail area
approximation (HOTA) of the marginal posterior distribution of the parameter of interest (see,
e.g. [7,8], and references therein), which requires little more than standard likelihood quantities
for its implementation. In this respect, it is available at little additional computational cost over
the first-order approximation.

Moreover, whenin particular matching priorsare used (see, e.g. [9], and referencestherein), the
proposed approximation presentsfurther advantages, sinceit does not requirethe elicitation of the
prior on the nuisance parameters, it allows to perform accurate Bayesian inference even for small
sample sizes, and it is shown that it is calibrated with respect to the Uniform(0, 1) distribution.

The paper is organized as follows. Section 2 briefly reviews both the Pereira—Stern procedure
and the tail area approximation for the marginal posterior distribution of . Section 3 discusses
the higher order approximation of the measure of evidence for the FBST. Some examples are
discussed in Section 4. Finally, some concluding remarks are given in Section 5.

2. Statistical methods

2.1. The Pereira—Stern measure of evidence

Pereira and Stern [2] introduce a measure of evidence in favour of a null hypothesis Hg, which
does not require explicitly elicitation of prior probabilities for the hypotheses H;, i = 0, 1; see
aso Pereira and Stern,[3] Madruga et a.,[5] and Pereira et a.[6] Consider the following two
hypotheses for 6:

Ho:0 =6y € ® versus H1:9¢®0,

where® = {(¥, 1) € O© : ¢ = Yo} isasubset of the parametric space ®. To definethe measure of
evidencefor the FBST, Pereiraand Stern first consider the maximum of the posterior density over
the null hypothesis, attained at 0* = argmaX, ., (6 | y), given by the value 7 (6* | y). Second,
they defineT* = {0 € ® : 7 (0 | y) > 7 (6* | y)} astheset ‘tangent’ to the null hypothesis, whose
credibility is«* = fT* (6 | y) dd. The measure of evidence for the FBST is the complement of
the probability of the set T*, that is

EV =1—«* (1)

The procedure rejects the null hypothesis whenever EV issmall.
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The FBST is a Bayes test. Indeed, Madruga et al. [4] prove that the FBST procedure is the
posterior minimization of an expected loss function defined by

Loss(Accept Hg,0) =b+cl(® € T
Loss(Reject Hp,0) = a[l — (8 € T)],

wherea, b and c arereal positive numbers. With respect to thislossfunction, the optimal Bayesian
decision isto accept Hy if

b+c

EV > =
c+a

i.e. if EV isgreater than afixed critical level 0 < p < 1.

The computation of Equation (1) is performed in two steps. (a) a numerical optimization and
(b) anumerical integration.[2] The numerical optimization step consistsin finding the argument
0* that maximizes (6 | y) under the null hypothesis. The numerical integration step consists
of integrating the posterior density over the region where it is greater than 7 (6* | y), to obtain
«*. Even if efficient computational algorithms are available for local and global optimization, as
well as for numerical integration, the two steps may be heavy or timely consuming to perform,
in particular when the dimension of the nuisance parameter A is large. Moreover, as pointed out
in [6], the sophisticated numerical algorithms used in the computation of Equation (1) may be a
serious obstacle to the popul arization of the FBST.

2.2. Bayesian higher order asymptotics

Bayesian inference on v, in the presence of the nuisance parameter A, is based on the marginal
posterior distribution

S ML, ) dr

T Y = L@ ) dhdy

)

In order to compute Equation (2) and the related tail area, it is possible to resort to higher order
asymptotics, i.e. accurate approximations which provide very precise inferences even when the
samplesizeissmall (see, among others[ 7], and referencestherein). The basic regularity conditions
for the approximations given in this section are that there exists a unique maximum likelihood
estimate (MLE) or a unique posterior mode of 6 (see, for instance, [10]).

Let £p(y) = logL (¥, A,,) be the profile loglikelihood for v/, with 4., -constrained MLE of A
given . Moreover, let (7, 4) be the full MLE, and let (1) = —82¢,(¥) /32 be the profile
observed information. The marginal posterior distribution (2) can be approximated by expanding
the numerator L (v, 1) as a function of A about iw and by using the Laplace formula for the
denominator, see, e.g. Tierney and Kadane.[11] We get

lian (i, MIY2 (W, hy)

Tm(W 1Y) = clip() Y2 explep(y) — £p(i)} - & Sk £0y
P P P i A2 ()

©)

wherecisthenormalizing constant, j,, (¥, 1) isthe (A, A)-block of theobserved Fisher information
j(y¥r, A) fromL (¥, 1), and the symbol * =’ indicates that the approximation isaccurate to O(n~%/2).
An application of the tail area argument gives the corresponding O(n~%/2) approximation to the
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marginal posterior tail area probability.[7] In particular, we have

| w1980 = ez o, (@
Yo
where @ (-) isthe standard normal distribution function and

log QB(IP),
ro(¥) = rp(¥)

rg(¥) =rp(¥) + ®)

with rp(¥) = sign(y — ¥)[2(Ep(¥) — €p(y))1%? profile likelihood root and

1/2 |jM(Wa5w/;)|1/2 ﬂ(l},i)

(W) = () lip()| "2 —.
o PVl lion (G, Y2 (3, hy)

When the particular class of matching priorsis considered (see[9], and referencestherein), the
marginal posterior distribution for ¢ can be expressed as

Tm(Y | Y) me(W)n’mp(W)v (6)

where Linp(¥) = Lp(¥)M(¢) is the modified profile likelihood for a suitably defined correction
term M (/) (see, e.g. [12, Chapter 9]), and rmp (V) o iy g2 (¥, Ay)¥? isthe corresponding match-
ing prior, Withiy.y ., (¥, A) = iyy (¥, 1) — iw(l//,)L)iM(w,)L)‘liW(l/f,A) partial information, and
iy (W, A), Tya (W, 1), (¥, A), and iy (1, A) blocks of the expected Fisher information i (v, A)
fromL(y, A).

Accurate tail area probabilities are computable from Equation (6). In particul ar, we have

fw °° T 1Y) 4 = B (T3 (o)), @
where
rp(¥) =rp(¥) + rp(% log % )
isthe modified profile likelihood root of see Barndorff-Nielsen and Chamberlin,[13] with
W) = W) iy, Y21 ©

o (Y20 (W, hy) Y2 M)

Thus, Equation (8) is a higher order pivotal quantity, which allows one to obtain frequentist
p-values, confidence limits and accurate point estimators.

3. Higher order approximation for EV

We are interested in testing the precise (or sharp) null hypothesisHg : v = v versusH; : ¢ #
Y. In order to avoid the numerical optimization and multidimensional integration required for
the FBST, in this section we discuss a simple approximation of the FBST based on the HOTA
of the marginal posterior distribution of the parameter of interest. Moreover, when focus is on
matching priors, further theoretical results are highlighted.
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Figure 1. Shaded area: EV for the precise hypothesisHp : ¥ = .

Consider the marginal posterior distribution (2) for the parameter of interest v, and consider
the set

T =Y :am¥ |y) = 7m0 | Y)}. (10)

Starting from 7, (v | y), the Pereira—Stern measure of evidencein favour of Hy can be computed
as (Figure 1)

EV =1-Pr (¢ € T(Y), (11)

where Pr, (-) denotes posterior probability, and the null hypothesis Hy is accepted whenever EV
islarge enough.
A first-order approximation for Equation (11) is simply given by Pereiraet al.,[6]

P op | oV | (12)

NI

Inpractice, itiswell knownthat Equation (12) isofteninaccurate, in particular when thedimension
of A islarge with respect to the sample size. Moreover, it forcesthe marginal posterior distribution
to be symmetric.

The following theorem provides the higher order approximation for EV based on the tail area
approximation (4).

Ev O

THEOREM 1 Thethird-order approximation of the measure of evidence (11) used in the FBST is
EV=1-®(rg(¥o)) + ®(rg(¥y)). (13)

Proof Let us assume, without loss of generality, that v is smaller than the posterior mode of
am(y¥ | y) (asin Figure 1), and let y§ be the value of the parameter such that 7m(y§ | y) =

m(¥o | y). Then

Yo +o0
eV = [ iyydv+ [ 1 dv.
—00 ]/jg
Using Equation (4), we can compute EV asin Equation (13), with rj () defined in Equation (5).
Note that the higher order approximation (13) does not call for any condition on the prior
(Y, M), i.e it can beaso improper, and on the corresponding margina posterior rm (v | y). B
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When (¢ | y) issymmetric, Equation (13) reducesto EV =2(1 — ®(r§(¥0))). Moreover,

¥
@ (rg(Yo)) — P (rg(¥p)) = /w (¥ | Y) Ay = Pr (¥ € T(y)) =1-EV,

gives the posterior probability of the HPD credible interval (yo, ¥§).

To compute Equation (13) in practice, a simple simulation scheme based on HOTAS can be
used.[8] The implementation of the HOTA sampling scheme is available at little additional com-
putation cost over simplefirst-order approximations, and it has the advantage over Markov Chain
Monte Carlo (MCMC) methods that samples are drawn independently in much lower computa-
tion time. Starting from (¥ | y), the simulation algorithm can be summarized as follows. For
i=1,...,J

(1) generate a pseudo-random number z~N(0, 1), independently;
(2) compute y; asthe solution of rg () = z;

obtain thus a sample (Y1, . . ., ¥3) from the margina density 7= (¥ | y). The HOTA simulation
procedureisessentialy an inverse method of sampling and it provides independent samplesfrom
mm (¥ | Y) by inverting the cumulative distribution function approximation (4). In this respect,
HOTA hasan advantage over MCM C methodsinthat itiseasier toimplement and computationally
faster. Moreover, it provides aso a convenient approach for a sensitivity analysis with respect to
the prior specification.[8]

When the class of matching priorsis considered, then Equation (13) reduces to

EV=1— & (13 (¥o) + @ (r5(¥5)), (14)

where ry () is defined in Equation (8). Note that Equation (14) does not require the explicit
elicitation on the nuisance parameters.

The following theorem shows that Equation (14) is calibrated to second order with respect to
the Uniform(0, 1) distribution.

THEOREM 2 The sampling null distribution of the EV given in Equation (13) at 6 = 6, is
Uniform(0, 1) to second order if and only if the prior is matching.

Proof Letusdenotewith G, (1) the cumulativedistribution function of the posterior o, (V¥ | y).
Consider afunction B(e) C [0, 1] for @ € [0, 1] with Lebesgue measure «. Then, there exists the
set T, (y) = G, 1(B()), complementary to the set T (y), such that P, {y € T, (y)} = a. Moreover,
when considering the matching prior wmp(y), it holds

Py € Ta()} = Polyy € To(V)} + Op(n™H) = o + Op(n™h),

where Py (-) denotes probability under f (y; 0).
Theif part can be shown asfollows. Let B(a) = [0, ), and assume that EV ~ Uniform(0, 1)
under Hg. Then

Op(n™Y) + @ = Py {EV € [0,a)}
= Pg,{EV € B(x)}
= Py {Gp (EV) € G,,'(B(e))}
=Py {y € Tu(V)},



Journal of Satistical Computation and Smulation 7

where the last equality is the definition of matching prior. For the converse, assuming that the
prior is matching, then

Op(n™) 4+ & = Py (¥ € T,(Y)}

= Py {Gm(¥) € Gn(T(Y))}
= Py, {EV € B(a)}
= Py (EV € [0,)}.

4. Monte Carlo studiesand applications

The aim of thissectionisto illustrate the use and the accuracy, even for small sample sizes, of the
approximation (13) of the EV in comparison to the original measure (1). The EV (11) from the
marginal posterior distribution 7, (v | y) can be obtained exactly (EV®) if the marginal posterior
distribution isknown analytically, or from Equation (13) using the HOTA method (EV'8), or from
Equation (12) when considering the first-order approximation (EV™). The HOTA method has
been employed as explained in [8] that is approximating rj(y) in agrid of 50 points and then
using 10,000 Monte Carlo samples from the approximated marginal posterior.

In the examples different default priors have been considered together with the matching prior,
in order to perform a sensitivity analysis of the EV with respect to the prior specification.

4.1. Example 1. Inverse Gaussian distribution

Lety = (y1,...,Yn) bearandom sample from an Inverse Gaussian distribution, with likelihood

function
Ly, ay) = w”/zexp[w (9 LI 9)]

wheret =3 yi=nyanda= Y, 1/yi. Let ¢ be the parameter of interest and suppose to
testHo: ¢ = 1versusH; @ ¢ # 1.

We consider the reference prior [14] with parameter order (v, 1), i.e. mr(¥, A) o ¥ ~tA~1/2,
Based on such prior, we calculate the origina measure (1) and the first-order and higher order
approximations(12) and (13), respectively. Wefurther consider thematching prior rmp (y),[15] for
whichthemarginal posterior 7 (v | y) isagammadistributionwith mean (n — 1) /2sand variance
(n — 1)/2s?, wheres = (n/2)(a/n — 1/y). Quantiles for the exact computation of Equation (11)
can be thus obtained numerically.

For a sample of n = 20 observations drawn under the null model (with ¥ =1 and A = 1),
Figure2 highlightstheoriginal EV under thereferenceprior (a), accordingtotheoriginal definition
in Pereiraand Stern,[2] and of EV™ (d) and EV's (c) under the reference prior (denoted, respec-
tively, with EV..,, V' and EV2), and of EV® under the matching prior (b), denoted with
EV;‘“mp. TheEV in Equation (1) is about EV ,, = 0.999, while EV?,ER = 0.923 and EVI;’R = 0.789.

When using the matching prior, we have Evji'xrnp = 0.823. Note that Ev;i isquite closeto EV .,

while the first-order approximation EVI,"R appears inaccurate.
In order to study the asymptotic error in approximating the sampling null distributions of the EV
with the Uniform(0, 1), a simulation study has been performed with 1000 independent samples

.
s

of sizesn =5, 10, 20, 50, with v = A = 1. For each sample, we evaluated EV ., EV 3, EVI,"R
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Figure 2. Inverse Gaussian example: (&) tangent set T* under the reference prior (small grey area), (b) the tangent set

T under the matching prior, (c) tangent set T with the third-order approximation and the reference prior and (d) tangent
set T with the first-order approximation and the reference prior.

and EVQ‘ and Figure 3 reports the QQ-plots against the Uniform(0, 1) distribution. Moreover,
Table 1 glves the nominal and empirical lower quantiles of the sampling null distribution of the
different EV.

Figure 3 shows that EVQ‘ is uniformly distributed under the null model, aswell as EVnR, and

evenis EVI,OR for larger wmpl e sizes, under the reference prior. On the contrary, EV ., appearsto
be conservative for the null model, more than expected under the uniform distribution; see also
the quantilesin Table 1. For instance, from Table 1 we note that, for a sample of size n = 5, the
frequency of observing avalue of EV smaller than 1% under the null hypothesistendsto be larger
for the reference analysis, while it is amost 1% under the matching analysis. The same occurs
also for other nominal values of the EV and n.

4.2. Example 2. Extreme value regression

Lety;,i =1,...,n, bearandom sample from the Weibull regression model, given by

log(yi) = Bo + BiXia + - - - + BpXip + o€, (15)

where ¢; hasdensity f (¢) = exp(e — €), i.e. the density of alog-Weibull variable, also called the
extreme value density. Let ¢ = B, be the parameter of interest, so that all other regression and
scale parameters are nuisance parameters. For the null hypothws Ho : ¢ = OversusHy : ¢ # 0,

the higher order approximation r p(V), which gives EV , isillustrated in [16, p. 78] and [9].
The aim of this example is to illustrate the computatlonal advantages of the higher order

approximations of the EV with respect to the origina expression (1), which requires integration

and calculation of thetangential set T* over thefull parameter space. In general, the computational
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Figure 3. Inverse Gaussian example. Sampling null distribution of EV , (or), EVS,ER (rb), EVE,"R (fo) and EV;?;Hp (ex),
for n =5, 10, 20 and 50.

Table 1. Nominal and empirical quantiles for different sample sizes of the sampling null distribution of the measures
of evidence.

Matching prior Reference prior
BV EVig EVE, EVi®
n 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

5 0.02 0.05 0.11 0.15 0.34 0.44 0.02 0.05 0.11 0.00 0.12 0.17
10 0.01 0.04 0.10 0.07 0.22 0.36 0.01 0.04 0.10 0.01 0.08 0.13
20 0.01 0.05 0.11 0.07 0.21 0.33 0.01 0.05 0.11 0.01 0.06 0.12
50 0.01 0.06 0.11 0.03 0.18 0.30 0.01 0.06 0.11 0.01 0.05 0.10

issues under Equation (1) are not cumbersome with MCMC and small d. However, when the
dimension of the nuisance parameter is large, the computation of the tangential set T* over the
full parameter space may be problematic as well as the elicitation on the nuisance parameters.
Consider a real data set concerning a clinical study on malignant mesothelioma (MM).[17]
This data set reports survival times for 77 individuals, with other covariates, like the gender, the
type of MM, i.e. type epithelioid (37 cases), biphasic (18 cases) or sarcomatoid (22 cases), and a
set of genetical markers. Consider the Weibull regression (15) of the survival times with all the
covariatesfor atotal of 36 regression parametersand 77 observations. The effect of the histotype,
with respect to the baseline epithelioid, is modelled by two scalar regression parameters, which

are here regarded as separately parameters of interest. In the following, we consider Evffmp from

Equation (14), EV'® from Equation (12) and the original (1), where the latter two are both based
on the noninformative prior (81, . .., Bas, 0) < oL,
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Significance of the effect of biphasic histotype.
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Figure 4. Extremevalue regression. Evidence for the significance of the histotype effect on the survival from malignant

mesotheliomas.[17] Evidence has been calculated using the original EV, the first-order EV® and the third-order EV'8
approximations for nested regression models.

Inorder toillustrate the effect of the dimensionality of the nuisance parameter, in the evaluation
of the measure of evidence for the histotype biphasic and for the histotype sarcomatoid, we con-
sidered different nested regression models all containing the initial regressor histotype. Figure 4
reports, for all the considered models, the value (1) of the original EV, thefirst-order approxima-

tion EV™ and the third-order approximation Ev;"mp. The latter two have been obtained with the
HOTA sampling scheme, while Equation (1) has been computed using arandom walk Metropolis
over the full parameter space with a multivariate normal proposal. In both cases, 10° samples
were used, but HOTA has the advantage over MCMC methods that it samples independently.
Moreover, using the same MCM C setup for the regression anal yses up to 25 coefficients, wewere
not able to obtain a satisfactory approximation of the posterior with more than 25 coefficientsand
the corresponding values (1) have been not presented.

Thevalues of EV given in Figure 4 indicate that according to EVi,"mp thereisasignificant effect
on the survival of sarcomatoid and biphasic histotypes with respect to the epithelioid, since the
corresponding valuesarefairly below 0.5. Similar resultsare obtained with EV and such findings
are in line with those obtained in [17]. On the contrary, when considering the original EV for
the biphasic effect and aso for the sarcomatoid effect, along with alarge number of covariates,
the results are quite different. Note aso that the analyses with EV tends to diverge with respect
to those with EV™ and EV's as the dimensionality of the integration space increases and thisis
mainly related to the computational problemsin approximating the full posterior distribution with
MCMC.

In order to study the asymptotic error in approximating the sampling null distribution of Evffmp,
a simulation study has been performed under the null hypothesis of no effect of histotypes in
survival. The ssimulation study is conducted using the same full design matrix as in [17], by
simulating the response with all coefficients and scale equal to those estimated for this data set

except those of sarcomatoid and biphasic which have been forced to be 0. The QQ-plot of the



Journal of Satistical Computation and Smulation 11

Sampling null distribution of EV/° and EV'5
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Figure 5. Extreme value regression: sampling null distribution of EV and of EVI for the significance of the effect

of biphasic histotype. The corresponding 100 measures of evidence have been si mulatme’a under no effect of histotypeson
the survival.

"> and EV'®for 100simulated samples, for the biphasi c histotype,

ﬂmp

sampling null distribution of EV
isreported in Figure 5. Note that EV??  exhibitsaclear improvement over EV'.

Tmp

4.3. Example 3. Logistic regression

Consider alogistic regressionmodel appliedtotheur i ne dataset givenin[18]; seealso Brazzale
et al.[ 16, Chapter 4] Thedataset concernscalcium oxalatecrystalsinn = 77 samplesof urine. The
binary response y indicates the presence of such crystals, and there are six explanatory variables:
specific gravity (gravi ty), i.e. the density of urine relative to water; pH (ph); osmolarity
(osnmo, mOsm); conductivity (conduct ,mMho); ureaconcentration (ur ea, millimolesper litre)
and calcium concentration (cal ¢, millimoles per litre). Let X be the n x 7 fixed design matrix
composed by afirst column of onesand thesix covariates, aslisted above, andlet 8 = (8o, .. ., Be)
be the vector of coefficientsincluding the intercept. The log-likelihood function for g is

€(B) =y XB — Y logi{1+ exp{x' B},

i=1

where x; representstheithrow of X,i = 1,...,n, andy isthe vector of binary responses.

In order to assess the significance of a scalar regression coefficient, we consider the EV
computed under the flat prior mr(8) o 1, the noninformative G-prior 7g(8) given in [19,
p.101], and the EV defined in Equation (14), i.e. under the matching prior wmp(¥). The
higher order approximations of the EV have been computed according to the HOTA simula-
tion scheme,[8] while Equation (1) has been obtained, for each prior, using a separately random
walk Metropolis-Hastings with 50,000 samples after thinning a chain made of 10° steps.

Figure 6 givesthe margina posterior distributions of the coefficients of interest in the analysis:
B4 (conduct), Bs (urea) and Bs (cal c), as well as the values of the EV for Hy : 84 =0,
H0:,35=08ndH0:/36=0.

The original EV defined in Equation (1) in general seemsto provide larger evidences for the
null hypotheses, as also reported in Table 2. The evidence for the significance of Bg is till strong,
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Figure 6. Logistic regression example: marginal posterior distributions obtained with the HOTA agorithm along with
the corresponding measures of evidence for B4, 85 and B under theflat prior (first row), the matching prior (second row)
and the Zellner G-prior (last row).

Table 2. Logisticregression example: valuesof the evidence acrossdifferent priors, and high-order p-values
from Brazzale et a.[16]

Origina HOTA approximations

X

Null hypothesis ~ EVy  EVig EVZE EVZE, Evg,éG EVf®  High-order p-value

Ho:Bs=0 0.833 0.963 0.047 0.060 0.158  0.084 .085
Ho:B5=0 0.648 0.968 0.022 0.027 0.110  0.047 .047
Ho:Bs=0 0.002 0.063 <0.001 <0.001 <0.001  0.001 .001

but much less than that provided by EVZ_ whichin general agrees also with the evidence of the

Tmp»

higher order frequentist analysisillustrated in [16] (see the p-valuesin Table 2).

5. Final remarks

This paper discusses higher order asymptotics for the measure of evidence EV for the FBST,
originally proposed in [2]. The computation of the EV considered here differs from the original
one since the maximization in Equation (10) and integration in Equation (11) is done only in
the dimension of the scalar parameter of interest, instead of the full parameter space ®. In this
respect, in particular when the dimension d is large, the proposed EV is computationally lighter
and is preferable to the original EV which reguires heavy or timely consuming computations. In
particular, asillustrated in Examples 2 and 3 of Section 4, this may occur in regression problems,
when the parameter of interest v is aregression coefficient, and the nuisance parameter is given
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by the remaining regression coefficients and possibl e variance parameters. Examplesin Section 4
show also that the HOTA method can be successfully employed to compute Equation (13) in
practice, with the advantage over MCMC methods that it samples independently, and to perform
sensitivity analyses with respect to the prior specification.

With respect to the existing literature on procedures for testing or model selection, we note
that, on the contrary of the BF, the higher order approximation of the EV is aways defined and
does not call for any condition on the prior 7 (v, A). Indeed, in the computation of Equation (13)
the prior entersin ri(y) as (¥, 1) /7 (¥, A,), and thus it can be also improper. Finally, when
in particular matching priors are used, we note that the approximate EV does not require the
explicit elicitation on the nuisance parameters and is calibrated to second order with respect to
the Uniform(0, 1) distribution.
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