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Abstract. In this paper, the relationship between the credibility of a complex hypothesis, H, and 
those of its constituent elementary hypotheses, ffl, j' = 1... k, is analyzed, in the independent setup, 
under the Full Bayesian Significance Testing (FBST) mathematical apparatus. 
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INTRODUCTION 

The Full Bayesian Significance Test (FBST) has been introduced by Pereira and Stern 
(1999), as a coherent Bayesian significance test for sharp hypotheses. For detailed 
definitions, interpretations, implementation and applications, see the authors' previous 
articles, including two papers in this conference series, [9], [17]. 

In this paper we analyze the relationship between the credibility, or truth value, of a 
complex hypothesis, H, and those of its elementary constituents, HJ\ j = 1... k. This 
problem is known as the question of Compositionality, which plays a central role in 
analytical philosophy, see [3]. 

According to Wittgenstein [22], (2.0201, 5.0, 5.32): 
- Every complex statement can be analyzed from its elementary constituents. 
- Truth values of elementary statement are the results of those statements' truth-

functions (Wahrheitsfunktionen). 
- All truth-function are results of successive applications to elementary constituents 

of a finite number of truth-operations (Wahrheitsoperationen). 
The compositionality question also plays a central role in far more concrete contexts, 

like that of reliability engineering, see [1] and [2], (1.4): 
"One of the main purposes of a mathematical theory of reliability is to develop 

means by which one can evaluate the reliability of a structure when the reliability 
of its components are known. The present study will be concerned with this kind of 
mathematical development. It will be necessary for this purpose to rephrase our intuitive 
concepts of structure, component, reliability, etc. in more formal language, to restate 
carefully our assumptions, and to introduce an appropriate mathematical apparatus." 

When brought into a parametric statistical hypothesis testing context, a com­
plex hypothetical scenario or complex hypothesis is a statement, H, concerning 
0 = (0 1 , . . . , 0k) G 0 = (01 x ... x 0*) which is equivalent to a logical composition of 
statements, Hx,.. .,Hk, concerning the elementary components, 6l G 0 1 , . . . ,6 k G 0*5 

respectively. Within this setting, means to evaluate the credibility of//, as well as that of 

CP872, Bayesian Inference and Maximum Entropy Methods in Science and Engineering, 
26th International Workshop, edited by Ali Mohammad-Djafari 

© 2006 American Institute of Physics 978-0-7354-0371-0/06/$23.00 

459 

mailto:wborges@mackenzie.com.br
mailto:jstern@ime.usp.br


each of its elementary components, i / , . . . , Hk, is provided by the FBST mathematical 
apparatus introduced in [12]. Further general references on the subject include [8-13] 
and [16-20]. It is of interest, however, to know what can be said about the credibility 
of H, from the knowledge of the credibilities of its elementary components, and this is 
what the authors endeavor to explore in the present paper, in the case of independent 
elementary components. 

FBST FORMAL STRUCTURES 

By a FBST Structure, we mean a quintuple M= {S,H,p0,pn,r} , where 
- 0 is the parameter space of an underlying statistical model (S,2,(S),Pe); 
- H : 6 e ®H = {6 e &\g(6) < 0 A h(0) = 0} is the Hypothesis, stating that the 

parameter lies in the (null) set 0 ^ , defined by inequality and equality constraints given 
by vector functions g and h in the parameter space. We are particularly interested in 
sharp (precise) hypotheses, i.e., those in which dim(0 i /) < dim(0), with at least one 
equality constraint. In the sequel we often use a relaxed notation, writing the hypothesis, 
H, instead of the set 0 ^ defining it. 

- p0, pn and r are the Prior, the Posterior and the Reference probability densities on 
0 , all with respect to the same a-finite measure \i on a measurable space (0 ,2(0)) . 

Within a FBST structure, the following definitions are essential: 
- The posterior Surprise function, s(0), relative to the structure's reference density, 

r(6), and its constrained and unconstraind suprema are defined as: 

s(e) = 7(§Y' s*=s(e*) = supe&Hs(e), ?=s(e) = supe&es(e). 

- The Highest Relative Surprise Set (HRSS) at level v, T(v), and its complement, 
T(v), are defined as: 

T(v) = {eee\s(e)<v}, T(v) = o - r ( v ) , 

- The Truth Function or cumulative surprise distribution, W : R^ i—> [0,1], and the the 
Untruth Function of M, W(y), are defined as: 

W(v) = [ pn(e)v(de) , W(v) = 1 - W(v) . 
JT(v) 

- The Truth Value, QV(H), or evidence value (e-value) supporting the hypothesis H in 
M, and the Untruth Value, ov(H) or evidence-value against H, are defined as: 

ev(i7) = W(s*) , ev(i7) = W(s*) = 1 - ev(i7) . 

The role of the reference density in the FBST is to make ev(H) implicitly invariant un­
der suitable transformations of the coordinate system of the parameter space. The natural 
choices for reference density are an uninformative prior, interpreted as a representation 
of no information in the parameter space, or the limit prior for no observations, or the 
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neutral ground state for the Bayesian operation. Standard (possibly improper) uninfor-
mative priors include the uniform and maximum entropy densities, see Dugdale (1996) 
and Kapur (1989) for a detailed discussion. 

The Tangential Set, T = T(s*), contains the points of the parameter space with higher 
surprise, relative to the reference density, than any point in H. When r(0) ^ 1, the 
possibly improper uniform density, T is the Posterior's Highest Density Probability Set 
(HDPS) tangential to H. Small values of ov(H) indicate that the hypothesis traverses 
high density regions, favoring the hypothesis. 

As we will see in the next sections, it is not possible to obtain the truth value of 
a complex hypothesis only from the truth values of its elementary constituents. It is 
possible, however, to obtain upper and lower bounds for the truth value of the complex 
hypothesis from the truth values of its elementary constituents. We will also see that it is 
possible to obtain the truth function, W, of a complex structure, from the truth functions, 
WJ\ of its elementary constituents, and the constrained supremum, s*, of the complex 
structures surprise function from the elementary suprema, s*J. 

Since ev(i/) = W(s*), the pair (W,s*) will be referred to as the Truth Summary 
of the structure M. Since we will be dealing in this paper, exclusively with complex 
hypotheses in an independent setup, we close this section by establishing the precise 
meaning of this framework. By an independent setup we mean that the FBST structures 
corresponding to the complex hypothesis H, M = {S,H,p0,pn,r}, and to each of its 
elementary constituent hypotheses, HJ\ MJ' = {QJ\HJ\pJpJ

n,r
J}, j = 1,.. .k, bear the 

following relationships between their elements: 
- the parameter space, 0 , of the underlying statistical model, (S,2,(S),Pe), is the 

product 0 1 x 0 2 x ... x 0^; 
- H, is a logical composition (conjunctions and disjunctions) of//1, H2, ..., Hk; 
- pn and r, are probability densities with respect to the product measure fi = /I1 x 

/i2 x ... x \ik on (0,E(0)), where fiJ denote the a-fmite measure on (0 J ,E(0 J)) with 
respect to which pi pJ

n and rJ are densities ; and 
- the probability densities pn and r are such that 

TRUTH-VALUES INEQUALITIES FOR CONJUNCTIONS 

In this section we shall investigate, within the independent setup, the question of whether 
the truth value of a complex hypothesis, H, can be obtained from the truth values of 
its elementary constituents, Hl, H2, ..., Hk. We consider the case of a conjunctive 
composite hypothesis, that is, the case in which H is equivalent to Hl A H2 A ... A HJ. 

In this case only bounds can be obtained for the truth and untruth values of//, from 
the corresponding truth and untruth values of the elementary constituents, HJ: 

Proposition 3.1: If H is equivalent to Hl A H2 A ... A Hk, then 

f [* = i ev(//7') < ev(//1 AH2A...AHk) and 

f[*=i MHJ) < MHl AH2A...AHk) . 
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In order to prove proposition 3.1, the following lemmas will be needed: 
Lemma 3.2: For any conjunctive composite hypothesis H with elementary con­

stituents Hl, H2,... Hk, 

s* = supeeHs(0) = f [y = 1 supeJeHJs
J(6J) = f [y = 1 s*J . 

Proof: Since for 6 e H, P(0J) < s*J, for 1 < j < k, s(6) = n*= i P(0J) < n*=i s*-> 

so that s* < U^=\S*J- On the other hand, if for e > 0 and s = U^=\(s*J - e), there 

must exist 0 e A*=i HJ such that s(G) = U%\ sj(0j) > U%\ (s*J ~ e). Consequently, 

supeeHs(6) > r i /= i (s*J — £)? and the result follows by making e —> 0. 
Lemma 3.3: 

n*=1^V) < ^ n * ^ ) . 
where ^ ' , 1 <j <k, and ^ are the truth functions of MJ\ l<j<k, and M, respectively. 

Proof: Let G:R^_^ [0,1] be defined as 

G ( v \ . . . y ) = / Pn(e)fi(de). 

Since 5 = n*=i P •> M — II*=i M7
?
 a nd 

{^(e'j^v1,...,^*)^/} c {n^iA^^n^i^} = {^^uU^} -
it follows that 

n^v)=G(V\...,V*) < ^n^w). 
Proof of Proposition 3.1: In the inequality of Lemma 3.3, replacing each vJ by s*J\ 

1 < 7 < K a nd then using Lemma 3.2, the first result in proposition 3.1 follows. The 
same argument proves the other assertion. 

Consequently, iiH is equivalent to Hx AH2 A... AHk, the truth values of the elemen­
tary constituent hypotheses give us lower and upper bounds for the truth value of the 
complex hypothesis. More precisely, 

Proposition 3.4: If H is equivalent to Hl A H2 A ... A Hk, then 

n ^ i e v ^ ^ e v ^ A ^ A . - . A ^ ^ l - n ^ ^ l - e v ^ ' ) ) ^ and 

Y^j=l^{Hj)<^{HlAH2A...AHk)<\-Y^j=l{\-ow{Hj)). 

In the null-or-full support case, that is, when, for 1 < j < k, s*J = 0 or s*J = P, 
and the truth values of the simple constituent hypotheses are either 0 or 1, the bounds 
in proposition 3.4 are sharp. In fact, it is not hard to see that the composition rule of 
classical logic holds, that is, 

ev(H A...AH) - j Q ^& 

1 = p ...s*
k = sk ; 

for some j = 1... k, s*J= 0 . 
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In the example below, illustrated by Figure 1, we show that the inequality in proposi­
tion 3.4 can, in fact be strict. Figure 1 is followed by a Matlab program giving thr Mellin 
convolution of discretized (stepwise) distributions, used to generate all examples. 

Example 3.5: In the third, first and second subplots of Figure 1, we have the graphs of 
truth functions corresponding, respectively, to the complex hypothesis Hl A H2 and to 
its elementary constituents, Hx and H2. Note that while QV(H1 ) = 0.5 and QV(H2) = 0.7, 
evfT/1 AH2) = 0.64, which is strictly grater than QV(H1)QV(H2) = 0.35. 

THE TRUTH OPERATION FOR CONJUNCTIONS 

In this section we shall investigate, also within the independent setup, the question of 
whether the truth function of the FBST structure corresponding to a complex hypothesis, 
H, can be obtained from the truth functions of the FBST structures corresponding to 
its elementary constituents, Hl, H2, ..., Hk. As in section 3, we consider the case 
of a conjunctive composite hypothesis, that is, the case in which H is equivalent to 
Hl AH2A...AHJ. 

Definition 4.1: Given two probability distribution functions G1 : 7?+ i—> [0,1] and 
G2 \R+^ [0,1]. Their Mellin convolution, G1 ® G2, is the distribution function defined 
by 

Gl®G2(v) = r fyG\dx)G2(dy) = [°°G\v/y)G2(dy) . 
Jo Jo Jo 

In probabilistic terms, the Mellin convolution G1 ® G2 gives us the distribution func­
tion of the product, of two independent random variables, X and 7, with distribution 
functions, G1 and G2, respectively, see [6], [15] and [21]. From this interpretation, com-
mutativeness and associativeness of Mellin convolution, ®5 follows immediately. 

Lemma 4.2: For a conjunctive hypothesis H, 

H = /\k
j=lH

J , W = (g)l<j<kW
J = Wl®W2®...®Wk(v) . 

Proof: 4.2 follows straight from the definition of W. 
In view of the above result, we shall refer to the Mellin convolution, in the present 

context, as the Truth Operation. 
The following proposition shows that, together with the truth operation, truth sum­

maries, (WJ\s*J), 1 < j < k, efficiently synthetize the independent setup information, in 
the sense that the truth value of a complex hypothesis H can be obtained. 

Proposition 4.3: If H is a complex hypothesis with elementary constituents 
Hl,H2,...Hk, and (WJ\s*J), I < j < k, are their corresponding truth summaries, 
the truth value ofH is given by 

ev(/0 = ^(O = (8)1</<^(nJ=i^)-
Proof: Immediate, from Lemmas 3.1 and 4.2. 
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D I S J U N C T I V E N O R M A L F O R M 

Let us now consider the case where H is Homogeneous and expressed in Disjunctive 
Normal Form, that is: 

H = \lq
i=lKj=xH

{iJ] , M ^ ) = { © ^ V o , / ^ } . 

Let us also define s*^^ and s^1^ as the respective constrained and unconstrained 
suprema of s(6^lJ")) on the elementary hypotheses H^lJ\ 

Proposition 5.1: 

ev(//) = e v ( V t 1 A y l 1 ^ J ' ) ) = ^{^UllUS*{U)) = 

m^^W (UUS*{"J)) = ™*U™{K=l
Hi"j)) • 

Proof: Since the supremum of a function over the (finite) union of q sets, is the 
maximum of the suprema of the same function over each set, and W is non-decreasing, 
the result follows. 

Proposition 5.1 discloses the Possibilistic nature of the FBST truth value, that is, the 
e-value of a disjunction is the maximum e-value of the disjuncts, see [16-19]. 

F I N A L R E M A R K S 

In this gives a theoretical framework for the compositionality problem is established 
in the context of parametric statistical hypothesis testing, based on the FBST evidence 
value, QV(H). Forthcoming papers will illustrate several applications, such as the simul­
taneous calibration of measurement procedures, and the psychometric analysis of learn­
ing experiments, see [5] and [14]. Forthcomming papers will also detail the implemen­
tation of computational procedures for estimating the truth function, W(v),0 < v < ?, 
by Markov Chain Monte Carlo (MCMC). Such procedures require only minor adap­
tations, with small computational overhead, of the MCMC procedures for estimating 
ev(i7) = W(s*)9 see [8]. 

It is worth mentioning that the present article does not abridge the most general com­
position cases of nested or heterogeneous (independent) structures, where composite 
hypotheses are simultaneously assessed in heterogeneous sub-structures of (possibly) 
different dimensions. The following example indicates that this is not a trivial matter: 

Example 5.2: Let m = argmax = 1 2QV(HJ) and / / be equivalent to (Hl VH2) AH3. 

Is it true that ev(H) = maxjev^ 1
 AH3),QY(H2 AH3)} = ev(//™ AH3) ? Interestingly 

the answer is in the negative. In the third and forth subplots of Figure 1 we have the 
graphs of the Truth Functions corresponding, respectively, to the complex hypothesis 
Hx AH3 and H2 AH3, where the structure M3 is an independent replica of M2. Observe 
that e v ^ 1 ) = 0.5 < QV(H2) = 0.7, while e v ^ 1 AH3) = 0.64 > QV(H2 AH3) = 0.49. 

464 



0.9 f-
0.8 [• 

°-7r 
0 .6^ 

: o.sL 
0.4 f-
0 .3^ 
0.2 [• 
0.1 f-

0.5 0.6 0.7 0.8 

1 
0.9 
0.8 
0.7 
0.6 

^ 0.5 
0.4 
0 . 3 
0.2 
0.1 

0 
C D 

' 

0 . 1 

' 

0 . 2 

' 

0 . 3 

' 

0 . 4 

' 

0 . 5 

I 
I 

0 

s*2 

6 

' 

0 . 7 

' ' 

ev(H2)=W2(s*2) 

0.8 0.9 

-\ 
1 
-A 

~\ 
1 

1 
0.9 
0.8 

c. 0.7 
f=g 0.6 
eg) 0.5 

^ 0.4 
^ 0.3 

0.2 
0.1 

_ 
~ 
-

-

' 

,r 

• 

_Jl 

' ' 

* 
_ 3 ^ — ^ 

T 
i 

t3' 
i 

i 
i 

s* 

' 

V 2 

' 

r 
i i i Y 

1 - (1 -ev(H1))*(1 -ev(H2)) 1 

ev(H1AH2)=W1®V^(s*1s*2) J 

ev(H1)*ev(H2) ] 

0.5 0.6 0.7 0.8 

0.9 
0.8 
0.7 

^ 0 . 6 
<8> 0.5 

^ 0.4 
0.3 
0.2 
0.1 

i* ev(H2A H3)=W2(8) W ^ s ' V 2 ) 

0.2 0.3 0.7 0.8 

Figure 1. Truth functions W(v), v G [0,?], normalized s.t. T= 1 
Subplots 1,2: WJ, s*J, and ev(#>), for j =1 ,2 ; 

Subplot 3: Wx ® W2, s*ls*2, ev(//1 AH2) and bounds; 
Subplot 4: Structure M3 is an independent replica of M2, 

e v ^ 1 ) < ev(#2), but e v ^ 1 AH3) > QV(H2AH3). 

function [z,kk]= combine(x,y,ii,jj ) ; 
%z(l,j)= coord in [0,max_t s(t)] 
%z(l,kk)= s* , max surprise over H 
%z(2,j)= prob mass at z(l,j), M 
%z(3,j)= cumulative distribution, W 
n= size(x,2); m=size(y,2); nm= n*m; 
z= zeros(3,nm); k=0; skk=0; 
for i=l:n for j=l:m 

k= k+1; 
z(l,k)= x(l,i)*y(l,j); 
z(2,k) = x(2,i)*y(2,j); 

if (i==ii & j==j 
skk= z(l,k); 

end end %for_i f 
z(3, :)= z(2, :) ; 
[s,ind]= sort(z(l, 
z= z(1:3,ind); kk 
for k=2:nm 

z (3,k)= z (3,k) +z 
if ( z(l,k)<=skk 

kk= k; end 
end %for k 
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