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Abstract. This paper describes a generalized version of the variable elimination algorithm for Bayesian networks.
Variable elimination computes the marginal probability for some specified set of variables in a network. The
algorithm consists of a single pass through a list of data structures called buckets. The generalization presented
here adds a second pass to the algorithm and produces the marginal probability density for every variable in the
buckets. The algorithm and the presentation focus on algebraic operations, striving for simplicity and easy of
understanding. The algorithm has been implemented in the JavaBayes system, a freely distributed system for the
construction and manipulation of Bayesian networks.

1 Introduction

Bayesian networks occupy a prominent position as a a model
for uncertainy in decision making and statistical inference
[6]. Several algorithms manipulate Bayesian networks to
produce posterior values [8, 11, 13]. We can identify two
types of algorithms. There are algorithms that focus on al-
gebraic operations, such as the SPI algorithm [9], the vari-
able elimination algorithm [14] and the bucket elimination
algorithm [3]. And there are algorithms that focus on graph-
ical properties, mostly dealing with junction trees [6]. One
of the advantages of junction tree algorithms is that it is pos-
sible to efficiently compute marginal probability values for
every variable in a Bayesian network. Algebraic schemes
like variable and bucket elimination compute marginal prob-
ability values only for a given set of variables.

An attractive property of approaches based on variable
elimination is that they are relatively easy to understand and
to implement. Junction tree algorithms are quite complex in
comparison, demanding long digressions on graph theoretic
concepts. There has been an effort to derive junction tree
algorithms without resort to graphical concepts [2, 4], but
these efforts have not produced a variable-elimination-like
scheme for inference. This paper presents such a scheme,
describing a generalized variable elimination algorithm that
produces marginal probability values for certain collections
of queries. The goal here is to describe an algorithm that is
simple to understand and to implement, while keeping all
the characteristics of more sophisticated algorithms.

2 Bayesian networks

This section summarizes the theory of Bayesian networks
and introduces notational conventions used throughout the�
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paper. All random variables are assumed to have a finite
number of possible values. Sets of variables are denoted in
bold; for instance,

�
. The set of all variables that belong

to
�

but do not belong to � is indicated by
��� � . The

expression ����	�
 �� ��� indicates that all variables in
�

are summed out from the function 	�
 ��� �� . Denote by� 
���� the probability density of � : � 
���� is the probability
measure of the event ��������� . Denote by � 
����  !� the
probability density of � conditional on values of  .

A Bayesian network represents a joint probability den-
sity over a set of variables

�
[6]. The joint density is spec-

ified through a directed acyclic graph. Each node of this
graph represents a random variable �#" in

�
. The parents of� " are denoted by $&%'
�� " � ; the children of � " are denoted

by (*)�
�� " � . And the parents of children of � " that are not
children themselves are denoted by +,$�-'
�� " � — these are
the “spouses” of � " in the polygamic society of Bayesian
networks.

Figure 1 shows a network and some graphical relation-
ships among variables.

The semantics of the Bayesian network model is de-
termined by the Markov condition: Every variable is in-
dependent of its nondescendants nonparents given its par-
ents. This condition leads to a unique joint probability den-
sity [11]: � 
 � �.�0/ " � 
�� " � $'%'
1� " �,�32 (1)

Every random variable �4" is associated with a conditional
probability density � 
��4"*� $'%'
��5"6�,� , as indicated in Figure 1.
The independence relations in the Markov condition imply
several other independence relations among variables in a
network. The complete relationship between probabilistic
independence and the graphical structure of the network is
given by the concept of d-separation [5].

Definition 1 Given three sets of variables
�

, � and 7 ,
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Probability densities in the network:� 
 � � , � 
 � � � � , � 
 � � � � , � 
 � � ,� 
 � � �#��� � , � 
 � � � ��� � , � 
 � � � � .
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Figure 1: An example network.

suppose that along every path between a variable in
�

and
a variable in � there is a variable � such that: either �
has converging arrows and is not in 7 and none of its de-
scendants are in 7 , or � has no converging arrows and is
in 7 . Then � and

�
are d-separated by 7 .

A key property of Bayesian networks is that graphical
d-separation and probabilistic independence are equivalent
[11, page 117].

Suppose we want to find the minimal set of variables
that make variable � independent from all other variables
in a Bayesian network. Call this minimal set of variables
the Markov blanket of � . Using d-separation, it is easy to
see that the Markov blanket of a variable � is the union
of three sets: the parents of � , the children of � , and the
parents of the children of � .

Given a Bayesian network, the event
�

denotes the
evidence, or the observations, in the network. For example,� � ����� � ����� � ��� � ����� � fixes the values of variables� � and � � . Denote by

�! 
the set of observed variables;

in the previous sentence,
�" � ��� � � � � � .

Inferences with Bayesian networks usually involve the
calculation of the posterior marginal for a set of query vari-
ables

�!#
[3, 10]. The algorithm presented in this paper

performs exactly this computation. Note that there is no
restriction on the number of variables in

� #
. To simplify

the presentation, the symbol
� #

is used to denote both the
query variables and the event that the query variables have
a specified value. The posterior probability of

� #
given

�
is:

$ 
 � # � � � � $ 
 � # ��� �$ 
 � � � � �&%�',�&(*) �&+�, $ 
 � �
� �&% �&+ $ 
 � � 2 (2)

3 Representing probability densities and evidence

From a computational point of view, the important entity
in (2) is the numerator:

� 
 �!# �-� �.� .�&%�',�&(*) �&+/, $ 
 � � �
because once we have the numerator, we can easily obtain
the denominator. The denominator � 
 � � is simply a nor-
malization constant as the evidence

�
is fixed. So, a ba-

sic rule when deriving algorithms for Bayesian networks is:
Compute the numerator � 
 � # �-� � , and obtain the denomi-
nator � 
 � � in the very last stage.

Note that a variable must appear as a conditioning vari-
able once for each of its children. That is, if �"� is a child
of �0� , then �0� must appear as a conditioning variable in
the density � 
��!� � ��� � 2 2 2 � . Note also that any variable � "
appears only once as a non-conditioning variable in the den-
sity � 
1�5" � $'%&
��5" �,� .

When manipulating probability densities in inference
algorithms, it is often necessary to multiply densities de-
fined over different sets of variables. For example, we may
have that ��� and �0� are independent given �1� , and then we
obtain � 
���� � �0� � �0� � by multiplying densities � 
1�!� � �0� �
and � 
1�0� � �0� � . Suppose the value of �1� is fixed by the ev-
idence; consequently, � 
��!� � �0� � ��� � ����� is equal to the
product � 
1��� � �0� � �/� �32 � 
��0� ����� � �0��� . In general, it
is cumbersome to represent explicitly every observation in
a Bayesian network. Instead, we lump all observations into�

, and adopt a second basic rule: Any inference algorithm
begins by fixing the observed variables at their observed
values. For example, if � � is observed, then the algorithm
does not deal with � � at all; computations proceed as if we
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had unnormalized functions:

� 
1� � � � � �.� � 
�� � � � 
�� � � 2
These functions are not probability densities in general. We
can even multiply them by positive constants arbitrarily, for
example to avoid numeric underflow.

4 Standard variable elimination

Variable elimination is an algebraic scheme for inferences
in Bayesian networks. Variable and bucket elimination are
essentially identical; we use the former term to name the
algorithm but adopt the term “bucket” to name the storage
units in the algorithm, as this term is quite appropriate.1

The basic principles of bucket manipulation have been stud-
ied extensively by Dechter, and have led to a vast array of
results and applications [3].

Given a Bayesian network over variables
�

, evidence�
and a query

� #
, computation of � 
 � # � � � typically in-

volves only a subset of the densities associated with the
network. If density � 
1� " � $&%'
�� " � � is necessary for answer-
ing a query, then � " is a requisite variable [12]. There are
polynomial algorithms to obtain requisite variables based
on graph separation properties [5, 12]. Denote by

���
the

set of requisite variables. Variables in
� #

necessarily be-
long to

� �
, but not all observed variables belong to

� �
(only observed variables that have non-observed parents in� �

belong to
� �

).
We are interested in computing the following expres-

sion:

� 
�� # �-� � � .���/%�',�&(�) � +/, � /���	� ��� � 
�� " � $'%&
�� " �,�	
 �
where probability densities must be restricted to domains
containing no evidence.

Denote by � the number of requisite variables that are
not observed and are not in

�"#
. Now, suppose that these

variables are ordered in some special way, so we have an
ordering � � � � � � � � � � 2 2 2 � �� � . The quality of orderings
and the construction of good orderings are discussed later.
We have:

� 
1� # �-� � �
(3). ��� 2 2 2 . ��� � 
�� � � $'% 
1� � �,� 2�2 2 2�2 � 
���� � $'% 
1�1� � � 2

Because � � can only appear in densities � 
���� � $'% 
1�����,� for

1It should be mentioned that many ideas developed in the SPI, variable
elimination and bucket elimination algorithms were first developed for the
peeling algorithm in genetics [1].

� ��� ����� � (*) 
1��� �*� , we can move the summation for �!� :

. ��� 2 2 2 . ���
������� /��� �!#"%$'&(�#)+*	,.-0/1�#)3254 � 
1�5",� $'%'
1� " � �568777779 2

������� . ��� /�;:<�&(�#)+*	,.-=/1��)3254 � 
1��� � $'%&
��#��� �56 777779 2

At this point, we have “used” the densities for �>� ���� � � (*)�
1� � �*� . To visualize operations more clearly, we
can define the following unnormalized density:

� 
 (*) 
���� � � $&%'
���� � � +,$�-&
���� � � �
. � � ��

/��� ) ?A@CB ���5D � 
�� � � $'% 
�� � �,� 69 2
(Remember that + $�-&
1� " � denotes the parents of children of�5" that are not children of �4" .)

Think of the various densities as living in a “pool” of
densities. We collect the densities that contain � � , take
them off of the pool, construct the a new (unnormalized)
density � 
 (*)�
�� � � � $'%&
�� � � � +,$&-�
�� � �,� and add this density
to the pool.

The result of these operations is that �!� was “elimi-
nated” from the problem.

Now we move to �0� . We collect all densities that con-
tain �0� from the pool, take them off of the pool, multiply
them together, and sum out �1� . The result of these opera-
tions must again be a density. We place this density into the
pool, and move to �1� .

At the end, we have some (at least one) densities for�"#
. By multiplying these densities together and normaliz-

ing the result appropriately, we obtain � 
 � # � � � .
In short, the idea of the algorithm is to multiply the

members of the density pool in the sequence given by the
ordering. The algorithm attempts to eliminate variables as
soon as possible, to keep intermediate products at a man-
ageable size.

The ordering of variables is arbitrary, but different or-
derings lead to different computational loads. Unfortunately,
the construction of an optimal ordering is known to be a
NP-complete problem, so we should settle for a good, not
necessarily optimal, ordering. Several heuristics are known
to produce efficient orderings in practice [7, 14].

The variable algorithm can also be used to compute
maximum a posteriori configurations, essentially by turning
some of the summations into maximizations [3]. There is
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no need to compute sequences of queries for maximum a
posteriori calculations, so the generalization presented in
this paper does not apply to maximum a posteriori values.

5 Buckets and bucket trees

The variable elimination algorithm can be described as fol-
lows.

1. Generate an ordering for the � requisite, non-observed,
non-query variables.

2. Place all network densities in a pool of densities.

3. For � from 1 to � :

(a) Create a data structure
� " , called a bucket, con-

taining:
� the variable �4" , called the bucket variable;� all densities that contain the bucket variable,

called the bucket densities;

(b) Multiply the densities in
� " . Store the resulting

unnormalized density in
� " ; the density is called� " ’s cluster.

(c) Sum out � " from
� " ’s cluster. Store the result-

ing unnormalized density in
� " ’s; the density is

called
� " ’s separator.

(d) Place the bucket separator in the density pool.

4. At the end of the process, collect the densities that con-
tain the query variables in a bucket

� #
. Multiply the

densities in
� #

together and normalize the result.

The sequence of buckets created by the algorithm can
be represented linearly as a vector. The first bucket is pro-
cessed by collecting densities from the Bayesian network,
computing the bucket separator and “sending” the separa-
tor to a bucket down the vector of buckets. The second
bucket is then processed, again by collecting densities from
the Bayesian network, and possibly by taking the separator
from the first bucket. The third bucket is then processed,
and so on. Figure 2 shows a linear arrangement of buckets,
with the separator flow indicated by arrows.

As the separator for bucket
� " is not necessarily sent

to bucket
� "�� � , the set of buckets can be drawn as a tree

stemming from the query variables. Actually, this is a much
more interesting representation, shown in Figure 3.

6 Generalizing variable elimination

Suppose that we need to compute the marginal probability
density for every variable in a Bayesian network. This type
of result is produced by junction tree algorithms, somewhat
complex procedures heavily based on graph theory. Here

we seek a simpler scheme that adapts variable elimination
to the task.

The following conventions are adopted in this section.
The bucket variable for bucket

� " is � " . Denote the vari-
ables in

� " ’s separator by � " , and denote the variables in� " ’s cluster by � " . Denote by
� " the evidence contained in

the sub-tree above and including bucket
� " , and denote by���" the evidence outside of

� " .
6.1 Updating buckets right above the root

Suppose we have a bucket tree and variable elimination has
been applied to the tree. Consequently, the normalized den-
sity � 
 � # � � � is stored at the root.

Now look at one of the buckets right above the root, the
bucket

�	�
with bucket variable � � . Note that

�	�
’s cluster

is an unnormalized density containing � � and some of the
variables in

�"#
; no other variable can be in

� �
’s cluster.

We discard the possibility that
� �

’s cluster does not
contain any of the query variables in

� #
— if this happens,

the sub-tree of buckets above and including
� �

is discon-
nected from the rest of the bucket tree. This disconnected
sub-tree should then be processed as a separate Bayesian
network. In fact, we always assume that the outgoing sep-
arator of any bucket is nonempty: A bucket with an empty
separator can be processed in an appropriate sub-network.

Whatever the composition of
�
�

’s cluster, we can al-
ways generate the normalized density � 
�� � � � � ����� � from it
simply by normalizing the cluster with respect to � � . The
reason for this is that � � cannot be a conditioning vari-
able in

� �
’s cluster, because we must have used the density� 
�� � � $'% 
�� � �,� before or at the bucket.

Section 6.4 demonstrates the following important fact:� 
�� � � � � ��� � � is actually equal to � 
�� � � �"# �-� � . As a re-
sult, we can compute

� 
1� � �,�!# � � � � � 
�� � � � � �-� � � 2 � 
 �"# � � � 2
The updated density for � � is then obtained by summing
out

� #
from the density � 
1� � � � # � � � . So, we have a method

to update the clusters for all buckets right above the root.

6.2 Updating buckets away from the root

Now take a generic bucket
�
�

at some distance from the
root. Assume that variable elimination has been executed
and

�	�
’s cluster has already been normalized with respect

to � � ; consequently,
�
�

’s cluster contains the normalized
density � 
1� � � � � �-��� � .

To create a finite induction argument, suppose that the
bucket right below

�
�
, denoted by

� � , has been updated.
That is,

� � ’s cluster contains the density � 
1� � � � � � � � .
Note that � � must be contained in � � , because

� �
’s

separator was sent to
� � during variable elimination. Con-
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� � �� �� � � �� � �� � ��� �� �
��� �� � ��� �� � �3#

Figure 2: A sequence of buckets and their separators.
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� �
 � �� ������ � � �� #

Figure 3: A tree of buckets and their separators.

sequently, � 
 � � � ��� �-���� � can be computed in
� � :

� 
 � � � � � � .��� %���� � 
 � � � � �32
Once again, the important thing is that � � � ����� � and

� ��
are

independent given � � (Section 6.4). So, we can compute

� 
�� � � � � � � � � � 
�� � � � � �-� � � 2 � 
 � � � � �32
The updated density for � � is then obtained by summing
out � � from � 
�� � � � � � � � .
6.3 A summary of the updating procedure

The previous sections constructed an induction argument.
If the child of bucket

� " has been updated, then the follow-
ing steps update

� " itself:

1. Normalize
� " ’s cluster with respect to the bucket vari-

able, obtaining the normalized density � 
1� " � � " �-� " � .
2. Ask the child of

� " to provide � 
 � " � � � . This proba-
bility density replaces

� " ’s separator.

3. Multiply � 
 � " � � � and the normalized bucket cluster� 
�� " � � " ��� " � , obtaining � 
�� " � � " � � � . This probability
density replaces

� " ’s cluster.

After updating all buckets, the probability density for
any variable can be easily computed: just find a bucket clus-
ter that contains the variable and compute the appropriate
marginal probability density.

Note that variable elimination proceeds from the top
of the tree down to the root, and updating proceeds from
the bottom up.

6.4 The separation properties of bucket separators

A bucket tree may contain several branches; every branch
contains disjoint sets of variables. Denote by � " the branch
starting at bucket

� " — that is, the sub-tree above and in-
cluding

� " . Denote by � %���
�� " � the set of variables in � " .
In the previous sections, the following result was used

without proof: the variables � %���
�� " � � � " are independent of
all other variables in the bucket tree, conditional on � " . We
can draw a small diagram:

� " � � "�� � �" �
where � �" denotes the bucket tree without � " . We want to
establish that � " in fact separates, by independence, � " and
� �" .

Note first that all variables in the Markov blanket of
variable � " must be present in � %���
�� " � . This happens be-
cause the densities � 
���� � $'%&
��#��� � , for �#� � � �#� � (*) 
��#���*� ,
must have been used during variable elimination in branch
� " . Thinking recursively, we conclude that only two types
of variables may be present in � %�� 
���" � :
� the bucket variables for the buckets in � " ; and

� the Markov blanket for each one of these bucket vari-
ables.

The bucket variables in � " are eliminated before or at
� " ,

so they cannot be present in
� " ’s separator. Consequently,� " ’s separator contains the union of Markov blankets for

all bucket variables in � " , excluding the bucket variables in
� " . Given this construction, we see that

� " ’s separator is a
“Markov blanket” for all bucket variables in ��" . The joint
distribution conditional on � " factorizes into two pieces,
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one containing � %���
�� " � , and the other containing � %���
 � �" � .
So, variables in � " are independent of variables in � �" given� " ’s separator.

7 Conclusion

The algorithm presented in this paper aims at computing
efficiently the probability densities for several queries in a
Bayesian network. The construction of bucket trees simpli-
fies the presentation, producing an algorithm that is easy to
grasp, to teach and to implement.

The algorithm in this paper works by adding a second
pass to variable elimination. One of the characteristics of
the algorithm is that it relies only on independence relations
and probability manipulations. The algorithm does not use
graphical concepts, such as triangulations and cliques, fo-
cusing solely on probability densities and avoiding complex
digressions on graph theory. But the generalized variable
elimination algorithm can be also interpreted using graph
theoretic tools, as the bucket tree is actually a tree of cliques
(the cliques of the triangulated tree induced by the ordering
of variables).

All algorithms discussed in this paper have been im-
plemented in the JavaBayes system, a freely distributed pack-
age for the construction and manipulation of Bayesian net-
works (available at http://www.cs.cmu.edu/

�

javabayes).
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