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Authors’ Preface

This monograph surveys the present state of Monte Carlo methods.
Although we have dallied with certain topics that have interested us
personally, we hope that our coverage of the subject is reasonably
complete; at least we believe that this book and the references in it
come near to exhausting the present range of the subject. On the other
hand, there are many loose ends; for example we mention various
ideas for variance reduction that have never been seriously applied in
practice. This is inevitable, and typical of a subject that has remained
in its infancy for twenty years or more. We are convinced never-
theless that Monte Carlo methods will one day reach an impressive
maturity.

The main theoretical content of this book is in Chapter 5; some
readers may like to begin with this chapter, referring back to Chapters
2 and 3 when necessary. Chapters 7 to 12 deal with applications of
the Monte Carlo method in various fields, and can be read in any
order. For the sake of completeness, we cast a very brief glance in
Chapter 4 at the direct simulation used in industrial and operational
research, where the very simplest Monte Carlo techniques are usually
sufficient,

We assume that the reader has what might roughly be described as
a ‘graduate’ knowledge of mathematics. The actual mathematical
techniques are, with few exceptions, quite elementary, but we have
freely used vectors, matrices, and similar mathematical language for
the sake of conciseness.

J. M. HAMMERS LBY
D. C. HANDSCOMB
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CHAPTER 1

The General Nature of Monte Carlo Methods

1.1 Mathematical theory and experiment

We often classify mathe_ngat_jcians as either pure or applied; but there
are, of course, many other ways of cataloguing them, and the fashions
change as the character of mathematics does. A relatively recent
dichotomy contrasts the mgorgﬁgaLm}le_mggigjap‘ with the experi-
mental mathematician. These designations are like those commonly
used for theoretical and experimental physicists, say; they are inde-
pendent of whether the objectives are pure or applied, and they do
not presuppose that the theoretician sits in a bare room before a
blank sheet of paper while the experimentalist fiddles with expensive
apparatus in a laboratory. Although certain_complicated mathe-
matical experiments demand electronic computers, -others call for
no more than paper and penci - The essential difference is that
theoreticians deduce conclusions_from_postulates, whereas_experi-

onclusions from observations, It is the difference
between deduction and induction,

For those who care to hunt around and stretch a point, experi-
mental mathematics is as old as the hills, The Old Testament (1 Kings
vii. 23 and 2 Chronicles iv. 2) refers to an early mathematical experi-
ment on the numerical value of the constant an.thw_t_he appa-
ratus consisted of King Solomon’s temple, and the experimenter

-abserved its columns to be about three times as great in girth as_
breadth. It would be nice to think that he inferred that this was a
universal property of circular objects; but the text does not say so.
On the other hand, experimental mathematics on anything like a
substantial scale is quite a recent innovation, particularly if confined
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2 MONTE CARLO METHODS

to experiments on mathematical objects, such as numbers or equations
or polygons.

Monte Carlo methods comprise that branch of experimental
mathematics which is concerned with experiments on random num-
bers. In the last decade they have found extensive use in the fields of
operational research and nuclear physics, where there are a variety
of probléms beyond the available resources of theoretical mathe-
matics. They are still in an early stage of development; but, even so,
they have been employed sporadically in numerous other ficlds of
science, including chemistry, biology, and medicine.

Problems handled by Monte Carlo methods are of two types
called probabilistic or. deterministic according to whether or not they
are directly concerned with the behaviour and outcome of random
processes. In the case of a probabilistic problem the simplest Monte
Carlo approach is to observe random numbers, chosen in such a
way that they directly simulate the physical random processes of the
original problem, and to infer the desired solution from the behaviour
of these random numbers. Thus we may wish to study the growth of
an insect population on the basis of certain assumed vital statistics
of survival and reproduction. If analysis fails us, we can at least set
up a model with paper entries for the life histories of individual
insects. To each such individual we may allot random numbers for
its age at the births of its offspring and at its. death; and then treat

these and succeeding offspring likewise. Handling the random num-

bers to match the vital statistics, we get what amounts to a random
sample from the population, which we can analyse as though it
were data collected by the entomologist in the laboratory or in the
field. But the artificial data may suit us better if easier to amass, or
if it lets us vary the vital statistics to an extent that nature will not
permit. This sort of Monte Carlo work need not call for electronic
computers: Leslie and Chitty [1]t made a Monte Carlo study of
capture-recapture biometrics using no more tools than a tinful of
Lotto bits. Design studies of nuclear reactors and of telephone
exchanges provide other examples of probabilistic problems, The
fundamental particles of nuclear physics seem to obey probabilistic
rather than deterministic laws. Hence we can simulate the perform-

t Numbers in square brackets refer to the bibliography on pp. 150-158.
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ance of a nuclear reactor by choosing random numbers which repre-
sent the random motions of the neutrons in it. In this way we can
experiment with the reactor without incurring the cost, in money,
time, and safety, of its actual physical construction. If the geometry
of the reactor is at all complicated, which it usually is in practice,
one will probably need large-scale computing equipment to trace out
the life-histories of individual neutrons in accordance with the
random numbers governing them. ‘In telephone systems® writes
Thomson [2), *the dependence on chance arises because, so far as the
planner is concerned, the demand for service at any one time, depend-
entasitison the‘ individual decisions of a large number of subscribers,
is quite unpredictable.... The planner works in terms of an average
calling rate corresponding to the busy hour of the day, with random
fluctuations described by some suitable probability distribution, and
he has to decide how many of the individual switches and so on that
are used in the course of a telephone call should be installed. ..,
In the early days, there was no theoretical analysis available; as time
went on, theory improved, but systems became more cormrplicated and
there will always be practical questions which cannot be readily
answered from the existing theory.” And Thomson goes on to des-
cribe how the British Post Office built an analogue computer in 1949
to simulate the random fluctuations of telephone traffic and to analyse
the resulting Monte Carlo experiment.

One of the main strengths of theoretical mathematics is its concern
with abstraction and generality : one can write down symbolic expres-
sions or formal equations which abstract the essence of a problem
and reveal its underlying structure. However, this same strength
carries with it an inherent weakness: the more general and formal its
language, the less is theory ready to provide a numerical solution in a
particular application. The idea behind the Monte Carlo approach
to deterministic problems is to exploit this strength of theoretical -
mathematics while avoiding its associated weakness by replacing
theory by experiment whenever the former falters. Specifically, sup-
pose we have a deterministic problem which we can formulate in
theoretical language but cannot solve by theoretical means. Being
deterministic, this problem has no direct association with random
processes; but, when theory has exposed its underlying structure, we




4 MONTE CARLO METHODS

may perhaps recognize that this structure or formal expression also
describes some apparently unrelated random process, and hence we
can solve the deterministic problem numerically by a Monte Carlo
simulation of this concomitant probabilistic problem. For example,
a problem in electromagnetic theory may require the solution of
Laplace’s equation subject to certain boundary conditions which
defeat standard analytical techniques. Now Laplace’s equation occurs
very widely and, inter alia, in the study of particles which diffuse
randomly in a region bounded by absorbing barriers. Thus we can
solve the electromagnetic problem by performing an experiment, in
which we guide the particles by means of random numbers until they
are absorbed on barriers specialtly chosen to represent the prescribed
boundary conditions.

This technique of solving a given problem by a Monte Carlo simu-
lation of a different problem has sometimes been called sophisticated
Monte Carlo, to distinguish it from straightforward simulation of the
original problem. There are various degrees of sophistication: for
instance, one may start from a given probabilistic problem, formulate

- it in theoretical terms, discern a second probabilistic problem des-
cribed by the resulting theory, and finally solve the first probabilistic
problem by simulating the second. The second problem may be a
greater or a lesser distortion of the first, or it may even be totally

* different in character: the only thing that matters is that it shall have
the same numerical solution as the first, or more generally that the
wanted parts of the two solutions shall differ by a negligible amount,
there being no need to ensure agreement between unwanted parts of
the two solutions.

There are various reasons for indulging in sophisticated Monte
Carlo methods. The main reason springs from.the inferential nature
of Monte Carlo work. Whenever one is inferring general laws on the
basis of particular observations associated with them, the conclusions
are uncertain inasmuch as the particular observations are only a
more or less representative sample from the totality of all obser-
vations which might have been made. Good experimentation tries
to ensure that the sample shall be more rather than less representative;
and good presentation of the conclusions indicates how likely they
are 1o be wrong by how much. Monte Carlo answers are uncertain
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because they arise from raw observational data consisting of random
numbers; but they can nevertheless serve a useful purpose if we can
manage to make the uncertainty fairly negligible, that is to say to
make it unlikely that the answers are wrong by very much. Perhaps it is
worth labouring this point a little, because some people feel genuine
distress at the idea of a mathematical result which is necessarily not
absolutely certain. Applicd mathematics is not in any case a black-
and-white subject; even in theoretical applied mathematics there is
always doubt whether the postulates are adequately valid for the
physical situation under consideration, and whenever in a theoretical
formula one substitutes the value of some experimentally determined
quantity, such as the velocity of light or the constant of gravitation,
one gets an uncertain numerical result. But this is no cause for worry
if the uncertainty is negligible for practical purposes.

One way of reducing uncertainty in an answer is to collect and base
it upon more observations. But often this is not a very economic
course of action. Broadly speaking, there is a square law relationship
between the error in an answer and the requisite number of obser-
vations; to reduce it tenfold calls for a hundredfold increase in the
observations, and so on. To escape a formidable or even imprac-
ticable amount of experimental labour, it is profitable to change or at
least distort the original problem in such a way that the uncertainty
in the answers is reduced. Such procedures are known as variance-
reducing techniques, because uncertainty can be measured in terms
of a quantity called variance. In this direction the mathematical
experimentalist is more fortunate than the experimentalist in the
physical sciences: his experimental material consists of mathematical
objects which can be distorted, controlled, and modified more easily
and to a much greater extent than material subject to physical limi-
tations, such as instrumental errors or structural tolerances or pheno-
mena affected by weather and climate and so on.

Although the basic procedure of the Monte Carlo method is the
manipulation of random numbers, these should not be employed
prodigally. Each random number is a potential source of added
uncertainty in the final result, and it will usually pay to scrutinize each
part of a Monte Carlo experiment to see whether that part cannot be
replaced by exact theoretical analysis contributing no uncertainty,
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Moreover, as experimental work provides growing insight into the
nature of a problem and suggests appropriate theory, good Monte
Carlo practice may be to this extent self-liquidating [3].
Experimental mathematicians have not come to replace theoretical
ones. Each relies on the other, as with other scientists. The experi-
menter needs theory to give structure and purpose to his experiments;
and the theoretician needs experiment to assess the value and position
of his theory. The Monte Carlo experimentalist needs wide experience
of formulae and results in pure mathematics, and especially the theory
of probability, in order that he may discern those connexions between
apparently dissimilar problems which suggest sophisticated Monte
Carlo methods. He has to exercise ingenuity in distorting and modify-
ing problems in the pursuit of variance-reducing techniques. He has
to be competent at statistical and inferential procedures in order to
extract the most reliable conclusions from his observational data.
The tools of his trade include computing machinery, and he must be
familiar with numerical analysis. As in all experimental work, a feel
for the problem is a great and sometimes essential asset. Finally
Monte Carlo methods are recent innovations still under development,
general devices are few in number, and a great deal depends upon
having enough originality to create special methods to suit individual
problems. Despite all these demands, Monte Carlo work is a subject
with which some acquaintance is well worth while for anyonc who has
to deal with mathematical problems encountered in real life, as
opposed to ones enginecred to cxemplify textbook theory. For rcal-
life problems mathematical experiment is a most necessary alter-
native to thcory. In short, Monte Carlo methods constitute a
fascinating, exacting, and often indispensable craft with a range of
applications that is already very wide yet far from fully cxplored.

1.2 Brief history of Monte Carlo methods

The name and the systematic development of Monte Carlo methods
dates from about 1944, There are however a number of isalated and
undeveloped instances on much earlier occasions. For example, in
the second half of the nincteenth century a nymber of people per-
formed experiments, in which they threw a needle in a haphazard
manner onto a board ruled with parallel straight lines and inferred
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the value of » from observations of the number of intersections
between needle and lines. An account of this playful diversion (in-
dulged in by a certain Captain Fox, amongst others, whilst recovering
from wounds incurred in the American Civil War) occurs in a paper
by Hall [4]. In the early part of the twentieth century, British statis-
tical schools indulged in a fair amount of unsophisticated Monte
Carlo work ; but most of this seems to have been of a didactic charac-
ter and rarely used for research or discovery. The belief was that
students could not really appreciate the consequences of statistical
theory unless they had seen it exemplified with the aid of laboratory
apparatus: demonstrators therefore poured lead shot down boards
studded with pins, which deflected the shot in a random fashion into
several collecting boxes, and the students were required to see that the
frequency of the shot in the various boxes conformed more or less
to the predictions of theory; they drew numbered counters from
Jjam-jars and pots (called urns for the sake of scientific dignity) and
verified that averages of various sets of such numbers behaved as
sampling theory said they should, and so on. Only on a few rare
occasions was the emphasis on original discovery rather than com-
forting verification.n 1908 Student (W. S. Gosset) used experimental
sampling to help him towirds his discovery of the distribution of the
correlation coefficient. Apparently he knew some of the moments of
the distribution and had conjectured, perhaps on the basis of these or
perhaps by way of Occam’s razor, that the analytical form would be
proportional to (1 — arz)B, one of Pearson’s frequency curves, where r
is the correlation coeflicient and « and B are constants depending
upon the sample size n. Having fitted samples forn=4 and n =8 to
this conjectured expression, and having rounded the resulting esti-
mates of « and B, he guessed that =1 and B = 3(n—4), which
happens to be the exact theoretical result. This remarkable achieve-
ment is nevertheless rather different from, though in a sense better
than, the ordinary use of Monte Carlo methods nowadays, in which
there is little attempt to guess exact results. In the same year Student
also used sampling to bolster his faith in his so-called ¢-distribution,
which he had derived by a somewhat shaky and incomplete theoretical
analysis.

One consequence of this didactic and verifying role for sampling
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experiments was that the experiments were deliberately shorn of
distracting improvements, which might have been employed to
sharpen the accuracy of the results: statisticians were insistent that
other experimentalists should design experiments to be as little
subject to unwanted error as possible, and had indeed given impor-
tant and useful help to the experimentalist in this way; but in their
own experiments they were singularly inefficient, nay, negligent in
this respect.

The real use of Monte Carlo methods as a research tool stems from
work on the atomic bomb during the second world war. This work
involved a direct simulation of the probabilistic problems concerned
with random neutron diffusion in fissile material ; but even at an early
stage of these investigations, von Ncumannj.nd Ulam refined this
direct simulation with certain vifiance-reducing techmq“B in

_particular ‘Russian roulette’ and *splitting’ methods. ds_[5]L However,
the systematic development of these ideas had to await the work of

~ Harris and Herman Kahn in 1948,

The possibility of applying Monte Carlg.methods to deterministic
problems was noticed by Fermi, yon Neéumann, and Ulam and
popularized by them in Jw—lmmedlate post-war years. About 1948
Fermi, Metrqgghs,and’ﬁlam obtained Monte Carlo estimates for the
eigenvalues of the Schrodinger equation. Dr Stephen Brush (of the
Radiation Laboratory at Livermore), who has a particular interest
in the history of mathematics, has unearthed a paper by Kelvin [6]
in which sixty years ago astonishingly modern Monte Carlo tech-
niques appear in a discussion of the Boltzmann equation. But Lord
Kelvin was more concerned with his results than with his (to him,
no dougi__g_lmglg)mhg and it seems entirely right and proper

thamlé&luggﬂﬁmmnn‘_@d Fermi sl mi should take the credit for not

only independently rediscovering Monte Carlo methods_but also

. ensurmg that their scnentlﬁc colleagues should become aware of the

possnbllmcs, p&én(nahtles, and physncal appllcatnons The dissemi-
nation of ideas is always an essential component of their production,
and never more so than in today’s conditions of prolific discovery
and publication.

The ensuing intensive study of Monte Carlo methods in the 1950s,
particularly in the U.S.A,, served paradoxically enough to discredit

|
I
\
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the subject. There was an understandable attempt to solve every
problem in sight by Monte Carlo, but not enough attention paid to
which of these problems it could solve efficiently and which it could
only handle inefficiently ; and proponents of conventional numerical
methods were not above pointing to those problems where Monte
Carlo methods were markedly inferior to numerical analysis, Their
case is weakened by their reluctance to discuss advanced techniques,
as Morton remarks [7].

In the last few years Monte Carlo methods have come back into
favour. This is mainly due to better recognition of those problems in
which it is the best, and sometimes the only, available technique.
Such problems have grown in number, partly because improved
variance-reducing techniques recently discovered have made Monte
Carlo eflicient where it had previously been inefficient, and partly
because Monte Carlo methods tend to flourish on problems that
involve a mass of practical complications of the sort encountered
more and more frequently as applied mathematics and operational
research come to grips with actualities.

MCM—B
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} SHORT RESUME OF STATISTICAL TERMS i1

and equality holds in (2.2.1). If atleast one of the events 4, B, ... must

occur, they are called exhaustive, and the left-hand side of (2.2.1)is 1.

If P(A| B) = P(A), we say that A and Bare independent : cffectively, the
CHAPTER 2 chance of A occur.ing is uninfluenced by the occurrence of B.

Short Resumé of Statistical Terms ! 2.3 Random variables, distributions, and expectations

Consider a set of exhaustive and exclusive evenfS, each characterized
by a number 7. The number 7 is called a random variable; and with it
is associated a cumulative distribution finction F(y), defined to be the

2.1 Object v probability that the event which occurs has a value 7 not exceeding a
Beinginferential in character, Monte Carlo methods rely on statistics; prescribed y. This may be written

!)ut at t.he same time they are useful in several fields whf:re statlst‘xcal . F) = P(p < y). @3.1)
jargon is unfamiliar. Some readcrs may therefore find it convenient

to have a brief account of those statistical techniques and terms which The adjective ‘cumulative’ is often omitted. Clearly F(—w)=0,
arise most often in Monte Carlo work. What follows in this chapter . F(+ )= 1, and F(y) is a non-decreasing function of .

is a mere outline; fuller information appears in standard textbooks If g(n) is a function of 7, the expectation (or mean value) of g is
such as Cochran [1], Cramér [2], Kendall and Stuart [3], and Plack- . denoted and defined by

ett [4]. Although Markov chains are important in Monte Carlo work,

we defer a discussion of them until §9.1. ‘ Sg(n) = f g AF(y). (23.2)
2.2 Random events and probability ' The integral here is taken over all values of y. For full generality

(2.3.2) should be interpreted as a Stieltjes integral; but those who
care little for Stieltjes integrals will not lose much by interpreting

number lying between 0 and 1, both inclusive; higher values indicate (2.3.2) in one of the two following senses: (i) if F(») has a derivative

greater chances. An event with zero probability (effectively) never f0), take (2.3.2) to be
occurs; one with unit probability surely does. We write: P(4) for the ' J‘

o i g = ; 3.
probability that an event 4 occurs; P(4+ B+...) for the probability &) 80/ dy; 23.3)
that. §t least one of the events A4, B, ... occurs; P(4B...) for the pro- (i) if F(y) is a step-function with steps of height /; at the points y,
bability that all the events 4, B, ... occur; and P(A|B) for the pro- take (2.3.2) to be
bability that the event 4 occurs when it is known that the event B ) &) = X g0 (2.3.9)
occurs. P(A|B) is called the conditional probability of A given B, The i
two most important axioms which govern probability are

A random event is an event which has a chance of happening, and
probability is a numerical measure of that chance. Probability is a

The point of the Stieltjes integral is to combine (2.3.3)and (2.3.4)ina
P(A+B+...)) < P(A)+PB)+..., .2.nH single formula, and also to include certain possibilities not covered
, by (i) or (ii). For conciseness we use the form (2.3.2) in this book;

= P 2
and P(AB) = K(A|B)P(B). 22.2) and the reader may, if he likes, interpret it as (2.3.3) or (2.3.4) accord-
If only one of the events A, B, ... can occur, they are called exclusive, | ing to context. Effectively, the expectation of g(x) is the weighted
10
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12 MONTE CARLO METHODS

average of g(y), the weights being the respective probabilities of
different possible values of .

Sometimes it is convenient to characterize exhaustive and exclusive
events with a vector 7 (i.e. a set of numbers, called the co-ordinates
of m). This gives rise to a vector random variable, and an associated
distribution function

Fy)=Pn<y) (2.3.5)

where n <y means that each co-ordinate of 1 is not greater than the
corresponding co-ordinate of y. As before, we define expectations by

san) = [ g)dF(). @.3.6)

The interpretation of (2.3.6) in the sense of 23.3)is

o) = [ sy, @37
where, if F(y) = F(yy, s, ..., ¥x), we write ‘

& F1, 25« o V)

f(y) =f(yl,.V2.---,}’k) = aylayz.--ayk

" and (2.3.8)

dy = dy\dy,...dy,.

Similarly there is a form corresponding to (2.3.4). The notation dy
used in (2.3.8) is particularly convenient and will be often used in
this book. The integrals (2.3.6) and (2.3.7) are multi-dimensional and
taken over all values of yy, y,,.... We normally use lower case bold
type for vectors and upper case bold type for matrices. We also write
y"and V’ for the transposes of y and V, and | V] for the determinant
of V,

The quantities f(y) and f;, appearing in (2.3.3) and (2.3.4), are

“called the frequency functions of the random variable 7. Sometimes

J(y) is called a probability density function.

Consider a set of exhaustive and exclusive events, each character-
ized by a pair of numbers 5 and £, for which F (»,2) is the distribution
function. From this given set of events, we can form a new set, each
event of the new set being the aggregate of all events in the old set
which have a prescribed value of 7). The new set will have a distribution

~.
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function G(»), say. Similarly we have a distribution function H(z)
for the random variable {. Symbolically

F,o =P <yl<2; GO)=PHu<y); HE@=PL<2).
(2.3.9)
If it so happens that

F(y,2) = G(y) H(z) for all y and z, 2.3.10)

the random variables 7 and { are called independent. Effectively,
knowledge of one is no help in predicting the behaviour of the other.
This idea of independence can be extended to several random
variables, which may be vectors:

F(y,ya, .9 = PO S ¥, M2 S Yo o0 M < Y0,
=P < yY)PMy < ¥)...PMy < ¥))
= F(y)) F(yp)... F(yp). 2.3.1H)

Random variables which are independent in pairs are not necessarily
mutually independent as in (2.3.11).
The definition of expectation implies that
? Egi(n) =& ? &) (23.12)

whether or not the random variables v, are independent, On the other
hand the equation

[lesimy=¢ H &)

is true for independent 7, though generally false for dependent i
Equation (2.3.12) is of great importance in Monte Carlo work. As a
caution, it should be added that the relation &g(n) = 8(&7) is rarely
true. Equations (2.3.12) and (2.3.13) also hold for vector random
variables.

The quantity &(5") is called the rth moment of ». Similarly the
quantity p, =&{(n—p)’}, where u=4&n, is called the rth central
moment of 7. By far the most important moments are x, known as
the mean of n; and p,, known as the variance of 1. The mean is a

(2.3.13)




B S LA i e, T T o L ‘\‘_fif;i‘.}?
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measure of location of a random variable, whereas the variance is a
measure of dispersion about that mean. The standard deviation is
defined by o = v/py. The coefficient of variation is o divided by p.
It is sometimes expressed as a percentage.

If 9 and { are random variables with means p and v respectively,
the quantity &{(n—p){—v)} is called the covariance of n and (.
Notice that, by (2.3.13), the covariance vanishes if » and § are
independent; though the converse is generally false. We use the ab-
breviations var and cov for variance and covariance, Notice that
cov(n,n) = vary. The correlation cocfficient between 7 and {is
defined as p = cov(n,{)/+/(varyvar{). It always lies between +1.
If p =0, then 7 and { are said to be uncorrelated: they are positively
correlated if p > 0 and negatively correlated if p < 0.

The above definitions yield the important formula

k k k
var( by m) = 3, X cov(n,m)). (2.3.14)
i=1 i=1j=1
The following approximate formula is useful in applications:

k k
varg(h, M. M) = 12‘,' 121 gigjeov () (2.3.15)

‘where g; denotes 2g/dx; evaluated for 7y, 75, ..., 7% equal to their
mean values. For this formula to be valid, the quantities var 7, should
be small in comparison with {£g)?. To obtain it, expand g as a
Maclaurin series in the ;, neglecting the terms of the second degree,
and then use (2.3.14).

Important distributions include the normal distribution

¥y
Fo) = [ @rody"Pexp(~4(—pPfoYdr,  (2.3.16)

-~

the exponential distribution

0,y<0
F(y) = (A>0), 2317
l—e ™, y20
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the rectangular distribution

O,y<a
F(y) =4 —a)(b—a),a< y<b, (2.3.18)
LLy>b

and the binomial distribution

— ____L 81— n\—t
FO) = D ot =pr (23.19)
1<y

In (2.3.19), n and t are non-negative integers, and 0 <p < 1; the
binomial distribution represents the distribution of the total number
7 of *successful’ events, when each of » independent random events
has a probability p of being ‘successful’ and a probability 1 —p of
being ‘unsuccessful’.

The four distributions given above exhibit a feature common to
many distribution functions: the distribution function has some
specified mathematical form but depends upon some unspecified
constants {p, o in (2.3.16); A in (2.3.17); a, b in (2.3.18); and n, p in
(2.3.19)]. These constants are called parameters of the distribution.

In a number of cases it is possible, by means of a linear transforma-
tion of the random variable, to bring the distribution function into a
standardized form. Thus the transformation { = (y— p)/o applied to
the random variable 7 of (2.3.16), yields for { a normal distribution

F(z) = f @m)yMexp (= 3D dt, (2.3.20)

which is the standardized form of the normal distribution. The
standardized forms of (2.3.17) and (2.3.18) arise when A=1 and
when a =0, b =1 respectively. The standardized rectangular distri-
bution
0,y<0
Fpy=4y,0<y<1 (2.3.21)
LLy>1

is particularly impoi"tant in Monte Carlo work (see Chapter 3).
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The so-called central limit theorem asserts that (under suitable mild
conditions specified in the standard textbooks) the sum of n indepen-
dent random variables has an approximately normal distribution
when # is large; in practical cases, more often than not,n=101is a
reasonably large number, while n = 25 is effectively infinite. There
are, of course, qualifications to this rule of thumb concerning the
size of n. Firstly, the separate random variables comprising the
sum should not have too disparate variances: for example, in terms
of variance none of them should be comparable with the sum of the
rest. Secondly, as n— o, the distribution function of the sum tends
to normality more rapidly in the region of the mean than in the fails of
the distribution (i.e. the regions distant from the mean). For vectors,
there is a corresponding theorem in which the limiting distribution
is the multinormal distribution

y
FO) = [ 120917 2exp (= 4t -y V't -,

(2.3.22)

where the expression in the exponent is a quadratic form in matrix
notation, and V is the variance-covariance matrix of the random
variable v, that is to say the matrix whosc (i,j)-element is the covari-
ance between the ith and jth coordinates of .
Another important limiting distribution is the Poisson distribution
FG) = 3 e, (2.3.23)
I<y
which occurs when n— and np—2A in (2.3.19). In (2.3.23), ris a
non-negative integer and A is any positive constant,

2.4 Estimation

Most Monte Carlo work is concerned with estimating the unknown
numerical value of some parameter of some distribution. Viewed in
this context, the parameter is called an estimand. The available data
will consist of a number of observed random variables, constituting
the sample. The number of observations in the sample is called the
sample size. The connexion between the sample and the cstimand is
that the latter is a parameter of the distribution of the random vari-
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ables constituting the former. For example, the estimand might be the
parameter p of (2.3.16), and the sample (of size n) might consist of
independent random variables »y, 1,, ..., 7, each distributed accord-
ing 0 (2.3.16). Now p is the mean of (2.3.16); so it might seem reason-
able to estimate u by the average of the observations

7= O+m+...+9)/n. (24.1)
On the other hand, the quantity

(W11)1+W27)2+...+ W,,?],,)/(W1+W2+...+W,|) (2.42)

is also an average (in fact, a weighted average) of the observations, of
which (2.4.1) is a special case. The question then arises: can we choose
the w; in some way such that (2.4.2) is a better estimator of p than
(2.4.1); and, indeed, is there some other function 1001, M2s +eey M)
which is even better than (2.4.2)? The answer naturally depends upon
what we mean by a ‘better’ estimator, and we now examine this issue
in general. :

We can represent the sample by a vector n with coordinates TR
M2, +--» a3 and the estimand 6 will be a parameter of the distribution
of 7. We call this distribution the parent distribution to distinguish it
from the sampling distribution (to be defined below). To estimate 8
we are going to use some function of the observations, say ((n). It is
important to distinguish two different senses of the function r. We
can either regard ¢ as a mathematical function of some unspecified
variables yy, y,, ..., y, (i.e. t = 1(y)), in which case we speak of the
estimator t; or we can think of the numerical value of r when y,,
Y2, ++.y ¥n take the observed values %y, 7, ..., 7, (ie. t=1(n)), in
which case we speak of the estimate t. Our problem is then to find an
estimator which provides good estimates of 8, i.e. to choose a function
¢(y) such that ¢(n) is close to 8.

Now since n is a random variable, so is #(n). This statement is to be
understood as follows: 0 is the particular observation obtained by
some experiment, and is random to the extent that, if we repeated
the experiment, we should expect to get a different value of n. The
parent distribution describes how these values of v are distributed
when we consider (possibly hypothetical) repetitions of the experi-
ment. Since v varies from experiment to experiment, so does t(n);
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and consequently 1(n) has a distribution, called the sampling distri-
bution. If t(n) is to be close to 8, then the sampling distribution ought
to be closely concentrated around 6.

It is not, however, necessary to repeat the experiment in practice,}
because we can determine the sampling distribution mathematically
in terms of the estimator #(y) and the parent distribution F (y): in fact
the sampling distribution is

T() = P(t(n) < 1) = j dF(y), 2.4.3)

Hy)<u

where the integral is taken over all values of y such that r(y) < u.
Thus, given F, we have to find 1(y) such that (2.4.3) clusters about 8.
The difference between 8 and the average valuc of 1(n) (average over
hypothetically repeated experiments) will be

B = &utm-0) = [ um-0drw); (2.4.9)

SRR £ S T LS S

and similarly the dispersion of 1(n) can be measured by

o} = var {{m)} = E{{tt) - St = &{[t—-0— B
f {1(y)— 0~ By dF(y). (2.4.5)

Indeed, 6+ B and o2 are the mean and the variance of the sampling
distribution. We call 8 the bias of t, and o? the sampling variance of 1.
It is worth noting that (2.4.4) and (2.4.5) are special cases of
(2.3.6). :

We can now specify what is meant by a good estimator. We say
that «(y) is a good estimator if 8 and 03 are small; for this means that
T'(u) will cluster around 6 closcly. This is not the only way in which
we could have accorded merit to an estimator, but it is a simple and
convenient way. In particular, if 1(y) is such that 8 = 0, we speak of
an unbiased estimator; and, if a"; is smaller than the sampling variance
of any other estimator, we speak of a minimum-variance estimator.

t Nevertheless, it is sometimes convenient to repeat the experiment in
practice, especially when (2.4.3) is mathematically intractable. Such re-
petitions can then afford 2 Monte Carlo estimate of (2.4.3).

o i+
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According to the above criteria, we prefer to use unbiased minimum-
variance estimators. Unfortunately the problem of finding them is a
rather difficult problem in the calculus of variations, though it can
be solved in certain cases: thus it turns out that (2.4.1) is an unbiased
minimum-variance estimator of the mean p of a normal distribution.
Often, however, we have to be content with only a partial solution:
for example, instead of considering all possible estimators and picking
the one with minimum variance, we may confine our attention to
linear estimators, i.e. linear functions of the observations ny, 95, .. ., 7m
and pick from this restricted set the one with minimum variance.
This limited problem of finding unbiased minimum-variance linear
estimators is much easier to solve. The following special case is
sufliciently important to merit explicit mention. Suppose that it is
known that the mean of the parent distribution of »; is m;6, where
i=1,2,..., nand m;is a known constant (very often m, = 1 in prac-
tical applications) and 6 is the unknown estimand. Suppose also that
the covariance of #; and 7, is vy. Write V for the variance-covariance
matrix of n, i.e.V is the symmetric # x n matrix whose (/,j)-element is
vy; write m for the column-vector {my, m,, ..., m,}; and m’ for the
transpose of m. Then the unbiased minimum-variance linear esti-
mator of 9 is

t=mV'my ' 'mv'y, (2.4.6)
and its sampling variance is
ot = m'V'm)y (2.4.7)

The square root of the sampling variance of an estimator is known
as the standard error of the estimator. It is, of course, the standard
deviation of the sampling distribution; but it is convenient to speak
of it as standard error, and to reserve the term standard deviation for
the standard deviation of the parent distribution. The standard error
is a useful indicator of how close the estimate is to the unknown esti-
mand. A good working rule, which holds with relatively few excep-
tions, is that an estimate has only about one chance in twenty of
differing from its mean value by more than twice the standard error,
and only about one chance in a thousand of more than thrice the
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standard error. For unbiased estimators, the mean value is equal to
the estimand. The figures 1 in 20 and 1 in 1000 are appropriate to the
normal distribution: their application to a wide variety of practical
situations stems from the central limit theorem, since most esti-
mators are effectively equivalent to a sum of several independent
random variables.

The considerations given above extend to the case where we have to
estimate several estimands simultaneously from a single set of data.
These estimands can be regarded as the co-ordinates of a vector
estimand, for which any vector estimator will have a distribution
and a sampling variance-covariance matrix, and will be unbiased if
each of its co-ordinates is unbiased. The minimum-variance esti-
mator is usually understood to be the one which minimizes the ele-
ments on the principal diagonal of this matrix, i.e. the individual
sampling variances of individual co-ordinates.

There is one other estimation technique worth mentioning here,
namely the method of maximum likelihood. The likelihood of a sample
is a number proportional to the probability of that sample: it can
usually be taken to be f(n), where fis the function specificd in (2.3.8).
This number depends upon the observed sample n'and also upon the
estimand 8 = {6, 6,, ..., 8,}. The maximum-likelihood estimate is the
value of 8 which maximizes the likelihood for the observed n;andis
therefore a function of 7. In practice it is often more convenient to
maximize L, the natural logarithm of the likelihood; in which case
the maximum-likelihood estimator is the solution of the equations

aL/o8; =0 (i=1,2...,p). (2.4.8)

To a satisfactory approximation, the sampling variance-covariance
matrix of this estimator is the reciprocal of the matrix whose . /)-
element is — 82L/26,26;.

The following particular estimators are of frequent occurrence.
Suppose that »,, 7, ..., 1, are independent observations from the
same parent distribution. Then an unbiased estimator of the mean
of this parent distribution is

1= m+mnt...+9.)/n (2.4.9

i = Soomien

o A s i
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and it has standard error ’
oy = o/v/n, (2.4.10)

where o is the standard deviation of the parent distribution. An
unbiased estimator of the variance of the parent distribution is

s = i+ 3+ A= n-1), (2.4.11)
which has standard error approximately equal to
o2 =~ o?[v/(n). (2.4.12)

Whereas the standard error (2.4.10) is exact, whatever the parent
distribution, the validity of the approximation (2.4.12) depends upon
the fourth moment of the parent distribution. Equation (2.4.12) holds
exactly if the parent distribution is normal, and approximately if it is
approximately normal. It is usual to take the square root of (2.4.11)
as an estimator of o, even though this is not unbiasedt ; the standard
error of this estimator is approximately

oy = af+y/(2n). (2.4.13)

In the binomial distribution (2.3.19), an unbiased estimate of the
parameter p is 7/, the ratio of successful trials to the total number of
trials; and the standard error of this estimator is

o, = V{p(1—p)/n}. (2.4.18)

In assigning numerical values to standard errors, one usually replaces
the value of a parameter by its estimate: thus in (2.4.10), (2.4.12), and
(2.4.13) one would use s, calculated from (2.4.1 1), in place of o;
and in (2.4.14) one would use 7n/n in place of p.

2.5 Efficiency

The main concern in Monte Carlo work is to obtain a respectably
small standard error in the final result. It is always possible to reduce
standard errors by taking the average of n independent values of an
estimator; but this is rarely a rewarding procedure, as usually (as in

1 1f 1 is an unbiased estimator of 6, it will be generally false that &) is
an unbiased estimator of ¢(6); but, if ¢ is a maximum likelihood estimator
of 8, then ¢(¢) is a maximum likelihood estimator of ¢(9). One may therefore
expect maximum likelihood estimators to be biased.
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(2.4.10), (2.4.12), (2.4.13), and (2.4.14)) the standard error is inversely
proportional to the square root of the sample size # and therefore,
to reduce the standard error by a factor of k, the sample size needs to
be increased k2-fold. This is impracticable when & is large, say 100.
The remedy lies in careful design of the way in which the data is
collected and analyzed. The efficiency of a Monte Carlo process may
be taken as inversely proportional to the product of the sampling vari-
ance and the amount of labour expended in obtaining this estimate. It
pays handsome dividends to allow some increase in the labour (due,
say, to the use of sophisticated rather than crude estimators) if that
produces an overwhelming decrease in the sampling variance.

The so-called variance-reducing technigues, which lie at the heart of
good Monte Carlo work, are techniques which reduce the cocfficient
of 1/n in the sampling variance of the final estimator, where n is the
sample size (or, perhaps more generally, the amount of labour
expended on the calculation). These techniques depend upon various
devices, such as distorting the data so that the variance of the parent
distribution is reduced (e.g. in importance sampling), or making
allowances for various causes of variation in the data (e.g. as in
regression). What most of these methods have in common is that they
do not introduce bias into the estimation; and thus they make results
more precise without sacrificing reliability.

2.6 Regression

Sometimes the variation in raw experimental data can be broken into
two parts: the first part consists of an entircly random variation
that we can perhaps do little about; but the second part ariscs because
the obscrvations are influenced by certain concomitant conditions of
the experiment, and it may be possible to record these conditions and
determine how they influence the raw observations. When this is so,
we can then calculate (or at least estimate) this second part and sub-
tract it out from the reckoning, thus leaving only those variations
in the observations which are not due to the concomitant conditions.

The basic model for this is to suppose that the random observations
(= 1,2,...,n) are associated with a set of concomitant numbers x,
(=1, 2, ..., p) which describe the experimental conditions under
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which the observation n; was taken. It is then assumed that », is the

sum of a purely random component §; with zero expectation and a

linear combination Y] B;xy of the concomitant numbers. Here the
J

coefficients §; are unknown parameters to be estimated from the data
itself, Let X denote the n x p matrix xy, and let V be the n x n variance-
covariance matrix of the §;’s. Then the minimum-variance unbiased
lincar estimator of the vector B is

b=XV!IX)!'X'Vv'y (2.6.1)

and its sampling variance-covariance matrix is (X’V~'X)"!. In pass-
ing, it may be noticed that (2.4.6) is the particular case X =m of
(2.6.1). The numbers @ arecalled regression coefficients; and, once they
have been estimated, we can allow for the concomitant variation.

At first sight it may seem that the assumption that »; depends
linearly upon the xy is unnecessarily restrictive. But, in fact, this
apparent linear dependence is more a matter of notational conven-
ience than anything else: there is no reason why the x;; should not be
functionally related - for example, when the x; are powers of a
single number x;, say x; = x4, one has the special case of polynomial
regression. Another important specizil case arises when the data can
be classified into strata or categories, and xy; is given the value 1 or 0
according as 7, does or does not belong to the jth category. In this
case formula (2.6.1) is known as the analysis of variance. In the
mixed case, when some but not all x;; are restricted to the values 0
and 1, one has what is called the analysis of covariance.

2.7 Sampling methods

There are two basic types of sampling. In the first, called fixed samp-
ling, one lays one’s plans for collecting the data and then collects the
data accordingly without reference to the actual numerical values of
the resulting observations. In the second, called sequential sampling,
one allows the method of collecting and the amount collected to
depend upon the observed numerical values found during collection.
For example, with fixed sampling from a binomial distribution one
first selects a number # and then carries out that number n of trials
and observes how many are successful; but with a particular type of

o e e
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sequential sampling, known as inverse sampling from the binomial
distribution, one does not fix n but instead carries out trials until
a prescribed number are successful, the observation in this case being
the total number of trials needed for this purpose. .

Another important type of sampling is stratified sampling, in
which the data are collected to occupy prearranged categories or
strata,

CHAPTER 3

Random, Pseudorandom, and
Quasirandom Numbers

3.1 General remarks

The essential feature common to all Monte Carlo computations is
that at some point we have to substitute for a random variable a
corresponding set of actual valucs, having the statistical properties of

the random variable. The values that we substitute-are called ranidam.
Jumbers, op the grqnmﬁqulwsumv"e, been produced by
chance by a suitable random process. In fact, as we shall go'on to
describe, they are not usually produced in this way; however, this
should not affect the person who has to use them, since the question
he should be asking is not ‘Where did these numbers come from?’
but ‘Are these numbers correctly distributed ?", and this question is
answcred by statistical tests on the numbers themselves. But even this
approach runs into insuperable practical difficulties because strictly
speaking it requires us to produce infinitely many random numbers
and make infinitely many statistical tests on them to ensure fi ully that
they meet the postulates. Instcad we proceed with a mixture of
optimism and utilitarianism: optimism, in the sense that we produce
only finitely many numbers, subject them to only a few tests, and hope
(with some justification) that they would have satisfied the remaining
unmade tests; utilitarianism, in the sense that one of the tests that

might have been applietisWRether or not the random numbers yielt
an unbiased or a reliable answer to the Monte Carlo problem under
study, and it is really only this test that interests us when we are
ultimately concerned only with a final numerical solution to a parti-
cular problem. Taken in this second vein, the other tests are irrelevant ;
the numbers produced need not satisfy them. The more of the irrele-
vant tests we ignore, or indeed deliberately permit to be violated, the
MCM—C 25
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easier and the cheaper it may become to generate the numbers, which
now of course are no longer genuinely random but only *pscudo-
random’ or ‘ quasirandom’, It is simply a question of sacrificing ideals
to expediency. In Monte Carlo work justice will have been done if the
final verdict is fair, i.e. the answers come out approximately right.

When we use the term ‘random number’ without qualification, we
shall be referring to the standardized rectangular distribution (2.3.21).
We shall reserve the symbol ¢, with or without suffices, for such a
random number. We shall also use the same symbol for some sub-
stitute number (such as a pseudorandom number), which in practice
plays the role of a standardized rectangular random number. For
instance, it is convenient to talk as if numbers were continuously
distributed when in fact they can only take on values that are multiples
of some small number (say 10~'°, or even 1073), on account of the
rounding off necessary for numerical computation. This does not
lead to any confusion.

For Monte Carlo work with pencil and paper there are published
tables of random numbers, the best known being {1] and [2]. The
Rand tables are also available on punched cards, and should be
regarded as standard stock in a computing laboratory which docs
Monte Carlo computations on punched-card machinery. These
tables are gencrated by physical processes which are, as far as one can
tell, random in the strict sense, but they have also been successfully
subjected to a number of statistical tests. .

It is possible to gencrate one’s own random numbers by a like

- process (and indeed several physical devicest have been constructed

for just this purpose), but one then has the additional task of re-
‘peatedly verifying that the process is functioning properly, and the
practice is not recommended for serious work. (See Lord Kelvin's
remarks {3] on the difficulties of picking picces of paper at random
from a jar.) :

For electronic digital computers it is most convenient to calculate
a sequence of numbers one at a time as required, by a completely
specified rule which is, however, so devised that no recasonable
statistical test will detect any significant departure from randomness.

t See the section on * Physical devices for gencrating random numbers’ on
p. 159 in the Further References.
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Such a sequence is called pseudorandom. The great advantage of a
specified rule is that the sequence can be exactly reproduced for
purposes of computational checking.

Ordinarily, and in the following scction §3.2, we compute a
pseudorandom sequence ¢; from a sequence of\positive integers Xx;via
the relation

& = xi/m, (.11

. . o . e
where m is a suitable poxtive integer, -

Pseudorandom sequencesare intended for general use on all classes
of problem. However, in some kinds of Monte Carlo work, where we
know that thé violation of some statistical tests will not invalidate the
result, it may be to our advantage deliberately to use a non-random
sequence having only the particular statistical properties that concern
us. Such a sequence is called quasirandom.

Hull and Dobell [4] give an extensive bibliography on random
number generators.

3.2 Pscudorandbm numbers

The first suggestion for produejng a pscudorandom sequence, due to
\Metrgp_o»li; and\von Neumanc;, was the ‘midsquare’ method (see,
for instance, Forsythe [5]), in’ which each number is generated by
squaring its predecessor and taking the middle digits of the result:
that is to say, x;, in (3.1.1) consists of the middle digits of x?. (All
pseudorandom number generators exploit a fixed word-length in a
digital computer.) This method was soon found to be unsatisfactory,
and later work, reviewed in [4], has been concentrated on congruential
methods, to be described in more detail below. Apart from these,
various ad hoc methods have been devised, making use of the peculiar-
ities of individual computers; thesc are generally lacking in theoretical
support, but there is no objection to using them if they satisfy
reasonable statistical requirements.
In 1951, Lehmer (6] suggested that a pseudorandom sequence
could be generated by the recurrence relationt

x; = ax;_; (modulo m), 3.2.1)

t The notation signifies that x,is the remainder when ax;-y isdivided by m.
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and this has subsequently been generalized [7] to
x; = ax;_y+ ¢ (modulo m). (3.2.2)

Here m is a large integer determined by the design of the computer
(usually a large power of 2 or of 10) and a, ¢, and x, are integers
between 0 and m— 1. The numbers x,/m are then used as the pseudo-
random sequence. Formulae (3.2.1) and (3.2.2) are called congruential
methods of generating pseudorandom numbers; in particular (3.2.1)
is the multiplicative congruential method.

Clearly, such a sequence will repeat itself after at most m steps,
and will therefore be periodic; for example, if m=16,a=3,c=1,
and xg«= 2, the sequence of x’s generated by (3.2.2)is 2, 7, 6, 3, 10, 15,
14, 11, 2, 7, ..., so that the period is 8. We must always ensure that
the period is longer than the number of random numbers required
in any single experiment. The value of m is usually large enough to
permit this. .

If recurrence (3.2.2) is used, the full period of m can always be
achieved, provided that:

(i) ¢ and m have no common divisor;
(ii) a= 1 (modulo p) for every prime factor p of m; 3.2.3)
(iii) a = 1 (modulo 4) if m is a multiple of 4.

The case of (3.2.1) is rather more complicated. The period is now
always less than m, and if

m=22ph B, (3.2.4)
where the p’s are distinct odd primes, the maximum possible period is

A(m) = lowest common multiple of A(2%), )«(p’,;'), .. ../\(pg').

(3.2.5)
where AP = PP (p-1)if pis odd,
M2%) = (e =0,1),
—e-2), (3.2.6)
= 2% 2a > 2),
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This maximum period is achieved provided that:

(i) @" # 1 (medulo p,ﬂ/) for0 < n < A(pf’);

(i) a=1(modul62)ife =1,

3 (modulo 4) if « =2, 3.2
= 3 or 5 (modulo 8) if « >

(1ii) xg is prime relative to m,

i
i

in the binary scale by means of a comi ometimes called low
multiplication, « being generally in the neighbourhood of 30 or 40.
Then (3.2.1) gives a period of m/4 provided that a differs by 3 from
the nearest multiple of 8 and that xg is odd, and (3.2.2) gives a period
of m provided that cis odd and that a is one greater than a multiple of 4.

The condition that the period be a maximum ensures that the
numbers produced are rectangularly distributed (to within the
accuracy of the machine), but they may nevertheless be highly corre-
lated, and much work remains to be done on this question. Green-
berger [8] has derived an approximate result, that the correlation
between successive numbers generated by (3.2.2) lies between the

bounds
I Gc c a
-}, (3.2.8)
a am m m

from which one can also find approximate bounds for the correlation
between numbers & steps apart by replacing a and ¢ by a* and
(a* = 1)c/(a—1), both reduced modulo m. However, the result is of
more use in rejecting bad choiccs of ¢ and a than in finding good
choices.

We are thus driven back to carry out statistical tests on the actual
numbers produced. We shall not go into details of all the possible
tests. A fairly extensive account of these and a bibliography is given
by Taussky and Todd [9}, and here we may content ourselves with a
simple illustration.

Let us investigate the possibilitics of gross irregularities of distri-
bution and serial correlation between numbers generated by (3.2.1)

@
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; with m = 22 and a = 129140163 (= 3!7). (We choose (3.2.1) rather Table 3.2
) than (3.2.2) only because it happens to be more convenient for the
computer we have to hand.) Accordingly, we take the first 10,000 k=1 2 3 4 5 sum
numbers generated by this process and count the number ny; which j=1 400 415 408 398 401 2022
satisfy 2 418 391 383 385 381 1958
. . . i 3 404 347 408 415 415 1989
- . =1.2 ) i
G=D5 <& <jf25 (G=1.2,...,25) G.2.9) 4 396 386 402 429 411 2024
and the number ny; which satisfy ' 5 404 418 388 398 399 2007

G-DI5S< & <jls and (k—=1)/S < &, < k/5 xt = 164—1-5 = 149

Gok=1,2,..5). (3.2.10) i 20d.f: 95% level 10-85

. . 5% level 31-41
; This gives us two sets of 25 numbers, shown in Tables 3.1 and 3.2.

the reader to Good [10] for justification of the correct test, that if

Table 3.1 n;= 3 my then, in the present case, the statistics
k

392 423 186 396 425 ) Z E (njk - 400)2/400 el z ("j— 2000)2/2000 (3.2.12)
386 400 393 416 363 d 1k /
411 389 385 363 44l | an 2 )
437 387 385 399 416 2 2 (—400)°/400 — 2 3 (m;— 2000)°/2000  (3.2.13)
396 406 405 415 385 1k Y

have approximate 2 distributions with 20 and 16 degrees of freedom

X2 = 234 respectively. We have chosen to use (3.2.12).
24d.f.: 959 level 13-85 Both of our values of x? lie well within the bounds indicated, so
5% level 36:42 - i that the generator passes these tests.
It is well to observe that, while it is possible to construct a sequence
We then proceed to compute the statistic x? for each table. This is of random numbers out of a sequence of random digits in the obvious
defined for Table 3.1 by ' manner, it is not necessarily truc that the successive digits of a
=X (mj-ri'zj)zlrﬁ,, (3.2.11) sequence of pseudorandom numbers are random. For example, the
J successive binary digits of numbers generated by (3.2.1) with m = 2*
where m; is the expected value of m), on the assumption that the £'s have shorter and shorter periods untilthe last digit is always 1. Thus
are independently and rectangularly distributed. In this case /1, = 400. the last 15 or 20 digits of each random\pumber should be discarded
Table 3.1 has 24 degrees of freedom, since the only automatically when constructing sequences of randon digits. -
satisfied condition is that the sum of all the entries is 10000. We .
therefore refer to tables of the x? distribution for 24 degrees of free- 3.3 Quasirandom numbers ,
dom to find bounds between which x? ought to lie with high pro- Consider the estimation of s
bability. ! ! ‘
Analysis of Table 3.2 is not so simple and mistaken conclusions 0= f f S 4) dxy...dxy 3.3.1)
have sometimes been drawn from too hasty assumptions. We refer ‘ o H
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by a formula

1
ﬁ{f(51)+...+f(€~)} (3.3.2)

where x and E,, are k-dimensional vectors. If the co-ordinates of the
E, are kN terms of a random sequence, we can use statistical argu-
ments to show that the error will be of the order of N~'/2, In Chapter §
we shall show how this error might be reduced by the use of anti-
thetic variates, when there is functional dependence between several
successive §'s. However, except for small values of k, present anti-
thetic techniques require N to be hopelessly large before they can be
applied at all.

Suppose, however, that we abandon the idea of a general-purpose
random sequence, and concentrate on sequences which estimate
(3.3.1) as well as possible for all values of N. In what follows we use

the vector inequality X < y to signify-that no co-ordinate of x exceeds

the corresponding co-ordinate of y. In order to have a manageable
criterion, let f(x) be restricted to functions of the class
fx)=1lifx <A
= 0 otherwise } . (.3.3)
The condition that (3.3.2) shall give a good estimate of the integral
of every function of this class can be expressed in other words as that
the points §, ..., §x are evenly distributed over the hypercube.

Let S(A) be the number of the first N points of the sequence
{E,} satisfying E, < A. Then the integral (3.3.1) is 4, 4,...A4,, the
product of the co-ordinates of A, while the estimator (3.3.2) is
S(A)/N. Let M denote the maximum of

IS(A)= NA, A;... Ayl (3.3.4)

taken over all points A of the hypercube 0 < A <1, and let

1 1
J= f...f[S(A)—NAIAZ...Ak]ZdA (3.3.5)
1] 0

denote the mean square of (3.3.4) over the hypercube. Both M and J
depend upon the particular sequence {E,} used, and can serve as
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criteria of the effectiveness of the sequence. The smaller these values,
the better is the sequence for integrating functions of the class (3.3.3).
Since other types of integrands can be approximated by linear combi-
nations of functions similar to (3.3.3), the criteria will be fairly widely
applicable for largish values of N.

Roth [11] has shown that there are constants ¢ such that

J > c; (log NY¥! (3.3.6)

for any sequence of §'s whatever. It is not known whether this bound
can be achieved.

The best that has been donc towards minimizing M and J is based
on an idea of van der Corput [12]. Suppose that the natural numbers
are expressed in the scale of notation with radix R, so that

n=ay+ayR+a R*+...+a, R" (0 < a; < R). (3.3.7)

Now write the digits of these numbers in reverse order, preceded bya
point. This gives the numbers

Pr(m) = ag R +a, R*+...+a, R-™\, (3.3.8)
For example, in the binary scale (R = 2),

n = | (decimal) = 1 (binary); ¢,(n) = 0-1 (binary) = 0-5 (decimal)
2 10 0-01 025
3 11 011 075
4 100 0-001 0125
5 101 0-101 0-625
6 110 0011 0375
7 11t o1l 0-875
8 1000 0-0001 0-0625

and so on.

Halton [13], extending to k dimensions the results found by van der
Corput in 2 dimensions, has shown that, provided that R, R, ..., Ry
are mutually coprime, the sequence of vectors

(b (M), dr (1), ..., (M) (1= 1toN) (3.3.9)

-
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(3R, -2
has M < (log N)* ek
(log ) H(IOBR:*)
(3.3.10)
R~ 1)?
and J < (log Ny** {'h}
(log N) 1;[ oz R,
while the sequence
(n/N, ¢pn), ... Pr,_ ) (3.3.11

satisfies the same inequalities (3.3.10) with & replaced by (4 — 1).

For comparison, it is easily shown that, in the case of a random
sequence, the expectation of J is the much larger quantity

N@*-37h, (3.3.12)

A different approach is based on the theory of Diophantine
approximation. Richtmyer {14] considers the sequence of vectors

E, = ([ney], [noy], ..., [ney D), {3.3.13)
where [-] denotes the fractional part of the enclosed number and
ey, &, ..., ay are independent irrational numbers belonging to a real

algebraic field of degree 8(= &+ 1). (That is to say, oy, ..., 0 are real
roots of a polynomial of degree & with integer coefficients, and the
equation

n.a = o +nyent.. .ty =0 (3.3.14)
has nosolutionin integers, other than n; = 1y =...=n;, = 0.)Suppose
that f(x) has the Fourier expansion

x) =3 ... % aln, ..., ng) e nx, (3.3.15)
ny ng
It can then be shown that if
3. X (max i Y atny, .. )l < o (3.3.16)
ny ny J

then the difference between (3.3.1) and (3.3.2) is O(N™)) as N~>co.
More usefully, if the series (3.3.15) is absolutely convergent, so that

... 2lalny, ... n)] = B < w, (3.3.17)

RANDOM NUMBERS 35

then (3.3.2) is an unbiased estimator of (3.3.1) and the expected
error is less than
(1+1ogN)B/N. (3.3.18)

Comparing this method and crude Monte Carlo (see Chapter 5)
with numerical quadrature formulae using the same number of
points, Richtmyer claims that his method is more accurate (for large
N) than the trapezoidal rule in two or more dimensions, and than
second-order rules in three or more dimensions, while crude Monte
Carlo becomes better than the trapezoidal rule in three dimensions
and better than second-order rules in five dimensions.

Irrational numbers cannot, of course, be represented exactly in a
computer or on paper, but the rounding error can be neglected pro-
vided that the number of significant digits exceeds the number of
digits in N2,

Going further along the same lines, Haselgrove [15] considers
estimators of d of the form

S(N) = 2 ey f(hmoy +31, .0, Bmeg+4D,  (3.3.19)
m
of which the simplest instances are

N
si(N) = QN+ Y . fdme+41,..)  (3.3.20)

me=—

and

N
5,(N) = N+1)2 EN(N+ 1= [m)f((3meg+41,..). (3.3.2D)

m= —

Here again oy, ..., «; are linearly independent irrational numbers,
but not necessarily algebraic. The first of these estimators, s;(N), is
essentially the same as Richtmyer’s.

Haselgrove shows that if the Fourier coefficients satisfy

la(ng, .y n)) < Ming. . ng ™ (3.3.22)

(ignoring zero factors in the product on the right-hand side), and if
s(N) is of ‘order’ r < ¢, defined by

T cnme™® = O{(Nsinid) " as N — o, (3.3.23)
then |s(N)— 6] = O(N™"). In particular, the orders of 5;(N) and 5,(N)
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are respectively | and 2, so that for suitable functions f they give
estimates of § whose errors are O(N~!) and O(N 3.

He further shows that, for all functions f satisfying (3.3.22) with
1=2, |s,(N)— 8| is greatest when f(x) is proportional to

k
L0 = [T=12x—1)3. (3.3.24)

i=1

Consequently, if one can find a vector a that minimizes sup [52(N) -0
N

for the case f=f,, then this a will lead to a good estimator for the
integral of all sufficiently well-behaved functions. A table of suitable
values of a, determined empirically for k& = 1 to 8, is given in [I 5].

3.4 Sampling from non-rectangular distributions

We have so far concentrated on rectangularly distributed random
numbers. Frequently we require to take samples from other specified
distributions. This is always done by taking rectangularly distributed
numbers and transforming them somchow.

We continue writing ¢ (with or without suffix) for a rectangularly
distributed random number, and we let 7 denote a number with
frequency function f() and distribution F(y). The problem is then to
express 7 as an explicit function of £'s.

If F has a known inverse function £7!, this is easy; we simply take
n=F ~1(¢). How satisfactory this is, depends upon how easy it is to
compute F~1(-). It is worth noting that ¢ and 1— ¢ have the same
distribution; so that we may replace F~(¢) by F~I(1 - &) if we wish.
This device is useful in sampling by computer from the exponential
distribution (2.3.17), which describes the distance travelled by a
neutron between successive collisions in a nuclear reactor. We have

n=X'logg¢, (3.4.1)
and we can employ a standard subroutine to evaluate the logarithm
in (3.4.1).

If fis bounded and % has a finite range, we may use the rejection
technigue of von Neumann [16]. Let a be such that af(y) < 1, and let
the range of 7 be (c,d). We successively choose independent random
numbers £, £,, until we first encounter a pair (¢5,_1, &,,) satisfying

2,01 < aflerd—0) £,]. (3.4.2)
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We then take 7 =c+(d—c)é,,, all previous pairs being rejected.
This technique tends to be very extravagant if £ has a wide variation;
however, the principle of the method is implicit in some of the others
mentioned below,

One of the earliest rejection techniques, due to von Neumann {16],
generates the sine and cosine of a uniformly distributed angle 6.
We take

g-4 L X266

g tim%2 6 = ,
T =are T gra

(3.4.3)

whenever the independent pair ¢;, &, satisfy £f+ f% < 1, any pair such
that &3+ £5 > 1 being rejected. The sign of sin is chosen at random.
Butler [17] has described the composition method. Suppose that

10) = [ 8:0)dH @),

where {g,(»)} is a family of density functions and H(z) is a distribution
function, from all of which we know how to sample. Then we may
obtain 7 in two stages, first sampling { from the distribution H and
then sampling 7 from the corresponding distribution g¢.

A special case of this, in which H is a discrete distribution, occurs
when f(y) is restricted to a range which we may suppose to be the
interval (0, 1), and has a power-series expansion

) = S any, (3.4.4)
n=0

all of whose coefficients a,, are positive. In this case we may choose
n from a discrete distribution with frequency function

pu= @+ a0+ Dy (1200 (45

and then sample 7 from the distribution

g.(») = (n+1)y" (3.4.6)

The latter is most simply (though rather uneconomically) performed
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by taking % = max (¢, ..., £,4.1), which may easily be shown to have
the density (3.4.6). For example, the distribution

O<x<))

3.4.7)

may be generated in this way, and hence, by the transformation
X, = m—Xx, the distribution with density

Em(x) = €™ *l(e—=1) (m—-1< x < m). (3.4.8)

We may now perform a second composition, sampling m from the
distribution

[ = efe~1) = :11{l+x+x2/2!+...}

Pm=(e=De™ (m=1,2,..), (3.4.9)
so that the final result has density function

SO = % Em()pPm =€ (0 <y< w), (3.4.10)
m=|

the exponential distribution. Putting this more concisely [18], the
number
n = m—max({, ..., &) (34.11)

is exponentially distributed when m and » are distributed independ-
ently according to the laws with frequen¢y functions p,, and g,
given by
Pm=(e—1e™ (mn=1,2..
and (3.4.12)
1
: = (n=12..).
= e=ym ¢ )
More generally, to sample from a particular discrete distribution
with any prescribed frequency function p,(n = 1,2,...), we may keep
a record of the quantities

P(n) = ):,l Pi 3.4.13)
i=

Having calculated a random number £, we then determine the re-
quired random n as the integer satisfying

Pn—1) < ¢ < P(n) (3.4.14)

\ —— e c——

i T
i
§
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where P(0) = 0. This method is quite fast if P(n) is nearly 1 for some
small value of n. For example, the first distribution in (3.4.12) gives
P(1) =063, P(2)=0-86, P(3)=095, P(4)=098,...; while the
second distribution of (3.4.12) gives P(l)= 0-58, P(2)=1087,
P(3)=097,P(4)=099,....

Composition methods can be particularly quick and efficient on a
computer with a random access store large enough to hold fairly
elaborate look-up tables. Marsaglia [19] has made considerable
study of composition methods of this type where H is discrete, his
object being to express

JO) = X 8.0)pn (3.4.15)

in such a way that 3 T,,p, is small, where T, is the expectation of the
computational time taken in sampling from g,

For distributions with  finite range, Teichroew [20] has a general
method, in which he finds an elementary combination { of ¢'s, whose
distribution is fairly close to F, and then improves this by taking n to
be the polynomial in { giving a distribution which is a best fit to F
in the sense of Chebyshev,

Of special importance is the generation of samples from the normal
distribution (2.3.20). Muller [21] gives an account of several methods
of generating random normal deviates, of which the most attractive
is the method of Box and Muller [22], who take

= (~2log f'):;zc.o S(Z"fz)} (3.4.16)
n2 = (=2log £))“sin(2w¢) | .

This method produces normal deviates in independent pairs, ,, 7,
but is not as fast as Marsaglia’s method [19] based on (3.4.15),
Another method, which is very simple to program and is not
unduly slow, relies on the central limit theorem (see §2.3): we merely
take

7= {1+ 6+ 6 —dn (3.4.17)

Here n= 12 is a reasonably large number for the purposes of the
central limit theorem, and has the advantage that with this choice of
n the variance of n is 1, as required by (2.3.20), since the variance of a
standardized rectangular random number is 1 /12. The term —4n in

|

i
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(3.4.17) ensures that &5 = 0. Of course, (3.4.17) is inappropriate if
the Monte Carlo problem critically depends in some way upon the
extreme tails of the normal distribution.

Butcher [23] has given another method which combines the
composition and rejection techniques. If

S0) = X i) 8a(3), (3.4.18)

where «, > 0, f, is a density function, and 0 < g, < I, then one may
choose n with probability

pin) = o,/Y; ay, (3.4.19)

and choose 7 from a distribution with density f,. One now takes a
random number §, and if ¢ > g,(») one rejects » and repeats the
whole process. To obtain the normal distribution, one may take

¢ a4 ——
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¥_3.5 Equidistribution of pseudorandom numbers

\ Let &= {£} (i=1, 2,...) be an infinite sequence of numbers. Let /
denote an arbitrary subinterval of the unit k-dimensional hypercube,
and define

Lif (¢, itt-- -,fl+k—l) el (3.5.0)

0 otherwise.

x i (l » E) = {
The sequence 5 is said to be equidistributed by k’s if

n
lim vl Y 3,5 = |1 3.5.2)
n—wo =]
for every subinterval I, where [I| denotes the volume of . A sequence
which is equidistributed by k’s for every k is called completely
equidistributed.

Completely equidistributed sequences satisfy all the standard
statistical tests in the limit for infinitely large samples, although it is

i

N possible to devise special tests of randomness not satisfied by any
given such sequence. With the reasonable assumption that failure in
such a test will not matter except in most extraordinary circumstances,
it may seem sufficient to use any completely equidistributed sequence

ap = pv(2/m)
HO) = 12p (—p<y<p)
g1(») = exp(—y*/2),

o

b
%
=
[
£
b
B,
oty
e
=
&
o

cetn b

i
Lo

L)

@ = X'V Q2/m)exp (1A% - Ap) v
L) = Rexp{-A(y|—u)} (» > pory < —p)
£20) = exp{-3(y|-N3,

" (3.4.20)

where A and p are arbitrary parameters. The particular choice
A= 4/2, p = 1/4/2 minimizes the number of rejections.

Which is the best of several devices for sampling from a given
distribution depends very much on the type of computer available
and on the proportions of the Monte Carlo work which have to be
devoted to such sampling on the one hand and to the manipulation
of the sample on the other hand. The choice must rest on the context
of the problem, and any general recommendations given here might
well prove misleading. With pencil-and-paper Monte Carlo work
the situation is simpler; if they are available, one simply uses tables
of random numbers having the specified distribution. For the normal
distribution, {2] and [24] are suitable.

as a source of random numbers. Franklin [25] gives a survey of the
interesting theoretical work that has been done on equidistribution
and related kinds of uniformity, contributing a number of new results
of his own. For instance, he shows that

&i=1{0% (=12..), (3.5.3)

where {x} denotes the fractional part of x, is completely equidistri-
buted for almost all 8 > 1, although it will not be equidistributed by
k’s if 8 is an algebraic number of degree less than k.

Such theoretical results are, however, not quite applicable to
practical work, since the theory covers the asymptotic properties of
infinite sequences only; in practice one can dispense with asymptotic
properties but is vitally concerned that the finite portion of the se-
quence that is actually used should behave sufficiently randomly, but
the theory tells one nothing about finite sequences. Accordingly, the
kind of numerical tests discussed in § 3.2 or the kind of theory in
§§3.3 and 3.4 seem more relevant to the situation.

MCM—D
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Furthermore, although (3.5.3) leads to an ‘equidistributed sequence
for almost all 8 > 1, there is (to the best of our knowledge) no known
value of 6 for which (3.5.3) is equidistributed. Until at least one such
spec:Lﬁc value is found, there is no hope of applying (3.5.3) to a practi-
cal situation. The position is very like that for normal numbers ;itis
?(nown that almost all real numbers are absolutely normal (i.e. normal
In every scale of notation simultaneously), and there are methods
{26], [27] for constructing normal numbers in any given scale, but
again to the best of our knowledge, there is no known example ot"
an absolutely normal number, Here there are opportunities for
fascinating theoretical researches, although they may have no im-
mediate practical utility.

3.6 Important concluding principle

We shall later encounter weighting functions and importance samp-
ling, whose purpose is to allow us to sample from one distribution
when we ‘ought’ to be sampling from another. A general Monte Carlo
tenet is: never sample from a distribution merel 'y because it arises in
the physical context of a problem, for we may be able 10 use a better
distribution in the computations and still get the right answer.

CHAPTER 4

Direct Simulation

4.1 General remarks

As explained in §1.1, direct simulation of a probabilistic problem is
the simplest form of the Monte Carlo method. It possesses little
theoretical interest and so will not occupy us much in this book, but
it remains one of the principal forms of Monte Carlo practice because
it arises so often in various operational research problems, charac-
terized by a fairly simple general structure overlaid with a mass of
small and rather particular details. These problems are beyond the
reach of general theory on account of the details, but often are easily
simulated and such improvements as might be made by more sophis-~
ticated Monte Carlo refinements are rarely worth the effort of their
devising. We shall give a few typical examples below. We also make
one or two remarks on the rather different use of direct simulation
to fortify or quantify qualitative mathematical theories.

4.2 Miscellaneous examples of direct simulation

In [1] there is an account of Monte Carlo calculations applied to the
control of floodwater and the construction of dams on the Nile. This
is a probabilistic problem because the quantity of water in the river
varies randomly from season to season. The data consisted of records
of weather, rainfall, and water levels extending over 48 years. The
problem is to see what will happen to the water if certain dams are
built and certain possible policies of water control exercised ; there are
a large number of combinations of dams and policies to be examined,
and each has to be examined over a variety of meteorological condi-
tions to see what happens not only in a typical year but also in extre-
mely dry or extremely wet years. Finally the behaviour of each system
has to be assessed in terms of engineering costs and agricultural,
43
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hydroelectric, and other economic benefits. This demands a large
quantity of straightforward calculation on a high-speed computer
using direct Monte Carlo simulation. The many practical details of
the different dams, the course and character of the river bed, losses
by evaporation, and so on, preclude the use of any theoretical
mathematical model.

Similar Monte Carlo simulation arises in the analysis of storage
systems and inventory policy [2] and in the study of bottlenecks and
queueing systems in industrial production processes. To deal with the
latter, Tocher {3], [4] has written a general computer program, in
which various parameters may be set to simulate particular queueing
situations.

The study of ecological competition between species or of the
progress of epidemics in a community raises very difficult mathe-
matical problems, which may however be resolved quite easily in
particular cases by simulation. Bartlett {5] gives further details and
examples.

Direct simulation plays a large part in war-gaming [6]and in other
forms of operational research. Malcolm {7} gives a bibliography.

Most examples of direct simulation cannot adequately be discussed
without going into the many small practical details that necessitated
the simulation. We choose, however, one example [8] on the lifetime
of comets where this is not so. A long-period comet describes a
sequence of elliptic orbits with the sun at one focus. The energy of the
conmet is inversely proportional to the length of the semimajor axis
of the ellipse. For most of the time, the comet is moving at a great
distance from the sun; but for a relatively short time (that may be

considered as instantaneous) in each orbit the comet passes through
the immediate vicinity of the sun and the planets; and at this instant
the gravitational field of Jupiter (and to a lesser extent Saturn also)
perturbs the cometary energy by a random component. Successive
energy perturbations (in suitable units of energy) may be taken as
independent random numbers M1s M2, ... drawn from a standardized
normal distribution (2.3.20). A comet, starting with an energy — 20,
has accordingly energies

T2 T4 = LMy, < = =z, .., (4.2.1)
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on successive orbits. This process continues until the first occasion
on which z changes sign, whereupon the comet departs on a hyper-
bolic orbit and is lost from the solar system. According to Kgpleg’;
third law, the time taken to describe an orbit with energy — z is ?" /
(in suitable units of time). Hence the total lifetime of the comet is

T—1
G=3 " 4.2.2)
i=0
where zis the first negative quantity in the sequence zg, 2, . . .. C.learly,
G is a random variable. The problem is to determine its distribution
for a specified initial 4. The index —3,2 in (4.2.2) renders thi§ a very
difficult theoretical problem. On the other hand, simulation is easy.
In [8] the required »; were generated by means of (3.4.17) withn = 12,
and thence G was calculated from (4.2.1) and (4.2.2). This procedure
was repeated N times, and the proportion p(g) of those va.lues of G
(in this sample of size NV) which did not exceed ¢ gave a direct esti-
mate of the required distribution function P(G < g). In accordance
with (2.4.14), the standard error of this estimate is

(p(e){1—p(g)}/NT2. (4.2.3)

In §1.1 we stated the general precept that the precision of Monte
Carlo results may be improved by replacing a part of the random
experiment (in this case the direct simulation) by mathematical thef)ry.
We can illustrate this precept in the present case. The probability
that the comet will depart after only one orbit is

F=P(y =z = J @m~' e 24y, (4.2.4)
20
and this value of Fis available from tables of the normal distribution.
Accordingly we know that

12
1-P(G < g) = {

1ifg < z5°
Fifg = 5%
and it remains to estimate P(G>g)=1-P(G<yg) for g> 5
When g > 75°/%, we know that 7> 1. Within the sample of size N,
there is a subsample of size N*, say, such that 7> 1 for each calcu-
lation in the subsample. Let 1 — p*(g) be the proportion of values of

4.2.5)

3/2
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G in this subsample exceeding g. Using the rules for conditional
probability (§2.2), we see that [1 — p*(g)] Fis an estimator of P(G > g),
and that it has standard error

[p*(){1-p*(g)}/N*1'2F, (4.2.6)
and this is smaller than (4.2.3) by a factor of

[] (=Rt —17(&')}]”2

Frg) 4.2.7)

approximately,

In direct simulation one sometimes needs to sample the basic
random numbers from an unusual distribution in a way that matches
the physical problem. We may have recourse to the kinds of device
used in §3.4, or we may need to develop special techniques as in the
following problem, arising in the field of metallurgy. If one has two
concentric symmetrical bodies, cubes for instance, in random orien-
tations, what is the distribution of the smallest angle through which
one body must turn to come into coincidence with the other? This
problem and others of the same nature were investigated by Mac-
kenzie and Thomson [9] using a straightforward random sampling
method. (The original problem has since been solved analytically [10],
(11], but the Monte Carlo method remains the only effective one for
some of the more complicated related problems.)

The interest of this calculation is centred on the generation of
random orientations, represented by orthogonal 3 x 3 matrices. If
the columns of such a matrix are the vectors x, y, and z, then each of
these vectors must have a uniform distribution over the surface of the
unit sphere, but at the same time the three vectors must be mutually
perpendicular. The method used by Mackenzie and Thomson is this.
Let xy, x3, X3, ¥1, ¥2, ¥3 be independent standardized random normal
deviates, and let

S=3Xx% T=3). (4.2.8)
Then
X =[x, x, 3)/S"2, w = [y, p,p) T2 4.2.9)

are independent uniformly-distributed unit vectors. Now take

y = (u—Px)/(1-P%)'2, 4.2.10)
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where P = x.u. Then y is a uniformly-distributed unit vector perpen-
dicular to x. Finally takez = x x y.

A computationally simpler procedure is to find four independent
random normal deviates yg, ¥y, ¥, ¥3 and to let x; = y,/S*/2, where
S =Y}y?. Then we use

l—2x§—2x§ 2X1X2+2X0X3 2x3xl—-2xox2
20y x3—2xx3 1-2x3-2x3  2xpx3+2xx; | (4.2.11)
2X3X1+2XOX2 2XzX3—2XOX1 I—ZX%—ng

as the required random orthogonal matrix. This procedure requires
the calculation of only one square root, and it only needs 4 random
normal deviates as opposed to the 6 of (4.2.8).

For examples of even more elaborate sampling techniques, devised
for isotropic Gaussian processes, see [12] and [13).

4.3 Quantification of qualitative mathematical theory

Sometimes mathematical theory will provide the general form of a
solution to a physical problem, while failing to supply the numerical
values of certain constants occurring in the solution. The engineer’s
use of dimensional analysis is a familar case in point. For example,
the drag T of a windmilling airscrew depends upon the air density p,
the forward velocity ¥ of the aircraft, and the diameter D of the circle
swept by the airscrew. On the assumption that T is proportional to
P’ v D¢, dimensional analysis givesa=1, b=c¢c = 2, so that

T = kpV2D?, “.3.1)

where k is a numerical constant whose value can be determined from
a physical experiment. (Even when engineers can determine the values
of constants from theory, they are prone to check the theory against
experiment and, very properly, to prefer the latter in any case of
discrepancy.) In the same way, we may use Monte Carlo experiments
to convert a qualitative mathematical formula into a quantitative one.

Consider, for example, the so-called travelling salesman problem, .

A travellinig salesman, starting at and finally returning to his depotina
certain town, has to visit n—1 other towns by way of the shortest

‘possible route. If n.is at all large it is prohibitively laborious to ¢al- .

culate the total mileage for each of the (n—1)! possible orders of
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visiting the towns and to select the smallest. There are systematic
computing algorithms for determining the optimum order and hence
the value of /, the total length of the shortest route; but they require
fairly large-scale computing resources. Let us see, therefore, whether
we can find a simpler method. Clearly / will depend upon the total
area A of the region containing the towns and upon the density n/4
of the towns within this area. If we assume that [ is proportional to
A%n/A)®, dimensional analysis shows that a—b = §. Further, if we
multiply the area by a factor f while keeping the density constant, we
shall multiply I by f. Hence a = 1; and we obtain

1 = k(n4)'? 4.3.2)

‘where k is a constant. In general, of course, / must depend upon the

shape of the containing region and the detailed positions of the
individual towns within it. However, it can be shown [14] that,
except in a negligible fraction of particular cases (and this use of the
word ‘ negligible’ can be made mathematically precise) neither shape
nor detailed positions matter provided » is reasonably large. Hence
(4.3.2) provides us with a simple asymptotic formula for large n.
To be able to use the formula we need to know the numerical value
of k, and no known mathematical theory has yet been constructed to
provide this. Instead, therefore, we quantify this general formula by
means of a Monte Carlo experiment yielding the numerical value of
k. We simply take a simple region (say a unit square), distribute n
points in it uniformly at random and determine / and hence k. This
may require large-scale computing to find / in the particular cases of
the Monte Carlo experiment; but, once this has been done, we have
calibrated the theory by means of the absolute constant k and can use
(4.3.2) in further practical applications. It turns out that & is about
3/4.

4.4 Comparative simulation

Suppose that we wish to compare the results of two slightly different
situations Sy and S in a given problem. We could, of course, simulate
each situation independently and then compare the two sets of results.
But it is much more satisfactory to use the same random numbers in
the two situations, as we may from a supply of pseudorandom
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numbers generated in a prescribed fashion. For the difference between
two unbiased estimates is an unbiased estimate of the difference, even
when the estimates are dependent on one another, and the precision
of the estimated difference will be greater if the dependence is such
that, when the result in one situation happens by sampling variations
to be overestimated, so is the result in the other situation by nearly
the same amount. In brief, we do not wish a small difference between
slightly different situations to be swamped by gross variations in
each. This matter will be discussed further in §5.5 and §7.4.

Quite generally, good Monte Carlo practice uses each random
number or each combination of random numbers several times over
whenever it is safe to do so. It saves work and may increase precision.
This applies especially in the more sophisticated types of Monte
Carlo work in the subsequent chapters; see §8.3 and chapter 11 for
examples.




CHAPTER 5

General Principles of the Monte Carlo Method

.1 Introduction

very Monte;Carlo gg_rpputation that leads to quantitative results
may be regarded ‘as estimating the value of a multiple integral. For
“suppose that no_computation requires more than N(=10'0 say)
random numbers; then the results will be a (vector-valued) function

R, 69,000 éN) - — CAR))

of the sequence of random numbers £;, £, ... This is an unbiased

estimator of
1

1
J'...J'R(x,.,...,x,,,)dx,...dx,,,. (5.1.2)
0 0

This way of looking at things is not alwdys profitable, but the
problem of evaluating integrals does provide a useful platform for
exhibiting various Monte Carlo techniques of more general appli-

dard example the one-dimensional integral

s 4%

1
0= f () dx, (5.1.3)
]

exist§, and therefore that 8 exists). The extension to higher dimensions
is Sometimes obvious and sometimes rather difficult, depending on

_ cation, Initially, for the sake of simplicity, we shall take as our stan-...

4
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the subtlety of the technique under discussion; this is in contrast to
conventional numerical integration where the extension is nearly
always difficult in computational practice.

We may define the relative efficiency of two Monte Carlo methods.
Let the methods call for n; and #, units of computing time, respec-
tively, and let the resulting gstimates of 0 have variances o} and a3.
Then the efficiency of methdd 2 relative to method 1is

2

a9 (5.1.4)

ny o3 .
Notice thatif we performseyveralindependent computations by method
1 and average the results we.do not change its efficiency. Often it
suffices to take 1y and 1, in (5.1.4) to be the respective number of times
that f(.) is evaluated in each method. In any case, the efficiency ratio
(5.1.4) is the product of two terms, the variance ratio o%/o3 and
the labour ratio ny/my. The former depends mainly on the problem
and the Monte Carlo methods, and is easy to assess, at least in the
examples discussed below; the latter depends partly on the Monte
Carlo method -and "partly on the computing machinery available,
Since we do not wish to burden this book with detailed considerations
of computing resources, we shall only give rough and ready assess-
ments of the labour ratio.

5.2 Crude Monte Carlo

If £, ..., £, are independent random numbers (rectangularly distri-
buted between 0 and 1), thep the quantities

S fi=fED) (5.2.1)

are independent random variates with expectation 6. Therefore by
(24.9)
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The standard error of fis thus

of = alv/n. (5.2.4)
We shall refer to fas the crude Monte Carlo estimator of 8.
For example, take
X
fx) = (5.2.5)

-1
so that 8 = 0-418, o = 0-286. We take 16 random numbers (actually
extracted from a table of random numbers [1]) and evaluate (5.2.2).
In this case we find that f= 0-357 so that |f— 6| = 0-061, while the
theoretical standard error is ¢/4 =0-072, in good agreement. The
calculation is set out in Table 5.1.

In practice, we should probably not know the standard error, so
that we should estimate it from the formula

1 < )
?Z‘ﬁ"f”

giving an estimate of s = 0-29 for o, or 0-07 for o/+/n. We should then
announce the result of our calculations as

6 = 0-357+0-07, (5.2.7)

meaning that 0-357 is an observation from a distribution whose mean
is 6 and whose standard deviation we estimate at 0-07. Since, by the
Central Limit Theorem we expect that the distribution of fis approxi-
mately normal, we may say with 959 confidence that we are within
2 standard deviations of the mean, i.e. that 0-:22 < 8 < 0-50. The
phrase ‘x % confidence’ signifies that with the foregoing rule of
procedure repeatedly applied in actual or conceptual Monte Carlo
experiments of a similar kind, x 9; of results would in the long run be
correct. Unless we know the value of the estimand @ (in which case
there would be no point in carrying out the Monte Carlo work, except
for explanatory or demonstration purposes), we cannot say whether
any particular result is correct or not. It is only because we know
(from theory) that 6=0-418 that we also know the assertion
‘0-22 < 8 < 0-50" belongs to the 95% of correct assertions.

The factor of 4/n in the denominator (5.2.4) implies that in order
to halve the error we must take 4 times as many observations, and

(5.2.6)
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Table 5.1

i & §{()]

1 096 0938

2 0-28 0-188

3 021 0-136

4 094 0-908

5 035 0-244

6. 040 0-286

: 7 010 0-061

f 8 0-52 0-397

5 9 018 0115

' 10 008 0-048

| 1 050 0378

12 083 0753

13 073 0-626

: 14 025 0165

; 15 033 0228
’ 16 034 0236 \

Average 0-357

so on, so that, in our example, in order to achieve 2 significant figures
of accuracy (with a standard error less than 0-005) we should need to
make about 3000 obs ions of values of f.

: We sh er how we may dfastically cut down this number,
) but first of all, let us compare this mkthod with one even less efficient,
n rqel hit-or-miss Monte Carlo. /

rve y = f(x) in the umt square 0 < x, y < l, and 8 is the proportion
the area of the square beneath the curve. To put the matter

wﬁere g(x,») =0 lf fx) <y
A' \ O = liff(x) = y. A
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We may then estimate § as a double integral, : /
11
6= f f g(x,y)dxdy, (5.2.9)
00

by the estimator

1< .
g=- Z g€u 1,6 ¥ —,
e NS
where n* is the number of occasions on whick S(€21-1) = €35 An other
\wﬁo‘rq_s,’\_v_g_tgl;g_n_poinu_m_@_p_gg in_the unit-square, ahd count

the proportion of them which lie below the cutve ¥ = f(x). This.i§ _

V4

|/ 5.2.10

~

sampling from_the binomial distribution .(2.3,19) with p= 0, and
g | Aistriby

"the standard error is

(5.2.11)

In our example, this is 0-123-Cempared with crude Monte Carlo, the
hit-or-miss method has a variance ratio of (0:072/0-123)? = 0-34, If
we take the labour ratio as 1, the efficiency ratio also is 0-34. In other
words, to achieve a result of given accuracy, hit-or-miss Monte Carlo
calls for nearly 3 times as much sampling as crude Monte Carlo.
The factor 3 depends upon the problem; but hit-or-miss is always
worse than even crude Monte Carlo [see (5.2.14)]. It is worth stressing
this point because, historically, hit-or-miss methods were once the
ones most usually propounded in explanation of Monte Carlo tech-
niques; they were, of course, the easiest methods to understand,
particularly if explained in the kind of graphical language involving
a curve in a square, and in those days there was little thought given to
efficiency. Herein lay one of the causes of the bad name acquired by
Monte Carlo methods in the 1950's (see § 1.2). e i
The comparison between mnd crude éMpnte Carl(:\ }
methods also illustrates a general principle of Monte arlo work : il ’ |

at any point of a Monte Carlo calculation, we can replace an estimate | ;!

by an exact value, we shall reduce the sampling error in the final r L /

In the present instance, the variance i@t-or-miw (i.e. binomial)l', ! |

S A

sampling is
o} = 0(1-8)/n, (5.2.12)
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and in crude Monte Carlo
1

I

ot

0
Thus

1 1
6 1 1
oi—ot = ;l—;ffzdx = ’—lff(l -Ndx >0, (52.14)
0 0

reflecting the fact that the passage from hi i de sampling
/ is equivalent to ;cp}acink &(x,6) by its expectatiorLf‘(x).J

e

5.3 Stratified sampling

In stratifled saffipling, we break the range of integration into several
pieces, say o)_; <x € aywhere 0=y < a; <... < o, =1, and apply
crude Monte Carlo sampling to each piece separately. The estimator
of 8 is then of the form

k n

1

1= > e St emg gy G
J=1i=1 "

when we decide (beforehand) to sample n; points from the jth piece.

The estimator (5.3.1) is unbiased and its variance is

2

k Gl k ul

2 (y—ayy) f 2 1 f
2= » Ll Ydx— » — dx}.
IZ ™ S(x)*dx z”j S dx

%1

oy J=1
(5.3.2)
This variance may be less than az}, withn = 3 my, if the stratification
is well carried out so that the differences between the mean values
of fin the various pieces are greater than the variations of f within
the pieces. When the stratification points are prescribed, the best way

of distributing the sample points among the strata is so that n3 is
proportional to

% % 2
[(a,-a,_,) J' f(x)zdx-{ J' f(x)dx”. (5.3.3)

%1 %1

1
! f -0rdc = | f P, (5213)
1]
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There are various ways of choosing the oy {2]. The simplest is to divide _

the original interval into k equal pieces, o= j/k.e\(A better way is 39_)

{_choose the a; so-that the variation of /s the same in each pieqi;."__‘[
~ Forexample, in Table 5.2 we integrate the function (5.2.5) by taking
4 points from each of 4 strata, the divisions being chosen in each of the
above ways. The resulting estimates of 8 are 0:399 and 0-409 respec-
tively, so that | /— 6] = 0:019 and 0-009, both of these being improve-
ments on the crude estimate, Theoretically the stratified estimators

Table 5.2
(1) o; =025 (2) @) = 0-36
0-50 062
0-75 0-83

] §{()

0-24 ’ <0244
007 0-061
0-05 0-048
0-24 0236

0-34 0-331
0-35 0340
0-27 0-277
0-38 0-368

9 054 0-544
10 0-52 - 0-521
11 0-63 0-626
12 071 0-700

13 093 0-923
14 0-81 0-807
15 0-83 0-835
16 0-84 0-835

Estimate of 6: ' 0-409
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have standard errors of 0-0197 and 0-0193 respectively, Compared
with crude Monte Carlo the variance ratios are (0-072/0-0197)2 = 13
and (0:072/0-0193)? = 14 respectively. If we suppose that stratification
involves 309 or 40% more labour, the labour ratios are 1/1-3 and
1/1-4. We conclude that stratified sampling is here about 10 times as
efficient as crude Monte Carlo. As a general rough working rule, the
efficiency of stratified sampling increases as the square of the number
of strata.

To estimate the standard error of these results, we must replace
(5.3.2) by an estimate depending on the sample itself, namely

S (y—ay)? &
P P A ol 2
T A my=1) IZ Yo=h% (5.3.4)

Ty = floy_1+(y—ayy) £p),
(5.3.5)

In the present instance, we find that sf = 0-00032 and 0-00049 in the
respective cases. This gives us 5;, and we may quote the estimates and
their standard errors in the form

039940018 and 0409+0022, - (5.3.6)

or in the form of confidence intervals in the manner following (5.2.7).
A

i

5.4 Importance sampling
We have o

1 1 1
6= f Sx)dx = j:(—)‘)g(X)dx = f f(x) G(x), (5.4.1)
J J g(x) ) glx

for any functions g and G satisfying

6 = [20)ay. (54.2)
0
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Let us restrict g to be a positive-valued function such that

1
G() = fg(y)dy =1 (5.4.3)
0

ijution‘mnq;ion‘ for 0<x<], and, if 5 is a
random number sampled from the distribution G, (5.4.1) shows that
J(9)/g(n) has expectation 8 and variance

1

2
ody = f (% - 9) dG(x).
[

The object inimportance sampling is to concentrate the distribution
of the sample points in the parts of the interval that are of most
importance’ instead of spreading them out evenly. So as not to bias

the result, we compensate for thus distorting the distribution by
taking fjg in place of f as our estimator.

We notice that if fis also positive-valued we can take g to be pro-
portional to f; g = ¢f, say. Then (5.4.1) and (5.4.3) imply c = 1/6;

hereupon (5.4.4) yields o},, = 0. We thus appear to have a perfect
“Monte Carlo method, giving the exact answer every time. This method
is unfortunately useless, since to sample f/g we must know g,and to
determine g( = f/f) we must know 6, and if we already know 8 we
do not need Monte Carlo methods to estimate it.

Not all is lost, however. We notice first that we always get an
unbiased estimate of f, whatever positive function g we use. Our
object is toselect some g to reduce the standard error of our estimate.
Thisestimate is an average of observed values of flg, and it will have a
small sampling variance if fg is as constant as we can make it; we

" cannotmake it wholly constant for the reasons just stated. We there-
fore want g to mimic fon the one hand, so that the ratio f/g will vary
_little; but on the other hand we have to restrict our choice of g to
functions that we can integrate theoretically, because we must satisfy
(5.4.3). These are conflicting requirements: g must be simple enough
for us to know its integral theoretically, whereas f'is so complicated
that it eludes theoretical integration and requires Monte Carlo esti-
mation. We must therefore compromise between these require
ments: and a good compromise should yield an estimator of § witha '

(5.4.4)

[
/

N
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substantially smaller standard error than the crude Monte Carlo
estimator.

Let us imagine that our standard integrand (5.2.5) is beyond our
powers of theoretical integration, but that we do know howtointegrate
the function x between O and 1. Both functions increase over
0 < x < 1, and therefore mimic one another to some extent. Indeed
their relative (mimk;rj is about as much as one may normally hope
for in practice.If we taRe g(x) = x, we find from (5.4.4) a},, = 000274,
The corresponding variance (for a single observation) in crude Monte
Carlo is 0-0820; so that the variance ratio is 29-9. Assuming a labour
ratio of 1/3 (i.e. three times as much work in the importance sampling),
we have an efficiency gain of 10.

The transformation (5.4.1) is especially relevant for unbounded
integrands. It is clear that one should prefer the distribution whose
density function follows most closely the shape of f and makes flg
bounded.

5.5 Control variates

The sampling error in the crude Monte Carlo estimate of 6 in (5.2.2)
arises from the variation of f(x) as x runs over 0 < x < 1. Importance
sampling (§ 5.4) and control variates [3] are two different techniques
for reducing this variation and hence improving efficiency of esti-
mation. For control variates, we break (5.1.3) into two parts,

1 1
0 = f H(x)dx+ f [f(x) - (x)]dx, (5.5.1)
[V 0

which we integrate separately, the first by mathematical theory and
the second by crude Monte Carlo. Thus ¢ must be a simple enough
function to integrate theoretically. On the other hand, unless ¢ mimics
S and absorbs most of its variation, the Monte Carlo errors in the
second integral will not be appreciably smaller than those in the
original crude Monte Carlo. Once again we have two conflicting
requirements to compromise between. We call $(§) the control
variate for f(£). The whole method is simply another example of the
precept in§ 1.1 that one should as far as possible replace Monte Carlo
experiment by theoretical analysis.
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If we choose ¢(x) = x in connexion with our standard example
(5.2.5), we find that a}_¢ = 0001358, as against the original
a%=0-08198. The control variate method gives a variance ratio of
60-4 compared with the crude method in this case. It requires about
twice as much labour, so the efficiency is about 30 times that of crude
Monte Carlo.

There are various other ways of looking at this method. For in-
stance, when estimating an unknown parameter 6 by means of an
estimator 7, we may seek another estimator t’, which has a strong
positive correlation with ¢, and whose expectation is a numerically
known quantity 6’. We then sample f and ¢’ simultaneously, and use
t—1t'+ 8 as the estimator of 6. In the present case

1 , I
P==D €, = = 4, (5.5.2)

and @' is the first integral in (5.5.1). We use the same random numbers
£,in both equations of (5.5.2) to produce the required positive corre-
lation. We have

var(t—t'+6) = vari+vart’—2cov(t, 1), (5.5.3)

and this will be less than var¢ if 2cov(t,t’) > vart’,

Sometimes we have to find a Monte Carlo solution of a complicated
problem, of which a simpler version is amenable to theoretical
analysis. In this case we attack both versions simultaneously by
Monte Carlo Methods, using identical random numbers; in the fore-
going notation, ¢ and ¢’ are the Monte Carlo estimates for the com-
plicated and the simpler versions respectively, and ' is the known
analytical solution of the simpler problem. In Chapter 7, we shall
meet an example of this; the complicated problem is the penetrability
of a finite neutron shield, while the simpler version with a known
analytical solution is concerned with the corresponding infinite
shield.

5.6 Antithetic variates

In the control variate method, we sought a second estimate ¢’ having
a known expectation and a strong positive correlation with the

R

e m

-——

—
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original estimator ¢. In the antithetic variate method, we seek an esti-
mator ¢*, having the same (unknown) expectation as ¢ and a strong
negative correlation with ¢, Then $(s+ t') will be an unbiased
estimator of 6, and its sampling variance

var [§(t+1°)] = }vart+3vars' + cov(s, 1), ¢.6.1)

in which cov(z,¢") is negative, can sometimes be made smaller than
varf by suitably selecting ¢*.

For example, 1-¢£ is rectangularly distributed whenever £ is, so
that f(£) and f(1 - £) are both unbiased estimators of 0. When fis a
monotone function, f(£) and f(1 - £) will be negatively correlated.
Thus we could take i

0+ = 34O +3/(1-9 (5.6.2)

as anestimator of #. For our standard example (5.2.5), the variance of
(5.6.2) is 0-00132, giving a variance ratio of 62 in comparison with
crude Monte Carlo. The labour ratio will be about 4, since we have
twice as many evaluations of f (but only the same number of random
numbers to generate). Thus the efficiency gain is about 31.

From the practical viewpoint, the mathematical conditions that a
Monte Carlo technique has to satisfy govern its efficiency. As in the
case of importance sampling and control variates, we are usually
unable to satisfy the conditions in the theoretically optimum way,
and we have to be content with some compromise. When the condi-
tions are fairly loose and flexible, it is easier to reach a good com-
promise. This is the case with antithetic variates; in practice it is
relative easy to find negatively correlated unbiased estimators of 6,
usually easier than it is to find an equally satisfactory control variate
or importance function. Accordingly, the antithetic variate method
tends to be more efficient in practice. We use the term antithetic
variates to describe any set of estimators which mutually compensate
each other’s variations.

The name, if not the idea (see [4]), of antithetic variates was intro-
duced by Hammersley and Morton in 1956 {5]. It is based on the
following theorem (stated in {6), and proved there and in 7n:

n

Theorem. If I denotes the infinum of var 2 g/(€) when all possible
J=1

Stochastic or functional dependences between the ¢ are considered,

i
|
I

—
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subject to each £, being rectangularly distributed between 0,1), then,
provided that g; are boundedt functions,

n

inf var{ Y g,[x,(f)]} =1 (563)
xI¢IU—l,2,...,n) J=1

where X denotes the class of functions x(z) with the properties (i) x(z)

is a (1,1) mapping of the interval (0,1) onto itself, and (ii) except at

at most a finite number of points z, dx|dz = 1.

In other words, whenever we have an estimator consisting of a
sum of random variables, it is possible to arrange for there to be a
strict functional dependence between them, such that the estimator
remains unbiased, while its variance comes arbitrarily close to the
smallest that can be attained with these variables. Essentially, we
‘rearrange’ the random variables (in the sense of Chapter X of {8))
by permuting finite subintervals, in order to make the sum of the
rearranged functions as nearly constant as possible. In the case of two
monotone functions, this is done by rearranging them so that one is
monotone increasing and the other decreasing; this is what happened
when we applied (5.6.2) to the function (5.2.5).

The systems of antithetic variates treated in [5] are based on a
stratification of the interval. If we take k=2, a; = « and my=n in
(5.3.1), we have :

1< : )
= Z {flaé)+(—a)fla+(1-a) €5l (5.64)
]

Wemay now introduce the simpledependence £;; = ¢;, = £, leading to

1< 1<
1= > W)+ -aflat (-] = - > &, fE),
=1 i=1
' (5.6.5)
or, alternatively, 1—£, = £, = £, leading to

i=1

1< 1<
f= = > () + (=TI~ (=) ) = ;;:raf(&).

(5.6.6)

t The condition that the g, are bounded may be unnecessary, but this has
never been established.
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The transformations G, and ¥, are linear, preserve expectations, and
double the number of times that the function has to be evaluated.
One can see that the transformation (5.6.2) is essentially equivalent to
Ty

If the function f is monotone, we are naturally tempted to try the
effect of T, since one of its two terms is increasing and the other is
decreasing. We find

1
var (T /@) = [ (f @)+ (1= @)1= (1 - o) x]2dx — 62
6 ) 1
=a ff(.\')zdx+(l - ) ff(x)zdx—az +
0 a

+2(1-a) f SO =@ =D xldx, (5.6.7)
0

which has a minimum at some value of & between 0 and 1. It is difficult
to locate this value exactly, on account of the complexity of the
formula, but an adequate rule of thumb is to choose « to make
T f(0) =T, (1), or to find the root of

S(@) = (1=a)f(1) +af(0). (5.6.8)

In the case of (5.2.5), the solution of (5.6.8) is « = 0-5615, giving a
standard deviation of (0-000083)!/2 = 0-009, representing a gain of
efficiency of 490 over crude Monte Carlo. In this case the rule of
thumb gives a very good approximation to the minimum.

We must emphasize, however, that an error in determining o is
never catastrophic, since the resulting estimator of 8 will remain
completely unbiased, and the only ill effect may be that we lose some
efficiency.

It is rather more difficult to give rules for applying S, and T, to
general functions.

Another useful transformation is given by

Uf() = "S f(%—j) (5.69)

J=0
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If fis a periodict function with period 1, then
var (,,f(£)}) = O(e™*™)  asm > w, (5.6.10)

where the extension of f to the complex plane is regular in the strip
—k < 4n3(z) < k. Otherwise there is an asymptotic expansion, based
on the Euler-Maclaurin summation formula,

(_)’ArA:BHHZ: Atz) A?—MOAZ
A r+s+2)tm™*2 7 12m2 720mt

4}3-24,4,+24y4,
30240m®

var (U, f(§)} =

+o(m™%),

(5.6.11)

where B, are the Bernoulli numbers and 4; = /Y (1)~f Y (0). It is
necessary that fshould be continuous and that all the derivatives used
should also be continuous throughout the interval (0, 1).

Thisindicatesthatiffismadetobesuchthatdy=d; =... = 4,,=0
while M+ and FM+2 exist and are continuous, then

var {1, f(£)} = o(m™HM+D), (5.6.12)

Comparing this with crude Monte Carlo, where

i< P
var{’—'-, Z f(f)} = O™, (5.6.13)

we see that, under the stated conditions on £, the antithetic-variate
method is enormously more efficient, provided that m is large enough.

The condition 4, = 0 is easily achieved by carrying out the trans-
formation T, with a given by (5.6.8), or more simply by the transfor-
mation (5.6.2). Further 4°s may be reduced to zero, without requiring
us to know anything about f except that enough derivatives exist,

1 For another method of integrating periodic functions, see the paper by
Haselgrove [9]. A graphic illustration (5] of the application of U,, to a
periodic function is given by the improvement of Buffon's needle experi-
ment, in which the single needle is replaced by a regular polygon of 2m sides.

PRINCIPLES OF THE MONTE CARLO METHOD 65

by various transformations discussed in [10], of which the first,

eliminating 4, is
2 (&\ 2 _[1+&\ 1
SF(§)+§F(—2—)—-F(f). (5.6.14)

where F(§) = T, f(® (5.6.15)

and « is given by (5.6.8).

It is instructive to summarize the performances of the several
variance-reducing techniques discussed in this chapter. Table 5.3
gives, for the standard example (5.2.5), the variance ratio, the labour
ratio, and the resulting efficiency of the different techniques, each in
comparison with crude Monte Carlo. The figures for the labour ratio

Table 5.3

Variance |Labour|Efficiency
Method and defining equation ratio ratio gain

Hit-or-miss (5.2.10) 0-34 1 0-34
Stratified sampling, 4 equal strata (5.3.1) 13 1/1-3 10
Importance sampling (5.4.1), g(x) = x 299 1/3 10
Control variate (5.5.1), ¢(x) = x 604 12 30
Antithetic variate (5.6.2) 62 1/2 31
Antithetic T (5.6.6) and (5.6.8) 985 1/2 490
Antithetic W T4 (5.6.9) and (5.6.8) 1:56x 104 | 1/4 3900
Antithetic U4 T, (5.6.9) and (5.6.8) 2:49x105| 1/8

Antithetic WgT (5.6.9) and (5.6.8) 3-98x 106 | 1/16
Antithetic (5.6.14), (5.6.15) and (5.6.8) 295x 106 | 1/6 460000
Orthonormal (5.8.15) 72 x105} 1/3 240000

are rather rough and ready, for the reasons already explained, but
they are of the right order of magnitude, and so too are the resulting
figures for efficiency. Some of the later entries in this table are taken
from {5] and [10], where some even more powerful antithetic trans-
formations appear as well.

Various attempts [5], [10], [11] have been made to extend the
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antithetic variate method to multiple integrals, but the resulting
formulae are clumsy, difficult to manage, and of doubtful general
utility. The method will work for multiple integrals if a good deal of
detailed care and attention is paid to the behaviour of the integrand,
with ad hoc antithetic transformations to meet this behaviour. This
can be done for paper-and-pencil Monte Carlo work, but is unsatis-
factory for calculations on an electronic computer. An example of
pencil-and-paper application of antithetic variates to a six-dimension-
al integral, leading to an efficiency gain of about 160, occurs in [5].
The simplest forms of antithetic transformations have proved rather
more successful in nuclear reactor calculations; an efficiency gain of
about 10 can often be secured by making a pair of neutrons emerge
from a collision in diametrically opposite directions, and this device
can be satisfactorily programmed on a high-speed computer provided
it is used sparingly and at judicious points in the computation. If
used unsparingly, it produces an unmanageably large number of
neutron tracks.

5.7 Regression methods

Suppose that we have several unknown estimands 6y, 0,, ..., 0, and
a set of estimators ¢y, 15, .. ., t,{n = p) with the property that

&ty = xy 0+ x200+...+x,0, G=1,2,..,n, (1D

where the x;; are a set of known constants. The antithetic variate tech-
nique of §5.6 is a particular case of this situation; for instance, if
f=tand t, =" as in (5.6.1), and 0, = 6, we have &1, = &1, = 0;;
this is the situation described by (5.7.1)withp = 1,n =2, x; = x5 =1,
and (of course) 1 is a known constant.

The equation (5.7.1) is an example ‘of the situation discussed in
§ 2.6 if we identify the estimands 8}, ..., 8, with the regression cocfli-
cients By, ..., B,. According to (2.6.1), the minimum-variance un-
biased linear estimator of 8 ={#), ..., 8,} will be

t* = (X'VIX)' X v, (5.7.2)

where X is the nx p matrix (x;), where V is the nx n variance-co-
variance matrix of the 1,'s, and where t = {t,, ..., t,,}. Here everything
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is known except perhaps V. Suppose that we consider the alternative
estimator
th = (X'V5' X)X Vp't, (5.1.3)
where V is some other variance-covariance matrix. Because (5.7.1)
takes the form
&t = X0 (5.7.49)

when written in matrix notation, and because t§ is a linear function
of t, we have

&ty = &X' Vg X)X Valt = (X' V! X)X vp' et
= X'Va'X)"'X'Vg' X0 = 0, (5.1.9

Hence, whatever Vg we use in (5.7.3), t} is an unbiased estimator of 6,
It will not be a minimum-variance estimator if Vo # V; but if Vyis a
reasonable approximation to V, then t§ will have a very nearly mini-
mum variance, particularly since first-order deviations in x in the
neighbourhood of a minimum of a function F(x) only cause second-
order variations in F(x). Thus if V is unknown, we may replace it by
an estimate V. As stated in § 2.6, the sampling variance-covariance
matrix of t* is

vart* = (X'V1X)-!, (5.7.6)

and to the second order of small quantities this will also be the samp-
ling variance-covariance matrix of t§. The formula

varth = (X' V5'X)™! .17

will therefore contain first-order errors, but these constitute first-
order errors in the first-order standard error of t}, and therefore lead
only to second-order errors in assigning a confidence interval to 6.
What we do in practice, therefore, is to calculate N independent sets
of cstimates #y, 1y, ..., t, which we may denote by #;, f24, ..., tak
(k=1,2,..., N), from which we can estimate v; by means of

N
Vyo = kZl U= 1)t —IDIN-1), (5.1.8)
where
N
f= 2, tul/N. (5.7.9)
k-t
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We define V to be the matrix (v;), and employ the estimator
th = X' V' X)' X' vg't (5.7.10)

as an estimator of 0, where { = {7y, ..., 7,}. It is a nearly unbiased
estimator whose sampling variance-covariance matrix is

X' V'X)-Yn, (5.7.11)

apart from errors of order N~3/2,

When we are dealing with » antithetic estimators of a single para-
meter 6 = 8, the matrix X reduces to a single column x. In many
particular cases each element of x will be 1.

Let us consider an example. The estimators

f = HO+1-9 |
1, = fEAH+HE -1+ G +1H+H (1 -1H)
are both unbiased estimators of the integral 8 defined by (5.1.3). Thus

we have the particular case p = 1, n =2, x = {1,1}. We took N = 100
for the standard integral (5.2.5), whose correct numerical value is

} (5.7.12)

" 0-4180227. From our sample of 100 we found the estimates

F, = 0-4218353, , = 0-4189959, which are both overestimates. The
sample also gave
Ui10 = 000131493, V220 = 00008509, U0 = V210 = 0:00033449,

From (5.7.3) we then computed ¢§=0-4180273, which is much
closer to the true answer than either #; or #,. The value of (5.7.11)
was 0-000000 000094 = (0-000009 7)2. We can summarize the esti-
mates and their standard errors for the three methods as follows:

fj = 0-4218 £ 0-0036

i, = 0-4190+0-0029

1y = 0-4180273 +£0-000009 7

8 = 0-4180227 (exact).

(5.7.13)

As we might well hope, no estimate differs from the exact result by

more than twice its standard error. The gain in precision from the

comparatively slight extra labour in calculating #3 is remarkable.
It is interesting to compare the regression method with a pure

PRINCIPLES OF THE MONTE CARLO METHOD 69

antithetic variate method. One of the estimators arising in [10] takes
the form
-4, (5.7.14)

whereas the regression method has in effect led us (for this particular
function) to the estimator

1-34111,—0-3411¢,. (5.7.15)

These two estimators are remarkably similar. However (5.7.14) in
fact leads to the inferior estimate 0-41804 + 0-000022.

The attractions of regression methods, which can of course be
applied in a wide variety of different Monte Carlo situations, are
these:

(i) they introduce little, if any, bias to the answer;

(i) if applied in a situation where correlation exists, they exploit
this correlation and thereby reduce the errors in the final
estimates, sometimes by a very considerable factor;

(i) if unwittingly applied in a situation where no correlation exists,
they do not lessen the precision of the final answers — i.e. there
is nothing to lose by applying them in the wrong circumstances,
apart from a small increase in computing labour, which is not
very serious in these days when matrix inversion on an elec-
tronic computer is so simple.

5.8 Use of orthonormal functions

Ermakov and Zolotukhin [12] have described a general method of
Monte Carlo integration based on orthonormal functions. Let
$(V(i=0, 1, ..., n) be a system of functions orthonormal over a
region D of the space of vectors y: that is to say

_[tifi=j.
Df $igydy = { 0ifi % (5.8.1)

Write w = w(¥g, ¥1, . . -, ¥a) fOr the (14 1) X (n+ 1) determinant having
$:(y)) as the element in the ith row and jth column (t,j=0,1,...,m),
and write w, for the corresponding determinant in which f(y)
replaces ¢o(y)) in the zeroth row (j=0, 1, ..., n). Then the

s W
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following identityt holds for any pair of functions f=f(y) and
g=g(y):

Wyy
dyody, ...dy, =
f f(n+m Yod¥p---4¥
D D

= f fgdy—z ]ﬁﬁ;dy f ghidy|. (5.8.2)
D =1{p D

Putting g = ¢, in (5.8.2), we get

2
w _w - . 3.
ff Ty oo ffc/aody, (5.8.3)
D D . D

and putting g = fin (5.8.2), we get

2
2
YUl 24 d
f...J. " '(n+])! Yo...dYy
D D 2

- f fedy— Z f fhdy|. (584
D =} D .

Finally putting f'= ¢ in (5.8.4) we have

@ e .1 5.8.5
f...fzn—_‘_——])! Yo...aY, = 1, ( )
D D

Equation (5.8.5) shows that w?/(n+1)! is a joint probability density
function. Hence if we sample g, 1y, . .., 0, from this distribution with
density function w?/(n+ 1)!, the estimator

1= wi(ng, ..., ) wlng, ..., n,) (5.8.6)

t This identity ought to be a standard result in the theory of orthonormal
functions, but we cannot give a reference to it. It is easily proved by expan-
ding the determinants and using (5.8.1) to remove unwanted terms in the
expansion.
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is an unbiased estimator of

0= ff(y) $o(¥) dy, (5.8.7)
D

by virtue of (5.8.3). Further, by subtracting the square of (5.8.3) from
(5.8.4), we have

2
vart =ﬁj.f2dy—l§o[bff¢,dy]

. n 2
= mff [f" 2 “l‘/’:] dy, (5.8.8)
P i=o

where the infinum is taken over all ¢;. Thus, in terms of the usual
metric in the orthonormal space, the standard error of t equals
the distance of the function ffrom the subspace spanned by ¢, ..., ¢,..
In particular ¢ has zero variance if f is a linear combination of
‘l’Oi 4’1’ L] ¢n' .

This method offers great possibilities, especially since it may be
applied in any number of dimensions, but it depends on the solution
of two preliminary problems: first, we must construct n+ 1 functions
orthonormal over the region D; second, we must find an efficient way
of sampling ng, 0y, ..., N, with joint probability density function
[w(ng, ..., n)1%/(n+ 1)1, Even then the computation of ¢ is in general
no small matter. It is however, worth noting that the sampling method
depends only upon D and ¢y, ..., $,, and that the estimator is a linear
functional of f, whose coefficients depend only upon D and ¢, ...,
¢, Hence the prospect is perhaps brighter if we have a large number
of different functions f'to integrate over the same fixed region D, so
that we can afford to sink a certain amount of capital into determining
a fixed set of ¢y, ..., $,, a fixed sampling scheme, and a fixed routine
for computing the coefficients in the functional.

Let us consider the application of this method to the estimation of

1
g = f g(x)dx, (5.8.9)
0

and let us take n = 0, so that we have a single orthonormal function
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$(x) = ¢o(x) and the determinant w is trivial. Our estimator is then

t = f()$() = g(/$T, (5.8.10)

where 7 is sampled from the distribution with density function
[¢(»)]? and where g(x) = f(x) $(x). If we make the obvious choice,
é(x) = 1, this is simply crude sampling.

We can be more subtle than this, however. Let

g*(x) = g(x)—-(1-x)g(0) - xg(1). (5.8.11)

~ Then {g(x) —g*(x)} is a linear function that we can integrate directly,

1
[G-g*edx = 3@ +g),  (58.12)
0

so that it remains to estimate

1
g = J' g* () dx. (5.8.13)
0 ‘ .

Now we know that g*(0) = g*(1) = 0, and this knowledge can guide us
to a better choice of an orthonormal function, Instead of ¢(x) = 1, we
take

$(x) = {6x(1 -x)}'2, (5.8.14)
which has the same properties as g*, This leads us to estimate 8 by the
formula :

1
t = 10+ 8D+ g lal) = (1 =@ - (D)
(5.8.15)

where the distribution of 7 has density function 6y(1 —y). We may
further improve on this by the use of antithetic variates (5.6.2),
giving the estimator

1
t= i{g(0)+g(1)}+m{g(n) +g(1—m)—g0)—-g(1)}.
(5.8.16)

Formula (5.8.15) is a zero-variance estimator for all quadratic poly-
nomials, and (5.8.16) for all cubic polynomials.
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As a further step, let
g*(x) = g(x)— (1 —x)(1—2x)g(0) + x(1 - 2x) g(1) — 4x( ~ x) g(3).
(5.8.17)

Then we can integrate {g(x)—g*(x)} directly, this time by Simpson's
rule:

1
j {g(x)—g*(x)y dx = }g(0)+g(1) +4g(3)). (5.8.18)
0

This time we know that g*(0) = g*(1) = ¢*(}) = 0, and it is convenient
to take

$(x) = {30x(1 —x))3(1 —2x). (5.8.19)

This leads us to the estimator

t = g +2(1)+4g(D)} +

1
+ T E (=1~ 2050 +

+n(1 —2n) g(1) - 4n(1 —m) gD}, (5.8.20)

where the distribution of 7 has density function 30y(1 —y)(1 —2y)2.
Using antithetic variates as before, we may improve this to

1
t = i{g(o)+8(1)+48(i)}+m{8(ﬂ)+8(1 -n)-

—(1=29)?g(0)— (1 - 27)* (1)~ 8n(1 — n) g (D)}

= Hg(0)+g(1)+4g(d)}
1
1 .
=2 e el M -2} (5.8.21)

Formulae (5.8.20) and (5.8.21) are zero-variance estimators for quartic
and quintic polynomials, respectively.

MCM—F
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Random variables with the required density functions are fairly
casily obtained from rectangularly distributed random numbers. If
£y = £, = ¢y are rearranged in‘order of magnitude, then £, has density
function 6y(1—y). If £, to &5 are independent random numbers
arranged so that

-4 <)&-4 < ... < |&-1, (5.8.22)
. _ | €4 with probability 3
and if - { £, with probability §, (58.23)

then 7 has density function 30y(1 —y)(1 - 2y)2.

The estimators (5.8.15) and (5.8.16) have infinite variance unless
g(x) satisfies certain continuity conditions at x=0 and x=1; a
Lipschitz condition of positive order is sufficient. The estimators
(5.8.20) and (5.8.21) require an additional condition at x = 4; there
a Lipschitz condition of order exceeding 1 is sufficient.

5.9 Miscellaneous remarks

It should almost go without saying, if it were not so important to
stress it, that whenever in the Monte Carlo estimation of a multiple
integral we are able to perform part of the integration by analytical
means, that part should be so performed. As in some other kinds of
gambling, it pays to make use of one's knowledge of form. Anexample
of theadvantage of this course of action is well brought out by Cerulus
and Hagedorn [13]in the evaluation of multiple phase space integrals
for elementary particles in nuclear physics.

Throughout this chapter we have concentrated on estimators which
are linear functions of the integrand. Sometimes, however, it is
possible to construct other types of estimators. Mantel [14] gives an
interesting example of a quadratic estimator in connexion with the
Buffon needle estimation of 7, which may be compared with the
more usual linear estimators [5], [15), and [16).

Mantel notes that, if we throw a straight needle of length L onto a
plane, ruled with a square grid consisting of two sets of equally
unit-spaced parallel lines, the two sets being at right angles, then n, the
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number of intersections of the needle with the lines, has expectation

én=4L[n .9.1)
and variance
2 16
varn = (l + - "‘i) 12, (5.9.2)
T

The usual procedure, involving linear estimators, equates (5.9.1) to
the observed number of intersections. Mantel equates (5.9.2) to the
observed variance, and solves the resulting quadratic equation in .
For an experiment with 101 throws and L= 1, he obtains a 90%,
confidence interval for m, which is 3-09 to 3-19 in the case of (5.9.1),
and which is 3-138 to 3:146 in the case of (5.9.2).
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CHAPTER 6

Conditional Monte Carlo

6.1 Basic formulae

Let a be a random vector distributed over a space U with probability
density function f(«). If ¥ is an awkward space or fis a complicated
function, it may be hard to estimate

0 = &d(w). 6.1.1)

One way of dealing with this situation is to embed % in a product
space € =UAx B, with a suitably chosen space B. Each point of
€ =UAxB can be written in the form c = (a,b) where a and b are
points of U and B respectively. We can regard a and b as the first
and second co-ordinates of ¢; so that a is a function of ¢ which maps
the points of € onto %. Similarly, if we sample a random vector
Y = (o, @) from € with probability density function A(c), we have a
mapping of y to a, which is a random vector of U. The a obtained in
this way will not in general have the desired density f; but we can
compensate for this by means of an appropriate weighting function.

Let dc denote the volume element swept out in € when a and b
sweep out volume elements da and db in % and B respectively. The
Jacobian of the transformation ¢ = (a,b) is accordingly

J(c) = J(a,b) = dadb/dc.- 6.1.2)
Let g(c) = g(a,b) be an arbitrary real function defined on € such that

G@ = [ g@byab 6.1.3)
3]

never vanishes, We shall also suppose that /i(c) is never zero. We define
the weight function

w(c) = f(2) g(c)J(c)/G(a) h(c). (6.1.4)
76
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Here, of course, a is the first co-ordinate of ¢. Then we have the
following identity:

J. dla)f(a)da = f (la(ﬁ—(zl(ga—) g(a,b)db
U U
$(a) f(a) g(c)

C@ IO hic)dadb

uxe

dadb
f $(a) w(c) ic) )
'Y

= f (@) w(c) k(c) de. (6.1.5)
¢

This shows that if « is the first co-ordinate of a random vector ¥,
sampled from € with density function A(c), then

t = $(a) wly) (6.1.6)

is an unbiased estimator of the required 8 defined in (6.1.1). Both B
and hareat our disposal;; we may choose them to simplify the sampling
procedure. The function g plays the role of an importance function
and we may select it to minimize variations in 7 and increase the
precision of the estimator.

6.2 Conditional Monte Carlo

Conditional Monte Carlo is a special case of the foregoing theory.
In it we start from a given distribution /i(c) on the product space
€ = U x B, and we are told that f(a) = f(a, bg) is the conditional distri-
bution of #(c) given that b =by. If we write (b} for the probability
density function of 8 when ¥ = («,B) has density function A(c), we
have

h(c)dc = f(a,b)(b)dadb, 6.2.1)

_and comparison of (6.1.2) and (6.2.1) gives

" J(€) = h(c)/f(a,b) yi(b). - (6.2.2)
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In particular
J(a,bg) = h(a,b)/f(a)(b). 6.2.3)

By eliminating f(a) from (6.1.4) and (6.2.3) we get

_ h(a) bO) J(a’ b) g(ﬂ, b)
" ha,b) J(a, by) ¥(bp) G(a)

This leads to the following rule: Suppose that y = (a,B) is distri-
buted over € with probability density function h(c) = h(a,b). Then

t = (@) w(y), (6.2.5)

where w(Y) is given by (6.2.4), is an unbiased estimator of the conditional
expectation of $(a) given that @ = by,

Notice that this rule requires neither sampling from the possibly
awkward space % nor evaluation of the possibly complicated func-
tion f. As before, g is available for variance reduction. The theory
provides for several simultaneous conditions, since @ = by is a vector
condition.

w(c) 6.2.9)

6.3 Positive-homogeneous conditions of the first degree

We now consider a special case of the theory in § 6.2. Suppose that €
is an m-dimensional Euclidean space. We express € as a product of
“spaces U and B, neither of which need be Euclidean. We suppose
however that B is one-dimensional, so that we may write ¢ = (a, )
where b = b(c) is a scalar function of ¢. We also suppose that b(c) is a

positive-homogeneous function of the first degree; that is to say

b(pe) = pb(c) 6.3.1)
for all c and for all p > 0. The equation
b(c) = bo (6.32)

then represents an (m— 1)-dimensional surface in €, and, as by varies,
we get a family of similarly situated and similarly shaped concentric
surfaces with the origin ¢ = 0 as centre., Associated with any point ¢
there will be a scale factor defined by

= bo/b(c). (6.3.3)

CONDITIONAL MONTE CARLO 79

Let us choose the space % to be the space of all directions through
the origin in €: that is to say, when ¢ = (a, b), a denotes the direction
of the straight line from the origin to c. It then follows from (6.3.1)
and (6.3.3) that

pPc = (a, Pb) = (a, PbO/’\) (6.3.4)

Thus the straight line from the origin to ¢ cuts the surface (6.3.2) at

the point
(a,bp) = Ac., 6.3.5)

When a sweeps out an element of solid angle da and b sweeps out db,
the resulting volume element dc will be the region of space in the cone
da between the concentric (m— 1)-dimensional surfaces b and b+ db,
and will therefore have a volume proportional to ™!, Hence the

Jacobian is
J(c) = dadb/dc = A@)/p™ ™!, (6.3.6)

where A is a function of a alone. The ratio, occurring in (6.2.4),
J(aa b) b())m-l -1
={— = A", 3.7
J(a: bO) ( b (6 )

We consider the special case in which also g(a, b) is a function of
b and b, only, or (what amounts to the same thing) a function of A
and by only, We write

gla,b) = 8, by). (6.3.8)

Since g is independent of a, G(a) will be a constant; by inserting an
appropriate constant multiplier in the definition (6.3.8), we can take
G(a) = 1. Thus, by (6.1.3),

1=G@)= f g(a,b)db = J S(bb—o,bo) db. (6.3.9)
B

3

Insertion of (6.3.5), (6.3.7), (6.3.8) and (6.3.9) into (6.2.4) gives
= 'ﬁg} m—1 8Q, by)

h(c) by’

where & is any function satisfying (6.3.9), and A is defined by (6.3.3).

w(c) (6.3.10)

7L N
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The theory in § 6.3 is due to Trotter and Tukey [1], who first dis-
covered conditional Monte Carlo; Hammersley [2] gave the more
general formulation of § 6.1 and § 6.2. Wendel [3] examines the theory
from a group-theoretic aspect. We now turn to a particular appli-
cation of (6.3.10), due to Arnold et al. [4].

6.4 Practical application

Let 1,72, ..., 7 (n 2 4) be a set of nindependent observations from a
standardized normal distribution; denote them by {;, {5, ..., {,
when arranged in increasing order of magnitude. Define

B =101,
o = max({y— 03 Ly = L), (6.4.1)
7 = max ({n— 83, Loy~ Lo Lz = LD)-

We are given a rather small number é(O < € < 1) and a pair of numbers

S and T such that
Plo=Sorr = T) < e 6.4.2)

Here ‘or’ means ‘either or both’. The problem is to find a number B
such that

PlozSorr=Tor = B) = (6.4.3)

The original example {4} had € =0-05, S =331, T= 317, n=4.

If we were to tackle this problem by direct simulation, we might
draw N (say N = 1000) sets of 4 independent standardized normal
variables, calculate B, o, 7 for each of the N quadruplets, and deter-
mine B as the largest value of b such that

=2 33lorTr2=3170rf = (6.4.4)

held for just 0-O5SN of these quadruplets. But this procedure would be
very inaccurate unless N was prohibitively large, for the 5% tail of a
sample of 1000 observations may include between 37 and 64 obser-
vations, and the values of B corresponding to the 37th and 64th most
extreme observations will differ fairly widely. There is also the rather
unlikely risk of finding more than 50 quadruplets with o > 3:31 or
72317,

e s P P‘WM‘“’, %i,mh?s“t‘ 2%
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To proceed by conditional Monte Carlo write (6.4.3) as
QO(B) = ¢, (6.4.5)

where .
o) = fp(a > Sorr 2 TI|B = by ¢(b0)db0+f P(bo) dby.
T 5

(6.4.6)

Here y(b) is the probability density function of B, the range of the
sample. We can find the second integral in (6.4.6) from tables; so, if

we can estimate
P(o = Sor7 = T|f = by)(by) 6.4.7)

as a function of by, we can evaluate the first integral in (6.4.6) by
numerical quadrature and then solve (6.4.5) by inverse interpolation.
Accordingly, when B = by, we define

) = {¢(b0) ifo=Sorr=T (64.9)

0 otherwise.

Here v is a vector somehow representing the set 7y, ..., 1,; we shall
give a precise specification of y in a moment. We see that (6.4.7) is the
conditional expectation of (6.4.8) given that § = b;.
We now turn to the question of specifying y and its space €. Write
7 for the vector with co-ordinates (31,7, ..., 7,) and $ for n-dimen-
sional Euclidean space. We could take y = nand € = $, but we cando
better than this, for we notice that §, o, 7 in (6.4.1) are all independent
of 7, the average of 9y, ..., .. If we sampled from §, the errors of our
final estimates would be inflated by irrelevant sampling variations in
i, and we can avoid this inflation by integrating out 7 analytically
before commencing the Monte Carlo attack. We define € to be the
(n— 1)-dimensional Euclidean subspace of $ which is orthogonal to
the unit vectoru = (1, ..., 1) of §. We then define y as the projection of
1 on €, We have
n = y+7u. (6.4.9)

The distribution of 0 is multinormal and, by the orthogonality of
¥ and u breaks into two independent parts

Quy 2R = (2my D2 g~y 2 N2, (6,4,10)
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where n? is the square of the length of n. On integrating out the
second term in (6.4.10), we find that the distribution of y over € has
density function

h(e) = Qmy~ (=D g2 6.4.11)
where we have now written ¢ in place of y. We also have
Y= (=4 + (=2 (6.4.12)

We notice that B is a positive-homogeneous function of y of the first
degree, so that we are now ready to apply § 6.3 with m = n— 1, From
(6.3.10) and (6.4.11) we have

w(e) = el Am-2503 by (by). (6.4.13)

In (6.4.8) we defined ¢(y) for B = b,. To extend this to the whole
space €, we have to make ¢(y) constant upon straight lines through
the origin ¢ = 0, because in § 6.3 we took % to be a space whose points
were represented by such lines. Since o and r are both, like B, positive-
homogeneous functions of y of the first degree, the ratios o/f and /8
are constant along a line through the origin. Consequently the appro-
priate definition of ¢(Y) is

$) = {'/’(bo) if o/B = S/bgor 7/B = T/b,

6.4.
0 otherwise. 64.14)

Since this function is either y(bg) or 0, we cannot do much in the way of
flattening it by choosing the multiplier  in (6.4.13), but we can flatten
w by an appropriate choice of 8. In the first place A"~2 = (by/b)"2
and we shall flatten this if § contains a factor "2, Secondly we want
to flatten the exponential term e!=2)*/2 jn y_and we can do this by
a term of the form e~**"2, where v is a constant to be determined,

for c? and b2 are proportional to one another. Hence we try
<o fb
8\, by) = 8 (Z" , bo) = kb2 VP2, (6.4.15)

where & is another constant. We have to satisfy (6.3.9) and B is the
half-line 0 < b < »; so

«©
J‘ kb2 vh N2 gp (6.4.16)
0
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From (6.4.16) we deduce
k = v" 2092 Mgn— ). 6.4.17)

Therefore (6.4.13), (6.4.15) and (6.4.17) yield, after a little simpli-
fication,

w(€) = [K(bo)/y(bg)1e®®, (6.4.18)
where

R(©) = 1(1 =23 (c2—v2d?) (6.4.19)
and
2(vbo / \/z)n—l e—vzboll2

by I'3n—14)

Let us now summarize our procedure. We draw a sample of n
independent observations 7y, ..., 7, from the standardized normal
distribution and arrange them in increasing order of magnitude {,, ...,
L. We calculate 8, o, 7 from (6.4.1), and ¥2 from (6.4.12), where
7 = (m +...+n,)/n. Next we calculate

A= b/ and R(y) = 1(1-AD)(F¥2-28Y). (6.4.21)
Finally, with K (b;) defined by (6.4.20), we calculate
o { K(bp)e®V if o/B = S/by or /B = Tlby

K(by) =

(6.4.20)

0 otherwise, (6.4.22)

which is an unbiased estimator of the required integrand (6.4.7). We
repeat this procedure N times, using fresh random 7y, ..., 1, each
time, and use the mean of the N values of ¢ to estimate (6.4.7).

The constant v is still at our disposal. When n = 4, the case con-
sidered in [4], it is easy to show that

p< B < L. (64.23)

Thus to flatten R(y), a natural choice is v? = . Arnold et al. [4] tried .

v? = 0-60 and 0-75, and found empirically that v? = 0-60 gave less
variation. With T=3:17, § = 3-31, n=4 and €= 0-05 one can dis-

cover from tables that
-4}

[ wboaby = 005, (6.4.24)
3-63
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so that B is greater, but not much greater, than 3-63. So by = 3-2, 34
3-6, and 3-8 seem reasonable trial values. With these values, and with
N = 1000, the root of (6.4.5) turned out to be B = 3-684, the first
integral in Q(B) yielding a mean contribution of 0-00447 to e. Five
blocks of 200 successive values of ¢, gave 0-0040, 0-0056, 0-0047,
0-0038, and 0-0043, for the corresponding values of this first integral.
The standard error of the mean of these five values is 0-00032. If we
had adopted direct simulation, to obtain equal precision we should
have required about v sets of 7y, ..., 1, instead, where

000032 = /[e(1—€)/v]), €= 005, (6.4.25)

giving v = 470,000, Thus, if we allow 3 times as much computation for
each set of 74, ..., 1, the efficiency of the method is about 160 times
that of direct simulation.

There is one further point to be mentioned. We have to calculate
(6.4.22) for 4 different values of by, but we can do this using the same
sets of values of 7, ..., , in each case; each of the 4 corresponding
mean values of ¢ will be unbiased estimates, and the lingar combina-
tion of them, used to evaluate the first integral in (6.4.6), will there-
fore also be unbiased.

Some more refinements of the Monte Carlo procedure are possible
with this problem, though we cannot go into them here; they will be
found in [4), where the efficiency is multiplied by a further factor of 10.

CHAPTER 7

Solution of Linear Operator Equations

7.1 Simultaneous linear equations

The applications of the Monte Carlo method that we shall be con-
sidering in this chapter are all classical problems of numerical analysis,
and we strongly recommend that any reader with a problem of this
nature should regard the conventional methods of solution as normal,
resorting to the Monte Carlo method only when a very rough approxi-
mate solution is wanted as a starting point for later work or when the
problem is too large or too intricate to be treated in any other fashion.
Curtiss [1], in 1956, compared the theoretical efficiencies of con-
ventional and Monte Carlo methods in computing one component of
the solution x of the simultaneous equations (in matrix notation)

x = a+Hx, (1.1.1)

where H is an n x n matrix and a is a given vector. Defining the norm
of the matrix to be

[H|| = max (; |h,,l), (1.1.2)

and taking the Monte Carlo method to be the first described below,
some of his conclusions were the following:

if [|[H|] > 1, the Monte Carlo method breaks down;

if [|H|| =09, the Monte Carlo method is less efficient than a
conventional method in finding a solution to 19 accuracy with
n < 554, or to 109 accuracy with n < 84;

if ||[H]| = 0-5, these figures become: (19;) n < 151, (109,) n < 20.
The accuracy here is measured as a percentage of max |a;|. The state

1

of affairs has changed slightly since this analysis was performed, but
85
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the conclusions remain essentially true, and support our recom-
mendations.

The first Monte Carlo method of solution is based on one proposed
by von Neumann and Ulam [2]. Let P be another # x n matrix, such
that

P20, XNpy<1], (7.1.3)
J
and such that &, # 0 implies py # 0. Let
pi=1-2py (7.1.4)
J
and
vy = hu/py (pu # 0), =0 (pU = 0) (7.].5)

(Von Neumann and Ulam originally considered the special case
where these conditions could be met with py = hj;.)

The matrix P can then describe a terminating random walk (or
Markov chain; see § 9.1 for further details) on the set of states consist-
ing of the integers from | to n. If the walk terminates after k steps,
passing through the sequence of integers

Y = (io, il,...,ik), (71.6)
then the successive states are connected by the transition probabilities
Plipsy = jlim = i,k > m) = py (7.1.7)
and the termination probabilities
Pk = m|i, =i,k > m—1) = p,. (7.1.8)
Define
Val¥) = vy oo i1, (M <K), (7.1.9)
and
X&) = Vi) aylpy, (7.1.10)
Then the expectation of X(y), conditional on iy =1, is
2 P(y) X(y)
Y
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(where the summation is restricted to those y with fo=1)

«©
= z Z coe EPH, '“ph_.lkplkvlll'"vlg_‘lgalglplg
k=0 i, ix
©
= 3 .. Xhy...h a
k}(l’ % I? il [y
= a;+ (Ha),+ (H2a),+... (7.1.11)

Therefore, provided that the Neumann series H+ H2 +... converges
(as it will if ||[H[| < 1), the vector x with components

x;=&{X)ip = i} (7.1.12)

is the solution of (7.1.1). We may therefore estimate any particular
component x; by generating walks y starting out from i and scoring
X(y) for cach walk when it terminates.

Wasow [3] modifies this scheme by scoring

k
X)) = X Valy)a, (7.1.13)
m=0
which is also an unbiased estimator of ;. In the special case where

a;= 1 (i=j), = 0(i # j, for some specified f), he shows that the vari-
ance of X* is smaller than that of X if and only if

Y
< .1,
Py 2= (7.1.19)
where v, is the probability that a walk starting from j never revisits /.
There is also an adjoint method of solving (7.1.1). Let Q be another
nx nmatrix, with

=0 Xgy<1, (71.1.15)
]
such that ki # 0 implies g;; # 0, and let
a=1-Xgqy (7.1.16)
and
wy = hylay (qy # 0), = 0(qy = 0). 7.L17)

PP S5




88 MONTE CARLO METHODS

This differs from (7.1.5) in the reversal of the suffices to h. The
matrix Q then describes another Markov chain, in the same way as
the matrix P. Let.

mz0 Lm=1, = ayfmy, (7.1.18)
and
Waly) = Wit Wiitye o Wipy .l (7.1.19)
Then, if the starting point of y is chosen from the distribution
P(ig = i) = m, (7.1.20)
we have twoestimators of x; corresponding to(7.1.10)and (7.1.13), for

x; = E{Wi) 3y lan}

k
= 5{ p Wm()’)sl,.i}, (7.1.21)
m=0

where 8 is the Kronecker symbol (=1 or 0 according as i = jor
i#Jj). ’ ‘

The adjoint method is more suitable for finding the general shape
of x than the direct method, which concentrates on a single element
x;, since the same walk yields estimates of all x; simultaneously.

7.2 Sequential Monte Carlo

Halton [4] has studied a method of accelerating the preceding pro-
cesses. After a fair amount of work, one should have a rough estimate
% for x. If we put

y=x—-% (1.2.1)
and
d = a+H&-%, (1.2.2)
equation (7.1.1) is transformed into another of similar form,
y = d+Hy, (7.2.3)

where the elements of d are considerably smaller than those of a.
Consequently we can solve (7.2.3) to the same absolute accuracy as
(7.1.1) in a much shorter time. The solution of (7.1.1) is then derived
immediately by (7.2.1).

MCM—G
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Halton takes this principle further, by improving x at regular
intervals, and shows that in this case the variance after the sth stage
of improvement behaves at least as well as

=)

o = max {Z hf,/py},
i J

where

and therefore decreases rapidly if o < 4. This condition can be satis-
fied by a suitable choice of P only if ||H|| < 1.

7.3 Fredholm integral equations of the second kind
The equation

) = g0+ [ K(x,2)f0)dy (3.0

may be solved by similar methods to (7.1.1). There are three possible
approaches.

(i) The integral may be replaced by a quadrature formula. The equa-
tion then becomes a finite matrix equation like (7.1.1) for the values
of fat the quadrature points.

(ii) If we have a complete set of functions ¢, ¢y, ..., in terms of
which we know the expansion of g,

g(x) = agdp(x)+a $y(x)+..., (13.2)
and for which we know the expansions

f K(x, ) $0)dy = hojbo(x)+hydy()+..., (7.3.3)

then, setting
S(x) = xgho(X)+x1$1(x)+.. ., (1.3.4)

we get the coefficients of the expansion of f by solving the infinite
matrix equation
x = a+Hx, (7.3.5)

which we solve no differently from the finite equation (7.1.1), apart
from taking precautions in case the walk should not terminate.
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(iii) We may solve the equation as it stands, by processes analogous
to those of § 7.1, transferred from discrete to continuous distributions.
For example, by analogy with (7.1.3) onwards, we could define a
function p such that

p(x,» = 0, f plx,y)dy <1 (1.3.6)
and

p0) = 1= [ plr3)dy, v(x,3) = K(x,2lp(x, ),

Y= (xgy X1+« o XK, Vi(y) = v(xo, xp).. V(X1 X ), (7.3.7)
X&) = Viy) gxp) Ip(x1).
Then
fx) = (X (Pl xg = x}, (1.3.8)

provided that the series
K, »)+ f K(x,x1) K(xy,y)dx, +
+ f f K(x, xp) K(xp,x) KOy p)dxydocy ... (1.3.9)
converges. A condition for convergence is ?hat

IIKI| = sup [ |KGrldy < 1. (13.10)

For further discussion of this method we refer the reader to Cutkosky
[5] and Page [6]. A fi requently-occurring special case, where
K(x,y) = K(x—y) and the integration is over a finite line-segment, is
treated graphically in [7). ‘

Since we now have integrals to deal with, it should be possible to use
some of the techniques of Chapter 5 to increase efficiency, or one of
the quasirandom schemes of § 3.4.

As in the case of simultaneous equations, there are an adjoint
method and modifications analogous to those of Wasow and Halton.
The analogue of the transformation (7.2.1), (7.2.2) appears in a paper
by Albert [8].
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7.4 The Dirichlet problem

One of the earliest [9] and most popular illustrations of the Monte
Carlo method, because it is so easy to grasp, is the solution of
Dirichlet’s problem in potential theory. This is unfortunate, since
anyone who puts the method to a practical test will soon find it to be
very laborious and inefficient, compared to relaxation methods, say,
and may be tempted to attach this stigma to Monte Carlo methods
as a whole. Nevertheless, this book would be incomplete without
some discussion of this problem, Curtiss {10] discusses differential
and difference equations in general at greater length.

Dirichlet’s problem is to find a function u, defined, continuous,
and differentiable over a closed domain D with boundary C,
satisfying L T K

V= Oon__,D,\ u=fonC, (7.4.1)

where fis somé prescribed function, and V2 js the Laplacian operator.
One usually starts by covering D by a cubic mesh, and replacing \'Z
by its finite-difference approximation. Taking the two-dimensional
case for convenience, this approximation is

2 {ulx, y+ h) + u(x, y— h) + u(x + b, ) + u(x — b, y) — 4ul(x, y)},
(74.2)

where / is the mesh size. In other words the equation V2u =0 is
replaced by

u(x,y) = HulQe,y+ B+ ulx,y—h)+ulx+h,y)+ulx—h y)}. (7.4.3)

Suppose for simplicity that the boundary C lies on the mesh, and
consider a random walk (Pdlya walk) that starts from a given interior
point P of D and proceeds by stepping to one of the four neighbouring
points at random (the four possible ncighbours have equal and inde-
pendent probabilities at each step) until finally it hits the boundary
at a point Q. Then f(Q) is an unbiased estimator of u(P).

Toshow this, it is sufficient to reduce the problem to the form (7.1.1)
where the order of H is equal to the number of mesh points in D, and
where H has four elements equal to  in each row corresponding to
an interior point of D, all other elements being zero. The random walk

o,
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is then identical with the first (and, indeed, the second) method of
§7.1.

Once again there is an adjoint method, which this time means
starting walks out from the boundary. If the starting point is chosen
on the boundary with a probability distribution p(Q), and a walk
passes through the point Pjust n(P) times before hitting the boundary
again, then an unbiased estimator of u(P) is $n(P)S(Q)/p(Q).

The sequential method (§ 7.2) may again be profitably applied.

It can be seen that when we express the problem in matrix form
we have ||H|| = 1. In view of Curtiss’ analysis [1], therefore, it is
hardly surprising that the methods turns out to be generally ineflicient.

Muller [11] has proposed a method that does not resort to the
difference approximation. Let S (P) be the largest sphere (circle) with
centre P that does not go outside D. Then it is well known from poten-
tial theory that u(P) is equal to the average value of u over the surface
of S(P). Muller’s method is to take a sequence of points Py=P,
., where P, is a random point on the surface of S P,
until a point is reached that is sufficiently near the boundary C. If Q
is now the nearest point actually on C, f(Q) is taken for the estimator
of u(P). This method may be generalized by taking S (P) to be some
other shape than a sphere, provided that one knows the Green’s
function for that surface. The essence of the procedure is to econo-
mize in the number of steps by reaching the boundary of the sphere
in one leap instead of via individual steps on an ‘equivalent’ lattice.

7.5 Elgenvalue problems

The other type of problem connected with linear operators is the
cigenvalue problem, of determining values of A for which the matrix
equation

Hx = Ax, (7.5.1)
the integral equation
[ K01y = M0, (1.5.2)
or the differential equation
V2u(x)— (V(x) =N ux) = 0, (1.5.3)

to give three typical instances, has a non-trivial solution (x, f, or &)
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satisfying certain general conditions. Characteristically, the Monte
Carlo method will not find more than the extreme eigenvalues of these
equations, and then only under certain conditions on H, X, or V.

The solution of (7.5.1) or (7.5.2) depends upon the convergence, for
almost all choices of x; or fg, of the sequence

X,y = HXp 1A (1.5.4)
or
Sl = [ KG a0yl (1.5.5)
where A, is chosen to make
lXmll = 1 or |Ifull = 1, (7.5.6)

where || . || denotes some vector norm; for instance we may take
Il = 3 el 1111 = [ Leolds.

Then A, converges to the dominant (largest) eigenvalue A of Hoor K,
and x,, converges to the corresponding eigenvector or f, to the corre-
sponding eigenfunction. We suppose that A is simple, real, and
positive.

Taking the matrix formulation (7.5.1) for convenience, let Q now
be a stochastic matrix, i.e. one such that

q; 20, Xgy=1,
J

(1.5.7)

(7.5.8)

and definc w; by (7.1.17) as before. The Markov chain described by Q
now never terminates, giving rise to an infinite sequence of states

Y= (io, il! iz, . .). (7.5.9)
We define W, (y) by (7.1.19). Then
E{W () 81y lio = i} = H") 2 (7.5.10)

If iy is sampled from the distribution (7.1.20), therefore, we have
E(Wu() 8t = H™a)) = MAg. Ay, (1.500)
by (7.5.4), taking xo = a; also, summing over j,

EWu()) = Mg Ay ,Z (Xpm)y- (7.5.12)
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If the dominant eigenvector x of H has all its elements of the same
sign, then x,, tends to x as m tends to infinity, and (by (7.5.6), (7.5.7))
we have Y (x,,); = 1, so that

J

W)} = A1, A, (7.5.13)
Thus

JUVM(‘)')}/‘{W,.(Y)} = An+ 1 An+2 (XK Am ~ AT (7-5-14)
as m and #n tend to infinity. We may therefore use

A = (W ()W) e (1.5.15)

as a (biased) estimator of A._
Having estimated A by A, we may estimate the (unnormalized)
elements x; of x by a formula such as

= T W 81, A== (1= ) /(1 =A™=,

(7.5.16)

The convergence of (7.5.4), and therefore of the Monte Carlo
process, is most rapid if x, is close to x. We may be able to approach
this situation after performing our sampling by replacing a;, by
2;,/m,in(7.1.19), thereby giving new weights to the same set of paths y,
which we hope would yield better estimates of A and x.

The whole of this method applies equally, under suitable conditions,
to the integral equation (7.5.2). See [12], for instance.

Fortet [13] proposes a fundamentally different method. Suppose
that we have to solve (7.5.2) knowing that the kernel X(x,y) is sym-
metric and positive definite, Then ([14] § 34) there is a Gaussian pro-
cess X (x) having K as its covariance function; i.e. X(x) has a normal
distribution with variance K(x,x), and cov( X(x), X(»)) = K(x,»).
We may often represent such a Gaussian process sufficiently accur-
ately by a function made up of straight-line segments linking the
positions X (xp), X(x;,1) of suitably correlated Gaussian variables at
prescribed discrete values x;. This is equivalent to truncating the
expansion of the process in terms of a Schauder basis [15].

Define a random variable

Y= f (X dx. (1.5.17)
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This has a characteristic function

d(v) = Lexp(ivY) = DQiv)™'7?, (7.5.18)

where D(;1) is the Fredholm determinant of the integral equation,
whose roots are the inverses of its eigenvalues. Fortet’s method is to
generate values of sample functions X, so that Y can be derived by
numerical quadrature, and to use the values of Y to deduce the form
of ¢ near the origin, and hence to find A. Fortet also gives bounds for
the errors in the solution, but an unpublished paper by Cohen and
Kac suggests that these bounds are wasteful by a factor of as much
as 5000.

Fortet’s method is connected with one proposed by Donsker and
Kac [16] for finding the smallest eigenvalue of Schrodinger’s equation
(7.5.3). If X(x) is a Wiener process (or Brownian motion: see [14) or
Doob [17]), i.e. a Gaussian process with covariance function

cov{X(x), X(»)} = min(x,»), (x,y = 0) (7.5.19)
and if
t
L) = f VIX()dr, (1.5.20)
0
and
Z(s, 1) = et (7.5.21)
then
EZ(1,1) = X e Ny, (0) f (%) dx
J -
~ e~M14(0) f Yy (x)dlx for large 1. (1.5.22)

Here A; denote the eigenvalues in order of increasing magnitude and
¥, the corresponding eigenfunctions of the equation

I d?
5720 = V) ) +M(x) = 0. (7.5.23)
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An estimator of A, is therefore
—rYogZ(1,1) for large 1, (7.5.24)
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or, better,

-(- t,_)" log[Z(1,4,)/Z(1, )} for large ¢, and ;.
(1.5.25)

Kac [18] shows that Z (1, ) may validly be approximated by
Y, (1) = e (7.5.26)

where L) =}1 Z v sy (1.5.27)

k<nt

and Sy is the sum of k independent and identically-distributed random
variables with zero mean and unit variance,

Equation (7.5.23) is essentially the one-dimensional version of
(7.5.3), and Donsker and Kac's method extends to more than one
dimension by means of multi-dimensional Wiener processes. A
similar approach may be used to derive statistical-mechanical pro-
perties, which depend on the distribution of the eigenvalues as a
whole (see [19] Chapter 4). There is much scope for further research.

Wasow [20] deals with random walk solutions of the difference

"approximation to (7.5.3).

For further reading on the general topic of Monte Carlo solution of
linear operator problems, see the supplementary references.

o

- CHAPTER 8

Radiation Shielding and Reactor Criticality

8.1 Introduction

We turn now to problems of a more physical kind, beginning with the
field in which Monte Carlo methods were first used on a large scale
and systematically, namely the flux of uncharged particles through a
medium. The point of considering uncharged particles is that their
paths between collisions are straight lines, and that they do not
influence one another. The latter consideration allows us to take the
behaviour of a relatively small sample of particles to represent that
of the whole.

There is an element of randomness in these problems from the
beginning, and, while it is possible to reduce them to the solution of
large integro-differential equations in six dimensions [1] it is most
convenient to derive the Monte Carlo methods directly from the
physical processes.

Consider a particle (photon or neutron) with energy E, instan-
taneously at the point r, and travelling in the direction of the unit
vector w. So long as the particle does not collide with an atom of the
medium, it will continue to travel in this same direction w with this
same energy E. However, at each point of its straight path it has a
chance of colliding with an atom of the medium. With the usual
assumption that the atoms of the surrounding medium are distributed
randomly in space, there is a probability o.8s that the particle will
collide with an atom while traversing a small length &s of its straight
path. The factor of proportionality o, is called the cross-section: it
depends upon the energy E of the particle and also upon the nature
of the surrounding medium. If the medium is continuously variable
in its constitution, then o, will be a variable function of r. But it is
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more usual to have to deal with situations in which the character of
the medium remains homogeneous within each of a small number of
distinct regions; over each such region, o, will be constant, though o,
will change abruptly on passing from one region to the next. This sort
of situation arises, for example, with uranium rods immersed in
water; o, is one function of E in the rods and another function of E
in the water. It follows that the cumulative distribution function of
the distances that the particle travels before collision is

F(s) = 1—exp(—o.93), 8.1.1)

provided that all points of the path from r to r+sw are in the same
region of the medium.

When a collision takes place, one of three things may happen. The
first possibility is that the particle is absorbed into the medium: in
this case the particle travels no further. The second possibility is that
the particle is scattered, that is to say it lcaves the point of collision
in a new direction and with a new cnergy. The third possibility is
fission of the struck atom: in this case (which only arises when the
original particle is a neutron) several other neutrons, known as
secondary neutrons, leave the point of collision with various different
energies and directions. Each of these possibilities has a certain pro-
bability; and conditional probability distributions also govern the
second and third possibilitics. For instance, given that the third possi-
bility occurs, there is a conditional joint probability distribution for
the number of secondary neutrons and for the energies and directions
of the emergent particles. These probabilities and distributions are
specified by the physics of the problem: for Monte Carlo purposes
they are known distributions.

The two problems we shall be concerned with are:

(i) The Shielding Problem. When a thick shield of absorbing material
is exposed to y-radiation (photons), of specified energy and angle of
incidence, what is the intensity and energy-distribution of the radia-
tion that penetrates the shield?

(ii) The Criticality Problem. When a pulse of neutrons is injected into
a reactor assembly, will it cause a multiplying chain reaction or will
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it be absorbed, and, in particular, what is the size of the assembly at
which the reaction is just able to sustain itself ? This is an eigenvalue
problem.

8.2 The elementary approach, and some improvements

A Monte Carlo solution involves the tracking of simulated particles
from collision to collision. Starting with a particle, whose energy,
direction and position are (E, w, r), we generate a number s with the
exponential distribution (8.1.1) where o, = o(E). If the straight-line
path from r to (r+sw) does not intersect any boundary (between
regions), the particle has a collision at the latter point. Otherwise we
allow the particle to proceed as far as the first boundary. If this is the
outer boundary, the particle escapes from the system (o,=01in a
region of free space); if not, we repeat the above procedure replacing
r by the boundary point and replacing o, by that appropriate to the
new region that the particle is entering. The justification for repeating
the procedure whenever a boundary is reached lies in the Markovian
character of distribution (8.1.1): see § 9.1 for a discussion of Markov
processes. (The time of each event may be calculated from the velocity,
which depends only on E.)

We shall not go into details of the simulation of the collisions them-
selves, since the considerations here are physical rather than mathe-
matical; it suffices to say that the result will be a collection (possibly
empty) of such particles leaving the collision-point with various
energies and directions, that we determine these energies and direc-
tion by sampling from the relevant conditional distributions men-
tioned in § 8.1, and that we follow each of the emergent particles in
the same manner as the first, going on in the same fashion as far as the
problem requires or time allows.

The above process gives an exact realization of the physical model,
but it is not always the most convenient for our purposes, nor the
most efficient. For instance, if we are studying a reactor containing a
very fissile component, then every neutron entering this region may
give rise to a very large number coming out, giving us more tracks
than we have time to follow. Here we may turn to the fractional
sampling method to which Kahn (2] gives the name ‘Russian
Roulette’. When the number of particles gets too large, we pick out
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one of them, and with some probability p we discard it from the
sample; otherwise we allow it to continue but multiply its weight
(initially unity) by (1 — p)‘I , and werepeat this (with the same or differ-
ent values of p) until the number of particles is reduced to manageable
size.

Conversely, to increase the sample size without introducing a bias,
Kahn has the *splitting’ technique [2] [3] where a particle of weight w
may be replaced by any number & of identical particles of weights
Wi, +.ep W, Where wy + ...+ wy = w. These particles then proceed inde-
pendently. One may also avoid losing tracks through absorption; if
the absorption probability is « (i.e. « is the conditional probability
that absorption occurs, given that a collision has occurred) one
replaces o, by a(1 — ) in (8.1.1), and allows only scattering or fission
to take place with appropriate relative probabilities. The weight is
then multiplied by exp (— g, as) for every segment of path of length 5
that is traversed in each medium.

By weighting methods such as these, one may control not only the

total number of tracks, but also the relative numbers in various

regions of space or ranges of energy, thus providing a form of impor-
tance sampling. Extending the argument of § 5.4, we should arrange
for the number of paths in any class to be proportional to the contri-
bution of that class to the final result, hence, in particular, our avoid-
ance of paths that are absorbed and contribute nothing.

However, we have not yet considered how these samples are (o
be scored. This is better dealt with under separate headings for the
two problems that we are concerned with.

8.3 Special methods for the shielding problem

The outstanding feature of the shielding problem is that, if the shield
is worthy of the name, the proportion of photons that penetrate the
shield is very small, say one in 108, Suppose that we attempt to esti-
mate this proportion by simulating the process and simply counting
the photons that emerge. The distribution of the number of emergent
photons will be binomial, so that the standard deviation of the propor-
tion of survivors from an original sample of N will be of the order of
10~3N-'/2. Thus to estimate this proportion to an accuracy of 1079,
we require the impossible number of 10° paths.
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Now suppose that the absorption probability is uniform throughout
the medium, and that we use the method of the previous section, so
that the paths which traverse a distance s in the shield emerge with a
weight of exp(— o as). The error now depends on the variation of s.
If the probability of scattering is small, then the paths tend to go
straight through the shield, s tends to remain close to the thickness of
the shield, and the estimator can be very precise. If, on the other hand,
particles are scattered one or more times, then s may vary consider-
ably, and its exponential even more.

Berger and Doggett [4], [5] overcome this difficulty by a semi-
analytic method, which incidentally allows the same random paths
to be used for shields of other thicknesses. We now suppose always
that the shield consists of a uniform infinite slab of thickness ¢. This
simplification of the geometry means that we need work in terms of
three co-ordinates only: the energy E, the angle 8 between the direc-
tion of motion and the normal to the slab (into the slab from the
incident face), and the distance z from the incident face of the slab.

In the semi-analytic method, we first generate a random history

EO’ Eh---, En
h=h,=
n {00,0,,...,0,, } 8.3.1)

for a particle which undergoes a suitably large number n of scatterings
in the medium. Here E; and 0, represent the energy and direction
immediately after the ith scattering. F and 8, are the incident energy
and direction. Provided that the particle remains in the medium and
is not absorbed before the nth stage, the distribution of 4, is indepen-
dent of the distances travelled between collisions, and the same is
true of any truncation k, of /.

We now define P(£) = P({, 1, h) to be the probability that a particle
has a history #; (the ith truncation of /) and also crosses the plane
z = { between its ith and (i 4 1)th scatterings; and we proceed to write
down some recurrence relations for these P;. In doing so, the abbrevia-
tions

ci=cosb; o, =o0JE); 7= [—-a(ED]o(E) (83.2)

are convenient. In the first place, it is clear that a straight track with




S

102 MONTE CARLO METHODS

direction 8; has length {4/c,| if it is terminated by two planes with
co-ordinates z = zy and z = zo+4. Thus the probability Py({) that
the particle will pass through z= { before suffering any scatterings is

Py(D) = exp(—oq{/co). (8.3.3)

Next consider P, () for i 0. This concerns a particle crossing
z=1{ between its (i+1)th and (i+2)th scatterings, The (i+I)th
scattering (which has actually been a scattering, since i > 0), may
have occurred to the left (z < {) or the right (z > {) of the plane z = {;
suppose it was the left. Then it occurred on some plane z = L’ where
0 < ¢’ < {. After the (i+ Dth scattering the particle travelled to the
right (in order to intersect z = {) with energy Ej,; and direction ;.
Thus ¢;,; > 0. For all this to occur, we have a compound event: (i)
that immediately prior to the (i+ 1)th scattering the particle crossed
z={’; (i) that then, travelling with energy E; and direction 0, im-
mediately prior to the (i+ 1)th scattering, the particle suffered the
(i+ Dth scattering between the planes z= { and z={+d{’; and
(iii) that thereupon the particle, now travelling with energy Ej,j in
direction 6,,,, traversed the region from z={’ to z={ without
further collision (either scattering or absorption). The respective
probabilities of these events are

P(@i) = P(L) ' 4 ) (8.3.4)
Pii) = 7,dllc) 8.3.5)
and P(iii) = exp {— oy ({={)/eia}- (8.3.6)

The Markovian character of the process allows us to combine these
three probabilities by multiplying them together. All values of ¢’
between 0 and { may occur; so

{
d '’
Py = J‘ Ptnexp{—op1(§— ey l}%lc— » €1 >0
H

(8.3.7)

When the (i + 1)th scattering occurs to the right of z = {, we have an
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exactly similar analysis for ¢;,; <0; and the inequality { < {'<¢

leads to
¢

Py = fP;(C')CXP{—°1+1(C—C')/Cl+|}f—|l:‘t“cfa c1 < 0.

4
(8.3.8)

Equations (8.3.3), (8.3.7) and (8.3.8) have the analytical solution

!
P = |"l|j% Agexp {—a{~up)/c;}, (8.3.9)

where u; denotes 0 or ¢ according as ¢;> 0 or ¢; <0, and where the
constants A, can be successively calculated from the recurrence
relations

Ago = 1/cg, (8.3.10)

AHI.I = T[AuCI/(01+|CJ—GjC,+l), (8.3.1‘)
i
Ap = *120 Aprjexp {—ouy —uplc}.  (8.3.12)
The probability of penetrating the shield is

£ PO, (8.3.13)
i=0

where the expectation & is taken over all histories #,, for n =1,2,.
An adequate approximation replaces }] in (8.3.13) by Z where

Berger and Doggett [5] found N = 25, 12 9 and 6 to be sufﬁcxent for
shields of water, iron, tin and lead respectively. Thus the complete
procedure is to generate histories (8.3.1) by sampling from the physi-
cal distributions governing the transition of energy and direction at
each scattering, to compute for each such history the constants 4
and thence the functions P;(¢f) from (8.3.9) to (8.3.12), and to use the
average value of

N
> P (8.3.14)

i=0

as an approximate unbiased estimate of the penetration probability
(8.3.13).

oy ey g :
Tt S SRR £
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There are two advantages in this method. First, we do not introduce
sampling variations due to sampling z as well as E and 0; thus, we
improve the precision of the final result. This is line with the general
maximin § 1.1 that exact analysis should replace Monte Carlo samp-
ling wherever possible. Berger and Doggett [5] found that the variance
of the final result was reduced by a factor of about 10* at the cost of
about 4 times as much computational labour. This is an impressive
efficiency gain of about 2500. The second advantage of the method is
that we may insert different values of { =1 in (8.3.9) and thereby,
from a single set of histories, estimate the probabilities of penetrating
shields of various thicknesses ¢.

8.4 Use of control variates

-]

It so happens that the exact expectation #(t) of Y, P;(f,=,k), the
1=0

density of photons crossing the plane z = t in a semi-infinite medium,

(-]
is known. There is a high correlation between 3, Py(t,t,h) and
© : i=0 .
Y, P,(t,=,h) since the only difference arises from the particles that
im0
are scattered back across z = ¢ after having crossed it. It is therefore

advantageous to use the latter as a control variate, observing the
quantity

3 (Pt 1, B) = Py(t, 0, )} + (). @.4.1)
=0 .

This idea also is due to Berger and Doggett [5]. They found that this
device gave a further reduction in variance by a factor of about 130
at the expense of about 609, extra computation. Thus the overall
efficiency factor from the semi-analytic method combined with control
variates is about 200,000.

8.5 Ciriticality problems in neutronics

The second problem of § 8.1 is rather different in character. For almost
all assemblies of fissile and absorbent material, there is a constant
and a corresponding density function f(E, w,r), such that a distri-
bution of neutrons with density 4 f(E,w,r) at time zero will lead to a
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distribution with density 4 f(E,w,r)e at time ¢, (This is provided
that ¢ is not so large that the number of neutrons either grows so
large that the supply of fissile material is exhausted or falls so low
that to talk of a density becomes meaningless.)

According as u is negative, zero, or positive, the system is sub-
critical, critical, or super-critical. A complete solution of the problem
consists in finding fand p, but often one is content with 14, or even the
sign of u alone.

The standard method of solution by Monte Carlo methods is to
start with some arbitrary distribution of neutrons and to track them
for as long a time as possible. As time goes on, the distribution will
tend towards the limiting form A4 f(E, w,r), for some A4, and when the
distribution has settled down, the value of 1« may be determined from
the multiplication rate.

We must use weights, as described in § 8.2, to keep the number of
tracks from increasing or decreasing too far. A simple estimator for
pis thus

8.5.
-1, ¢ ®.5.0)

1 (total weight of paths at time Tz)

total weight of paths at time T;

where T and T; are large enough for the distribution to have settled
down, and far enough apart for the change in weight to be significant.
The easiest way to find out whether these rather vague conditions are
satisfied is by trial and error, in other words by secing whether differ-
ent values of Ty and T, lead to values of p that are not significantly
different.

We canimprove on this by observing, instead of an actual change of
weight, the instantaneous expected rate of change of weight. Let a
particle, having weight w at time t, be travelling with velocity v
(depending on E), let the local collision cross-section be o, and the
absorption probability be «, as before, and let the fission probability
be B and the expected number of particles to emerge from a fission be
y. Then the expected total weight of particles arising from this one
particle up to the time (¢+ 8¢), where 8¢ is small, is

w+ o, vt —~aw+ fly—1)w), (8.5.2)
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so that

d
& — (total weight at time 1) = Y, wo v{B(y—1)—a}.
dt particles
(8.5.3)

It follows that we may estimate p by the weighted mean of
o v{fly—1)—a}, (8.5.4)

over all the particles of the sample, observed at one sufficiently large
time 7. An even better estimator is got by averaging this weighted
mean over several different values of T (or over a range of values,
where this can be done analytically).

The time taken for this process to converge depends on how far the
initial distribution of neutrons differs from f. This suggests another
device for improvement; we may multiply the weights of the original
neutrons and their respective descendants by appropriate factors to
bring the initial distribution close to the final one; this will alter the
weights appearing in the weighted mean, and should yield a better
estimate of u from the same observations. Essentially the same device
was proposed for matrix problemsin§7.5.

8.6 The matrix method

If we do not ask for the value of p, but merely whether it is positive
or negative, we have still further scope for time-saving. The first thing
we may do is to replace time as our independent variable, by ‘ genera-
tion number’ n, the number of collisions appearing in the direct line
of descent from annitial particle to one that is subsequently observed.
If g(E, w,r) is the conditional density function of those ncutrons with
density f(E,w,r) which are just about to have a collision, it may be
shown that a density of Ag(E,w,r) at generation n = 0 will lead to a
density of Ag(E,w,r) A" at the nth generation, where Ais greater than,
equal to, or less than 1 according as p is greater than, equal to or less
than 0.

A situation may arise in which we can divide the neutrons into
classes on the basis of their energics, directions, or positions, so that
the distribution of neutrons within each class settles down in very few
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generations, but their distribution between classes fluctuates for a
much longer period. This is similar to the kind of problem in simple
integration that is best solved by stratified sampling; here an appro-
priate technique is the matrix method developed by Morton and
Kaplan and described in [6]. We give a brief outline of this
method.

Divide all of (E,w,r)-space in a suitable manner into regions .S;.
Then, every time a collision occurs, assign it to the region containing
the point which describes the state of neutron just before that collision.
Ignoring events which occur before the distributions in the regions
have settled down, define Ny, to be the number of collisions in S; of
neutrons which themselves result from collisions in S, and define
Cy= Nyl 3, Ny. (If we are using weights we naturally redefine Ny to

i

be the sum of the appropriate weights.) Then C is an estimator of Ky,
the expected number of collisions in S, arising from one collision in S,
and the dominant latent root of the matrix {K} is A. We may thus
estimate A by finding the dominant latent root of {Cy} as soon as its
elements have settled down, as they do much earlier than do the
actual numbers N;.

8.7 Scmi-analytic and antithetic techniques in criticality calculations

In (8.5.3) we improved our estimator by considering the expected rate
of increase of neutrons per unit time. The same device can be em-
ployed when considering the situation generation by generation: to
estimate A we then require the expected number of neutrons in the
next generation per neutron in the present generation.

Suppose that we have reached a situation in which we are sampling
neutrons from equilibrium distribution f(E, w,r): that is to say, fis
the dominant eigenvector. The straightforward approach would be to
sample a neutron from this distribution, thus according it values of
E,w,r, and then to determine from the exponential distribution a
number s (such that the next collision it suffers is at r + sw) and from
the fission distribution a number ¢ = c(s) representing the number of
secondary neutrons arising from this collision. The multiplication
rate A would then be the expected value of ¢(s), and we could use the
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observed value of ¢(s) to estimate A, However, it may be possible to
calculate this expectation analytically. The expectation is

j c(s) e~ ds, ®.7.1)

if the mean free path is unity; and it is then a question of being able to
work out the integral (8.7.1). If the mean free path depends upon the
region of the medium, we shall need a more complicated factor in
place of e~ in the integral; but, depending upon the context, we may
still be able to perform the integration. We may even be able to do
better than this, and take an expectation not only over values of s but
also over values of w say. The general principle is always to do as
much of the work as we can analytically, for this will sharpen the
precision of the estimators.

Rather than talk in terms of generalities, let us consider a specific
example 7], [8] in which the physical situation is greatly simplified
for the sake of clarity of exposition.

Suppose that we have a sphere of homogeneous fissile material in
vacuo. Choose the units of length so that the mean free path within
the sphere is unity. We shall suppose that the only event which takes
place upon collision is fission, and that exactly 2 neutrons emerge
isotropically from each such fission. Thus c(s) = 2 within the sphere
and c(s) = 0 outside the sphere; and the integral (8.7.1) becomes
2(1 — &), where ¢ is the distance from r along w to the surface of the
sphere. In the practical case considered in [7), the radius of the sphere
was 1-10. To arrive at the equilibrium distribution g, 25 neutrons
were started from the centre of the sphere, and they and their descend-
ant neutrons were tracked for 19 generations. After about 11 genera-
tions, the distribution seemed to have settled down; and here we shall
consider some of the neutrons in the 17th generation. The 17th
generation actually consisted of 83 neutrons, from which we draw 10.
Table 8.1 shows in its first column, the distances r from the centre of
the sphere of these 10 neutrons. Since the secondaries emerge iso-
tropically, ¢ is simply the distance from the point r to the boundary of
the sphere, measured along a randomly selected direction. Sampling
10 such directions we arrive at the values of 2(1 —¢e™") in the second
column; and our estimate of A is simply the mean (0-985) of these.
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Table 8.1

r 2(1—e~) 2—et—e* K@)
0-66 1-466 1-178 1-176
0-53 0-986 1-244 1-238
0-19 1-354 1-316 1-322
0-47 0-956 1:260 1:260
1-08 0-698 0-462 0-660
092 0-892 0-982 0-966
0-89 0902 0954 1-000
0-69 1-128 1-152 1-160
0-90 1-278 0-968 0-988
0-98 0-190 0-820 0-884

Mean 098510116 1-034 + 0-081 1065+ 0-064

The entry +0-116 is the standard error of this mean calculated from
the variance of the 10 values of 2(1 — ™).

Evidently there is a good deal of scatter in these 10 values of
2(1 — e, and we cannot expect 0985 tobe a very good estimate of A.
We can do better by using antithetic variates (§ 5.6). Each ¢ is the
distance to the boundary in the random direction. We choose ¢’ to
be distance in the diametrically opposite direction. The ¢ and ¢’ are
negatively correlated, and a simple antithetic estimator is

IR(1-eH+2(1-e")) = 2-¢"'—¢", 8.7.2)

which appears in the third column. Clearly the scatter amongst these
10 values is a good deal less, and we expect their mean and standard
error (1-034+ 0-081) to be a better estimate of A,

We can go further by integrating analytically over all directions w
of the secondary neutrons. Let 8 denote the angle between direction
w and the radius vector to the point of collision. Since we are assuming
isotropy, cos 8 is uniformly distributed between — 1 and + 1, and so
has the frequency element 4d(cos6). Simple trigonometry shows that

t = —rcosf++/(a*—r¥sin? 6), (8.7.3)

R R R e A
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where a = 1:10 is the radius of the sphere. The expected value of
2(1—e~"), averaged over w, is accordingly

K@) = f 2(1 —exp {rcos 6 — +/(a%— r¥sin 26)}] 4d(cos 6)
o=0

1
= 2—2—’_{(1 +atrye ™’ —(1+a-r)e "~

— (@ —r)Ei(—a—P - Ei(—-a+0)]}, (8.7.4)
where
Ei(—x) = f ¢~ dufu ®8.1.5)

X

is the exponential integral, The values of X (r) corresponding to the 10
sample values of r appear in the last column of the above table and
their average gives 1-065 as an estimate of A.

The problem under consideration is, of course, a very simple
neutron diffusion problem, so simple indeed that it can be solved
theoretically by the so-called extrapolated end-point method [9).
The exact value of A is 1:0654. It is an exceptional fluke that the third
column of the table should give so correct a result on a sample of
only 10 neutrons. Serious calculations would use a larger sample.

" We may compare the foregoing estimates of A with one obtained
by crude Monte Carlo tracking. In this tracking, 12 of the 20 neutrons
released by these 10 collisions had further collisions within the sphere,
the remaining 8 escaping. The estimate of A is accordingly 12/10 = 1-2.
The probability of remaining in the sphere for a further collision is
12/20 = 0-6; and the standard deviation of the number remaining is
given by the binomial formula /(12 x 0-6 x 0-4) = 1-69. The standard
error of the estimate of A will be one tenth of this. Thus crude tracking
gives A= 1-2000+0-169.

There is, of course, no need to confine the estimation to neutrons
in a single generation. Suppose that there are n neutrons in the
sphere at the ith generation. Suppose also that the system has settled
down to its equilibrium distribution, and write p for the probability
that a neutron, chosen at random from this distribution, will have its
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next collision within the sphere. Then A = 2p, since this neutron will
produce 2 secondaries. If there are n; neutrons in the sphere immedia-
tely before the collisionsof the generation, there will be 2n;immediately
after. The likelihood of n;, of these remaining in the sphere for a
collision in the (i+ 1)th generation will be

L[ - (2”1 )p"‘”(l ___p)2n,—n,ﬂ (8.7.6)
Riv 1
according to the binomial distribution. Hence, given the number n,in

the jth generation, the conditional likelihood of fjigs oo My in the
(j+ Dth, ..., kth generations is

k—-1
- 2"1 L7374 R 2nl—nlﬂ
L= I:—;I ("m) P p) ) ®8.1.7)

The maximum likelihood estimator (§ 2.4) of p is the root of the
equation

dlogL{dp = 0, (8.7.8)
namely,
b= (N—n)2(N—ny), 8.7.9)
where
N = m+nm1+...+n. (8.7.10)

The variance of this estimator is — @ logL/dp? evaluated at p = p,
and this gives
varp = (N—nj)(N+nj—2nk)/8(N—nk)3. (8.7.11)

The maximum likelihood estimator of A and its standard error are
accordingly

A=

(8.7.12)

(N.—' n,) + (N'— nj)(N+ ny— an)
(N-np)™ 2AN—ny)?

It is informative to put this estimator in another form. We have

identically
k-1 k-1
_(N=n) My .
A= T (,.E, e ) / ( E n,), (8.7.13)

i=)
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_that is to say A is the weighted mean of the individua! estimators
ny,1/n; of the multiplication rate generation by generation, the weights
being n;, the number of neutrons in the parent generation, and there-
fore inversely proportional to the variances of these individual
estimates. A similar weighting procedure is appropriate to the case
when we are combining estimates from different generations in a
more sophisticated analysis, such as the semi-analytic or antithetic
method.

In the Monte Carlo tracking from the 11th to the 19th generations,
Hammersley and Morton [8] found nyy = 51, myg = 94, N = 665. By
(8.7.12) this gives

A = 1-076+0-030. (8.7.14)

CHAPTER 9

Problems in Statistical Mechanics

9.1 Markov chains

Markov chains have appeared several times in Chapters 7 and 8 of this
book, and it is now time that we gave them formal recognition.

We sshall concern ourselves only with chains whose transitions occur
at discrete times. Let these times be labelled consecutively 1, 2, 3, ...,
let the system have a finite or countable set of possible states S,
Sy, ..., and let X, be the state that it is inat timer. X, isthenarandom
variable, and we may define the conditional probabilities

PX,= S| X, = 81, X0, = Sppeon Xin = Si). .11

The system is a Markov chain if the distribution of X is independent
of all previous states except for its immediate predecessor X|_,, or,
more formally,

P(X, = SAX,_] = Sl,-p"'s Xz = Slz’Xl = Sll)
= P(X, = X1 = 5,.). 012

In the cases that we consider, the probability (9.1.2) is independent
of t, and we have a chain with stationary transition probabilities,
defined by

Py= PSS~ Sj) = P(X; = Sllxl—l = S). 9.1.3)

By the use of density functions in place of probabilities, this may all be
extended to systems in which the possible states form a continuum.
For example, the random walk defined in § 7.4 is a Markov chain,
whose states comprise all possible positions of the particle within the
113
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boundary, together with a special ‘absorbing’ state that the system
enters as soon as the particle hits the boundary and remains in for
ever after. On the other hand the *self-avoiding’ walks to be discussed
in Chapter 10 are not Markov chains when described in the same
manner, since the condition that the system never occupies the same
state twice makes the distribution of the current state depend on the
whole past history of the walk.

If £ is any function defined on the set of states {5}, this defines a
random variable

yi = f(X), (9.1.4)
and we shall in our applications be looking at variables of the form
1 ]
Y=o ©.1.5)
s=1

which is the average value of fover the first ¢ states of a realization of
the Markov chain. A special case of (9.1.5) is the variable

t
1
46) == 8
o ,Z:, ’ 9.1.6)
where 80) = 1if X, = 5, = 0if X, # 5,

measuring the frequency with which the state S; occurs; we may, if we
prefer, use as the definition of Y,

Y, = 2’] ADf(S). ©.1.7)
If we write
PP = P(X, = S| X_n = S), (9.1.8)
defining the n-step transition probabilities, we have
PP = pus 20 = Z piRpi .19

or, writing P and P™ for the matrices with elements py, p{” respec-
tively,

P®™ = p~, (9.1.10)

e wn
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The matrix P is stochastict, that is to say

>0and ¥ py = 1, ©.1.11)
J

and it is easily shown that the same is true of the matrix P”,
We may also define the first-passage probabilities,
") =PX, =S X1 # Spees Xoenr1 # SI|XI—n =S5,

(9.1.12)
and show that they satisfy ’

f}]) = prflnH) = p(n+l) Z f(r) (n—r+l)

r=l

9.1.13)

The mean first passage times (mean recurrence timesif i = j) are defined
by

-]
my = )_‘, nj(")

f(n) =
=l

If L S =1, the state S is called recurrent}; if then my < o itis

n=1
called positive, if my= o the state is null. If pP# 0 only when n is
a multiple of d, the state S; has period d; if d = 1, the state is aperiodic.
If S; and S are mutually accessible, that is, if there exist numbers
m and n such that

(9.1.14)
provided that

(9.1.15)

M #0, piP#£0, (9.1.16)
then S; and S; belong to the same class; it may be proved that the

tIf X p,; <1, introduce an additional state S, with p,,=1—2 p,
J

Puj =0, puw = 1; the extended matrix is then stochastic.

1 A great variety of terminology exists in the literature, and authors
(e.g. Feller [1]) even permute the meanings of various adjectives from one
edition to another, As a result, all such words as ‘recurrent’, ‘null’,
‘ergodic’, ‘transient’, ‘persistent’, etc., are so obscured by hopeless con-
fusion that nobody knows what they mean in any given context. Really,
somebody ought to start afresh with a completely new set of adjectives, but
we do not have the audacity to do so.
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states of a class are either all non-recurrent, or all positive, or all null,
and that all have the same period. We shall be concerned only with
irreducible chains, all of whose states are in the same class, and pri-
marily with chains which are finite (in their numbers of states) and
aperiodic. In the finite case it can be shown that all the states must be
positive,

The following statements are true of irreducible chains. For proofs
and more general statements we refer the reader to the books by
Feller {1] chapter 15, and Chung [2] part I §§ 15-16.

1. If the states are positive and aperiodic, then

lim pP = m) = mj! 9.1.17)

n—x

and {;} is the unique set of numbers satisfying

1TJ>0,]Z1TI= 1,

(9.1.18)
‘ﬂj = El: ﬂlpu.

II.  Ifnumbers {m) exist satisfying (9.1.18), and if statesare aperiodic,
then these numbers are unique, the states are positive, and (9.1.17)
holds.

III. If the states are positive, or if (9.1.18) is satisfied, then 4,(;)
tends to ;! with probability one as ¢ > w,

1V. If the conditions for III hold, and if
o0
mP =3 ntfi< w, (9.1.19)
n=1
then the expectation of (4,(j)— mij")? is O(™").
V. If the conditions for IV hold, and if the expectation of the square

of the sum of the values of |y,| between consecutive recurrences of S,
is finite, or in particular, if /' is bounded, then the expectation of

(Y,- ;; my' (S is O(™).
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In the case of a finite irreducible chain, all the conditions for I-V
are automatically satisfied, except that the states may be periodic.
Notice that if the chain is reducible the solution of (9.1.18) is not
unique.

9.2 Problems in equilibrium statistical mechanics

Statistical mechanics [3] [4] studies physical systems consisting of a
large number of identical components, such as the molecules in a gas.
Its use is justified on one of two grounds: either one allows chance to
play a fundamental part in the laws of physics, or one says that the
laws are deterministic but it is impossible to collect enough facts to
be able to apply them deterministically, so that one turns to proba-
bility to cover up one’s ignorance.

If a classical system is in thermal equilibrium with its surroundings,
and is in a state S with energy E(S), then the probability density in
phase-space of the point representing S is proportional to

e PE®) (9.2.1)

where 8= (kT)~!, T is the absolute temperature of the surroundings,
and k is Boltzmann's constant. According to the ergodic theory, the
proportion of time that the system spends in state S is also propor-
tional to (9.2.1). If the system is observed at a random time, the expec-
tationt (/) of any state-function f(S) is thus

[ e Feas
[ etE®as

with some restrictions on the form of /. The Monte Carlo method tries
to evaluate (9.2.2) for systems for which this cannot be done ana-
lytically.

= , 09.2.2)

9.3 Metropolis’ method for evaluating {f)

One could in theory evaluate (9.2.2) by crude Monte Carlo estimation
of the two integrals, possibly using the same random numbers in
1t In statistical mechanics, it is conventional to write (f> for the expec-

tation of a quantity f. We adopt this convention here, but restrict its use to
expectations over the Boltzmann distribution (9.2.1).
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each case. However, this method breaks down in practice because the
exponential factor means that the significant part of the integral is
concentrated in a very small region of phase-space. We therefore
want to turn to importance sampling, and to generate states with a
probability density of

() = e‘ﬁ‘f“’/ f BES)gs, ©.3.1)

Then fis an unbiased estimator of the whole expression (9.2.2).

On the face of it this is impossible, for the same reason as in§ 5.4,
namely that we do not know the denominator of (9.3.1). We may get
round this, however, by a device first announced by Metropolis and
his collaborators [5] in 1953.

Suppose, for simplicity, that the phase-space is discrete, so that the
integrals in (9.2.2), (9.3.1) are in fact summations over discrete states
S;. If we can find an irreducible aperiodic Markov chain with tran-
sition probabilities p; such that

m = n(S)) = “21 Py 9.3.2)

then (9.1.18) is satisfied and (by 11 of §9.1) the Markov chain has the
unique limit distribution m;; we may then hope that fis such that (by
V) the mean value Y, of f over ¢ consecutive states in a realization
of the Markov chain tends to {f) with an error that is o) ast
increases. The point to notice about (9.3.2) is that it involves only the
relative values of 7(.S), i.e. the ratios m,/m;, so that one never needs to
evaluate the denominator of (9.3.1).

Metropolis et al. contrived to satisfy (9.3.2) as follows. Consider an
arbitrary symmetric Markov chain, that is to say one with a sym-
metric matrix P* of transition probabilities. The elements of this
matrix satisfy

p?, =0, }j:pz‘, =1, p?, = pfl. (9.3.3)

The first two conditions are those satisfied by any stochastic matrix,
as in (9.1.11), while the third is the condition of symmetry. We now
define a set of quantities py in terms of pYand the known ratios m/m;
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and we shall prove that these p; are the clements of a stochastic
matrix satisfying (9.3.2). If i# j we define

_ pimjm if mlm <1
Py {pf, ity > 1. 034
If i = j we define

pu= P?r*‘?’]’ﬁ(l —mylm), 9.3.5)

where 3’ is taken over all values of j such that m;/m; < 1. In the first
place, since each m; >0, all p; = 0. In the second place, writing >

. J
for summation over all values of j# i such that m)/m; > 1, we have

/Z py = Put jZ'P;(l —mlm)+ 12' pymim+ X" py
=ph+ X py+ 2 Py = Pit+ X Py
J J J#i
= jEp?} =1 9.3.6)

Thus the py; satisfy (9.1.11) and are therefore elements of a stochastic
matrix.

Next if i and j are two suffices for which 7; = 7, we have by (9.3.3)
and (9.3.4), the latter used once as it stands and once with i and j
reversed,

Py =Py ="Pi="Pi ©.3.7
and therefore, since m; =),

Py = ™Py. ’ 9.3.8)
On the other hand if 7; < w;, we have again by (9.3.3) and (9.3.4) used
twice,
py = Pymlm = plimlm = pymln; 9.3.9
a-nd this again gives (9.3.8). Similarly (9.3.8) results from the supposi-
tion that ;< ;. Consequently (9.3.8) holds for all values of i,j.
Finally by (9.3.8) and (9.3.6)

21: mpy = ? WPy = Ty ‘EPJI =y (5.3.10)

and this completes the proof that the py satisfy (9.3.2).
Next let us see how to apply this result. We take P* to be the

i
b




120 MONTE CARLO METHODS

transition matrix of a Markov chain on the states {S;}. Suppose that
we are currently in state S;. We use P* to pick a state S;; the transition
probability of this is p}",. Having chosen S; in this way, we calculate the
ratio my/m. I my/m; 2 1, we accept S; as the new state. On the other
hand if m/m; < 1, then with probability m;/m; we accept S; as the new
state, and with the remaining probability 1 —m;/m;, we take the old
state S; to be the new state. This procedure gives the transition pro-
babilities p;; defined in (9.3.4) and (9.3.5).

If =;> 0 for all j,P = (py) will represent an irreducible aperiodic
Markov chain whenever P* = (p}) does, because there will be a
positive probability of following under P any given finite sequence of
states that can arise with positive probability under P*. Should there
be states S; for which #; = 0, the above does not necessarily hold, and
an irreducible P* may lead to a reducible P; however, we have plenty
of latitude in our choice of P*, and shall usually be able to prevent this
happening.

In the case of the Boltzmann distribution (9.3.1), we have

mfm, = e BEGSHBES) — o~PAE " ©9.3.11)

where 4E is the difference of the energies in the two states. To sum-
marize, our sampling procedure is the following,
If X, = S;let X7 be a state selected from a distribution such that

P(X! = S)X,=8)=P(X} = S|X,=S). (9.3.12)

Let AE = E(X})—E(X,). Then if 4E <0 we take X,,, = X7, while
if 4E > 0 we take
_ [ X7 with probability e PAE
X1 = { X, with probability 1 —¢F4E.

The transition probabilities py thus defined satisfy not only (9.3.2) but
the stronger condition (9.3.8). The chain so defined is aperiodic and
the only doubts are whether the conditions for IV and V of § 9.1 are
satisfied, and whether the chain is irreducible.

Assuming that these doubts have been allayed, there remains a
practical problem arising from the fact that we can realize only a
finite number of steps of the chain. Wood and Parker {6] call a chain
quasi-ergodic if there are sets of states of low energy (and therefore of
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high probability) such that the chance of passing from one set to
another in the course of the realization is small. Then it is quite likely
that Y, may take values at some distance from ), while giving every
sign of having converged. It is a wise precaution to run two or more
simultaneous independent realizations of the Markov chain with
completely different initial states. We may then use the difference
between the respective values of Y, for a convergence test. In any
case, there is a good deal of room for further research into how best to
choose the arbitrary symmetric P* to achieve rapid convergence and
small variances for the final estimates.

Formally, it is easy to extend this process to continuous phase-
space, when (9.3.2) for instance, goes into

w(S) = [ #(SYp(S” > S)ds” 03.13)
where p is now a conditional density.

9.4 Equations of state

Metropolis originally proposed his method in connexion with investi-
gations of the behaviour of a liquid or a dense gas, represented by
interacting molecules confined to a box. See [5), also (7], [8], [9] and
for a review [10].

One has N molecules centred at points xy, X,, ..., Xy, with an energy
of interaction

E(S) = ;? V(x;—x))), 94.1)

and wants to estimate such parameters as the mean square separation
of a molecule from its nearest neighbour. The commonest forms of
interaction considered are the hard-sphere potential

V) = { 0, r>a ©.4.2)

0, r<o

and the Lennard-Jones potential
V() = 4¢{(a/r)'2—(o/r)%}. (9.4.3)

The method is as outlined in § 9.3, X, being generated from X7 by
selecting a molecule at random and subjecting it to a translation v
chosen uniformly at random from a cube —a<v<a.

MCM—1]
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This is a case of a continuous phase-space, for which the validity of
the general process has not been established. In this particular in-
stance, it is not difficult to carry out the analysis, except that, when
the molecules are very densely packed and the hard-sphere potential
is used, it may not be evident whether the chain is irreducible; if the
cube-size « is taken as small, the Monte Carlo process resembles a
possible physical process, in which the molecules may conceivably not
have room to squeeze past one another. This difficulty never arises
when « is large, but practical considerations.sometimes favour a
small «.

The process is not feasible for more than a few hundred molecules,
but a good approximation to a larger system is got by the use of
periodic boundary conditions, under which all co-ordinates are inter-
preted modulo 1 so that each molecule stands for an infinite lattice of
molecules. To avoid the excessive labour of computing (9.4.3) for
every pair of molecules in the system, Wood and Parker [6] use an
analytic approximation for the effect of all distant pairs, using the
exact formula for small values of r only.

We should mention the work of Alder and Wainwright [11].
Theirs is really a simulation method, since they take an initial con-
figuration of molecules with (usually) equal energies and random
directions of motion, and follow their subsequent motion by the
ordinary methods of dynamics from collision to collision, for several
thousand collisions.

9.5 Order-disorder phenomena

Another successful application of Metropolis’ method has been to the
Ising model [12] variously representing the behaviour of a substitu-
tional alloy [13], a ferromagnet [14]), [15], [16], or other co-operative
phenomena. The model consists of a lattice of sites, each occupied by
one or other type of atom (in case of an alloy) or by a spin in one of
two orientations (in the case of a magnet). The energy then depends
upon the number of sites and the number of pairs of adjacent sites
occupied in the various possible manners (e.g. a pair of sites could be
occupied by AA, AB, BA or BB, where A and B represent the two
components of an alloy).
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Now we have a genuinely discrete phase-space, so that the theory is
rigorous. The number of sites that we can handle, however, is again
restricted, and we need periodic boundary conditions againasin§ 9.4.

In the case of an alloy, we probably want to keep the proportions
of atoms of each type fixed, so that we may generate X7 from X
by exchanging two atoms on a pair of adjacent sites chosen at random,
or perhaps simply on any two random sites. In the case of a magnet,
the number of spins in each orientation contributes to the energy, so
that it seems preferable to choose one site at random and to reverse
the spin on it to obtain X;*. It has been suggested that one would do
better to choose the sites for exchange or reversal systematically,
rather than at*random. This calls for a slight modification of the
theory. If Py, P,, ..., Pr are the transition-probability matrices
appropriate to the R possible choices, in the order in which they are
systemaltically chosen, and if

P = Pl l)z...l’n, (9.5.1)

then one justifies the procedure by showing that (9.3.8) is satisfied by
each P,, and therefore by P, and then showing that P .s irreducible,
although the individual P, are not. The results therefore hold good,
provided that we regard R steps of the process as constituting a single
step of the Markov chain,

The most interesting feature of the Ising model is the existence of a
transition temperature or Curie point T, at which the properties of an
infinite lattice show a radical change; at all temperatures below T,
there is a condition of long-range order, under which the confgura-
tions most likely to occur display a degree of regularity that is entirely
absent at higher temperatures. The finite lattices that the Monte
Carlo method is compelled to use show traces of this phenomenon
(sce [14]), and so a rough value of T, may be guessed at by inspection
of the graph of some {f) as a function of T. We should like to have a
method of estimating 7, directly from a single Monte Carlo experi-
ment, but no suitable process has yet been discovered.

1t should be remembered that Metropolis’ Monte Carlo process is
not intended to simulate the behaviour of the model in any respect
other than its distribution of states; the sequence in which the states
follow one another has no significance at all.
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9.6 Quantum statistics

It may sometimes be worth while, or even essential, to transform the
physical model before applying the process of § 9.3. In quantum
statistical mechanics, for instance, it is essential. In place of (9.2.2)

one has the expression
CF> = trace {F -1}
trace {¢"BH} ’

where F and H are linear operators, H being the Hamiltonian of the
system, Since one can no longer deal with the encrgy E(S) of an
individual state, Metropolis’ method as it stands cannot be applied.

One way round this obstacle is to diagonalize the operators.
Suppose that the states of the system are discrete so that F and H can
be represented by (Hermitian) matrices. If we can find a transfor-
mation T to a new sct of states S* such that

S = ‘jZTu|Sf>» (9.6.2)

(9.6.1)

and such that F* = T'FTand H* =T’'HTare diagonal matrices, then
we can use the previous method, taking

(8% = F}, E(S})= H},. 9.6.3)
The usefulness of this approach depends on our ability to find and

carry out the transformation T.
An alternative way is that followed in [17] and [18]. Suppose that

N
H = H0+ Z Hh (9.6.4)
i=1

where Hg commutes with every H;. Then, by expansion of the ex-
ponential in the usual series,

trace (FePY} = trace {F e P A% 1y

5 Fompon(z]

r=0
S ﬁ) z trace lF e ol H, ... H,,’,

(9.6.5)
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where y, runs over all possible sequences iy, i, ..., i, of numbers in
the range from 1 to N. Now the trace of an operator is a real number,
so that we may write

where the summation runs over all the sequences , of all lengths from
zero upwards, where

Sy = trace (Fe P H, H, ... H,)

trace {¢ Pt H; H,,...H;} ’

(9.6.7)

and where
my) = A(=P) trace (¢ P H, H,.. . H,)/r!  (9.6.8)

(A being a constant such that 3 3} w(y,) = 1).

r v,

Provided that the traces are casily calculated, we can then evaluate
(9.6.6) by Metropolis’ method. Let f,(r =0, 1, ...) be any sequence of
probabilities and definc

1-£,
A=
ey’

let piy(i= 1, 2, ..., N) be a set of probabilities with 3} p(i) = 1, and
1

define

(9.6.9)

(—B)'Al Az. .. A, trace{e‘ﬁ""H,' le es H[,}
P p@ir). .. pGiy)

We construct a Markov chain whose states are the sequences y,. If
Xi =y, = iyi...i,, we first select the *forward’ direction with pro-
bability f, or the ‘backward’ direction with probability 1 —£,. In the
former case we take X} = y,i= iyi,...i,i, where i is chosen from the
distribution with frequencies p(i). In the latter case, we take
X¢ =iyiy...i,_y, unless r=0 when X?=X,=y, (the empty se-
quence). Then if +(X7)>7(X) we take X,,,= X!, while if
7(X7) < 7(X,) we take

{ X7 with probability (X})/+(X,)
X "1 =

T(Yr) =

. (9.6.10)

X, with probability 1 —7(X })/(X)).
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This is an exact analogue of Metropolis’ method and leads to a
Markov chain with the correct limit distribution (9.6.8); we may
therefore estimate {F) by the average value of f(y,) over the sequences
in a realization of the chain.

This process suffers from the drawback that, while the end of the
sequence ¥, is constantly changing, the earlier part tends to stay fixed,
so that the chain is in danger of being only quasi-ergodic. A cure for
this is to arrange that before every step the sequence is permuted from
iyiy...i, into iy...i,i). The properties of the trace ensure that these
two sequences have the same probability, so that, while (9.3.8) no
lIonger holds, (9.3.2) still does.

Notice that we are dealing with a Markov chain with an infinity of
states, so that we need to take care to verify that the process converges.

CHAPTER 10

Long Polymer Molecules

10.1 Self-avoiding walks

According to the Mayer model, the properties of a long-chain
polymer molecule are crudely but sufficiently well represented if one
supposes that the successive atoms occupy adjacent sites of a regular
tetrahedralf latticé, If one treats all such configurations as equally
probable, the positions of the atoms in a chain of {(n-1) atoms are
distributed in exactly the same way, relative to the position of one
end, as the sites passed through in n steps of a Pélya walk (random
walk) on the same lattice. One may then appeal to the theory of
Pdlya walks for the various information that one requires; of parti-
cular interest is the mean square distance (r2) between the ends of
the chain.

This treatment has the flaw that it allows more than one atom to
occupy the same site, which ought, on account of the mutual repulsive
forces, to be physically impossible. This is known as the excluded
volume effect. One needs, therefore, to modify the theory to consider
only self-avoiding walks, which, as their name implies, never intersect

themselves. Theoretical treatment at once becomes virtually im-

possible. For instance, it is easy to show that (+2) for a Pélya walk
is proportional to n, and to find the constant of proportionality for
any particular lattice, but for self-avoiding walks not even the asymp-
totic form of {r2) for large n is known.

1 To describe the tetrahedral lattice simply we need to divide the sites into
two classes, odd and even. Then each even site is adjacent to 4 odd sites,
reached from it by the vectors (1,1,1), (1,—-1,—-1), (-1, 1,—1), and
(-1, —1,1), and each odd site is adjacent to 4 even sites, reached by the
inverse vectors (—1,—1,—1),(—1,1,1), (1,—1,1),and (1,1,—1).
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Almost the only proved fact about self-avoiding walks [1]is that, if
f(n) is the number of self-avoiding walks of n steps on a regular lattice,
there is a constant &, depending on the lattice, such that

0 < k = inf n'logf(n) = lim n~'logf(n) < w.t
nal n—w
(10.1.1)

If the number of unrestricted walks of n steps is ¢"(c = 4 in the case of
the tetrahedral lattice), then p=logc—k is called the attrition
constant of the lattice, and the proportion of all unrestricted walks
that do not intersect themselves in the first n steps is asymptotic to
e, No one has yet succeeded in determing theoretical values for k
or u. For a review of theoretical results, see (3}, [4], [5], [6), [7], [8),
and [9].

We have here, therefore, two problems to which Monte Carlo
methods might provide solutions; estimating k or g, and either
estimating (rﬁ} or (rather more difficult) finding a possible asymptotic
formula for (r2) for large values of n. It is true that these problems
are unique, so that any method that may be devised to solve them is
unlikely to have any more general application; we feel justified,
however, in devoting so much attention to them, simply to illustrate
once again the vast increases in efficiency that appear when Monte
Carlo is applied judiciously rather than blindly. For comments on the
practical significance of the results, the reader is referred to [10].

10.2 Crude sampling

We could generate random self-avoiding walks of n steps by the
hit-or-miss method of generating random unrestricted walks and
rejecting those that intersect themselves before the nth step. This was
the method adopted in the earliest attacks on the problem [11], [12].
The proportion of accepted walks is then an unbiased estimator of
em", and such walks form a sample from which to estimate ¥y, We
notice at once that we can save labour by not continuing any walk
beyond its first intersection, and by working with several different

+ Hammersley and Welsh {2] have shown for a hypercubical lattice that
0 < n-llogf(m)—k < yn~12+n-tlogd for alln > ny(y)
where y is an absolute constant and 4 is the number of dimensions.
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values of n at once; a walk that intersects itself for the first time at the
mth step provides instances of n-step sclf-avoiding walks for all
n<m.

What concerns us most, however, is to be able to generate some
fairly long walks, running to thousands of steps if possible. On
account of the attrition, we expect to have to generate a number of
the order of " of walks before we find a self-avoiding walk of n steps.
Since p, for the tetrahedral lattice, is approximately 0-34, this number
is quite large, even for values of n as small as 20. The situation for
two-dimensional lattices is worse than for three-dimensional lattices;
 for the square lattice is approximately 0-43.

We can improve matters slightly by modifying the way in which
walks are generated, introducing the condition that no two successive
steps are in exactly opposite directions. This has the effect of reducing
the attrition p from (loge—k) to (log(c—1)—k), which takes the
values 0-06 and 0-14 for the tetrahedral and square lattices respec-
tively, while still giving an unbiased sample.

If we go further than this, and modify the procedure to cut out
automatically walks that intersect themselves to form a loop of at most
r( = 2) steps, we come into rather deeper waters. Wall, Rubin, and
Isaacson [13] build a walk up from previously-constructed self-
avoiding strides of r steps. 1t is easy to make up a table to show which
of such strides may follow another without intersecting it, and to
select successive strides at random from the appropriate rows of this
table; however, this procedure gives a biased result unless the number
of possible successors of each stride is the same. The simplest way of
correcting this is to introduce dummy strides, where necessary, to
bring all the numbers of successors up to the same total, with the
understanding that when a dummy stride is selected the walk is
terminated just as if it had intersected itself,

10.3 Generation of very long walks

All the methods so far discussed still share the defect that a lot of
effort is thrown away in short walks, while one is really interested only
in long walks. What one wants, therefore, is a scheme to encourage
awalk to avoid itself as it is generated. Two such schemes are inversely
restricted sampling and the enrichment technique.
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The idea of inversely restricted sampling [14], [15] is that one
compels the walk to avoid itself by restricting the choices at each step,
and removes the bias with a weighting factor. Suppose that the first n
steps of a self-avoiding walk connect the lattice-points Py, Py, ..., Pp.
Then the ¢ points that are adjacent to P,, and so are possible choices
for P,,, each fall into one of three classes: (A) members of the set
Py, Py, ..., P,; (B) points from which there is at least one infinitc
self-avoiding walk not passing through any point Pg, Py, ..., P,; (C)
‘traps’ from which it is impossible to continue the self-avoiding walk
for more than a finite number of steps. If class B is empty, then P,
must at the previous stage have been in class C.

Supposing for the moment that it is possible to tell immediately to
which class each neighbour of P, belongs (this is in fact the casc when
one is producing a two-dimensional walk graphically), the technique
is then to restrict the choice of P,,; to the class B, at the same time
recording the number a,, of members of this class. An unbiased esti-
mator of f(n) is then given by the product a;a;...a,, or, more pre-
cisely, it becomes so if we interpret f(n) as the number of n-step self-
avoiding walks which can be continued indefinitely, since we have

excluded walks that finish up in a trap. Thus a biased estimator of k is
given by ’

n~'(loga; +...+loga,). (10.3.1)

This bias is caused by the taking of logarithms.

Without graphical aid, things are slightly more difficult, since we
cannot distinguish between classes B and Cexcept by trialand error.t
The natural policy is to assign every non-member of A in the first
instance to class B. If the end-point P, of the walk is later discovered
to belong to class C, we then take back the last step, reduce a,_;
accordingly, and try again. The consequence of this procedure is that,
when we finally succeed in constructing a walk, the numbers a; will
still overestimate their true values. We may, however, get a sufficiently
good estimate of the small correction factor by using the number of

+ Marcer [16] has invented an ingenious method on an electronic com-
puter for identifying the traps on the plane square lattice. This will not extend
to three dimensions, where, however, traps are much rarer occurrences.
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traps that are actually discovered to estimate the number that would
have been discovered if every point could have been tested (see [14]).
Having estimated k, one may attempt to establish a formula for
(rd> by regression. Possibly the correct form will one day be known,
but lacking such knowledge suppose that one makes the plausible

assumption
{2y ~ An®, asn - w, (10.3.2)

where a and A are both unknown and « in particular is to be deter-
mined. A suitable method would be to carry out a weighted linear
regression of log(r?) on logn, where a suitable weight would be
provided by (a,a,...a,/k"). The data for the regression could be
collected by generating several long walks and observing the sub-
walks formed by the first 100, 200.. ., steps of each. The great difficulty
about this procedure is that the weights are almost certain to get out
of hand, a few of them being very much larger than all the rest. This
means that the greater part of the data, corresponding to the negli-
gible weights, gets ignored. It is still an open and controversial matter
whether or not weighting should be used in this context.

Marcer [16] suggests an alternative estimator of «, making use of
the relation

ray

DG
1=1

The enrichment technique [17], [18] is founded on the principle
‘hold fast to that which is good’ or, if one prefers, on the *splitting’
process discussed in § 8.2. Walks are generated by one of the methods
of §10.2, but with the additional rule that, whenever a walk attains a
length which is a multiple of s without intersecting itself, m indepen-
dent attempts are made to continue it. The numbers m and s are fixed,
and if m= e** the numbers of walks of various lengths generated will
be approximately equal. Enrichment has the advantage over inversely
restricted sampling that all walks of a given length have equal weight ;
on the other hand, the dimensions of these walks are liable to be
highly correlated (by reason of their having many steps in common),
and this should be borne in mind when setting confidence limits to

2

~ l+aasn—+wo (a=0) (10.3.3)
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Wall and Mazur [19] have made similar calculations allowing for an
intermolecular potential in addition to the excluded volume effect. A
straightforward sampling or enrichment technique then provides a
large number of walks with small probabilities; and, to overcome
this effect, Wall, Windwer, and Gans [20], [21] utilized importance
sampling.

In connexion with all of these techniques, it is worth the effort to
devote some thought to ways of saving time. Unless a graphical
method is used, the time taken to gencrate a self-avoiding walk of
n steps is of order n? for large n, since the length of the process of
testing for intersections is directly proportional to the length of the
walk at each step. However, one can exploit the continuity of the walk
to make the process quite fast. For example, one could, at every 20th
step, say, make a list of all the previously-visited points within 20
steps of the end of the walk; if there is an intersection in the next
20 steps, it can only be with one of these so that there is no need to
examine the rest of the walk.

10.4 Walks in continuous space

Fluendy [22] has considered a model rather less artificial than the
Mayer model. No longer confined to a lattice, the walk js free to visit
any point in space, subject to the restrictions that all steps are of
equal length and that every pair of consecutive steps meet at the same
angle. The self-avoiding property is reflected in a repulsive potential
between every two atoms, similar to that in the gas model of § 9.4,
while there is an additional torsion potential depending on the angles
between alternate steps such as P,_y P, and P,_3Pp_2. Then (compare
(9.2.1)) we have

) j...jrge-ﬂfd¢2...d¢n
- f...Ie"eEdcﬁz...dgb,, ’

where ¢, ..., Paare the successive angles of torsion, r, is the distance
between Py and P,, and E is the total potential

E= Erepulsion""Elonion = }l:>§ El(IR)+2]: E(T)(d’j)-

(10.4.1)

o
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It would be quite possible to use Metropolis’ method (§ 9.3) to
estimate <rﬁ>. It is more efficient, since in this case it is not difficult, to
take part of the exponential factor into the probability density, by
the transformation

6 = j exp (— BETA$))ddy, (10.4.2)
when (10.4.1) becomes
[ [ Aexp(-B T 3 EP)dby....d0
Dy = . (10.4.3)

[ .. [ exo(-BE T EP),...d0,

In fact, Fluendy obtained quite satisfactory results by crude Monte
Carlo estimation of the numerator and denominator of (10.4.3), for
walks of up to 12 steps. Long walks are, of course, out of the question
on this model.

T AP ¥




CHAPTER 11

Percolation Processes

11.1 Introduction

Percolation processes [1] deal with deterministic flow in a random
“medium, in contrast with diffusion processes which are concerned
with random flow in a deterministic medium. The terms ‘flow’ and
*medium’ are abstract and bear various interpretations according to
context. Frisch and Hammersley [2] discuss these interpretations in
the different applications of percolation theory to physical problems.
Although a certain amount of general mathematical theory now
relates to percolation processes, this theory is qualitative and, with
only a few slight exceptions, Monte Carlo methods provide the only
known way of obtaining quantitative answers. It will suffice here to
describe a typical percolation problem together with its Monte Carlo
solution.

11.2 Bond percolation on the cubic lattice

If a lump of porous material is put in a bucket of water, will the
interior of the lump get wet and, if so, to what extent? We visualize
the material as a network of interconnecting pores, some of which
are large enough to convey water and others so small that they block
its passage. We shall idealize this situation by supposing that the
structure of the pores forms a simple cubic lattice. More precisely
the places where the pores interconnect are called sites, and there
is one site at each point with integer co-ordinates (x, y, z) in three-
dimensional Euclidean space. Two sites are called neighbours if
they are unit distance apart; and we suppose that each pair of neigh-
bouring sites is connected by a pore (which we shall calla bond for the
sake of conformity with the nomenclature in other applications of
percolation processes). Each bond, independently of all other bonds,
134
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has a prescribed probability p (the same for each bond) of being large
enough to transmit water, and a probability g = 1 —p of being too
small and therefore unable to transmit water. We call the bonds
blocked or unblocked, as the case may be. An unblocked bond will
transmit water in either direction. When the water reaches a site at one
end of an unblocked bond, it will travel down any other unblocked
bond ending at this site. We imagine the lump of material to be a
large chunk (say a cube with M sites along each edge) hewn from the
infinite cubic lattice. When the chunk is immersed, all sites on its
surface become wet; and from these sites the water flows along
unblocked bonds from site to site into the interior, We write P(p)
for the proportion of interior sites which become wet when M is very
large. We call P(p) the percolation probability. 1t is clearly a non-
decreasing function of p, satisfying P(0) = 0 and P(1) = 1. Percolation
theory [1] also tells us that there exists a number py, called the critical
probability, such that P(p) =0 when 0 < p < py, while P(p) > 0 for
Po < p < 1. Physically, when the proportion of unblocked pores is
less than pq, the water only wets the skin of the lump; but as soon as
the proportion exceeds pg, the water suffuses more or less uniformly
throughout the interior of the material.

The problem is to calculate P(p) as a function of p, and hence to
determine the critical probability pg. The problem is probabilistic
in its original physical formulation; and, in principle, it should be
amenable to direct simulation without any recourse to sophisticated
Monte Carlo devices. But this line of attack runs into a prohibitive
amount of computing. The simple-minded direct simulation would
use random numbers to label each bond as either blocked with
probability g or unblocked with probability p, would then examine
each dry site in turn, wet it whenever it was connected to an already
wet site by an unblocked bond, continue the examination until no
more dry sites could be made wet, and finally count the number of
wet sites. But if M is at all large, say M = 200, there are 8 million sites
and 24 million bonds in the chunk. This calls for enormous storage
facilities in the computer, even if we go to the trouble of representing
the state of each bond (blocked or unblocked) and each site (dry or
wet) by a single binary digit and packing this information into
separate bits of the various stored words. Further, we have to scan all
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8 million sites over and over again until no more can be wet, and this
may require one or {two hundred repatitions of the scan. Moreover,
this procedure only affords a single experimental observation on the
required number P(p); so that we must repeat it several times to
ensure that sampling errors are duly accounted for. Lastly, what we
have so far described relates merely to one prescribed value of p;
so that we must repeat the work for, say, 50 different values of p in
order to get a graph of P(p) against p for 0<p< 1. All in all, the
complete calculation would need to process about 10'2 or 10!? pieces
of information and would keep a modern high-speed computer con-
tinuously busy for about 50 years [3]. Direct simulation is thus out of
the question. '

We shall surmount this difficulty in two stages. In the first stage, we
look for another probabilistic problem, which also has P(p) for its
solution. As explainedin§ 1.1, we use mathematical theory to connect
these two problems. In the first problem (the original one) we started
the water at all sites of the surface of the chunk and followed its in-
ward flow. In the second problem, we shall start the water at just one
fixed interior site (to be called the source site) and follow its outward
flow from there. We shall write Px(p) for the probability that, in this
second problem, the water will ultimately wet at least N other sites.
The theory of percolation processes [1] tells us that (under mild
conditions here satisfied Py(p) > P(p) as N — . Hence by estimating
Py(p)forsome large value of N, we can estimate the required function
P(p). It turns out that N ~ 6000 is a sufficiently large number.

The first consequence of this change of viewpoint is that we enor-
mously reduce the storage requirements. For now we have only got
to continue the Monte Carlo experiment until either (i) we have
succeeded in wetting N sites or (ii) fewer than N sites are wet and no
unblocked path leads from any of these sites to a dry atom. We can
wet the sites one at a time, starting from the original single source site,

and we have merely to look at the bonds leading from the so-far-
wetted sites to see if the process of further wetting can be continued.
At most we need only store information relating to N sites and the
particular bonds (at most 5N+1 of them) leading from these N
sites. Thus the total storage requirement is now only about 6N
instead of M3. Moreover, we also reduce the number of pieces of
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information to be handled by the computer from a multiple of M*
to a multiple of N2 (N2 rather than N arises because we must succes-
sively sort partial lists of N sites). In the present instance, the storage
requirements come within the realm of practical computing and the
total computing time comes down from about 50 years to something
like 1 year. Of course, thisis still a prohibitive amount of computing;
but the reduction of a factor of 50 or so is still quite remarkable when
one considers the very simple change of viewpoint (outward flow
instead of inward) which achieves it.

To reduce the computing time still further to manageable propor-
tions, we embark on a second equally simple transformation of the
problem. In our second version of the problem we were still faced with
the labour of repeating the Monte Carlo experiment for various values
of p in order to build up a graph of P(p). For the third version of the
problem, we adopt a device which allows us to calculate P(p) simul-
taneously for all values of p from one and the same Monte Carlo
experiment.

In the first and second versions each bond was either blocked or
unblocked. In the third version we shall assign a rectangularly distri-
buted random variable £ independently to each bond. Instead of
starting a single fluid (water) from the single source site, we shall
simultaneously start infinitely many different fluids all from the same
single source site. Each of the separate fluids will be characterized by a
number g: in fact, there will be one fluid for each number g in
0 < g < 1, and we shall call the fluid, characterized by the number g,
the g-fluid. We adopt the rule that a particular bond with an assigned
random ¢ will be capable of transmitting the g-fluid if and only if
g < £. The consequence of this rule is that, if the go-fluid succeeds in
wetting a particular set of sites S, then all g-fluids, for which g < g,
will also wet S. Let us write gy for the maximum value of g such that
g-fluids wet N or more sites. We now prove that

P(gy = 1—p) = PN(p). (11.2.1)

Tosee the truth of (11.2.1) let us take any fixed value of p, and consider
what happens to the particular (1 — p)-fluid. This fluid will traverse
any particular bond, to which the randomnumber ¢ has been as-
signed, if andonly if 1-p < ¢; and the probability of this event is

MCM—K
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P(¢>1-p)=p since {¢ is rectangularly distributed. Thus the
(1 —p)-fluid in the third version of the problem behaves exactly like
the single fluid in the second version of the problem. If in the second
version the fluid succeeds in wetting at least N sites, then in the third
version the (1 —p)-fluid will also do so; and therefore a a fortiori
gy = 1—p. On the other hand if gy < 1—p, the (1 — p)-fluid will not
wet as many sites as N and neither will the single fluid in the second
version of the problem. The last two sentences are equivalent to the
equation (11.2.1), which is consequently established. From (11.2.1) we
deduce

P(1-g, < p) = Pn(p); (11.2.2)

and this asserts that Py(p) is the distribution function of the random
variable 1—gy. Hence to solve our original problem, it suffices to
find the distribution function of 1—gy in the third version of the
problem. Let us see how to do this.

We define g} = 1 and S to be the single source site. We now cal-
culate recursively for n=0,1,... the quantities g" and a sequence of
sets of sites, the nth set being denoted by S,. (We shall prove presently
that g} = gn; so that the recursive calculation will actually yield the
wanted variable gy.) Suppose that we have already determined g
and S, and have shown that S, consists of the source site ‘and n other
sites, each of which is wet by the g -fluid. By definition, this is cer-
tainly true for n = 0. We now examine all bonds which lead from a site
. of S, to a site not in S,; and we take from amongst them that bond
which has the greatest value of £ assigned to it. Let 7, denote this
maximum £, and let 4, be the site lying at the far end of this bond (.e.
not belonging to S,). We then take S,y to be the union of S,
and A,; and we define g, to be the smaller of 7, and g7. This con-
struction validates the recursion, for clearly S, | consists of the source
site and n+ 1 other sites, each of which will be wet by the gn, 1-fluid.
Thus the g%-fluid wets 7 sites besides the source site; and therefore

gh< Em (11.2.3)

by the definition of g, as the maximum characterizing number with
this property. On the other hand, we chose 7, to have the maximum
value for all bonds leading out of S,; and thus no g-fluid with g > 7,
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can escape from S,,. Since Sy, Sy, ...are successively contained within
each other, by their construction, it follows that no g-fluid, starting
at the source site, can reach any site outside S, if

g> min (1701 Nise-- nn) = g:«H' (11.2.4)

However, any set of n+ 1 sites, which do not include the source site,
must have at least one site outside S,. Thus (11.2.4) shows that

Enr1 S Ensi- (11.2.5)
Because (11.2.3) and (11.2.5) hold for all n, we conclude that

&n = &n (11.2.6)
and we can drop the asterisks on g%

To get a sample of values of gy, we may repeat the recursive calcu-
lation k times, say, assigning fresh random §£’s to the bonds at each
repetition. This will give a sample of k values of gn; and the propor-
tion of these values satisfying gy = 1 — p will be an estimate of Py(p)
foreachpin0O<p<1.

The actual method of performing the recursive calculation of g,
on a computer is a fairly technical piece of programming, which need
not concern us here but is described more fully in [3) and [4].

11.3 Refinement of the Monte Carlo method by use of ratio estimates
Let us define
EmN = min(nm+hnm+2»'°-a7]N): (11-3])

where the 7’s are those defined in § 11.2. Then (11.2.4) yields

EN = min(gm,gmN); (11-3-2)
and we have

P(gy = 1-p) = P(gn = 1 =p)Pgyn = 1-plgm = 1-P).
(11.3.3)
We may write this as

‘ PN(p) = Pm(p)PmN(p); (ll~34)
where P,,n(p) is the conditional probability

PmN(P) = P(gmN = 1_p|gm = l“_p)- (11-3-5)
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The Monte Carlo recursive calculation described in § 11.2 provides
gaforn=1,2,..., N:and hence yields an estimate B(p) of P(p) for
n=1, 2, ..., N. It docs not provide a direct estimate P,n(p) of
P.n(D); but we could obtain one from the equation

Pn(p) = B (p) Brun(p), (N > m). (11.3.6)

Now most of the sampling variations in g arise from variations in
the first few terms in g, 7y, ..., since the early terms depend upon
the assigned £'s of only a few bonds, while the later terms depend upon
more £'s and are therefore more stable. That is to say, most of the
sampling error in Py(p) in (11,3.6) depends upon the sampling errors
in P,,,(p) if m is small. We should get a more precise estimate P(p)
of Pxn(p) if we replaced P,,(p) by its true value P, (p):

PR(D) = Pplp) Pun(p), (N> m). (11.3.7)
From (11.3.6) and (11.3.7) we get the ratio estimator

PR(p) = (PulPIP(P1PN(P), (N> m),  (11.3.8)

which we can use if P,,(p) is known theoretically. For very small m
it is possible to work out P, (p) exactly: thus

Pyp) = 1-¢5 Py(p) = 1-¢°—6pg'°, ~ (113.9)

where ¢ =1—p. For m> 2, it becomes increasingly laborious to
calculate P,,,(p); but we can nevertheless usefully employ (11.3.8) with
-m= 2. Indeed, as an illustrative check of this procedure, consider
what happens when m = 1, and N = 2. The Monte Carlo experiment
[3] yielded P,(0-30) = 0-844 and £,(0-30) = 0-789. From (11.3.9).
P,(0-30) = 0-882; and hence (11.3.8) gives P3%(0-30) = 0-825. The true
value is P5(0-30) = 0-831; and we see that P% is a better estimate of
P2 than ﬁz is.

This use of ratio estimators is a typical example of the way in which
Monte Carlo results may be improved by replacing a part of the
experiment by exact analysis.

11.4 Other Monte Carlo approaches to percolation problems

There are similar percolation problems, in which the blockages occur
randomly at the sites instead of on the bonds: and the percolation
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may occur on types of lattice other than the simple cubic. The calcu-
lation is essentially the same: for details and numerical results see
{21, (4], [5], [6and [7].

A different kind of technique, based on the sizes of clusters of sites
which may be connected together by unblocked bonds (or which, in
the site problem, consist of neighbouring unblocked sites), is given
by Dean [8]. This yiclds estimates of the critical probability py; but
does not provide direct information on P(p). ‘




CHAPTER 12

Multivariable Problems

12.1 Introduction

As Thacher [1] has remarked, ‘ one of the areas of numerical analysis
that is most backward and, at the same time, most important from
the standpoint of practical applications’ is multivariable analysis.
Much of our ignorance results from a lack of adequate mathematical
theory in this field. Unless a function of a large number of variables
is pathologically irregular, its main features will depend only upon
a few overall characteristics of its variables, such as their mean value
or variance, but we have little, if any, theory to tell us when this
situation appertains and, if so, what overall characteristic it is that
actually describes the function. In these circumstances an empirical
examination, effectively some sampling experiment on the behaviour
of the function, may guide us. .

The Monte Carlo methods hitherto discussed mostly turn upon
sampling from a population of random numbers. In this chapter we
shall consider sampling from the population of terms in a mathe-
matical formula. While this distinction is worth making in the hope
that it may stimulate freshavenues of thought, itis in no way a clear-
cut distinction; as with most Monte Carlo work, if not most of
mathematics, one formulation of a problem may be recast in terms
of another. For example, an integral (with a continuous integrand)
can be expressed, to within as small an error as we please, as the sum
of a large number of terms makingup a weighted sum of the values of
the integrand, and the ordinary Monte Carlo estimation of the
integral could be regarded as a sampling from amongst such terms.
Again, the second half of § 12.3 is only a particular case of § 7.5, and
perhaps a bad case at that,

The material of this chapter is largely speculative, but on that
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account perhaps offers good scope for further research. We only
consider a few rather disconnected topics, chosen mainly because
they happened to be lying around. It is a postulate that, underlying
each of them, there is some kind of uniformity or regularity attached
to the function of many variables.

Some other multivariable problems, which we only mention here
and pursue no further, are the many-body problem of celestial
mechanics, numerical weather prediction and similar complicated
hydrodynamic or magnetohydrodynamic problems, the distribution
of cigenvalues of a large vibrating system (as in solid-state physics),
and large-scale econometric problems including linear and dynamic
programming. Any of these topics offer challenging Monte Carlo
problems for the bold research worker.

12.2 Interpolation of functions of many variables

Consider a function f(x) = f(xy, xa, ..., X,) of a large number of
variables, say n = 1000. Suppose that we have an algorithm which
enables us to calculate fat any vertex of the unit cube, that is to say
when each x; is either O or 1. The probiem is to interpolate f at some
given point p = (py, ..., p,) Within this cube (0 < p; < 1); we shall
suppose for sirhplicity that linear interpolation is adequate. In
principle, the problem is elementary: we have only to compute

f(p) = Zrlr2"°rnf(81182t-")8n)0 (12-2-1)

where the sum is taken over all combinations of ;= Oor I, and where
r;=1—p; or p; according as 8,=0 or 1. In practice, however, this
procedure is unworkable, because the right-hand side of (12.2.1)isa
sum of 2" terms, each term being a product of (n+ 1) quantities. Even
if we had time enough for the calculation, the loss of accuracy due to
rounding errors in such a large number of very small terms would
invalidate the answer.

As a substitute procedure, we may samplet terms from the formula

(12.2.1). Choose a set of numbers
= 1 w%th probabilfly 1-p; (12.2.2)
0 with probability p;

1 It would be particularly interesting to know what happens if we sample
using quasirandom numbers.

avrebintsded |
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independently fori=1,2,...,n. Then
P(gy = 8,m = 83eensln = 8) = 11z ctm (12.2.3)
and hence, by (12.2.1),
t= L0112+ ) (12.2.4)

is an unbiased estimator of f(p). More profitably, we may take the
mean of N such values of (12.2.4) as an estimator of f(p); this will
have a standard error

o = [N“'varf(qp, .., 1" (12.2.5)

Is o small enough for this to be a reasonable procedure for moderate
values of N ? The answer depends, naturally enough, upon how well-
behaved fis. We may describe the regularity of fin terms of the differ-
ence 4,(V), where 4,(V) denote the difference between fat the vertex
V of the unit cube and at the ith one of the n vertices which are
nearest to V. Let M(r) denote the smallest function of r such that

:Z; [4NP < M(r) (12.2.6)

holds for each vertex ¥ of the unit cube, where 3} denotes summation
)

over any subset of 7 of the n possible values of i, Then Hammersley [2]

proved that

o < N-PGMOY+E B MR 022.)
. r=2

There are two special but important cases of (12.2.7). The first case
arises when all the partial derivatives of f are bounded and we may
write M (r) = Kr, where K is a constant. This gives

o < +/(Knf2N), (12.2.8)

so that we can get a reasonable estimate of the interpolate by making
N an adequate multiple of . Even with n = 1000, we can probably
handle the appropriate value of N on a high-speed computer. The
second case arises when M(r) is independent of r. This occurs if
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(the finite difference analogue of) gradf is uniformly bounded. Then
o < V/[(#+logn) K/2N], (12.2.9)

where K = M(r) is the constant that bounds M(r). Since the right-
hand side of (12.2.9) is a very slowly increasing function of n, we can
envisage work with prodigiously large value of n, such as n= 1026,
However, we now run into other difficulties; with very large n, it will
be no trivial matter to select a vertex by means of (12.2.2), which
involves drawing # random 7;. Unless there are other conditions on f,
such as a high degree of symmetry between co-ordinates, the method
will be unworkable.

Thus far, we have considered only linear interpolation. The pros-
pects for higher-order interpolation do not appear good. Once more,
the procedure is simple in principle. We have the multi-Lagrangian

formula
’ —
f(xl! (XX} xn) = Zf(xlj’ .e .,an) I_I ———(x‘ x”‘)
J 1k

(ey—Xu)
(12.2.10)

where j ranges over all the data points xj;, and where n’ denotes the
product omitting terms of the type (= x)/(xy— xy). We may write
(12.2.10) more concisely as

f= }‘,ij] = %]pj(Llf}/p]). (12.2.11)

Thus, if p;> 0 and Y, pj=1, we choose the jth datum point with
J

probability p; and use L, f;/p; as an unbiased estimate of £. The p; play
the usual part of importance sampling, so that we may hope to select
them in a way whichsimplifies the calculation of L,fj/p;and reduces its
standard error.
In practice, however, it seems difficult to achieve these ends. We
still have the identity
L=1, (12.2.12)
J

as may be deduced from (12.2.11) by taking f=1; but, when fis
relatively flat and we would like to take p; more or less proportional
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to L;, we are prevented by the fact that some of the L; are negative.
Indeed this change of sign inflates the standard error, for we have

2
varf = ? Pj WLflpp— (%: L]ﬁ)

- [S () Z enr] (]

2 * 2
> (2/3 |L;f;|) —(Ej) L,f,) , (12.2.13)

by Cauchy’s incquality. The right-hand side of (12.2.13) presents a
minimum variance which we cannot improve upon however in-
geniously we sample. Further the right-hand side of (12.2.13) may
easily be very largein comparison with f. To take a simple illustration,
suppose that f =1 and that the data points consist of all possible
combinations of the form (x{, X3, ..., Xa), Where x; belongs to a given
set of points 4;. If Lj” denotes the univariate Lagrangian interpolation
coefficients for A;, we have

n \ .
fJJILA =11 (;‘. IL§"|)- (12.2.14)
i=1
If A, consists of more than two points, ZIL}”I > 1; 50 (12.2.14) and

hence varf can be exponentially increasing functions of ».

The matter is discussed at greater length in [2], but the general
conclusion is that non-linear interpolation of a function of many
variables presents a completely unsolved problem. A possible way
round the difficulty is to stratify the sample.

12.3 Calculations with large matrices

Suppose we wish to calculate the element ¢y of a matrix product
C =AB, where A=(qy) and B= (by) are matrices of large order
I x m and m x n. We know that

m
Cy = kzl a,,‘bkj. (l23l)
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If the right-hand side of (12.3.1) contains an unmanageably large
number of terms, we may select N of them uniformly at random. Then

m
YW=y ik iy 12.3.2)

re=1

will be an unbiased estimator of ¢y with standard error

m-NH1 = , ., (& 212
[N(m-—l)] [’" El"tkbw—(kgl alkbk[)] . (1233)

The second factor in (12.3.3) will be roughly of the same order of
magnitude as c;;if the products aj, by, are mostly of the same approxi-
mate size. Thus if 0 <A< apby< Afork=1,...,m, we have

m

m 211/2
[m kzl a bi,—(kgl ag, bk,) ] < cy(A=N24/(AN).
(12.3.4)

So (12.3.2) will have a fairly acceptable standard error if N~ 10%;
and the Monte Carlo method will be worth considering if m~ 105,
say.

This technique can be applied to the estimation of eigenvectors of a
large matrix A. We recall that the sequence of vectors, starting from
an arbitrary vector u; and ¢ontinuing via

U, = Ay, (12.3.5)
is such that

N
xy =N~ X u,/|ju,l| (12.3.6)

converges as N — o to the eigenvector x of A: here | lu|| isa normof u,
say the square root of the sum of the squares of its elements. To simu-
late this by Monte Carlo, we may select m sequences (i=12,...,m)
of random integers k,(1), k,(2), ... independently and uniformly
distributed over the integers 1, 2, ..., m, and from an arbitrary vector
vy compute V, = {Un1, -+ s Unm} via

Upit, i = . iki(n) Vnki(n) (l = l,...,m), (12.3.7)
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where a, is chosen such that ||v,, || = 1. On these we base the esti-
mator v

N
N1 Y v, (12.3.8)
n=1

which will be a slightly biased estimator of x 5. The bias arises because
of the normalizing factor «,, but will not be serious if m is large.

However, so far as we are aware, it is not yet known how well these
proposals work in practice, if indeed they work at all.

12.4 Redaction of multivariable functions

A multivariable function is more easily handled if it can be expressed
to an adequate degree of approximation in the form

R
f(xh e .,X,l) = Zl gll(xl)ng(xz) (RN grn(xn)- (12-41)

Allen [3] has shown how to compute such a rearesentation when
n=2, and his treatment was extended to general values of n in [2].
The relevant formulae involve various tensor sums with a great
many terms in them. The only hope of calculating them seems to be
through some method which samples only a smallfraction of terms.

12.5 Network problems

Recently there has been much interest in the difficult mathematical
problems connected with networks or linear graphs. A network
consists of a number of nodes, certain pairs of which are connected
together by arcs. There may be numerical or non-numerical functions
associated with the nodes and/or with the arcs.

The percolation processes discussed in Chapter 11 are examples of
network problems. Another example arises in a system of theorems
in logic. Each node is a theorem, that is to say a logical proposition,
while each arc is a logical operation. The arc from node M to node N
carries the operation which, when applied to the proposition M
yields the proposition N. A subset of the nodes represents postulates.
The problem is then to discover whether or not a given proposition
can be proved from these postulates, that is to say whether this node
can be reached from the postulate-nodes via arcs of the network.
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If it can be so reached, which is the shortest path (i.e. the ‘neatest’
proof) ? In industrial production, the arcs may represent machining
operations, and path along such arcs from node to node will represent
a succession of operations applied to a mechanical component. Each
arc may carry a number indicating, say, the time taken to perform
the operation. We may then be interested in the path of shortest
time through a specified set of nodes, possibly in a certain order.
There are many other kinds of variation of this problem [4].

Usually there are many nodes and many possible paths, so many
that a complete enumeration of the situation is impossible. This
suggests a fruitful field for sampling and search procedures, but as yet
little Monte Carlo work has been done here. There are challenging
problems here for research into Monte Carlo techniques on multi-
variable problems.
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