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Abstract

Non-negative matrix factorization (NMF) is a recently developed technique for finding parts-based,
linear representations of non-negative data. Although it has successfully been applied in several
applications, it does not always result in parts-based representations. In this paper, we show how
explicitly incorporating the notion of ‘sparseness’ improves the found decompositions. Addition-
ally, we provide complete MATLAB code both for standard NMF and for our extension. Our hope
is that this will further the application of these methods tosolving novel data-analysis problems.
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1. Introduction

A fundamental problem in many data-analysis tasks is to find a suitable representation of the data.
A useful representation typically makes latent structure in the data explicit, and often reduces the
dimensionality of the data so that further computational methods can be applied.

Non-negative matrix factorization (NMF) (Paatero and Tapper, 1994; Lee and Seung, 1999) is
a recent method for finding such a representation. Given a non-negative data matrixV, NMF finds
an approximate factorizationV ≈ WH into non-negative factorsW and H. The non-negativity
constraints make the representation purely additive (allowing no subtractions), in contrast to many
other linear representations such as principal component analysis (PCA) and independent compo-
nent analysis (ICA) (Hyv̈arinen et al., 2001).

One of the most useful properties of NMF is that it usually produces asparserepresentation
of the data. Such a representation encodes much of the data using few ‘active’ components, which
makes the encoding easy to interpret. Sparse coding (Field, 1994) has also, on theoretical grounds,
been shown to be a useful middle ground between completely distributed representations, on the
one hand, and unary representations (grandmother cells) on the other (Földiák and Young, 1995;
Thorpe, 1995). However, because the sparseness given by NMF issomewhat of a side-effect rather
than a goal, one cannot in any way control the degree to which the representation is sparse. In many
applications, more direct control over the properties of the representation is needed.

In this paper, we extend NMF to include the option to control sparseness explicitly. We show that
this allows us to discover parts-based representations that are qualitatively better than those given
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by basic NMF. We also discuss the relationship between our method and otherrecent extensions of
NMF (Li et al., 2001; Hoyer, 2002; Liu et al., 2003).

Additionally, this contribution includes a complete MATLAB package for performing NMF
and its various extensions. Although the most basic version of NMF requires only two lines of
code and certainly does not warrant distributing a separate software package, its several extensions
involve more complicated operations; the absense of ready-made code hasprobably hindered their
widespread use so far. We hope that our software package will alleviatethe problem.

This paper is structured as follows. In Section 2 we describe non-negative matrix factorization,
and discuss its success but also its limitations. Section 3 discusses why and how to incorporate
sparseness constraints into the NMF formulation. Section 4 provides experimental results that verify
our approach. Finally, Sections 5 and 6 compare our approach to other recent extensions of NMF
and conclude the paper.

2. Non-negative Matrix Factorization

Non-negative matrix factorization is alinear, non-negativeapproximate data representation. Let’s
assume that our data consists ofT measurements ofN non-negative scalar variables. Denoting the
(N-dimensional) measurement vectorsvt (t = 1, . . . ,T), a linear approximation of the data is given
by

vt ≈
M

∑
i=1

wih
t
i = Wht ,

whereW is anN×M matrix containing thebasis vectorswi as its columns. Note that each mea-
surement vector is written in terms of thesamebasis vectors. TheM basis vectorswi can be thought
of as the ‘building blocks’ of the data, and the (M-dimensional) coefficient vectorht describes how
strongly each building block is present in the measurement vectorvt .

Arranging the measurement vectorsvt into the columns of anN×T matrixV, we can now write

V ≈ WH,

where each column ofH contains the coefficient vectorht corresponding to the measurement vector
vt . Written in this form, it becomes apparent that a linear data representation is simpy a factorization
of the data matrix. Principal component analysis, independent componentanalysis, vector quanti-
zation, and non-negative matrix factorization can all be seen as matrix factorization, with different
choices of objective function and/or constraints.

Whereas PCA and ICA do not in any way restrict the signs of the entries ofW andH, NMF
requires all entries of both matrices to be non-negative. What this means is that the data is described
by using additive components only. This constraint has been motivated in a couple of ways. First,
in many applications one knows (for example by the rules of physics) that thequantities involved
cannot be negative. In such cases, it can be difficult to interpret the results of PCA and ICA (Paatero
and Tapper, 1994; Parra et al., 2000). Second, non-negativity hasbeen argued for based on the
intuition that parts are generally combined additively (and not subtracted) toform a whole; hence,
these constraints might be useful for learning parts-based representations (Lee and Seung, 1999).

Given a data matrixV, the optimal choice of matricesW andH are defined to be those non-
negative matrices that minimize the reconstruction error betweenV andWH. Various error func-
tions have been proposed (Paatero and Tapper, 1994; Lee and Seung, 2001), perhaps the most widely
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Figure 1: NMF applied to various image data sets. (a) Basis images given
by NMF applied to face image data from the CBCL database
(http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html), follow-
ing Lee and Seung (1999). In this case NMF produces a parts-based represen-
tation of the data. (b) Basis images derived from the ORL face image database
(http://www.uk.research.att.com/facedatabase.html), following Li et al.
(2001). Here, the NMF representation is global rather than parts-based. (c) Basis vectors
from NMF applied to ON/OFF-contrast filtered natural image data (Hoyer, 2003). Top:
Weights for the ON-channel. Each patch represents the part of one basis vector wi

corresponding to the ON-channel. (White pixels denote zero weight, darker pixels
are positive weights.) Middle: Corresponding weights for the OFF-channel. Bottom:
Weights for ON minus weights for OFF. (Here, gray pixels denote zero.) Note that NMF
represents this natural image data using circularly symmetric features.

used is the squared error (euclidean distance) function

E(W,H) = ‖V−WH‖2 = ∑
i, j

(Vi j − (WH)i j )
2.

Although the minimization problem is convex inW and H separately, it is not convex in both
simultaneously. Paatero and Tapper (1994) gave a gradient algorithm for this optimization, whereas
Lee and Seung (2001) devised a multiplicative algorithm that is somewhat simpler to implement
and also showed good performance.

Although some theoretical work on the properties of the NMF representationexists (Donoho
and Stodden, 2004), much of the appeal of NMF comes from its empirical success in learning
meaningful features from a diverse collection of real-life data sets. Leeand Seung (1999) showed
that, when the data set consisted of a collection of face images, the representation consisted of
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basis vectors encoding for the mouth, nose, eyes, etc; the intuitive features of face images. In
Figure 1a we have reproduced that basic result using the same data set. Additionally, they showed
that meaningful topics can be learned when text documents are used as data. Subsequently, NMF
has been successfully applied to a variety of data sets (Buchsbaum and Bloch, 2002; Brunet et al.,
2004; Jung and Kim, 2004; Kim and Tidor, 2003).

Despite this success, there also exist data sets for which NMF does not give an intuitive decom-
position into parts that would correspond to our idea of the ‘building blocks’of the data. Li et al.
(2001) showed that when NMF was applied to a different facial image database, the representation
was global rather than local, qualitatively different from that reported by Lee and Seung (1999).
Again, we have rerun that experiment and confirm those results, see Figure 1b. The difference was
mainly attributed to how well the images were hand-aligned (Li et al., 2001).

Another case where the decomposition found by NMF does not match the underlying elements
of the data is shown in Figure 1c. In this experiment (Hoyer, 2003), natural image patches were high-
pass filtered and subsequently split into positive (‘ON’) and negative (‘OFF’) contrast channels, in
a process similar to how visual information is processed by the retina. When NMF is applied to
such a data set, the resulting decomposition does not consist of the orientedfilters which form
the cornerstone of most of modern image processing. Rather, NMF represents these images using
simple, dull, circular ‘blobs’.

We will show that, in both of the above cases, explicitly controlling the sparseness of the repre-
sentation leads to representations that are parts-based and match the intuitive features of the data.

3. Adding Sparseness Constraints to NMF

In this section, we describe the basic idea of sparseness, and show howto incorporate it into the
NMF framework.

3.1 Sparseness

The concept of ‘sparse coding’ refers to a representational schemewhere only a few units (out of a
large population) are effectively used to represent typical data vectors (Field, 1994). In effect, this
implies most units taking values close to zero while only few take significantly non-zero values.
Figure 2 illustrates the concept and our sparseness measure (defined below).

Numerous sparseness measures have been proposed and used in the literature to date. Such
measures are mappings fromRn to R which quantify how much energy of a vector is packed into
only a few components. On a normalized scale, the sparsest possible vector (only a single compo-
nent is non-zero) should have a sparseness of one, whereas a vector with all elements equal should
have a sparseness of zero.

In this paper, we use a sparseness measure based on the relationship between theL1 norm and
theL2 norm:

sparseness(x) =

√
n− (∑ |xi |)/

√

∑x2
i√

n−1
,

wheren is the dimensionality ofx. This function evaluates to unity if and only ifx contains only a
single non-zero component, and takes a value of zero if and only if all components are equal (up to
signs), interpolating smoothly between the two extremes.
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Figure 2: Illustration of various degrees of sparseness. Four vectors are shown, exhibiting sparse-
ness levels of 0.1, 0.4, 0.7, and 0.9. Each bar denotes the value of one element of the
vector. At low levels of sparseness (leftmost), all elements are roughly equally active.
At high levels (rightmost), most coefficients are zero whereas only a few take significant
values.

3.2 NMF with Sparseness Constraints

Our aim is to constrain NMF to find solutions with desired degrees of sparseness. The first question
to answer is then: what exactly should be sparse? The basis vectorsW or the coefficientsH? This
is a question that cannot be given a general answer; it all depends onthe specific application in
question. Further, just transposing the data matrix switches the role of the two, so it is easy to see
that the choice of which to constrain (or both, or none) must be made by the experimenter.

For example, a doctor analyzing disease patterns might assume that most diseases are rare
(hence sparse) but that each disease can cause a large number of symptoms. Assuming that symp-
toms make up the rows of her matrix and the columns denote different individuals, in this case it is
the ‘coefficients’ which should be sparse and the ‘basis vectors’ unconstrained. On the other hand,
when trying to learn useful features from a database of images, it might make sense to require both
W andH to be sparse, signifying that any given object ispresentin few images andaffectsonly a
small part of the image.

These considerations lead us to defining NMF with sparseness constraintsas follows:

Definition: NMF with sparseness constraints

Given a non-negative data matrix V of size N×T, find the non-negative matrices W and H of
sizes N×M and M×T (respectively) such that

E(W,H) = ‖V−WH‖2 (1)

is minimized, under optional constraints

sparseness(wi) = Sw, ∀i

sparseness(hi) = Sh, ∀i,

where wi is the i:th column of W and hi is the i:th row of H. Here, M denotes the number of
components, and Sw and Sh are the desired sparsenesses of W and H (respectively). These three
parameters are set by the user.
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Note that we did not constrain the scales ofwi or hi yet. However, sincewihi = (wiλ)(hi/λ)
we are free to arbitrarily fix any norm of either one. In our algorithm, we thus choose to fix theL2

norm ofhi to unity, as a matter of convenience.

3.3 Algorithm

We have devised a projected gradient descent algorithm for NMF with sparseness constraints. This
algorithm essentially takes a step in the direction of the negative gradient, andsubsequently projects
onto the constraint space, making sure that the taken step is small enough that the objective function
(1) is reduced at every step. The main muscle of the algorithm is the projectionoperator which
enforces the desired degree of sparseness. This operator is described in detail following this algo-
rithm.

Algorithm: NMF with sparseness constraints

1. Initialize W and H to random positive matrices

2. If sparseness constraints on W apply, then project each column of W to be non-negative, have
unchanged L2 norm, but L1 norm set to achieve desired sparseness

3. If sparseness constraints on H apply, then project each row of H to be non-negative, have unit
L2 norm, and L1 norm set to achieve desired sparseness

4. Iterate

(a) If sparseness constraints on W apply,

i. Set W := W−µW(WH−V)HT

ii. Project each column of W to be non-negative, have unchanged L2 norm, but L1

norm set to achieve desired sparseness

else take standard multiplicative step W := W⊗ (VHT)� (WHHT)

(b) If sparseness constraints on H apply,

i. Set H := H−µHWT(WH−V)

ii. Project each row of H to be non-negative, have unit L2 norm, and L1 norm set to
achieve desired sparseness

else take standard multiplicative step H := H⊗ (WTV)� (WTWH)

Above, ⊗ and � denote elementwise multiplication and division, respectively. Moreover, µW and µH

are small positive constants (stepsizes) which must be set appropriately for the algorithm to work.
Fortunately, they need not be set by the user; our implementation of the algorithm automatically
adapts these parameters. The multiplicative steps are directly taken from Lee and Seung (2001) and
are used when constraints are not to be applied.

Many of the steps in the above algorithm require a projection operator whichenforces sparse-
ness by explicitly setting bothL1 andL2 norms (and enforcing non-negativity). This operator is
defined as follows
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problem Given any vector x, find the closest (in the euclidean sense) non-negative vector s with a
given L1 norm and a given L2 norm.

algorithm The following algorithm solves the above problem. See below for comments.

1. Set si := xi +(L1−∑xi)/dim(x), ∀i

2. Set Z := {}
3. Iterate

(a) Set mi :=

{

L1/(dim(x)− size(Z)) if i /∈ Z
0 if i ∈ Z

(b) Set s := m + α(s−m), where α ≥ 0 is selected such that the resulting s satisfies
the L2 norm constraint. This requires solving a quadratic equation.

(c) If all components of s are non-negative, return s, end

(d) Set Z := Z∪{i;si < 0}
(e) Set si := 0, ∀i ∈ Z

(f) Calculate c := (∑si −L1)/(dim(x)− size(Z))

(g) Set si := si −c, ∀i /∈ Z

(h) Go to (a)

In words, the above algorithm works as follows: We start by projecting thegiven vector onto the
hyperplane∑si = L1. Next, within this space, we project to the closest point on the joint constraint
hypersphere (intersection of the sum and theL2 constraints). This is done by moving radially
outward from the center of the sphere (the center is given by the point where all components have
equal values). If the result is completely non-negative, we have arrived at our destination. If not,
those components that attained negative values must be fixed at zero, anda new point found in a
similar fashion under those additional constraints.

Note that, once we have a solution to the abovenon-negativeproblem, it would be straightfor-
ward to extend it to a general solution without non-negativity constraints. If a given component of
x is positive (negative), we know because of the symmetries ofL1 andL2 norms that the optimal
solutions will have the corresponding component positive or zero (negative or zero). Thus, we may
simply record the signs ofx, take the absolute value, perform the projection in the first quadrant
using the algorithm above, and re-enter the signs into the solution.

In principle, the devised projection algorithm may take as many as dim(x) iterations to converge
to the correct solution (because at each iteration the algorithm either converges, or at least one
component is added to the set of zero valued components). In practice, however, the algorithm
converges much faster. In Section 4 we show that even for extremely highdimensions the algorithm
typically converges in only a few iterations.

3.4 Matlab Implementation

Our software package, available athttp://www.cs.helsinki.fi/patrik.hoyer/ implements
all the details of the above algorithm. In particular, we monitor the objective functionE throughout
the optimization, and adapt the stepsizes to ensure convergence. The software package contains, in
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Figure 3: Features learned from the CBCL face image database using NMFwith sparseness con-
straints.(a) The sparseness of the basis images were fixed to 0.8, slightly higher than the
average sparseness produced by standard NMF, yielding a similar result. The sparseness
of the coefficients was unconstrained.(b) Here, we switched the sparseness constraints
such that the coefficients were constrained to 0.8 but the basis images wereunconstrained.
Note that this creates a global representation similar to that given by vector quantization
(Lee and Seung, 1999).(c) Illustration of another way to obtain a global representation:
setting the sparseness of the basis images to a low value (here: 0.2) also yields a non-local
representation.

addition to the projection operator and NMF code, all the files needed to reproduce the results de-
scribed in this paper, with the exception of data sets. For copyright reasons the face image databases
are not included, but they can easily be downloaded separately from their respective www addresses.

4. Experiments with Sparseness Constraints

In this section, we show that adding sparseness constraints to NMF can make it find parts-based
representations in cases where unconstrained NMF does not. In addition, we experimentally verify
our claim that the projection operator described in Section 3.3 converges inonly a few iterations
even when the dimensionality of the vector is high.

4.1 Representations Learned from Face Image Databases

Recall from Section 2 the mixed results of applying standard NMF to face imagedata. Lee and
Seung (1999) originally showed that NMF found a parts-based representation when trained on data
from the CBCL database. However, when applied to the ORL data set, in which images are not as
well aligned, a global decomposition emerges. These results were shown inFigure 1a and 1b. To
compare, we applied sparseness constrained NMF to both face image data sets.

For the CBCL data, some resulting bases are shown in Figure 3. Setting a highsparseness
value for the basis images results in a local representation similar to that foundby standard NMF.
However, we want to emphasize the fact that sparseness constrained NMF does not always lead to
local solutions: Global solutions can be obtained by deliberately setting a low sparseness on the
basis images, or by requiring a high sparseness on the coefficients (forcing each coefficient to try to
represent more of the image).
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a b c

Figure 4: Features learned from the ORL face image database using NMF with sparseness con-
straints. When increasing the sparseness of the basis images, the representation switches
from a global one (like the one given by standard NMF, cf Figure 1b) to alocal one.
Sparseness levels were set to(a) 0.5 (b) 0.6 (c) 0.75.

The ORL database provides the more interesting test of the method. In Figure4 we show bases
learned by sparseness constrained NMF, for various sparseness settings. Note that our method can
learn a parts-based representation of this data set, in contrast to standard NMF. Also note that the
representation is not very sensitive to the specific sparseness level chosen.

4.2 Basis Derived from Natural Image Patches

In Figure 1c we showed that standard NMF applied to natural image data produces only circular
features, not oriented features like those employed by modern image processing techniques. Here,
we tested the result of using additional sparseness constraints. Figure 5shows the basis vectors ob-
tained by putting a sparseness constraint on the coefficients (Sh = 0.85) but leaving the sparseness of
the basis vectors unconstrained. In this case, NMF learns oriented features that represent edges and
lines. Such oriented features are widely regarded as the best type of low-level features for represent-
ing natural images, and similar features are also used by the early visual system of the biological
brain (Field, 1987; Simoncelli et al., 1992; Olshausen and Field, 1996; Bell and Sejnowski, 1997).
This example illustrates that sparseness constrained NMF does not simply ‘sparsify’ the result of
standard, unconstrained NMF, but rather can find qualitatively different parts-based representations
that are more compatible with the sparseness assumptions.

4.3 Convergence of Algorithm Implementing the Projection Step

To verify the performance of our projection method we performed extensive tests, varying the num-
ber of dimensions, the desired degree of sparseness, and the sparseness of the original vector. The
desired and the initial degrees of sparseness were set to 0.1, 0.3, 0.5, 0.7, and 0.9, and the dimen-
sionality of the problem was set to 2, 3, 5, 10, 50, 100, 500, 1000, 3000, 5000, and 10000. All
combinations of sparsenesses and dimensionalities were analyzed. Basedon this analysis, the worst
case (most iterations on average required) was when the desired degree of sparseness was high (0.9)
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Figure 5: Basis vectors from ON/OFF-filtered natural images obtained using NMF with sparseness
constraints. The sparseness of the coefficients was fixed at 0.85, andthe sparseness of
the basis images was unconstrained. As opposed to standard NMF (cf Figure 1c), the
representation is based on oriented, Gabor-like, features.
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Figure 6: Number of iterations required for the projection algorithm to converge, in the worst-case
scenario tested (desired sparseness 0.9, initial sparseness 0.1). Thesolid line shows the
average number (over identical random trials) of iterations required, thedashed lines
show the minimum and maximum iterations. Note that the number of iterations grows
very slowly with the dimensionality of the problem.

but the initial sparseness was low (0.1). In Figure 6 we plots the number of iterations required for
this worst case, as a function of dimensionality. Even in this worst-case scenario, and even for
the highest tested dimensionality, the algorithm never required more than 10 iterations to converge.
Thus, although we do not have analytical bounds on the performance onthe algorithm, empirically
the projection method performs extremely well.

5. Relation to Other Recent Work

Here, we describe how our method relates to other recently developed extensions of NMF and to
non-negative independent component analysis.
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5.1 Extensions of NMF

Several authors have noted the shortcomings of standard NMF, and suggested extensions and modi-
fications of the original model. Li et al. (2001) noted that NMF found only global features from the
ORL database (see Figure 1b) and suggested an extension they callLocalNon-negative Matrix Fac-
torization (LNMF). Their method indeed produces local features from theORL database, similar to
those given by our method (Figure 4c). However, it does not produceoriented filters from natural
image data (results not shown). Further, there is no way to explicitly controlthe sparseness of the
representation, should this be needed.

Hoyer (2002) extended the NMF framework to include an adjustable sparseness parameter. The
present paper is an extension of those ideas. The main improvement is that inthe present model
sparseness is adjusted explicitly, rather than implicitly. This means that one does not any more need
to employ trial-and-error to find the parameter setting that yields the desired level of sparseness.

Finally, Liu et al. (2003) also noted the need for incorporating the notion ofsparseness, and
suggested an extension termedSparseNon-negative Matrix Factorization (SNMF). Their extension
is similar in spirit and form to that given by Hoyer (2002) with the added benefit of yielding a more
convenient, faster algorithm. Nevertheless, it also suffers from the drawback that sparseness is only
controlled implicitly. Furthermore, their method does not yield oriented featuresfrom natural image
data (results not shown).

In summary, the framework presented in the present paper improves on these previous exten-
sions by allowing explicit control of the statistical properties of the representation.

In order to facilitate the use of, and comparison between, the various extensions of NMF, they
are all provided as part of the Matlab code package distributed with this paper. Using this package
readers can effortlessly verify our current claims by applying the algorithms to the various data sets.
Moreover, the methods can be compared head-to-head on new interestingdata sets.

5.2 Non-negative Independent Component Analysis

Our method has a close connection to the statistical technique called independent component anal-
ysis (ICA) (Hyvärinen et al., 2001). ICA attempts to find a matrix factorization similar to ours, but
with two important differences. First, the signs of the components are in general not restricted; in
fact, symmetry is often assumed, implying an approximately equal number of positive and negative
elements. Second, the sources are not forced to any desired degree of sparseness (as in our method)
but rather sparseness is incorporated into the objective function to be optimized. The sparseness
goal can be put on eitherW or H, or both (Stone et al., 2002).

Recently, some authors have considered estimating the ICA model in the case of one-sided,
non-negative sources (Plumbley, 2003; Oja and Plumbley, 2004). In these methods, non-negativity
is not specified as a constraint but rather as an objective; hence, complete non-negativity of the
representation is seldom achieved for real-life data sets. Nevertheless,one can show that if the
linear ICA model holds, with non-negative components, these methods can identify the model.

6. Conclusions

Non-negative matrix factorization (NMF) has proven itself a useful tool inthe analysis of a diverse
range of data. One of its most useful properties is that the resulting decompositions are often
intuitive and easy to interpret because they are sparse. Sometimes, however, the sparseness achieved
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by NMF is not enough; in such situations it might be useful to control the degree of sparseness
explicitly. Our main contributions of this paper were (a) to describe a projection operator capable
of simultaneously enforcing bothL1 andL2 norms and hence any desired degree of sparseness, (b)
to show its use in the NMF framework for learning representations that couldnot be obtained by
regular NMF, and (c) to provide a software package to enable researchers and practitioners to easily
perform NMF and its various extensions. We hope that all three contributions will prove useful to
the field of data-analysis.
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