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Abstract

This thesis develops the idea of probabilistic arithmetic� The aim is to replace
arithmetic operations on numbers with arithmetic operations on random variables�
Speci�cally� we are interested in numerical methods of calculating convolutions of
probability distributions� The long�term goal is to be able to handle random prob�
lems �such as the determination of the distribution of the roots of random algebraic
equations	 using algorithms which have been developed for the deterministic case�
To this end� in this thesis we survey a number of previously proposed methods
for calculating convolutions and representing probability distributions and examine
their defects� We develop some new results for some of these methods �the Laguerre
transform and the histogram method	� but ultimately �nd them unsuitable� We
�nd that the details on how the ordinary convolution equations are calculated are
secondary to the di
culties arising due to dependencies�

When random variables appear repeatedly in an expression it is not possible to
determine the distribution of the overall expression by pairwise application of the
convolution relations� We propose a method for partially overcoming this problem in
the form of dependency bounds� These are bounds on the distribution of a function
of random variables when only the marginal distributions of the variables are known�
They are based on the Fr�echet bounds for joint distribution functions�

We develop e
cient numerical methods for calculating these dependency bounds
and show how they can be extended in a number of ways� Furthermore we show how
they are related to the �extension principle of fuzzy set theory which allows the
calculation of functions of fuzzy variables� We thus provide a probabilistic interpre�
tation of fuzzy variables� We also study the limiting behaviour of the dependency
bounds� This shows the usefulness of interval arithmetic in some situations� The
limiting result also provides a general law of large numbers for fuzzy variables� In�
terrelationships with a number of other ideas are also discussed�

A number of potentially fruitful areas for future research are identi�ed and the
possible applications of probabilistic arithmetic� which include management of nu�
meric uncertainty in arti�cial intelligence systems and the study of random systems�
are discussed� Whilst the solution of random algebraic equations is still a long way
o�� the notion of dependency bounds developed in this thesis would appear to be of
independent interest� The bounds are useful for determining robustness of indepen�
dence assumptions� one can determine the range of possible results when nothing is
known about the joint dependence structure of a set of random variables�
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Chapter �

Probabilistic Arithmetic � The

Very Idea

Now that you have learnt about adding� minussing�
multiplying and dividing you can do any sum� Even an
atomic scientist only really uses these four operations�

� Mrs S� Boal �Grade �� Oakleigh Primary School� �����

If one looks at the development of the measurement process
during the past century� one soon observes that with
increasing frequency the raw data are �probability�

distribution functions or frequency functions rather than
real numbers� This is so in the physical sciences� and in the
biological and social sciences it is the rule rather than the

exception� One may thus convincingly argue that
distribution functions are the �numbers� of the future and

that one should therefore study these new numbers and their
arithmetic�

� Berthold Schweizer

��� Motivation

This thesis studies the idea of probabilistic arithmetic� which is the name we give to
the idea of calculating the distribution of arithmetic �and perhaps other	 functions of
random variables� It is motivated by the hope of being able to develop procedures for
solving random problems based on those already existing for the deterministic case�
The fundamental observation to make is that nearly all existing numerical algorithms
are based on the four operations of arithmetic� addition� subtraction� multiplication
and division� For example� it may be possible to determine the distribution of the
roots of polynomials with random coe
cients by modi�cation of existing algorithms
for calculation of the roots in the deterministic case� Work to date on random
polynomials has only obtained this for a very restricted class of polynomials ����
��� �

The �rst step necessary in achieving this goal is the development of an e
cient
and accurate method for determining the convolution of probability distribution
functions� We use the word �convolution in its general sense describing the oper�
ation on distribution functions corresponding to virtually any operation on random

�



variables� and not just addition� If Z � L�X�Y 	 where X and Y are independent
random variables with joint distribution function FXY � then FZ� the distribution of
Z� is given by

FZ�z	 �
Z
Lfzg

d�FX�u	FY �v		� ������	

where Lfzg � f�u� v	ju� v � �� L�u� v	 � zg� The ability to calculate ������	 is
necessary but not su
cient for the construction of a probabilistic arithmetic�

The most important di�erence between the deterministic and stochastic cases is
the appearance of stochastic dependence� This has no counterpart in the determin�
istic case� We shall see that even if we restrict ourselves to independent random
variables at the outset� stochastic dependencies can arise during the course of a cal�
culation due to the occurrence of repeated terms in expressions� For example� if X�
Y and Z are independent random variables� then V � X�Y and W � X�Z are not
necessarily independent� We give the name dependency error to the error incurred
in calculating the distribution of some function of V and W �such as U � V�W 	 by
assuming that V and W are independent�

Whilst a general solution to this problem seems impossible� we can provide a
partial solution in terms of dependency bounds� This is the name we give to lower
and upper bounds on the distribution of functions of random variables when only the
marginal distributions are known� In other words the dependency bounds contain all
the possible results due to all the possible joint distributions of the random variables
involved� If ldb and udb denote the lower and upper dependency bounds� and �
denotes a binary operation� we write the bounds on Z � X�Y as

ldb�FX� FY ��	�z	 � FZ�z	 � udb�FX � FY ��	�z	� ������	

These bounds can be calculated explicitly for certain classes of binary operations�

The general approach we have just outlined has been studied previously by a
number of authors� Whilst we defer a more detailed review of previous work to
later chapters� let us mention the following now� The idea of an algebra of random
variables based on the use of integral transforms for calculating the appropriate
convolutions was advocated by Springer in ���� and formed the motivation for
���� � Analytical methods for determining distributions of functions of random
variables are at the core of applied probability theory ���� �an early� but obscure
review is given by Halina Milicer�Gru!zewska ���� 	� and of course the study of the
distribution of sums �in the central limit theorem	 is the basis for many of the
theoretical results in probability theory ���� � Numerical methods for calculating
distributions of functions of random variables have been studied by a number of
authors �chapter � is a review of available techniques	� Some of the more recent
techniques are the histogram method ���� �and the related method of discrete
probability distributions ���� 	� and the intricate H�function method ���� � The
problem we study is obviously related to the propagation of errors of measurement
���� � Fuzzy arithmetic ���� derives from similar motivations and it is compared
with probabilistic arithmetic in chapter ��

There are many problems arising in the course of our study of probabilistic
arithmetic� and in this thesis we present solutions to some of them� However� many



of them remain topics for future research and we give some more details on these in
the �nal chapter of this thesis� We note here that our idea of probabilistic arithmetic
can be considered to be a natural generalisation of interval arithmetic ���� � which
works entirely in terms of the supports of the distributions of the variables involved�
We discuss this connexion in more detail later in this thesis�

The rest of this chapter gives an overview of the results contained in this thesis
�section ���	� a brief decription of the structure of the thesis and suggestions on how
to read it �section ���	� and a few standard notational conventions �section ���	�

��� Outline of Results

Some of the speci�c results obtained in this thesis �the highlights	 are now described�
The general structure of the thesis is described in section ����

����� Dierent Methods for Calculating Convolutions and the Laguerre
Transform Method

In chapter � we study a variety of methods for calculating convolutions of proba�
bility distributions� Amongst these are the Laguerre transform methods developed
by Keilson and Nunn ���� � We consider the possibility of using this method for
operations other than addition and subtraction of random variables� Although we
develop a number of new results� these turn out to be of little practical value because
of the computational complexity of the formulae involved�

����� The Dependency Bounds and Numerical Methods of Calculating
Them

The most interesting new techniques developed in this thesis are those for numer�
ically calculating dependency bounds� We use the results of Frank� Nelsen and
Schweizer ���� who show that

ldb�FX � FY ��	�z	 � sup
x�y�z

max�FX�x	 � FY �y	� �� �	 ������	

and
udb�FX� FY ��	�z	 � inf

x�y�z
min�FX�x	 � FY �y	� �	 ������	

for certain classes of operations �� Then by making use of a duality result to express
these bounds in terms of the inverses of the distribution functions �the quantiles	� we
develop an e
cient and accurate method for calculating the dependency bounds� A
number of extensions to the dependency bounds are also considered� If some infor�
mation is known about the joint distribution� then tighter bounds can be calculated�
All this material is reported in chapter ��



����� Precursors� Multiple Discoveries� and Relationships with Fuzzy
Sets

In the course of reviewing previously published material on the topics covered in
this thesis� a number of independent and multiple discoveries and precursors were
found� For example George Boole discussed the analogue of dependency bounds
for events in his Investigation of the Laws of Thought ��� � These are bounds on
the probability of conjunction and disjunction of random events� They are usually
associated with Fr�echet ���� � who rightly credits their original introduction to Boole�
Boole�s work on these bounds as lower and upper probabilities has recently seen a
revival of interest in the area of expert systems which have to deal with uncertain
information� In some cases recent authors are unaware of some of the previous work
in the �eld ���������� � We discuss this material in detail in section ���� There are
several other instances of multiple discoveries� such as R�uschendorf ���� � Makarov
���� and Frank� Nelsen and Schweizer ���� on the dependency bounds for random
variables� Another example is the duality result we use for numerical calculation of
the dependency bounds� This has been presented �in various degrees of generality	
by Frank and Schweizer ���� Sherwood and Taylor ���� � H�ohle ���� � Fenchel ���� 
�see ���� 	� Bellman and Karush ��� � Nguyen ���� and Mizumota and Tanaka ���� �
We discuss this in section ���� Of course these multiple discoveries should not be
considered surprising� especially given the arguments of Lamb and Easton on the
�pattern of scienti�c progress ���� �

����� The Inverse and Determinant of a Random Matrix

Chapter � is concerned with a new result on the inverse and determinant of a ran�
dom matrix� Inverses and determinants of interval matrices �matrices with interval
coe
cients	 have been studied in the literature� and so we examined the e�ect of
interpreting an interval as a uniformly distributed random variable� Apart from
some interesting conclusions in this regard� the chapter shows the disadvantage of
always seeking analytical results� the formula for the density of the determinant is
quite complex and it is necessary to write a computer program in order to determine
its speci�c values� This is one of the arguments of this thesis� When speci�c values
of distributions are required �rather than general properties	� it makes more sense
to accept the need for numerical calculations at the outset rather than doggedly
striving for analytical results which are often practically useless�

����
 A Limiting Result for Dependency Bounds

Perhaps the most interesting purely mathematical result in this thesis is that re�
ported in chapter �� There we show that the dependency bounds of the normalised
sum �

N

PN
i��Xi converge to step functions� The position of the step functions de�

pends solely on the support of distribution functions of the random variables fXig�
The method used to prove this result �T�conjugate transforms	 has further poten�
tial applications� These are discussed in chapters � and �� The interpretation of



the result is that in some cases� if it is necessary to use dependency bounds �be�
cause of lack of further dependence information	� then no further information will
be obtained beyond that obtained by using interval arithmetic on the supports of
the distributions�

��� Thesis Structure

Each of the chapters in this thesis is essentially self�contained and can thus be
read independently of the others� although chapter � should be read before reading
chapters ���� In fact each chapter was written as a paper� details of which are given
in the �Publications section at the beginning of the thesis and at the beginning
of each chapter� For this reason there is some slight repetition of material in some
places� We feel this will in fact be of bene�t to the reader� as most of the repeated
material is concerned with technical de�nitions which are di
cult to remember for
the entire length of the thesis�

The remaining chapters of the thesis are summarised below�

Chapter � is a survey of di�erent methods for numerically calculating convolu�
tions of probability distributions� As well as reviewing previous work� we present
some new results on the Laguerre transform method and the histogram method� We
also point out some interesting connexions with methods used in metrology�

Chapter � is the technical core of the thesis� Most of the other chapters are
motivated by it� In it we fully develop the idea of dependency bounds and show how
they can be calculated numerically� A number of examples are given� Furthermore
a method for calculating ordinary convolutions ������	 is presented� This uses the
numerical representation developed in order to calculate dependency bounds and the
result is that this method has a number of advantages over the methods described
in chapter �� not the least of which is its simplicity�

Chapter �� which is the longest in this thesis� describes a large number of inter�
relationships between our dependency bound methods and other ideas� Amongst
other things we discuss the Boole�Fr�echet bounds� graph theoretical methods� lower
and upper probabilities and fuzzy arithmetic� This latter item is of considerable in�
terest� We show how the rules for combining fuzzy numbers are very closely related
to the dependency bound formulae ������������	�

Chapter � is devoted to the proof and exposition of a limiting theorem for de�
pendency bounds� We prove a generalisation of the law of large numbers under
no independence assumptions� We show that convergence to a wide range of dis�
tributions is possible under the constraint that the restrictions on the supports as
calculated by interval arithmetic are not violated�

Chapter � simply re�presents the result of chapter � in terms of fuzzy variables�
Thus we show a law of large numbers for fuzzy variables under a general t�norm
extension principle� �The meaning of this sentence is explained in the introduction
to chapter ��	



Chapter � presents a new result on the distribution of the inverse and determinant
of a random matrix� We derive explicit formulae for perhaps the simplest case of
a random matrix� a � � � matrix with independent elements� all having a uniform
distribution on ��� � � Surprisingly enough this result does not seem to have appeared
in the literature before� Our motivation for deriving it was to examine the e�ect
of interpreting an interval in interval arithmetic as a uniformly distributed random
variable�

Finally chapter � draws a number of conclusions from the work presented here
and provides a number of suggestions for future research�

��� Notational Conventions

Equations and sections are numbered by chapter� Thus ������	 refers to the �th
numbered equation in section ���� which is the third section of chapter �� Paren�
thesised numbers always refer to equations� Numbers enclosed in square brackets�
such as ���� � denote references to items in the reference list in chapter �� Closed
intervals such as ���� �fxj � � x � �g	 are also denoted in this manner� but the
context makes clear what is meant�

Other mathematical notations are generally standard� We list the following which
may otherwise cause some confusion�

inf in�mum �greatest lower bound	�
sup supremum �least upper bound	�
� The set of real numbers�
�� The set of extended real numbers ��� � � � f����g	�
df�X	 The distribution function of X�
� �for functions	 pointwise inequality�
supp The support of a function�
Ran The range of a function�
Dom The domain of a function�
�a� b	 The half�open interval fxj a � x � bg�
jf gj Cardinality of a set�
	 The null set�
n Set�theoretic di�erence�
i� If and only if�

End of proof�

Other notations are introduced where needed�

Several algorithms are presented in this thesis� We use the syntax of the C
programming language ���� with the exception that �� denotes assignment and �
equality�



Chapter �

Numerical Methods for

Calculating Convolutions of

Probability Distributions

Questions on local probability and mean values are of
course reducible by the employment of Cartesian or other
coordinates� to multiple integrals � � �� The intricacy and
di�culty to be encountered in dealing with such multiple

integrals and their limits is so great that little success could
be expected in attacking questions directly by this method�

� M�W� Crofton

��� Introduction� Aim and Analytical Methods

The problem of calculating convolutions of probability distribution functions arises
in a wide range of applications where distributions of functions of random variables
are required� In many cases analytical solutions are intractable and so numerical
methods are used� This chapter will survey the numerical methods that have been
presented to date� This will form a suitable background for chapter � where we
present a new method for calculating convolutions of distribution functions� We
shall see that our new method has a number of aspects in common with the methods
described in the current chapter� but that it also has a number of advantages�

We will generally restrict ourselves to the problem at hand� and not discuss the
applications in which convolutions arise� Generally we adopt the viewpoint of von
Mises ����� p��� who took the attitude that

the exclusive purpose of �probability theory is to determine� from the
given probabilities in a number of initial collectives� the probabilities in
a new collective derived from the initial one�

The determination of the initial probabilities is the province of statistics and we do
not consider it further�

�



����� History� Motivation and Outline

History of the Problem

It was recognised long ago that if the inputs to some calculation are random then
the �nal result is likely to be random also� Sheynin ����� p���� cites a ��th century
commentary by G�a�n�eza on the ��th century Indian writing Lil�avati by Bh�ascara�
On page �� of this ��� � there is a discussion of the determination of an area of
a rectangle when the length and breadth are not known exactly and there is an
implicit recognition that the area will be only approximate� It is suggested there
that mean values should be used in order to provide a better estimate than single
sample values� Of course other examples can easily be found� However the statement
of the problem in terms of determining distributions of functions of random variables
could not have occurred until last century�

The point is that laws of distributions of functions of random quantities
�even the simplest� the linear functions	 could not have been considered
from a general point of view at least until distribution functions them�
selves began to be considered per se ����� p���� �

Thus although �it could be hardly doubted that Laplace �in his Th�eorie Analytique
des Probabilit�es �����	 would have been able to transform distributions from one
interval to another and from one argument �� � � to another �� � �  ����� p���� � one
of the �rst explicit transformations� in terms of distributions� appears to have been
due to Poisson in ���� ���� � Sheynin ����� p���� says of a problem considered there
that

elementary as it is� this �� � � problem seems to be one of the �rst in which
densities were treated as purely mathematical objects�

Another early example which arose in a completely di�erent context concerns
geometrical probability ���� � Sylvester�s problem ���� � whilst not couched in terms
of functions of random variables �nor for that matter solved in such a fashion	� is
still an example of the sort of problem we are concerned with�

The Aim of this Chapter

So much for the history of the problem� We will now outline the purpose of the
present chapter�

Until recently most attempts at the determination of distributions of functions of
random variables have entailed the search for analytical solutions� In other words�
a formula for the required distribution was sought� Quite apart from the severe
di
culties encountered in this approach �see section ����� below	� a new formula
needs to be determined for each new problem� Thus� whilst for some restricted
classes of problems �such as products and quotients of independent random variables
with �standard distributions ���� 	 the main results can be tabulated� in general



�it is not practicable to give a list of such occasional results� for it is clearly possible
to invent further variations at will ����� p���� � A review of a number of exact
analytical techniques for determining distributions arising in multivariate statistics
is given in ���� �

An alternative to the analytical approach is to use numerical methods for cal�
culating the required distributions by using computer programs� Note that such an
approach should not necessarily be considered second best compared to an exact
analytical result� This is because the resulting formulae are sometimes so complex
�e�g� in�nite series of transcendental functions	 that a computer program is needed
to calculate the speci�c values and to determine the behaviour of the distribution�
Thus we are really no worse o� if we decide to use the computer from the outset�
The study of these numerical methods is the focus of the present chapter�

Organisation of the Rest of the Chapter

The rest of this chapter is organized as follows� The remainder of this introductory
section is devoted to a review of analytical methods �including integral transforms	�
and the possible direct numerical calculation of these� Section ��� summarises a
number of di�erent methods that have been proposed� including the use of moments�
Sections ��� and ��� look in rather more detail at two methods which would appear to
be more promising� We examine the Laguerre transform in section ���� and look at
the Histogram �or discrete probability distribution	 method in section ���� Section
��� examines interval arithmetic and methods used for the propagation of errors in
metrology�

����� Exact Analytical Results

There is a well known general solution to the distribution of functions of random
variables in terms of the Jacobian of transformation� We will now brie�y present
this result for a function of only two random variables� We restrict ourselves to
this special case because we are mainly interested in functions of only two random
variables �such as apply to the four arithmetic operations	 and because there are
notational di
culties in presenting the full general result carefully� �There is no real
conceptual di
culty in extending the results to functions of N random variables�	

The General Solution in terms of the Jacobian

Let Z � g�X�Y 	 and W � h�X�Y 	 be two functions of the two random variables X
and Y which have a joint probability density fXY � We wish to determine the joint
density fZW of Z and W � This is given by ����� p���� 

fZW �z�w	 �
fXY �x�� y�	

jJ�x�� x�	j � 
 
 
� fXY �xk� yk	

jJ�xk� yk	j � ������	



where �x�� y�	� � � � � �xk� yk	 are the k real solutions to the pair of equations

g�x� y	 � z and h�x� y	 � w ������	

in terms of z and w where x is the absolute value of x� In other words

g�xi� yi	 � z and h�xi� yi	 � w

for i � �� � � � � k� and xi �� xj� yi �� yj for i �� j� The term J�x� y	 is the Jacobian of
transformation and is given by

J�x� y	 � det

�
������

�g

�x

�����
�x�y�

�g

�y

�����
�x�y�

�h

�x

�����
�x�y�

�h

�y

�����
�x�y�

�
������ � ������	

where the notation �g
�x

���
�x�y�

means that the partial derivative �g
�x

is evaluated at �x� y	�

The density fZW is equal to zero for any �z�w	 such that ������	 has no real solutions�

The use of Auxiliary Variables

We are often interested in m functions of n random variables with m � n� �In the
present chapter we are only concerned with m � � and usually n � ��	 In order to
use the above method in this situation it is necessary to proceed as follows�

Let m � � but consider general n� Write

Z� � g�X�� � � � �Xn	

for the function we are interested in� It is necessary to de�ne n � m auxiliary
functions in the following manner�

Z� � X�

���

Zn � Xn�

The use of ������	 will give fZ�Z����Zn � In order to determine fZ� we need to calculate

fZ��z�	 �
Z �

��

 
 


Z �

��� �z 	
n��

fZ�Z����Zn�z�� � � � � zn	
nY
j��

dzj� ������	

The integral in ������	 is almost invariably the cause of di
culties encountered in
determining fZ� analytically� For practical problems n can be quite large �see for
example ���� where n � ��� � ��� � ����� and thus a �����fold integral needs
to be evaluated"	� Even when the integrals are tractable they can be exceedingly
tedious� see the �� page calculation in ����� appendix IV �which actually contains
an error that simpli�es the calculation	� Somewhat more reasonable examples can
be found in �������� � In section ����� we show how formulae ����� and ����� result
in the standard convolution integrals for arithmetic functions of random variables�
The numerical integration of the Jacobian of transformation has been considered
by Cook and Downs ���� �



Historical Remarks

The use of the Jacobian of transformation in the above manner was anticipated by
Gauss in ���� in his Theoria Combinationis ����� p��� � where he considered m � �
and assumed J 	 � always and thus omitted the j j operation in ������	� The general
solution was �rst given by Nasimov in ���� ���� � It was subsequently studied by
Poincar�e and Lammel �see the footnote on page �� of ���� 	�

����� Specialised Formulae for Convolutions

When the function g� of the two random variables X and Y � is one of the four
arithmetic operations� we obtain the four convolution equations below �������� �

Z � X � Y � fZ�z	 �
Z �

��
fXY �z � x� x	 dx� ������	

Z � X � Y � fZ�z	 �
Z �

��
fXY �z � x� x	 dx� ������	

Z � X � Y � fZ�z	 �
Z �

��
�

jxjfXY �z�x� x	 dx� ������	

Z � X�Y � fZ�z	 �
Z �

��
jxjfXY �zx� x	 dx� ������	

When X and Y are independent� these reduce to

Z � X � Y � fZ�z	 �
Z �

��
fX�z � x	fY �x	 dx� ������	

Z � X � Y � fZ�z	 �
Z �

��
fX�z � x	fY �x	 dx� �������	

Z � X � Y � fZ�z	 �
Z �

��
�

jxjfX�z�x	fY �x	 dx� �������	

Z � X�Y � fZ�z	 �
Z �

��
jxjfX�zx	fY �x	 dx� �������	

These latter equations �������������	 will be our main but not exclusive concern in
this chapter� We shall refer to them respectively as sum� di�erence� product and
quotient convolutions� The lesser known product and quotient convolutions would
appear to have �rst been published in ���� � Note that equations �������� can
be written in terms of cumulative distribution functions as the Lebesgue�Stieltjes
integral �which always exists	 Z

Lfxg
dFXY �u� v	�

where Lfxg � f�u� v	ju� v � �� L�u� v	 � xg ���� �

The idea of �convolution of probability distributions has been generalised in
a number of ways� For example� Urbanik �������� has studied a di�erent type of
convolution to those presented above� His generalised convolutions are also brie�y
mentioned by Schweizer and Sklar ���� �



����� Integral Transforms

De�nitions

We now consider the relationships between �������������	 and the Fourier and Mellin
transforms� The Fourier transform of a function f�x	 is de�ned by

Ft�f�x	 
�
�

Z �

��
f�x	e�itx dx� �������	

This is a specialisation of the Laplace transform

Ls�f�x	 
�
�

Z �

��
f�x	e�sx dx �������	

where s � � � it� The Mellin transform is de�ned by

Ms�f�x	 
�
�

Z �

�
f�x	xs�� dx� �������	

The Mellin transform can be derived from the Laplace transform by a logarithmic
change of variables ���� � Note that the Mellin transform is only de�ned for functions
with domain ��� The multivariate extensions of these transforms are

Ft�f�x�� � � � � xn	 
�
�

Z �

��

 
 


Z �

��
f�x�� � � � � xn	

nY
j��

e�itjxjdxj �������	

where t � �t�� � � � � tn	� and

Ms�f�x�� � � � � xn	 
�
�

Z �

�

 
 


Z �

�
f�x�� � � � � xn	

nY
j��

x
sj��
j dxj �������	

where s � �s�� � � � � sn	�

The Calculation of Distributions of Sums and Products

When these transforms exist� they can be used to determine the distribution of arith�
metic functions of random variables as follows� If Xj �j � �� � � � � n	 are independent
random variables with densities fXj�xj	 respectively� and if

Y �
nX
j��

Xj �

then

Ft�fY �y	 �
nY
j��

Ft�fXj�xj	 �

If the Xj are not independent� and have a joint probability density fX�x	� then

Fr�fY �y	 � Ft�fX�x	 jt��t������tn�r �



Calculation of di�erences can be accomplished by setting X �
j � �Xj� If

Y �
nY
j��

Xj

then if Xj are all independent

Ms�fY �y	 �
nY
j��

Ms�fXj�xj	 �

whilst if dependent�

Ms�fY �y	 � Mr�fX�x	 jr��r������rn�s �
If Y � X��X�� then

Ms�fY �y	 � Mr�fX�x	 jr��s� r����s �

and if X� and X� are independent�

Ms�fY �y	 � Mr��fX��x�	 jr��s � Mr��fX��x�	 jr����s �
Thus if one has a means of inverting the Fourier and Mellin transforms� one can
calculate the distributions of sums� di�erences� products and quotients of random
variables� Note that we have omitted any mention of conditions for the existence of
these transforms and of the uniqueness of the inverse transform� More details can
be found in �������������������������������� �

We note that the Fourier transform has been used in statistics for determining
the sums of random variables for quite some time� Zolotarev ���� attributes its
introduction to Lyapunov� although it appears ����� p��� that Gauss knew of its
applicability in ����� The widespread use by Poisson and others did not occur until
some time later� Fourier transforms are usually called characteristic functions in
probability theory� a name �rst used by Poincar�e in ���� ���� �not� as Cuppens
���� suggests� by L�evy ���� in ����	� The Mellin transform has been used in
probability theory since at least ���� ���� �

Di�culties in using Integral Transforms

Although the use of integral transforms does seem promising� there remains the
problem of inverting the transform� This is usually the most di
cult part� Indeed�
most of the technical di
culties encountered by Springer in his book ���� occur
in the inversion of the transforms� In a number of cases the analytical inversion
formulas may be used� These are

f�x	 �
�

�
i

Z c�i�

c�i�
esxLs�f�x	 ds

and

f�x	 �
�

�
i

Z c�i�

c�i�
x�sMs�f�x	 ds�



However� these formulae are of little value for the development of a general numerical
method for calculating distributions of functions of random variables� In their stead�
approximate numerical methods which can be readily implemented on a computer
need to be considered ����� chapter � �

����
 The H�function Method

One way of avoiding the necessity of calculating the inverse Mellin transform is to
consider the Mellin transform of a very general function which includes as special
cases all the actual functions to be encountered� The H�function ���� � which was
introduced by Fox ���� � contains as special cases nearly all the special functions
of applied mathematics� The signi�cance of the H�function in the present context
is that multiplication by a suitable constant �to make the integral over the domain
of the function equal to �	 allows one to consider H�function distributions which
include many classical univariate probability distributions as special cases� These
are all only de�ned on the positive real line and include the gamma� exponential�
Chi�square� Weibull� Rayleigh� Maxwell� half�normal� uniform� half�Cauchy� half�
Student� F � Beta� and Bessel distributions� Representation by H�functions is of use
in the context of probabilistic arithmetic becauses the probability densities of prod�
ucts� quotients� and rational powers of independent H�function random variables
are also H�function random variables ���������������� � Thus if one can numerically
calculate the H�function inversion integral �that is the contour integral de�ning the
H�function	� one can determine the probability distribution of products� quotients
and rational powers of random variables which have any of the distributions listed
above�

Methods of numerically evaluating the H�function inversion integral are discussed
in chapter � of ���� and are based on the work of Lovett ���� and Eldred ���� �
Eldred�s method is simpli�ed by Cook and Barnes ���� which is� however� still
rather complicated� By combining their technique of inverting the Mellin transform
with a numerical method of inverting the Laplace transform described by Crump
���� � Cook and Barnes produce a method for calculating the distribution of the
sum of products� quotients and rational powers of H�function random variables� In
���� they present a fortran program implementing the algorithm� For successful
operation� this program requires a number of technical parameters to be speci�ed�
and the authors give some suggested values� They say �page ���	 that the calculation
of the pdf of WX� � Y � where W � X� and Y were H�function random variables�
required �about �� seconds input�output and CPU time on a Cyber ��������

Other methods for the numerical inversion of Laplace and Mellin transforms are
given in ������������������� The necessity of using the Laplace transform arises be�
cause the sum or di�erence convolution of two �or more	 H�function distributions is
not an H�function distribution� Whilst an analytical expression exists for the convo�
lution� it appears too complicated to be of any use in probabilistic arithmetic ���� �
Springer suggests using Fourier transforms to perform the convolution� Although
the Fourier transform of an H�function distribution is known ����� equation ����� �
inverting the Fourier transform may be intractable analytically� In ����� section ��� �



Springer refers to unpublished work of Carter ���� on a numerical technique for de�
termining the moments of the distribution of the sum of independent H�function
random variables� This would allow approximations to the distribution to be ob�
tained using standard techniques for determining distributions from moments �see
section ����� below	�

��� Miscellaneous Numerical Methods for Calculating Con�

volutions

The problem of numerically calculating convolutions is related to the general prob�
lem of approximating distributions which arises in many areas where the digital
computer is not involved� A good survey of the general problem is given by Bow�
man and Shenton ���� �

����� Normal Approximations and other Parameterised Distributions

Perhaps the simplest and most widespread method of calculating the distributions
of certain functions of random variables is to use a normal approximation to the
distributions involved� The advantage of doing this is that normal distributions are
closed under sum and di�erence convolutions� Thus if df�X	 � N��X � �X	 and
df�Y 	 � N��Y � �Y 	� then df�X � Y 	 � N��X � �Y � ���

X � ��
Y 	���	� if X and Y

are independent� Therefore we could represent the distributions simply by � and �
for the purposes of numerical calculation� This idea has been used by Pearl ���� 
and Sobierajski ���� and is discussed by Corsi in ���� � Note however that neither
df�XY 	 or df�X�Y 	 are normal in general ������� �

When using normal approximations� two di�erent approaches can be taken in
order to interpret the �nal results� The �rst approach is simply to assume that
the distributions involved are normal� This is often done in error analysis� It is an
unjusti�ed assumption in many cases� not only in the theory of errors� but in other
areas as well� The second approach includes the admission that the distributions
are in fact non�normal but uses normal approximations for the sake of calculation�
Whilst this is often acceptable� it is certainly not a suitable methodology for a
general probabilistic arithmetic�

One problem in �tting a standard distribution� which arises more often than is
recognised� is described by Greenberg ���� as follows�

The analyst thus has great latitude in choosing a distribution to �t his
data � naturally he will select one that is convenient to work with and
easily manipulated� The only serious di�erences between the data and
the selected distribution will probably be in the tails� where relatively
few �if any	 of the observation�s will lie� However� it is in these tails that
the events of interest occur� the large delays� the long queue lengths etc�
Thus any investigation of these events either by analytic means or by
simulation �especially if importance sampling is used to obtain a larger



representation of the values in the tail	 is bound to be greatly �a �ected
by the distribution chosen � and the distribution must be chosen with
little or no representation in the region of most interest�

The fact that the normal distribution may be a good match to some population
distribution everywhere except in the tails is the subject of Bagnold�s paper ��� �
�See also the reply by Rothschild ���� �	 The e�ect of the extreme tails on a �nal
result is quite pronounced in some cases� In chapter � we show that the application of
one method for overcoming a problem we call dependency error �see chapter �	 gives
results that depend entirely on the extreme tail behaviour in certain circumstances�

Rather than using a normal distribution� a more �exible parameterised family of
distributions could be used� Recall that we have already examined �section �����	
the use of H�function distributions� A simpler alternative is to use� say� the Pear�
sonian curves �������� � Whilst these curves provide a much better �t to a wide
range of distributions �compared with the normal distribution	� their use as a gen�
eral method for calculating distributions of functions of random variables is severely
restricted by the fact that apart from certain special cases ������� � the distribution
of a function of random variables is not available in terms of the parameters of the
distributions involved� Even when the distribution is available� it is not necessar�
ily Pearsonian ���� � In other words� the family is not closed under convolutions�
General conditions that need to be satis�ed for a parameterised family to be closed
under sum convolutions are given by Crow ���� � and these are restrictive enough
for us to discard the idea�

Thus we reject both normal and other parameterised distributions as being un�
suitable for our purposes� Not only are the assumptions often invalid� but we cannot
calculate the convolutions of interest in terms of the parameters involved�

����� Methods Based on Moments

De�nitions and Basic Approach

Another simple method which deserves consideration is representation using mo�
ments� The n�th central moment of a random variable X with distribution function
FX is de�ned by

�
�n�
X � E�Xn	 �

Z
�
xn dFX�x	

assuming the integral exists� The method of moments �introduced by Tchebyshev
and Markov � see appendix II of ���� 	 entails calculating results in terms of mo�
ments of distributions when exact distributional results are unavailable� Given the
moments of a distribution� one can either �t a distribution using the techniques de�
scribed in ���� � or one can use the Tchebyshev inequalities or their generalisations
���������������� to determine distributional results� Unfortunately� there are prob�
lems associated with both of these methods� Firstly� the moments do not always
determine a distribution exactly ���� so that two di�erent distributions can have
all moments identical ������������ � and secondly� the Tchebyshev inequalities are
often quite loose�



There are also a number of ad hoc methods which use moments� For example�
Broadbent ���� suggested approximating the distributions of products and quotients
by lognormal distributions �tted to the moments� This is unsuitable for our needs
because of restrictions on the class of distributions that can be accommodated�

Even if these problems are ignored� there are still substantial di
culties in using
moments as a basis for probabilistic arithmetic� This is because although there is
a simple and exact formula for the moments of a sum of two independent random
variables

�
�n�
X�Y �

nX
s��



n

s

�
�
�s�
X �

�n�s�
Y

�see ����� p���� 	� there are no such simple results for products and quotients� In�
deed� for the case of the quotient� the moments may not even exist� It is easy to
prove that if Z � X�Y � where X and Y are random variables with densities fX
and fY bounded and continuous at the origin� then in order for ��n�X�Y to exist it is

necessary �and su
cient	 for ��n�X to exist and for fY to have a zero of order n�� at
the origin� �In some cases the odd order moments exist as Cauchy principal values�	

Approximate Formulae for Moments of Functions of Random Variables

Whilst exact formulae for moments of products and quotients do not exist� there
are useful approximations which have found wide application in applied probability
theory� There are two di�erent ways of developing approximate formulae� The �rst
method� which is based on the binomial expansion� is discussed in ���������������� 
and is of little use� More useful is the method based on partial di�erentiation of the
function involved� This was studied in great detail by Tukey in �������� � The basic
idea is to use a truncated Taylor series expansion of the function in question in order
to linearise any non�linearities about expected values� Tukey says that the results
obtained with only second order expansions are surprisingly accurate� Generally
the approximate formulae are more accurate if the random variables have small
coe
cients of variation� The formulae are known in metrology as the general error
propagation laws ��� � The formulae for an arbitrary function of random variables
are given by Hahn and Shapiro ����� p���� as follows� Let Z � h�X�� � � � �Xn	 be a
function of n independent random variables� Then

�Z � h��X� � � � � � �Xn	 �
�

�

nX
i��

��h

�X�
i

��
Xi

������	

and

��
Z �

nX
i��



�h

�Xi

��
��
Xi

�
nX
i��



�h

�Xi

�

��h

�X�
i

�
�
���
Xi
� ������	

where as usual we write ��
X for �

���
X and the partial derivatives are evaluated at their

expected values� There are related but more complex formulae in terms of cross�
moments for cases when the Xi are not independent� Note the following special
cases� If Z � h�X��X�	 � X� �X��

�Z � �X� � �X�� ��
Z � ��

X�
� ��

X�
� ������	



If Z � h�X��X�	 � X�X��

�Z � �X��X� � ��
Z � ��X�

��
X�

� ��X�
��
X�

� ��
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��
X�
� ������	

If Z � h�X��X�	 � X��X��

�Z � �X�

�X�

�
�X��

�
X�

���X�

� ��
Z �

��
X�

��X�

�
��X�

��
X�

��X�

� ��X�
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���
X�

��	X�

� ������	

There are many possible variations on these formulae� For example� the derivation
of an expression for the variance of products was the subject of the three papers ����
������� �

Uses of These Approximate Formulae

The above approximate formulae formed the basis of Metropolis�s signi�cance arith�
metic �������� � The name comes from his use of the relationship

sX �

�
log�


 j�X j
�X

� ���

�

in order to determine the number of signi�cant digits sX in a calculated result�
Metropolis stated that

an important observation is that ������������	 do not depend on the de�
tailed structure of the distribution function associated with each operand�
apart from the natural assumption that the �rst and second moments ex�
ist ����� p���� �

He also noted that the formulae are only usable when the coe
cients of variation
are small�

Although the above approximate formulae are not entirely suitable for a com�
pletely general �probabilistic arithmetic� they are very useful in speci�c applications
and have been used widely� See the examples in �������� � Moment based methods
have found wide application in power systems analysis� The use of cumulants �which
are directly related to moments ���� 	 has become popular in power systems analysis
���������������� � Representation of distributions by their cumulants has the ad�
vantage that sum convolutions can be calculated by the simple pointwise addition of
cumulants� The resulting distribution is then calculated by using a Gram�Charlier
expansion �see section ����� below	� Whilst this method may seem elegant� there
are many problems� even within the restricted application area envisaged for it by
its developers� Apart from a number of speci�c problems caused by the area of
application �which would be encountered by all methods of probabilistic arithmetic	
there is the di
culty of representing distributions that are far from normal� In gen�
eral there is an unknown approximation error� In some cases the �tted distribution
can di�er considerably from the measured distributions� especially in the tails �����
�gure � �



A moment based method has also been suggested by Petkovi�c ���� � who de�
veloped an idea he calls �probable intervals� These are de�ned� for some random
variable X with density fX having �nite support �a� b � as the ordered pair ��X � q��

X	�
The parameter q 	 � is chosen such that q��

X � �b � a	��� Petkovi�c showed that
if fX is continuous and unimodal� then ��

X � r� � �r�X � ��
X � �r�fX��X	�� and

��
X � r���� where r � �b� a	��� He suggests that these results can be used in order

to choose q� Once q is chosen� then the probable intervals can be combined using
interval arithmetic �see section ���� especially subsection �����	�

����� Non�Linear Transformations

Another method for calculating distributions of functions of random variables is to
use a nonlinear transformation to convert some arbitrary distribution into� say� a
normal distribution� The special properties of the normal distribution can then be
used to determine the distribution of the appropriate function of the transformed
random variables� The desired result is then calculated by using an inverse trans�
formation� Transformation to normality was originally used as an aid to quadrature
��� � It has since been widely used in reliability assessment� although not in a very
rigorous manner ����� p�xxi  �

A recent application of the transformation idea is reported by Petrina et al in
���� � Using the probability integral transform to convert a random variable X with
distribution function FX into a random variable Y with distribution function FY
�i�e� Y � F��

Y �FX�X			 as their starting point� Petrina et al� proceed as follows�
Hastings� approximation ���� to the normal distribution function is used to evaluate
FY � They then determine an approximate overall transforming function by �tting
a low degree polynomial to a discrete mapping from X to Y determined by using
sample values of X� Once X has been transformed to Y �and in practice there are
several Xs and several Y s	� the original problem can be solved in terms of normal
random variables� For the application considered by Petrina et al � a third degree
polynomial approximation appears to give quite accurate results� The actual de�
tails of this approach are more intricate than indicated here� Whilst the technique
appears quite useful in a number of circumstances� there seems little hope of devel�
oping a general probabilistic arithmetic in terms of it� �The idea of using polynomial
transformations to normality is also discussed in ����� section ���� �	

����� Direct Sampling of the Densities for Sum and Dierence Convo�
lutions

Allan et al ��� � in an examination of probabilistic power systems analysis� consid�
ered the distribution of the sum of n� independent continuous Gaussian distributed
random variables added to the sum of n� discrete random variables with binomial
distributions� They used the results mentioned earlier for the sum of Gaussian ran�
dom variables and found the distribution of the sum of the discrete random variables
by numerically convolving their distributions using discrete convolution algorithms�
The combination of these two results is a convolution of a Gaussian distribution



with a series of Dirac delta distributions� This is simply a superposition of Gaussian
distributions�

The evaluation of the discrete convolution arising from the addition �or subtrac�
tion	 of discrete random variables can also be accomplished by means of fast Fourier
transform algorithms ��� � Indeed� any of the wide variety of fast discrete convo�
lution algorithms can be used ������� � These fast algorithms are not applicable
outside the case where the random variables can only take values on an equispaced
grid� A trivial example of how this technique is used is given in ���� �

The case of continuous convolutions is more di
cult� A naive approach would be
to approximate the continuous density f�x	 by the sampled discrete representation
f�kT 	� where T is the sample spacing� This is the approach used by Ackroyd ���� �
By simply sampling a continuous density with a �nite number of samples� approxi�
mations have to be made� There are two types of approximation errors� The �rst�
which we call sampling error� is due to the density not being bandlimited� and thus
the conditions under which the sampling theorem holds ���� are not satis�ed ���� �
The second form of approximation error is caused by the requirement of using only a
�nite number of samples� This makes the exact repesentation of densities with in��
nite �or semi�in�nite	 support impossible� We call this truncation error� An analysis
of sampling and truncation errors for general functions �not necessarily probability
densities	 is given by Papoulis ���� � An analysis with particular reference to proba�
bility densities is given by Widrow ���� in his consideration of amplitude quantized
sampled data systems� As well as discussing the well known Shannon sampling the�
orem ������������ � Widrow shows that if the probability density is bandlimited to
W �that is if the support of the characteristic function or Fourier transform is con�
tained within ��W�W  	� then the set of samples spaced ��W apart allows recovery
of all the moments �but not the density� which requires samples only ����W 	 apart	�

����
 The Skinner�Ackroyd Method

While it is possible� as mentioned above� to derive estimates for the error incurred
in sampling the distribution function� it is preferable to provide strict upper and
lower bounds on the error automatically as the calculation is performed� This has
been done by Ackroyd and Kanyangarara �� � They modi�ed techniques presented
in ���� by using an idea originally proposed by Skinner ���� � They sample the
cumulative distribution rather than the probability density� The signi�cance of this
is that upper and lower bounds on the error caused by the sampling can be readily
derived�

Given a cumulative distribution FX of a random variable X� two discrete ap�
proximations are formed which are lower and upper bounds on FX�

FX�x	 � FX�x	 � FX�x	 �x � ��
The bounds FX and FX are de�ned by

FX�x	 � FX�kT 	 kT � x � �k � �	T



Figure �
�� Illustration of Ackroyd�s method of discretising a continuous probability dis
tribution function
 The solid line is F �x�� and the two dashed lines are F �x� and F �x�
respectively


and
FX�x	 � FX�kT 	 �k � �	T � x � kT

and can be understood by consideration of �gure ���� The corresponding probability
densities f

X
and fX are obtained by di�erencing and are related by

f
X

�kT 	 � fX��k � �	T 	�

Denoting n�fold convolution by a superscript �n	� Ackroyd and Kanyangarara �� 
showed that

F
�n�
X �x	 � F

�n�
X �x	 � F

�n�
X �x	

for all x � �� For the special case of sum�convolutions it is possible to use the
relationship

f
�n�
X �kT 	 � f �n�

X
��k � n	T 	

in order to speed the calculation of these bounds by calculating

kX
m���

f �n�
X

�mT 	 � F
�n�
X �x	 �

k�nX
m���

f
X

�mT 	 kT � x � �k � �	T�

The tightness of the bounds depends upon the size of T and the shape of FX � There
is no consideration in this scheme of the truncation error caused by representing a
distribution with in�nite support� although this error can be made arbitrarily small
by increasing the number of samples� In chapter � we develop a method similar



to this where the quantiles F��
X are uniformly sampled and which has considerable

advantages over the method described here�

Of all the techniques based on converting a continuous convolution to a dis�
crete convolution by sampling� those which can be performed e
ciently with fast
Fourier transform algorithms ������� use uniform �equi�spaced	 sampling� A dif�
ferent method of sampling which has been applied to the numerical calculation of
characteristic functions is given by Jones and Lotwick ���� � This has been applied
���� to a method of non�parametric density estimation presented by Silverman �����
��� � Their method reduces the error incurred by the sampling process by using a
di�erent method of assigning the sample values� We note that for some distributions
non�uniform sampling ���� is better� although the practical value of this requires
further investigation�

����� Spline Based Methods

Yet another approach to computing sum convolutions of probability densities was
introduced by Cl�eroux and McConalogue �������� � Their idea is based on the piece�
wise representation of the cumulative distribution function of always positive random
variables by cubic splines� Cubic splines are used as they have well behaved �rst
derivatives �the probability density	� In ���� a fortran program is presented which
can be used to approximate convolutions of densities that are bounded� analytic� and
have support only on the positive real line� The algorithm appears to give accurate
results� although estimates of the errors have not been determined� �a useful error
analysis is not practicable ����� p����� � The distribution function is represented by
m equally spaced samples supplemented by m spline coe
cients� Approximations to
convolutions of distributions so represented are obtained in terms of the representing
values� The details of this are quite messy and are omitted here�

One of the restrictions on the class of distributions to which the technique can
be applied is removed in a generalisation presented in ���� � This generalisation
overcomes problems with cubic spline approximations to in�nite singularities� or
where the function being approximated and all its derivatives vanish at the origin�
A discussion of the original method� this generalisation� and a comparison with three
other methods which are often used in solving renewal equations �the application
for which this technique was originally developed	 is given by Baxter in ��� �

Nevertheless this generalised technique is still quite restricted� especially since
it deals only with sum convolutions and because we do not know how accurate
the �nal results are� The use of splines in conjunction with the histogram method
is mentioned brie�y in section ����� below� A relationship between splines and
convolutions was also the subject of Sakai�s paper ���� �



��� Laguerre Transforms and Other Orthonormal Trans�

forms

Orthonormal expansions are logical candidates for representing probability distribu�
tions so that convolutions can be calculated numerically� In this section we will look
at one particular orthonormal expansion that has been widely studied in this regard
and is based on Laguerre polynomials� Laguerre polynomials have been used in a
number of areas such as signal processing and system identi�cation as well as being
used as a general means for representing continuous functions on a digital com�
puter ������������������������������������������������������������ � The Laguerre
transform we examine was developed by Keilson and others �������� for calculating
the sum convolutions �and other operations	 of probability densities� The original
motivation was to push back the �dreaded Laplacian curtain ����� p���� � �This
is the name given to the fact that many results in queueing theory can only be
expressed in terms of Laplace transforms�	 The technique has been used success�
fully in a number of applications� In section ����� below we will brie�y outline the
technique and show how it can be used to calculate the sum and di�erence convo�
lutions� No work has been presented to date on using Keilson�s Laguerre transform
to calculate product and quotient convolutions� Accordingly� in sections �����������
we examine three possible approaches to achieve this� We obtain a number of new
results but ultimately �nd that the methods appear intractable� In section �����
we brie�y look at some other Laguerre transforms and consider their convolution
relations� Our conclusions on the suitability of orthonormal expansions �particularly
Laguerre transforms	 as a method of representing probability densities suitable for
numerically calculating convolutions are given in section ������

Orthonormal transforms other than Laguerre transforms have been used widely
in other areas� We now brie�y consider some which might be useful for calculat�
ing convolutions� Hermite polynomials form an orthonormal set on � with weight
function exp��x�	 ���� � They have been used to de�ne Hermite transforms �����
������� � Debnath ���� proved a complicated convolution formula for the Hermite
transform of odd order� The convolution in question has no relation to the sum or
product convolutions we are interested in and is thus of no use to us� The convo�
lution structure of orthogonal transforms based on Jacobi polynomials �orthogonal
on the interval ����� 	 has also been investigated ��������������� � but these too are
of no use to us� �The convolutions are not of the form �������������	�	 Other or�
thonormal systems such as the one recently discussed by Christov ���� are also
inapplicable to our area of interest� Nonorthogonal expansions �which have some of
the desirable features of orthogonal expansions without the �undesirable features	
are also possible candidates for calculating convolutions� See the consideration of
the Mellin transform and product convolution on pages ��������� of ���� �



����� The Laguerre Transform Method

De�nitions

The Laguerre transform method is based on the use of the associated Laguerre
functions

�n�x	 � e�x��Ln�x	 ������	

which provide an orthonormal basis in L�����	� Here Ln�x	 is the Laguerre poly�
nomial of degree n which is de�ned by the Rodrigues� formula ���� 

Ln�x	 �
�

n"
ex


d

dx

�n
�xne�x	�

The polynomial Ln�x	 has the explicit form

Ln�x	 �
nX

k��



n

k

�
���	k

k"
xk� ������	

An extended set of associated Laguerre functions� which allows the representation
of the probability densities of random variables that are not always positive� can be
de�ned by

hn�x	 �

�
�n�x	U�x	 n  �
��n��x	U��x	 n � �

������	

where U�x	 � � for x  � and U�x	 � � for x � �� The set fhn�x	g��� is an
orthonormal basis of L������	� Thus for any f � L������	 there is a unique
representation

f�x	 �
�X

n���
fynhn�x	� ������	

where the equality is in the L��sense� The coe
cients ffyng are known as the Laguerre
dagger coe�cients and are given by the Laguerre transform

fyn �
Z �

��
hn�x	f�x	 dx� ������	

If
P

n jfynj ��� pointwise convergence is guaranteed for all x � �nf�g� The inverse
transform ������	 is unique if f is continuous�

Calculation of Sum and Di�erence Convolutions

In order to see how convolutions are calculable with Laguerre transforms we de�ne
the two generating functions

T yu�f	 �
�X

n���
f
n u

n

and

T

u �f	 �

�X
n���

f
n u
n � �� � u	T yu�f	�



The Laguerre sharp coe�cients ff
n g��� are related to the dagger coe
cients by

f
n � fyn � fyn�� �
Z �

��
f�x	#hn�x	 dx� ������	

where #hn�x	 � hn�x	� hn���x	� The inverse relation is

fyn � lim
k	��

nX
j�k

f
j � � lim
k	�

kX
j�n��

f
j �

Recalling our notation Ls�f	 �
R�
�� e�sxf�x	 dx for the Laplace transform of f � then

it can be shown ���� that

Ls�hn	 �
Z �

��
e�sxhn�x	 dx

�
�

s � �
�
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� �
�
 � ������	

Equation ������	 gives a relationship between the sharp generating function and the
bilateral Laplace transform�

T

u �f	 � L� �

�
��u
��u 	�f	�

Using this relationship� the sum convolution

�f � g	�x	 �
Z �

��
f�x� y	g�y	 dy

can be calculated as follows� The convolution theorem for Laplace transforms states
that Ls�f �g	 � Ls�f	Ls�g	� Therefore T


u �f �g	 � T

u �f	T


u �g	� This is equivalent
to the discrete convolution

�f � g	
n �
�X

m���
f
n�mg



m ������	

which can be readily calculated on a computer� Di�erence convolutions can be
calculated by simply setting g��x	 � g��x	 �by swapping the roles of gyn and gy�n for
n � �� �� � � �	 and then calculating a sum convolution� In practice it is necessary to
truncate the series ffyng and fgymg to a �nite length� This will introduce errors� but
they can be analysed and controlled�

Extensions and Applications

The assumption that f � the density� is in L� is not always satis�ed� If f �� L� then
the Laguerre dagger transform de�ned by ������	 does not exist� However one can
de�ne a sharp transform which does exist if f �� L� provided that f � L�� It is
equivalent to the dagger transform when f � L� ���� �

The Laguerre transform method has been successfully applied to a number of
problems in applied probability that require the evaluation of sum convolutions�



Some of the applications include a study of the approach to normality in the central
limit theorems �������� � and the evaluation of renewal densities ���� � The Laguerre
coe
cients for a number of widely used distributions are given by Sumita in ���� �
although not all are given in a closed form� We note in passing that whilst it is
possible to derive some formulae for the Laguerre transforms of H�function random
variables by using the results in ����������� � these do not appear to be of any value
because they are very complicated� Further details on the Laguerre transform and
its applications can be found in �������������������� �

����� Distributions of Products and Quotients using the Laguerre and
Mellin Transforms

We will now consider the possibility of using the Laguerre transform for evaluat�
ing the density of the quotient or the product of two random variables in terms of
the Laguerre coe
cients of the operands� Because of the success with which it has
been used for sum convolutions� a method of using it for calculating product and
quotient convolutions would make the technique rather more complete� We should
expect that the determination of the quotient or product convolutions will be rather
more di
cult �compared to the sum or di�erence convolutions	 because product and
quotient are non�linear operations� Also� whereas the sum convolution has the nice
property that the sum convolution of any two bounded continuous distributions is
bounded and continuous� the same is not true of the product convolutions� For ex�
ample� the product of two standardised Gaussian random variables has a probability
density f�x	 � ���
	K��x	� where K� is the Bessel function of the second kind of
purely imaginary argument ������� � This has a singularity at the origin�

There does not appear to be any work on using the Laguerre transform to cal�
culate product and quotient convolutions in the literature� Sumita and Kijima have
considered the simpler problem of �nding the Laguerre transform of the product
of two functions in terms of the Laguerre coe
cients of the functions ���� � That
is� given the Laguerre coe
cients of f�x	 and g�x	� they determine the Laguerre
coe
cients of f�x	g�x	�

Drawing on an analogy with the method of determining the relationship for the
Laguerre transform coe
cients for the sum �and hence di�erence	 of two random
variables by considering the Laplace transform of the associated Laguerre functions�
we will now examine the �unilateral	 Mellin transform of �n�x	� If we write �n�x	 as

�n�x	 �
nX

k��
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then we can determine the Mellin transform termwise� Using equations ����� and
����� of ���� we have
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h
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i
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Noting that $�s � k	 � $�s	
Qk
j���s � j	 we obtain

Ms��n � ecs$�s	
nX

k��
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k
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�s � j	� �������	

where c � ln �� Unfortunately this is nowhere near as simple as ������	 �the Laplace
transform of hn�x		� and thus there is no apparent simple relation between the
Laguerre coe
cients for the product or quotient of two random variables� In section
����� we will brie�y discuss some other relationships between Laguerre polynomials
and Mellin transforms that have appeared in the literature�

����� Distribution of Products and Quotients Calculated with the La�
guerre Transform Directly

Another possible approach to determining the Laguerre coe
cients of product and
quotient convolutions is to examine the convolutions directly� We consider the quo�
tient here� and we let Z � X�Y be the quotient of two random variables� The
functions f � g� and h are the densities of X� Y and Z respectively� We assume
X and Y �and hence Z	 are always positive �thus f�x	 � g�x	 � h�x	 � � for
all x � �	� This does not sacri�ce any generality as we can always determine the
quotient of two random variables that are not always positive by considering the
positive and negative parts separately and then combining the results in a mixing
operation�

The General Approach

The convolution equation we are studying is

h�y	 �
Z �

��
jxjf�xy	g�x	 dx

�
Z �

�
xf�xy	g�x	 dx x� y � ����	�

Let h�y	 �
P�

k�� h
y
k�k�y	� f�x	 �

P�
n�� f

y
n�n�x	 and g�x	 �

P�
m�� g

y
m�m�x	� where

fhykg� ffyng� and fgymg are the respective one�sided Laguerre dagger coe
cients� Then

h�y	 �
Z �

�
x

� �X
n��

fyne
�xy��Ln�xy	

� � �X
m��

gyme
�x��Lm�x	

�
dx� �������	

If ffyng and fgymg � ��� then the Laguerre expansion converges pointwise uniformly
almost everywhere �see theorem ����� in the following subsection	� Assuming this



we can write

h�y	 �
�X
n��

�X
m��

fyng
y
m

Z �

x��
xe�x�y�����Ln�xy	Lm�x	 dx

and we need to evaluate the integral

I �
Z �

x��
x e�x�y�����Ln�xy	Lm�x	 dx�

Evaluation of the Integral

Gradshteyn and Ryzhik ����� eq� ������ giveZ �

�
e�bxx�L���

n ��x	L���
m ��x	 dx �������	

�
$�m � n �  � �	

m"n"

�b� �	n�b� �	m

bm�n����
F

�
�m��n��m� n� �

b�b� �� �	

�b� �	�b� �	

�

for Re�	 	 ��� Re�b	 	 �� where F �� �� �� z is the hypergeometric function
de�ned by

F �� �� �� z	 � � �
�

� � �
z �

� � �	��� � �	

��� � �	� � � �
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 �

The generalised Laguerre polynomial L���
n �x	 is de�ned by

L���
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Observing that L�����
n �x	 � L���

n �x	 � L
���
n���x	 ����� eq� ������ � we can write the

integrand of I as

xe�x�y�����Ln�xy	Lm�x	 � xe�x�y�����
h
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If we set  � �� b � �y � �	��� � � y� and � � � we have �from equation ������	
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y � �

y � �

���� �
The hypergeometric function F �� �� �� z	 terminates if  or � are negative integers�
Since  � �m� � � �n� and � � �m� n� �� we can write

F ��m��n��m� n� �� z	 �
min�m�n�X

i��

�
�i��Y
j��

�j �m	�j � n	

�j �m� n� �	

�
� zi
i
� �������	



We also have �when max�i	 � min�n�m		

i��Y
j��

�j �m	�j � n	

�j �m� n� �	

�
�m��m� �	 
 
 
 ��m� i� �	��n	��n � �	 
 
 
 ��n � i� �	

��m� n � �	��m� n	��m� n � �	 
 
 
 ��m� n� � � i� �	

�
���	im�m� �	 
 
 
 �m� i � �	���	in�n� �	 
 
 
 �n� i � �	

���	i�m � n � �	�m � n	�m � n� �	 
 
 
 �m � n � � � i	

�
���	im" n" �m� n � � � i	"

�m� i	" �n� i	" �m � n � �	"
�

Therefore

Bm�n�y	 �
�m � n � �	"

m"n"

m"n"

�m � n � �	"

���	n��y � �	m�n

�y � �	m�n��
�

min�m�n�X
i��

�m � n � �� i	"

�m� i	"�n� i	"i"



y � �

y � �

��i

�
���	n�

�y � �	�

min�m�n�X
i��

�m� n � �� i	"

�m� i	"�n� i	"i"



y � �

y � �

�m�n��i
� �������	

Recalling equation �������	 we have

I � Bm�n�y	 � Bm���n���y	�Bm���n�y	�Bm�n���y	

and therefore

h�y	 �
�X
n��

�X
m��

fyng
y
m �Bm�n�y	 � Bm���n���y	�Bm���n�y	�Bm�n���y	 � �������	

The Result

Equation ������ gives h in terms of ffyng and fgymg� However what we really want is

to determine fhykg directly in terms of ffyng and fgymg� We have

hyk �
Z �

y��
h�y	�k�y	 dy �������	

�
Z �

y��

�X
n��

�X
m��

fyng
y
m �Bm�n�y	 � Bm���n���y	�Bm���n�y	�Bm�n���y	 �k�y	 dy�

where Bm�n�y	 is given by �������	� Even if the inner series in �������	 is uni�
formly convergent �a fact which is not readily apparent	� this is obviously going

to be a rather messy expression for hyk� a complicated sum of integrals of the formR�
�

yre�y��

�y���p dy� So� although Gradshteyn and Ryzhik ����� eq� ������ give an ex�

pression for this integral �in terms of Whittaker�s function	� this does not result in



a simple expression for hyk� Di
culties remain even if we numerically compute the
integral beforehand� This can be seen by considering

hyk �
�X
n��

�X
m��

fyng
y
mKm�n�k� �������	

where Km�n�k is the precomputed integral� If we truncate the Laguerre series by

using only ��� coe
cients� then in order to calculate fhykg for k � �� � � � � ��� in
excess of ��� operations would be required�

A derivation of the Laguerre coe
cients of the product of two random variables
gives a similar result to that obtained above �a complicated sum of Whittaker func�
tions	 and is not considered further�

The fact that the results we have obtained are so complicated is surprising when
we consider Feldheim�s result ���� that the Laguerre polynomials are the only or�
thogonal polynomials pn�y	 with a multiplicative theorem of the form

�npn�y��	 �
nX
j��

Anj�� � �	n�jpj�y	 �������	

where Anj are constants� The signi�cance of Feldheim�s result can be seen by com�
paring �������	 with the product convolution �see equation ������	 where f�x�y	 is a
term in the integrand� Nevertheless this is not as simple as ����� equation �������� Z x

�
Lm�t	Ln�x� t	 dt �

Z x

�
Lm�n�t	 dt � Lm�n�x	� Lm�n���x	

which was the original motiovation for Keilson�s Laguerre transform ���� �

Other expansions for products of Laguerre polynomials have appeared in the
literature ����������� � but these are all in terms of Laguerre polynomials L���

n �x	
of di�erent orders � Products of other orthogonal polynomials are discussed in
��������������� � Niukkanen ���� has presented a very general result giving the
product of two Laguerre polynomials in terms of a series of Laguerre polynomials�
These are also presented in terms of Laguerre polynomials of di�erent orders �
The coe
cients for the Laguerre polynomials in his expansion are very complicated
expressions in terms of his generalised hypergeometric series ���� and do not appear
to be of any use here�

����� Distributions of Products and Quotients using the
Laguerre Transform and Logarithmic�Exponential
Transformation of Variables

Instead of determining the distributions of products and quotients directly� it may
be possible to use logarithmic and exponential transformations� It can be shown
that if X is an almost surely positive random variable with a probability density
f�x	� then the random variable Y � logX has a density g�y	 � eyf�ey	� The inverse
transformation is f�x	 � ���x	g�log x	� If we can determine the Laguerre coe
cients



for g in terms of the coe
cients for f � then we can calculate the probability density
of products and quotients of random variables in terms of the Laguerre coe
cients of
the operands by calculating the e�ect of the logarithmic transformation� performing
a sum or di�erence convolution� and then transforming back again� In this section
we will derive a formula for the Laguerre coe
cients of the logarithm of a random
variable with a given density in terms of the Laguerre coe
cients of the density� It
turns out to be surprisingly di
cult to do this� As a consequence� this subsection
is rather longer and more intricate than the others�

The General Approach

Let f�x	 �
P�

n�� f
y
n�n�x	� where fyn �

R�
� f�x	�n�x	 dx� and let g�y	 � eyf�ey	 �P�

n�� g
y
n�n�y	� where gyn �

R�
� g�y	�n�y	 dy� We require fgyng in terms of ffyng� Obvi�

ously

gyn �
Z �

y��
eyf�ey	�n�y	dy� �������	

Let z � ey� y � log z� and so dz
dy

� ey and hence dz � eydy� Then

gyn �
Z �

z��
f�z	�n�log z	 dz

�
Z �

z��

�
� �X
m��

fyme
�z��

mX
p��



m

p

�
���	p

p"
zp

�
� �e��log z��� nX

k��



n

k

�
���	k

k"
�log z	k

�
dz

�
Z �

z��

nX
k��

�X
m��

mX
p��



n

k

�
���	kfym���	p

k" p"



m

p

�
e�z���log z	kzp�

�
� dz� �������	

If the in�nite series in �������	 is uniformly convergent to an integrable function� then
we can interchange the order of integration and summation and integrate termwise�
Equation �������	 is equivalent to

gyn �
Z �

z��

�X
m��

fym�m�z	�n�log z	 dz� �������	

Sumita ����� page �� gives the following theorem regarding the uniform convergence
of the extended Laguerre expansion�

Theorem ����� Let f�x	 � L������	 have an extended Laguerre expansion

f�x	 �
�X

n���
fynhn�x	 �� � x ���

and de�ne the partial sum SN�x	 �
PN

n��N fynhn�x	� If ffyng � ��� then SN �x	
converges to f�x	 pointwise uniformly almost everywhere as N ���

This theorem implies that if ffyng � ��� then f�x	 �
P�

n��� fynhn�x	 is continuous
for all x �� � because when a sequence of continuous functions �such as SN�x		
converges to f uniformly� then f is continuous� The class of functions f for which



the coe
cients ffyng �� �� has not been determined� However we do know that if f
is not continuous for all x � ����	 then ffyng �� �� ����� page ��� � We will assume
that ffyng � �� from now on�

It is required that

S�N �x	 �
NX

m��

fym�m�z	�n�log z	 �������	

converges uniformly to an integrable function for almost all z � ����	 and for
n � �� �� � � �� This is true if ffymg � �� because S�N �x	 converges to f�z	�n�log z	
�which is continuous and bounded	� and SN�z	 �

PN
m�� f

y
m�m�z	 converges uniformly

to f�z	� Regarding the integrability condition� we observe that

�n�log z	 � e��log z���
nX

k��



n

k

�
���	k

k"
�log z	k

� z�
�
�O��log z	n	 �������	

which approaches � as z � � for any given n� and therefore f�z	�n�log z	 � � as
z � � because f�z	 � � as z � �� Now f�z	 is integrable on ����	 �it is a
probability density	 and f�z	  � for all z  �� Also �n�log z	 is bounded for all
z 	 �� Thus f�z	�n�log z	 is integrable on ����	�

Evaluation of the Integral

We can now interchange the order of integration and summation in �������	 giving

gyn �
nX

k��

�X
m��

mX
p��



n

k

�
���	k

k"
fym



m

p

�
���	p

p"

Z �

z��
e�z���log z	kzp�

�
� dz� �������	

We now need to evaluate the integral

I �
Z �

�
e�z���log z	kzp�

�
� dz� �������	

Gradshteyn and Ryzhik ����� eq� ������ give

Z �

�
x���e��x�log x	m dx �

�

�

�m

��m

�
����$��� �	

�
�������	

Re��	 	 �� Re��	 	 �� m � �� �� � � � �

where $�� x	 is the incomplete gamma function de�ned by

$�� x	 �
Z �

x
e�tt��� dt�

If we set m � k� � � p� �
� � �p  �	� and � � �

� then �������	 is equivalent to �������	�
Therefore

I �
�k

��p � �
�
	k

�
���	���p�

�
� �$��� � p � �

�	
�
� �������	



Let p� � p � �
�
� then

I �
�
�
�k

�p�k
�
�p

�

$��
�
� p�	

�
� �������	

We require an expression for

�k

�xk
�ecx$�a� x		 �

where x � p� and c � ln �� Firstly consider

�

�x
�ecx$�a� x		 �

Erdelyi et al ����� eq� ��� p� ��� give

�

�x
�ex$�a� x		 � �a� �	ex$�a � �� x	� �������	

If we write
ecx$�a� x	 � e�c���x � ex$�a� x	

and use the product rule along with �������	 we obtain

�

�x
�ecx$�a� x		 � �c� �	ecx$�a� x	 � �a� �	ecx$�a� �� x	� �������	

We actually require an expression for �k

�xk
�ecx$�a� x	 � There does not appear to

be one in the literature� Thus we now prove the following theorem by induction�

Theorem �����

�n

�xn
�ecx$�a� x	 �

nX
i��



n

i

�
�c� �	n�i

�
� iY
j��

�a� j	

�
� ecx$�a� i� x	� �������	

Proof� In order to make the proof less cumbersome� we de�ne G�a	 � ecx$�a� x	
and D � �

�x
� We have already seen �equation ������	 that

D�G�a	 � �c� �	G�a	 � �a� �	G�a � �	� �������	

The theorem to be proved is

Dn�G�a	 �
nX
i��



n

i

�
�c� �	n�i

�
� iY
j��

�a� j	

�
�G�a� i	�

Thus the induction hypothesis is

D

�
� nX
i��



n

i

�
�c� �	n�i

�
� iY
j��

�a� j	

�
�G�a� i	

�
� �������	

�
n��X
i��



n � �

i

�
�c� �	n���i

�
� iY
j��

�a� j	

�
�G�a� i	� �������	



Firstly observe that for arbitrary coe
cients fqig�

D

�X
i

qiG�a� i	

�
�

X
i

qi�c� �	G�a� i	 �
X
i

�a� i� �	qiG�a� i� �	�

This fact along with equations ������ and ������ gives

nX
i��



n

i

�
�c� �	n�i

�
� iY
j��

�a� j	

�
�G�a� i	�c� �	 �

nX
i��



n

i

�
�c� �	n�i

�
� iY
j��

�a� j	

�
� �a� i� �	G�a� i� �	

�
nX
i��



n

i

�
�c� �	n���i

�
� iY
j��

�a� j	

�
�G�a� i	 �

nX
i��



n

i

�
�c� �	n�i

�
�i��Y
j��

�a� j	

�
�G�a� i� �	

�
nX
i��



n

i

�
�c� �	n���i

�
� iY
j��

�a� j	

�
�G�a� i	 �

n��X
i��



n

i

�
�c� �	n�i

�
�i��Y
j��

�a� j	

�
�G�a� i� �	 �



n

�

�
�c� �	n��

�
� �Y
j��

�a� j	

�
�G�a� �	 �



n

n

�
�c� �	�

�
�n��Y
j��

�a� j	

�
�G�a� n� �	�

If we set i � k � � in the second sum �so k � i� �	 this can be written as

nX
i��



n

i

�
�c� �	n���i

iY
j��

�a� j	G�a� i	 �

nX
k��



n

k � �

�
�c� �	n��k���

�k�����Y
j��

�a� j	G�a � �k � �	 � �	 �



n

�

�
�c� �	n��G�a	 �



n

n

�
n��Y
j��

�a� j	G�a� n � �	

�
nX
i��

�
�G�a� i	�c� �	n���i

iY
j��

�a� j	 �



n

i� �

�
�c� �	n���i

iY
j��

�a� j	G�a� i	

�
A �

�c� �	n��G�a	 �
n��Y
j��

�a� j	G�a� n � �	



�
nX
i��

G�a� i	�c� �	n���i
iY

j��

�a� j	

�

n

i

�

n

i� �

��
�

�c� �	n��G�a	 �
n��Y
j��

�a� j	G�a� n � �	

�
nX
i��

G�a� i	�c� �	n���i
iY

j��

�a� j	



n � �

i

�
�

�c� �	n��G�a	 �
n��Y
j��

�a� j	G�a� n � �	

which equals �������	�

The Result

The result we require �a closed form for equation ������	 is obtained by substituting
into �������	� We �nd that

�k

�p�k
�
�p

�

$��
� � p

�	
�

�
kX
i��



k

i

�
�ln �� �	k�i

iY
j��

��� � j	�p�
�
�$��

� � i� p � �
�	� �������	

Substituting �������	 into �������	 and �������	 gives

gyn �
nX

k��

�X
m��

nX
p��



n

k

�
���	k

k"
fym



m

p

�
���	p

p"
� �������	

�p�
�
�

kX
i��



k

i

�
�ln �� �	k�i

iY
j��

��� � j	$��
�
� i� p � �

�
	�

This can be written as

gyn �
nX

k��



n

k

�
F �k	 �

n��X
k��

gyn�� � F �n	� �������	

where F �k	 �
P�

m�� f
y
mG�k�m	 and G�k�m	 does not depend on fym�

G�k�m	 �
���	k

k"

mX
p��



m

p

�
���	p

p"
�p�

�
�

kX
i��



k

i

�
�ln �� �	k�i

iY
j��

��� � j	$��� � i� p� �
�	�

�������	
Thus G�k�m	 could be tabulated for k�m � �� �� � � � � N � where N is the length at
which we truncate the in�nite series of Laguerre dagger coe
cients ffymg and fgyng�
These tabulated values could then be used with equation �������	 and the given
Laguerre dagger coe
cients ffymg to calculate the set fgyng�

There are problems with this scheme which reduce its practicability� Firstly�
if N is of the order that has been used in most of the papers on the Laguerre
transform technique cited earlier ���� to ���	 then the table of values of G�k�m	



will contain ����� to ������ entries� Secondly� the values of G�k�m	 for some
m and k appear to be very large and beyond the range of most modern digital
computers which can usually only represent numbers up to about ����� This second
point was discovered upon programming �������	 using a special package of extended
�oating point arithmetic subroutines ���� �which is similar to the extended�range
arithmetic used for calculating Legendre polynomials in ���� and the level�index
system described in ���� 	 and a computational algorithm for the incomplete gamma
function ���� � The expression �������	 is unfortunately too complicated to derive
rough asymptotic values for G�k�m	 to verify the program�s correctness� We note
that Sumita has encountered problems of excessive magnitudes in the calculation of
the Laguerre coe
cients of Gamma densities ����� p���� �

Reducing the Extent of the Laguerre Coe�cients

The problems associated with �������	 and �������	 would be less severe if the La�
guerre coe
cients were of smaller extent �i�e� if N � the number of coe
cients was
smaller	� Sumita ���� has shown that the extent of the coe
cients depends heavily
on the concentration about zero and the extent of the tails� Scaling and exponen�
tial weighting of the density to be represented can reduce this extent considerably�
Scaling involves setting g�x	 � f�cx	 for some positive constant c� and weighting
involves setting g�x	 � e��xf�x	 for some positive constant �� Sumita says that �a
general procedure to �nd �the Laguerre coe
cients of g�x	 from �the coe
cients
of f�x	 has yet to be developed ����� p���� � The following theorem solves this
problem�

Theorem ����� Let g�x	 � e��xf�cx	� �  �� c 	 �� f�x	 �
P�

n�� f
y
n�n�x	� and

g�x	 �
P�

m�� g
y
m�m�x	� Then if ffyng � ���

gym �
�X
n��

fyn ����	n
min�m�n�X

i��

���	i�m � n� i	" �c� �� ��	n�i�c� � � ��	m�i

�m� i	" �n� i	" i" �c� � � ��	m�n���i�c � �� ��	�i
�

�������	

Proof� We have

gym �
Z �

�
g�x	�m�x	 dx �

Z �

�
e��x

� �X
n��

fyn�n�cx	

�
�m�x	 dx� �������	

If ffyng � ��� then the Laguerre expansion in the square brackets in �������	 converges
uniformly �see theorem �����	 and so

gym �
�X
n��

fyn
Z �

�
e�� c�����

� 	xLn�cx	Lm�x	 dx� �������	

If we let b � c�����
� �  � �� � � c� � � � and use equation ������ we obtain

gym �
�X
n��

fyn
$�m � n � �	

m"n"

�
c�����

� � c
�n �

c�����
� � �

�m
�
c�����

�

�m�n�� �



F

�
��m��n��m� n�

�
c�����

�

� �
c�����

�
� c� �

�
�
c�����

�
� c

� �
c�����

�
� �

�
�
�

�
�X
n��

fyn
�m � n	" ��� � c � ��	n�c� � � ��	m

m"n" �c � � � ��	m�n��
�

F

�
�m��n��m� n�

�c � � � ��	�c � �� ��	

�c� � � ��	�c� � � ��	

�
�

Substituting the expression for the terminating Hypergeometric series �������	 gives
�������	�

Note the following special cases�

�� � �	 � gym �
�X
n��

fyn
����	n

�c � �	

min�m�n�X
i��

���	i�m � n� i	"

�m� i	" �n� i	" i"

�
c� �

c � �

�m�n��i
�������	

�c � �	 � gym �
�X
n��

fyn
min�m�n�X

i��

�m� n� i	" �m�n��i��� �	i

�m� i	" �n� i	" i" �� � �	m�n���i �������	

� � � �� c � �	 � gym �
�X
n��

fyn�mn � fym� �������	

Sumita�s result for � � ��c
� ����� theorem ����� is a special case of �������	�

gym �
�X
n��

fyn ����	n
min�m�n�X

i��

���	i�m� n � i	" ���c� �		n�i�m�i

�m� i	" �n� i	" i" �m�n���i��c	�i
�

The ith term of the inner sum equals zero unless i � m �because of the �m�i term	�
If i � m� then n  m �because of the upper limit of the inner sum	� and so
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This is Sumita�s result�

Other Uses of Logarithmic Transformation

The use of a logarithmic transformation with the Laguerre transform has been sug�
gested elsewhere� In section ��� of ���� � Sumita considers the problem of deter�
mining the distribution of the product of independent Beta variates� He �nds the
distribution of the logarithm of the variates analytically �rather than in terms of the
Laguerre coe
cients	� and then uses the Laguerre transform to �nd the distribution
of the sum of the transformed variates� From this� he obtains the distribution of the



product by the inverse transformation� Sumita�s approach is similar to that used by
Ramsey et al described below�

Furmanski and Petronzio ���� introduced the idea of a logarithmic transforma�
tion to solve a special class of problems encountered in Quantum Chromo�Dynamics�
The method is described by Ramsey in ���� � He considers the solutions of integro�
di�erential evolution equations of the form

dF �x� t	

dt
�

Z �

x

�

y
P �x�y	F �y� t	 dy� �������	

Comparing the right side of �������	 with the expression for the probability density
of the product of two random variables in terms of their densities suggests that it is
a closely related problem� If the two random variables are independent and always
positive we have from �������	

fZ�z	 �
Z �

�

�

x
fX�z�x	fY �x	 dx� �������	

Methods that have been used to solve �������	 are similar to those suitable for
solving �������	� Two examples are Mellin transforms ������������ and brute force
numerical methods �evaluating the integral	 ���� � Ramsey says that the brute
force numerical methods �tend to be ine
cient and prone to instability� The
Mellin transform requires a numerical inversion which can be di
cult� The method
presented by Ramsey is �more stable and more accurate than other methods in
that it allows one to deal with the functions F �x� t	 directly rather than with their
integral transforms ����� p� �� It involves a change of variables in �������	 via a
logarithmic transformation� followed by a sum convolution which is evaluated by a
Laguerre transform� �Of course more than this is required in order to solve �������	�
but this is not our concern here�	

Ramsey discusses the e�ect of truncation error and round�o� error� pointing out
that there is an inherent tradeo� between them� making the truncation error smaller
by using more coe
cients to represent the functions will compound rounding errors
by requiring more arithmetic operations� For his particular application� Ramsey
found that the round o� error became signi�cant �greater than �%	 with double
precision arithmetic when N � the number of coe
cients used� was greater than ���
In general he suggests values between � and �� should be used� His values of N
are less than those used by Keilson and Nunn ����� p���� who used ��� or Sumita
����� p���� who used ��� and found that when programmed with double precision
arithmetic there was �no evidence of numerical problems �for simply calculating
the convolution	 ����� p���� �

Ramsey�s method di�ers from the method we have developed above in the manner
of determining the Laguerre coe
cients of the logarithmically transformed function�
Whereas we have attempted to determine these from the Laguerre coe
cients of the
function to be transformed� Ramsey assumes the Mellin transform of the original
function is known� He shows on page ��� of ���� how to derive the required Laguerre
coe
cients in terms of these transforms� This approach is obviously no good for our
application� Ramsey also suggests �page ���	 the idea of expanding the function by



a power series and presents a method for determining the Laguerre coe
cients in
terms of the coe
cients of the power series expansion� It is not clear �to the present
author	 how this method can work�

����
 Other Types of Laguerre Transforms and Related Results

Before leaving the topic of Laguerre transforms� we brie�y point out some other
work on convolutions and Laguerre transforms which is not as widely known� A
number of unexpected connections have been considered in ��� �see especially the
editor�s preface	� which contains a paper on the use of Laguerre polynomials for
convolutions on the Heisenberg group ��� �

Hirschmann ���� develops an inversion formula for the transform de�ned for any
real function f�n	 by

&f �x	 �
�X

m��

f�m	Lm�x	� �������	

His formula is related to the Post�Widder inversion formula for the Laplace transform
����� page �� �

Debnath ���� introduced a transform in ���� which is more closely related to
Keilson�s� It is a generalisation of McCully�s transform ���� which was used for
solving certain di�erential equations� Debnath�s transform of a function F �x	 is
de�ned by

fa�n	 �
Z �

�
e�xxaL�a�

n �x	F �x	dx a 	 ��� �������	

In ���� Debnath shows that if fa�n	 and ga�n	 are the Debnath�Laguerre transform
of the functions F �x	 and G�x	 respectively� then the Debnath�Laguerre transforms
of the convolution F �x	�DG�x	 exists when Re�a	 	 ��

�
and is equal to fa�n	ga�n	�

The convolution �D is de�ned by

F �x	 �D G�x	 �
$�n � a � �	

n"
p



Z �

�
e�ttaF �t	

Z �

�
e�

p
xt cos� � �������	

Ja� �
�
�
p
xt sin�	 sin�a �

���
p
xt sin�	a�

�
�

� G�x � �t
p
xt cos �	 dt d��

where Jn�z	 is the Bessel function of the �rst kind of order n� This is much more
complicated than equation ����� and is obviously of no use to us �for the purposes of
probabilistic arithmetic	� Debnath�s transform has been further studied by Glaeske
������������ and Feny�o ���� � In ���� � Glaeske shows that

fa�z	 �
� sin
z




Z �

�

s�z��

�s � �	a��

Z �

�
e�x��s���xaF �x	 dx ds

�
� sin
z



M�z

�
�

�s � �	a��
L����s���� �xaF �x	 

�
� �������	

This relationship seems to be of even less use than equation ������� Note that the
Laguerre �polynomials in the above transform are de�ned for non�integral degrees



by

L���
� �x	 �

$�� �  � �	

$�� � �	$� � �	
'����  � ��x	� �������	

where ' is the degenerate hypergeometric function ����� section ��� � Equation
������ is equivalent to �������	 when � is an integer ���� �

The Laguerre transform closest in spirit to Keilson et al�s �which we studied
above	 is that discussed by Verma ���� � He obtains a real inversion formula for a
general Laguerre transform of the form

f ���	�n �s	 �
Z �

�
e�st�st	�L�	�

n �st	f�t	 dt� �������	

His inversion formula is

f�t	 � s�st		��
�X
n��

n"

$�� � � � n	
L�	�
n �st	f ���	�n �s	� �������	

He also gives the following convolution formula for this transform ���� � De�ning a
special case of the transform �equivalent to Debnath�s	

V ���	�
n �f�t	 �s	 �

Z �

�
e�stL���	�

n �st	f�t	 dt �������	

he shows that

V ���	�
n

�
d

dt
�f � g	

�
�s	 � s

nX
r��

V ���
r �f�t	 �s	V

�	�
n�r�g�t	 �s	 �������	

where � is the ordinary sum convolution of two distributions� and f and g are
distributions with supports bounded on the left� This is a generalisation of the
result of Genin and Calvez ���� that

V ���
n

�
d

dt
�f � g	

�
�s	 �

nX
r��

V ���
r �f�t	 �s	V

���
n�r�g�t	 �s	� �������	

Noting that L���
n � Ln� �������	 can be seen to be equivalent to ������	�

Other Laguerre transforms are studied in ����������� � Various issues relating
to the convergence of certain Laguerre series expansions are discussed in ��������
��������������� � Laguerre series expansions have also been used by Ackroyd �� to
invert a Poisson transform ��� � Laguerre polynomials have been used by Tsamas�
phyros et al for the numerical inversion of Mellin transforms �������� �although
unfortunately this doesn�t help with the problem discussed in section �����	� They
have also been used for the numerical calculation of Fourier transforms ���� and
evaluation of certain Hankel transforms ���� � The probabilistic origin of Laguerre
and other classical orthogonal polynomials is investigated by Cooper et al in �����
��� � Laguerre series representations of certain special probability densities can be
found in ������������������������ �



Laguerre polynomial expansions also appear in probability theory under the
name of Gram�Charlier expansions ���� � If the successive derivatives of the Gaus�
sian density function in the ordinary type A Gram�Charlier series are replaced by
derivatives of the Gamma density then a representation of a density f�x	 of the
following form is obtained�

f�x	 �


 �X
n��

nL
�m�
n �x	

�
pm�x	� �������	

In equation ������� pm�x	 � e�xxm���$�m	 for m 	 �� The coe
cients fng are
given by

n �
��

m�n��
n

� Z �

�
f�x	Ln�x	 dx� �������	

The fact that there is no exponential weighting function in �������	 means that
fng�n�� will only represent f using �������	 if all the moments of f exist� Equation
������ has the property that if only k terms of the in�nite series are used� then the
�rst k moments of the series representation of f will be correct ����� theorem ��� �
Further details and applications can be found in ���������������� �

����� Conclusions on the Laguerre Transform Method

Although we have covered a lot of detail in the analysis of the Laguerre transform
method in the hope of using it for product and quotient convolutions� there are many
problems which we have not mentioned� Many of these have already been examined
to some extent by Sumita and others� and do not just occur in the attempt to
calculate product and quotient convolutions� We have already mentioned �section
�����	 how the shape of the density can a�ect the number of Laguerre coe
cients
required for an accurate representation� This is clearly an undesirable property�
There are other methods �which we discuss elsewhere	 for representing distributions
and calculating convolutions which do not su�er from this problem� Other problems
associated with the Laguerre transform method include the handling of dependencies
�but see �������� 	� and the manner in which one can obtain the Laguerre coe
cients
to start with� If the density�s analytical formula is known then one can calculate
the coe
cients analytically� However� if the density is derived from sample values
this is not possible�

To sum up then� we can say that while orthogonal series in general� and the
Laguerre transform in particular� seem at �rst sight to be good choices for our goal�
it turns out that this is not the case� The Laguerre transform can not be used to
calculate product and quotient convolutions anywhere near as easily as it can be
used to calculate sum and di�erence convolutions� Thus although a useful tool for
sum and di�erence convolutions� it is not suitable as the basis for a more general
probabilistic arithmetic�



Figure �
�� The histogram representation� fHX �x� approximates fX�x�


��� The Histogram and Related Methods

The histogram method is a way of representing probability distributions and cal�
culating their convolutions� It was developed by Colombo and Jaarsma �������� 
based on ideas in ���� and has also been examined by Keey and Smith ���� � In this
section we will examine this method in some detail� explaining how it is used and
discussing the various di
culties that are encountered� We present the algorithms in
question explicitly �they were only outlined by Colombo and Jaarsma in ���� 	� We
will also compare the histogram method with two other similar methods �Kaplan�s
DPD method and Moore�s generalisation of Interval Arithmetic	�

����� The Histogram Representation

De�nitions and Notation

The histogram representation is discussed with reference to �gure ���� The proba�
bility density fX of a random variable X is approximated by fHX � This is de�ned by
the set of ordered pairs

HX � f�x�� p�	� �x�� p�	� � � � � �xn��� pn��	� �xn� �	g� ������	

where
P

i pi � � and xi � xi�� for i � �� � � � � n� �� We have

fHX �x	 � pi for X � �xi� xi��	� ������	



In the equiprobable histogram �which is the focus of our attention here	 we also have

pi �
Z xi��

xi
fX�x	 dx �

Z xi��

xi
fHX �x	dx �

�

n

for i � �� �� � � � � n � �� The zero in the last ordered pair in ������	 allows a neater
de�nition of the histogram and it is used to indicate the end of the data structure
in computer implementations�

Alternative Choices of pi

An alternative to the equiprobable histogram is the equispaced histogram where
xi � xi�� is constant� Colombo and Jaarsma ���� discuss the relative merits of
the equiprobable versus the equispaced histograms� They present an argument in
favour of equiprobable intervals in terms of the choice of class intervals in �� tests
������������ � and they compare the accuracy of the results obtained in using both
techniques� Their conclusion is that equiprobable intervals are generally better�

Note that �optimal representations of the form ������	� such as those that are
obtained by minimising the L� distance �������� �or �disparity ���� 	Z

�

���FH
X �x	 � FX�x	

��� dx�
between the distribution functions FH

X and FX �corresponding to the densities fHX
and fX	 in order to choose a histogram representation� are not appropriate for our
purposes� Not only is the exact distribution FX required to construct these approxi�
mations FH

X � but one can not easily maintain the �optimality when histograms are
combined�

Choice of the Number of Intervals and the End Points x� and xn

Henceforth we shall only consider the equiprobable histogram� There thus arises the
question of the choice of n� the number of intervals� and the choice of the endpoints
x� and xn� The number of intervals a�ects the accuracy of the convolutions and
the time taken to compute them� We shall see below that the combination of two
histograms of n bins has a computational complexity of O�n�	� This restricts n to
be normally less than ����

Regarding the end points x� and xn� if FX has �nite support� then they can be
simply set to inf suppFX and sup suppFX respectively� If suppFX � �� then there
are two alternatives� one can either truncate fX in some way� or one can use an
extended number system that allows � and �� as possible values� Colombo and
Jaarsma ���� argue� but not very convincingly� that a reasonable rule is simply to
make the width of the end intervals some constant amount  larger than the width
of the penultimate interval contiguous to it� That is�

xn � xn�� � �xn�� � xn��	 and x� � x� � �x� � x�	�



They suggest that  should be around ��� to � �as long as the �long tailed distribu�
tions � � � are regularly shaped ���� 	� The alternative method �using the extended
real number system �� � ��f����g	 has been used by several authors in interval
arithmetic �������������������� � This alternative method was used to calculate the
example results presented below� It has the advantage of not relying on �sometimes
unprovable	 assumptions about the distributions in question�

����� Combining Histograms to Calculate Convolutions

We now consider how the equiprobable histograms ������	 can be combined in order
to calculate convolutions of the probability distributions which they represent�

The Basic Combining Rule

Suppose we have two histograms

HX � f�x�� p�	� �x�� p�	� � � � � �xn��� pn��	� �xn� �	g
and

HY � f�y�� q�	� �y�� q�	� � � � � �ym��� qm��	� �ym� �	g
which represent two random variables X and Y with probability densities fX and
fY respectively� We assume that X and Y are independent� If � is some arithmetic
operation� and Z � X�Y � then HU

Z � is an unsorted histogram which approximates
the density fZ � It is given by

HU
Z � f�z�� z�� r�	� � � � � �znm��� znm��� rnm��	g � ������	

where
zim�j � minfxi�yj� xi���yj� xi�yj��� xi���yj��g �
zim�j � maxfxi�yj� xi���yj� xi�yj��� xi���yj��g � ������	

and
rim�j � pi � qj� ������	

for i � �� � � � � n� � and j � �� � � � �m� ��

The rationale behind ������	 and ������	 is to consider all possible pairs of in�
tervals and combine them together using the rules of interval arithmetic ��� � The
upper and lower bounds of the resultant interval are the maximum and minimum of
all combinations of the endpoints of the interval operands� Equation ����� says that
the probability that Z will take on a value within a given interval �zim�j � zim�j  is
the product of the probabilities that X and Y will take on values within the intervals
�xi� xi and �y

j
� yj �

This basic combining rule is not entirely adequate because the histogram HU
Z is

unsorted� and some of its constituent intervals may overlap� This can be seen from
the following example� Let

HX � f��� ���	� ��� ���	� ��� �	g



and
HY � f��� ���	� ��� ���	� ��� �	g�

Then if Z � X � Y �

HU
Z � f��� ��� ���	� ��� ��� ���	� ��� ��� ���	� ���� ��� ���	g�

Observe that the four intervals in HU
Z ������	� �����	� �����	 and ������		 are not

disjoint�

Construction of the Disjoint Histogram and Condensation

Our �nal aim is to approximate fZ by a histogram of the form of ������	� The
following procedure can be used in order to convert HU

Z to this form�

�� Sorting step� Sort the nm ��tuples of HU
Z into an order speci�ed by the

relation �H to give HS
Z � The relation �H is de�ned by

�zi� zi� pi	 �H �zj� zj� pj	

if
zi � zj or �zi � zj and zi � zj	

This can be perfomed using a standard sorting algorithm �such as quicksort
���� 	 by using an appropriate comparison function�

�� Construction of the disjoint histogram HD
Z � The next step is to construct

a disjoint histogram HD
Z � where

HD
Z � f�w�� w�� s�	� �w�� w�� s�	� � � � � �wnm��� wnm��� �	g

and
�wi� wi � �wj� wj � 	 for all i �� j�

This will not necessarily be an equiprobable histogram �i�e� there may exist
an i and j� i �� j� such that si �� sj	� although it will have the property that
wi � wi�� for i � �� � � � � nm � �� We will use the above �redundant	 ��tuple
representation of the elements of HD

Z for clarity� The procedure used to form
HD
Z from HS

Z is as follows�

for �i �� �� i � nm� i��	f
wi �� zi� wi �� zi��� si �� ��
for �j �� i� j  �� j��	f

if �zj 	 wi and zj � wi	f
if �wi 	 zj and wi  zj	

si �� rj��zj � wi	��zj � zj		�
else if �wi � zj and wi  zj	

si �� rj��wi � wi	��zj � zj		�
g

g
g

������	



The purpose of the inner for loop is to determine� for each interval �zj � zj  �
whether it overlaps the interval �wi� wi � The loop starts at j � i because there
cannot be any overlap of relevance at j 	 i due to the sorting performed in
step �� and the assignments wi �� zi and wi �� zi���

The �rst if statement is true when �zj � zj  � �wi� wi �� 	� When this occurs we
have to determine how much they overlap� and hence how much probability to
include in the interval �wi� wi due to the probability in �zj� zj � This is what
the next two statements do�

Regarding the inner two if and else if statements� note that the cases �wi �
zj and wi 	 zj	 and �wi � zj and wi 	 zj	 cannot occur because wi � zi�
wi � zi�� for j � i� and by the sorting step� zi � zi�p or �zi � zi�p and zi �
zi�p	 when p 	 ��

�� Construction of the equiprobable histogram HZ via condensation In
order to construct an equiprobable histogram HZ from the disjoint histogram
HD
Z we proceed in the following manner� If HZ is to comprise � intervals� i�e�

HZ � f�v�� t�	� �v�� t�	� � � � � �v
��� t
��	� �v
� �	g�
then ti � ������	 for i � �� � � � � ��� and the vi are determined by the following
algorithm� The variable u keeps track of how much probability we have used
up�

u �� ��
for�i �� �� j �� �� i � nm� i��	f

u�� si�
while�u  ���� � �		f

j���
vj �� wi � ������ � �	 � �u� wi		�wi � �wi � wi	�
tj�� �� ���� � �	�
u�� ���� � �	�

g
g
v
 �� wnm�
t
 �� ��

������	

The histogram HZ is the result we required� We have condensed the histogram
HD
Z of nm � � intervals to the histogram HZ of � � � intervals� �We usually

have � � nm�	 This condensation is necessary if we are to perform a series
of arithmetic operations on a number of histograms� for otherwise the �nal
histogram would have an enormous number of intervals�

Computational Complexity and Examples

The computational complexity of the above algorithm is dominated by step �� the
construction of the disjoint histogram HD

Z � This has time complexity O��nm	�	
because for each of the nm bins in HU

Z we have to check whether any of the other



Figure �
�� Histogram density of Z � X � Y where df�X� � df�Y � � U��� and N � �		


nm�� bins overlap� The sorting in step � �O�nm log nm		 saves some time� but only
by a constant factor ��	� We will see below that when the histogram bins �intervals	
are replaced by single points� then the complexity is dominated by the time taken
for sorting�

The above combination algorithm was implemented in the form of a computer
program and was used to calculate the following examples� Figure ��� shows the
calculated histogram density of Z � X�Y where X and Y are independent random
variables with uniform distributions on ��� � � All the distributions were represented
by ��� histogram bins� The calculation took �� minutes of CPU time on a Microvax
II minicomputer� Figure ��� shows the result of the same calculation when only ��
bins were used to represent the distributions involved� In this case the CPU time
was only ��� minutes� Figure ��� shows the histogram representation of Z when
Z � X � Y � Again X and Y were independent and uniformly distributed on ���� 
and �� bins were used in the histogram representation�



Figure �
�� Histogram density of Z � X � Y where df�X� � df�Y � � U��� and N � �	




Figure �
�� Histogram density of Z � X � Y where df�X� � df�Y � � U��� and N � �	




Figure �
�� The Discrete Probability Distribution representation


����� Kaplan�s Method of Discrete Probability Distributions

The DPD Representation

A method for representing and combining probability distributions similar to the
histogram method was developed by Kaplan ���� � He used simple discretisations
of probability distributions and called his method the DPD �Discrete Probability
Distributions	 method� Instead of approximating a continuous probability density
by a sequence of histogram bins �as in �gure ���	� a sequence of delta functions is
used �see �gure ���	� Thus a random variable X is represented by a set of ordered
pairs

DX � f�x�� p�	� � � � � �xn� pn	g
where pi is the probability that the variable will take on the value xi� Whilst this
seems to be really little di�erent to Colombo and Jaarsma�s histogram method� it
does in fact di�er in two ways� Firstly� Kaplan considers a DPD to be �our state of
knowledge of the random variable in question and so the question of the accuracy
of representation does not arise�

We allow ourselves total freedom to select the xi and pi any way at all� save
only that the set f�xi� pi	g adequately represents our state of knowledge
and that it be suited to the numerical procedures we have in mind �����
p���� �



Secondly� the combination rules and condensation procedure are simpler than those
for the histogram method� both in a conceptual and computational complexity sense�
We will brie�y examine this below�

Nonuniqueness of the DPD Represenatation

Firstly let us note that under Kaplan�s de�nition and interpretation there are an
in�nite number of DPDs which can describe the same random variable� This caused
consternation for Nelson and Rasmussen ���� � They were unhappy with the fact
that

f��� ����	� ��� ���	� ��� ����	� ��� ����	� ��� ����	� ��� ����	g ������	

and
f��� ����	� ��� ����	� ��� ����	� ��� ����	g ������	

both described the same random variable� As Kaplan does not specify any con�
straints such as xi �� xj for i �� j� this is not surprising� Of course� one can represent
a given random variable with the minimal number of ��tuples if this condition is
imposed� Kaplan�s reply ���� points this out� The operation required to convert
������	 into ������	 is analogous to the condensation operation performed on the his�
tograms described earlier� but is simpler here because we only have ��tuples instead
of ��tuples� This condensation needs to be performed in any case� as we shall see
below�

Combination and Condensation of DPDs

Two DPDs are combined in the following obvious manner� If X and Y are two ran�
dom variables represented by DX � f�xi� pi	gni�� and DY � f�yj� qj	gmj�� respectively�
then we calculate DZ � f�zk� rk	gnmk��� where

zi�jm � xi�yj �������	

and
ri�jm � pi � qj �������	

for some operation �� This is analogous to the combination rule for the histogram
method�

Since DZ has nm points a condensation operation is necessary� We have used
the following algorithm in the calculation of the examples presented below� Let
DZ � f�zi� ri	gnmi�� be the DPD produced by the combination procedure� Assume we
want to condense DZ to � points� Let us call the condensed DPD Dc

Z � f�zci � rci 	g
i���



Then the following algorithm will determine Dc
Z from DZ�

i �� j �� ��
spacing �� �znm � z�	���
v �� z� � spacing�
while�i � �	f

rcj �� ��
while�zi � v and i � �	f

rcj �� ri� i���
g
zcj �� v � �spacing��	�
v�� spacing�
j���

g

�������	

Recently Kaplan has demonstrated an improved condensation procedure ���� � It is
similar to that which we use in the method we develop in chapter ��

Kaplan ����� p���� suggested that upon obtaining the DPD of the desired result
that it could be �smoothed in order to make it look better� He does not make
any suggestions as to how this could be carried out� although perhaps the work of
Schoenberg� de Boor and others ��������������� on splines and histograms could be
used� Of course there is absolutely no probabilistic justi�cation for such a procedure�
We shall see later that when working with lower and upper bounds on distribution
functions the need for smoothing is absent�

Applications and Examples

Kaplan shows how one can de�ne probabilistic functions based on the DPD method�
His approach is analogous to the �extension principle used for fuzzy numbers �see
chapter �	� �In fact the fuzzy extension principle was originally motivated by the
probabilistic counterpart�	 He uses the idea of a probabilistic function as a basis for
a method of seismic risk assessment ���� � Other uses are in probabilistic risk as�
sessment ��� �see ���� and ���� for some general background	� and in probabilistic
fracture mechanics ���� �

Using the algorithm detailed above we calculated the distribution of Z � X �Y
and X � Y for the same parameters as the examples for the histogram method�
Figure ��� shows the output for Z � X�Y with n� the number of points used� equal
to ���� Figure ��� shows the output for Z � X �Y with n � ��� The irregularity in
�gure ��� and the dip in the middle of �gure ��� are both due to the condensation
procedure� Note that the cumulative distribution formed from these two discrete
densities would be quite accurate� Whilst the simple DPD condensation algorithm
has the disadvantage of producing these irregularities� it has the advantage of being
much faster than the histogram method� In fact� the complexity of the DPD method
is dominated by the time taken for sorting� �Sorting is only implicit in our above
algorithms� but is necessary in a practical implementation�	 The CPU times for the



Figure �
�� Discrete probability distribution of Z � X � Y � df�X� � df�Y � � U���� and
n � �	




Figure �
�� Discrete probability distribution of Z � X � Y � df�X� � df�Y � � U���� and
n � �	




two examples here were ���� and ���� seconds respectively� Compare these with the
���� and ��� seconds for the histogram method�

����� Moore�s Histogram Method

The histogram method presented above has been rediscovered by R�E� Moore ���� 
who developed it in the context of interval analysis �see ���� and section ��� be�
low	� Moore ���� shows how to determine the cumulative distribution function of
an arithmetic operation on random variables when the random variables are repre�
sented by the union of disjoint but contiguous intervals with a certain probability
of occurence within each interval� Moore uses only a small number of subdivisions
�� or �	� He still obtains results which correspond closely with results obtained by
Monte Carlo simulation �in terms of visual inspection of the graph of the cumulative
distribution	� This may be due in part to the fact that cumulative distributions do
tend to look better than the corresponding densities because of the smoothing e�ect
of the integration�

More important however� is Moore�s idea of the elasticity of a function with
respect to a given input variable� This is de�ned as the limit of the ratio of variation
of the function to the variation of the input variable as the input variation becomes
small� In other words� if the function is f�x�� � � � � xn	� the elasticity of f with

respect to xi is the logarithmic derivative
�
�f
f

�
�
�
dxi
xi

�
� This can be approximated

by considering some interval Xi � �X i�X i such that xi � Xi� and calculating

width�f	

midf

�
�



width�Xi	

mid�Xi	

�
� �������	

In equation ������ we have mid�Xi	 � �X i � X i	��� width�Xi	 � X i � X i and
width�f	 is the range of f as xi ranges over �X i�X i � Moore�s idea is to subdivide
�nely only those Xi with a large elasticity because increasing the subdivision of those
with a small elasticity will have a negligible e�ect on the accuracy of the answer�
This idea would decrease the computational complexity of the histogram method
considerably if some of the variables have a larger elasticity than the rest and should
certainly be taken into account in the development of a system for determining dis�
tributions of complex functions of random variables� The notion of subdividing only
those intervals with high elasticity is equivalent to the screening procedure men�
tioned in ���� � Moore ���� gives an example application� an extended discussion
of which appears in ���� �

��� Interval Arithmetic and Error Analysis

We will now consider a number of techniques which determine limited information
about the distribution of functions of random variables� It seems natural to group
these techniques together here� more for their commonality of motivation than of
method� One of the most widely used methods for determining information about



distributions of functions of random variables is interval arithmetic� In this sec�
tion� as well as describing the basic ideas of interval arithmetic� we will consider a
number of variations which have been proposed that provide some extra informa�
tion about the distribution of values within an interval� We will then compare the
interval arithmetic approach to the standard methods used by metrologists for the
propagation of the e�ects of uncertainties in the results of physical measurements�

��
�� The Standard Interval Arithmetic

Interval arithmetic was developed by Moore ���� although the original idea was
proposed by Sunaga in ���� ���� � The original motivation was to develop an au�
tomated way of handling rounding error in numerical computation� However it can
also be used to propagate uncertainties in the input variables and this explains our
consideration of it here�

The basic idea of interval arithmetic is to work in terms of closed intervals of
real numbers� We de�ne

I� � f�x� x jx � x� x� x � �g
to be the set of real intervals� The rules of interval arithmetic �which are rules for
combining elements of I�	 follow immediately from the convolution relations �����
����	� It is simply necessary to observe that an interval XI � I� which represents
some random variable X is given by

XI � �inf supp fX � sup supp fX  ������	

where fX is the density of X� If XI � Y I � I�� then for some binary operation ��
ZI � XI

�Y I is given by

ZI � �z� z � fx�yjx � X� y � Y g ������	

If � is monotonic� then it su
ces to examine the end points of X and Y and we
can write z � min � and z � max �� where

� � fx�y� x�y� x�y� x�yg� ������	

Note that according to ������	� if ZI � XI�Y I and � � Y � then ZI � �� �or is
unde�ned if we do not allow the values �� and �	� When � � � equation ����� is
also known as Minkowski addition �after Hermann Minkowski who considered it in
����	 ���� � It has applications in areas other than interval arithmetic ����� p���� �

When � is one of the four arithmetic operations� ZI can be written explicitly�
Addition and subtraction are described by

XI � Y I � �x� y� x� y 

and
XI � Y I � �x� y� x� y �



Products and quotients of intervals are more complicated because these operations
are not monotonic if zero is contained in one of the intervals ���� � It turns out that
there does not exist a single �coordinate�based representation of intervals such that
both sums and products can be calculated directly in terms of the coordinates �i�e�
the whole interval has to be taken into account	 ���� � There are at least three
books on interval arithmetic and interval analysis ����������� and a comprehensive
bibliography by Garlo� ���� which contains ���� items�

We shall see below that the de�nition of the interval arithmetic operations is
only a small part �and the easiest part	 of developing interval algorithms� It turns
out that one can not simply apply the standard interval arithmetic operations to
the standard algorithms of numerical analysis� The reason for this is dependency
width or dependency error� This manifests itself in the subdistributive property� If
XI � Y I � ZI � I�� then XI �Y I �ZI	 � XIY I �XIZI � This fact was �rst pointed out
by Young ���� in ���� and has been considered in detail by Ratschek and Spaniol
�������� � The idea of a general function of intervals goes back at least to Burkhill
�������� �

��
�� Triplex Arithmetic and Dempster�s Quantile Arithmetic

We will now turn to an examination of generalisations of interval arithmetic which
aim to provide some information about the distribution of the variables within the
interval� Ecker and Ratschek ���� have considered intervals probabilistically in
an attempt to understand the phenomena of subdistributivity and inclusion mono�
tonicity� They also suggested a joint representation of distributions and intervals
and studied some properties of Dempster�s quantile arithmetic which we examine
below� Ahmad ��� is supposed by Moore ����� page ��� note � to have looked at
the arithmetic of probability distributions from the point of view of interval arith�
metic� However� Ahmad�s paper is solely concerned with nonparametric estimators
of probability densities� and he has nothing to say about probabilistic arithmetic�

Triplex Arithmetic

Triplex arithmetic ������� was developed by Nickel and others to overcome a per�
ceived inadequacy of ordinary interval arithmetic� A triplex number XT is an ordered
triple �x� (x� x where x is the lower bound on X� (x is the main value of X� and x is
the upper bound on X� If the (x is discarded then we are left with ordinary interval
arithmetic� The purpose of the �main value �which is treated like a single real
number in Triplex arithmetic calculations	 is to provide some information about the
distribution of X within XI � This is particularly important when fX is concentrated
within a small region but has very wide tails� It turns out that the provision of this
�main value can help the convergence and accuracy of iterative algorithms ���� �
Problems which are unstable using ordinary interval arithmetic can be made stable
when triplex arithmetic is used�



Quantile Arithmetic

Dempster ������������ has developed a method called quantile arithmetic which
can be considered as a variation on triplex arithmetic� It is perhaps worthwhile to
quote Dempster�s motivation for quantile arithmetic before we describe it in detail�

�W hile the support of the error distribution of some �nite compu�
tations on interval �random	 variables may become arbitrarily large� the
error distribution itself may be concentrated in a small interval with prob�
ability close to one� In such a case� the error distribution of the result
has low dispersion� but long tails in which little probability is massed� It
is upon consideration of this possibility that quantile arithmetic is based
����� pp�������� � ����� p���� � ����� pp�������� �

Again we consider a random variable X with density fX and distribution function
FX� The quantile number XQ represents X by the approximation of fXQ to fX �

fXQ�x	 �

�������
������

 if x � F��
X �	�

� � � if x � F��
X ��

�	�

 if x � F��
X �� � 	�

� otherwise�

������	

�Note that fX is a density while fXQ is a discrete frequency function�	

Two quantile numbers XQ and Y Q are combined to give ZQ � XQ
�Y Q via the

rule

fZq �z	 �

�
fXQ�x	fY Q�y	 for z � x�y�
� otherwise�

We have assumed here that both fXQ and fY Q �� � for only one choice of x and
y such that z � x�y for a given z� In order to convert the nine point frequency
function fZq into a three point frequency function fZQ� Dempster uses the following
condensation algorithm� Let z� � z� 
 
 
 � z be the nine values of z such that
fZq �z	 �� � and let qi � fZq �zi	� Then fZQ is given by

fZQ�z	 �

�����
����

 if z � x��
�� � if z � x��
 if z � x��
� otherwise�

where

x� � zi for the largest i such that
iX

j��

qj � �

x� � zi for the smallest i such that
iX

j��

qj  �
� �

x� � zi for the smallest i such that
X
j�i

qj � �



The choice of the parameter  is somewhat arbitrary �like the choice of q in Petcovi�c�s
probable intervals � see section �����	� Dempster gives a few suggestions� but these
are mainly just common sense� Dempster ���� has applied his quantile arithmetic
to the approximate solution of the distribution problem in linear programming �����
��������������� �

Whilst super�cially interesting� and seemingly an improvement over interval
arithmetic� it turns out that quantile arithmetic has an important disadvantage
compared with interval arithmetic� In quantile arithmetic� underestimation of the
spread of a result can occur� Standard interval arithmetic often overestimates the
spread �sometimes by a large amount	� but the result is still correct in the sense that
the �true interval is contained within the broader one� In contrast� quantile arith�
metic will sometimes give results which are wrong� in that the calculated interval is
narrower than the true interval�

��
�� Interval Arithmetic and Con�dence Intervals from the Metrolo�
gist�s Point of View

We have seen that ordinary interval arithmetic uses only information about the
support of the distribution of the random variables involved� An alternative method
is to use interval arithmetic to combine con�dence intervals� �The standard method
can thus be considered to combine ���% con�dence intervals�	 Di�erent con�dence
intervals should then give further information about the distribution of the �nal
result�

This idea has been considered by metrologists in the context of the theory of
errors and the propagation of uncertainties arising from physical measurements� We
will now examine what they have had to say on this topic� Metrologists have consid�
ered the use of con�dence intervals because of a shortcoming of the standard method
of the statement and propagation of experimental uncertainty� �Note that the term
�experimental error is out of favour nowadays� �the uncertainty� in former times
frequently called )error� � � � ����� p��� �	 The standard method is to state uncer�
tainties as standard deviations and to use the �general law of error propagation
���� to propagate the errors through subsequent calculations� �A good recent re�
view can be found in ��� �	 This general law is simply the linearisation of nonlinear
functions by truncated ��rst order	 Taylor series expansions about expected values
�see section �����	� Sometimes higher order expansions ��� or the more complicated
expressions taking account of the covariances ����������� are used� The shortcom�
ing of this method arises in the determination of appropriate values of uncertainty
to use for subjectively estimated �systematic errors� and the di
culty in converting
a �nal uncertainty statement in terms of standard deviations into an interval result�
An interval statement is often required for calibration or legal purposes� We shall
consider these two di
culties in turn�



Subjective Interval Estimates of �Systematic Error� and Standard Deviations

In recent years the distinction between �random and �systematic errors ��rst
explicitly proposed by D� Bernoulli in ���� ����� p���� although implicitly adopted
by Newton as early as ���� ����� p���� 	 has been called into question ���������
������� � The point is that there has never been an entirely satisfactory criterion
for deciding which category to use in any particular instance� �M�uller ����� p���� 
quotes Vigoureux� �One has to remember that some errors are random for one
person and systematic for another�	 Similarly� �what is a systematic error for one
experiment may not be for another� � �� Much of the skill in experimental work comes
from eliminating sources of systematic error ���� p��� � The choice is important
because the standard ��orthodox	 theory propagates random and systematic errors
through calculations di�erently� Systematic errors are added arithmetically� whereas
random errors are added in quadrature� Indeed� as M�uller has pointed out� this is
precisely the source of the di
culty in classi�cation� �the traditional classi�cation
of uncertainties depends upon the further use we intend to make of them� and in
general this can not be known in advance ����� p���� �

The new �randomatic theory avoids the problem of categorization by consid�
ering all errors to be random� However it does distinguish between �)objective�
statistical estimates and �)subjective� guesstimates ����� p���� � The subjective
uncertainties are often given in terms of an interval� This has to be converted into
a standard deviation in order to propagate it through any subsequent calculations�
A number of �admittedly somewhat ad hoc	 methods for doing this can be found in
���� � The subjective uncertainties are usually considered to be independent �����
p��� � although there seems to be no good a priori reason for this to be so� It could
well be argued though that any error arising from an ad hoc handling of subjec�
tive uncertainties should usually be negligible compared with the variability due to
the �objective statistical estimates� Arguments against the randomatic theory of
errors and proposals for an improved orthodox theory based on a more careful dis�
tinction between the two classes of errors can be found in the closely argued paper
of Colclough ���� �

Determination of a Con�dence Interval for the Final Result

A more serious and older problem is the conversion of a �nal uncertainty state�
ment in terms of a standard deviation into an interval statement� We have already
observed �section �����	 that the Chebyshev inequality or its generalisations �����
����������� can be used to determine a con�dence interval in terms of means and
standard deviations� However� in general these will be very loose �pessimistic	 in�
tervals� Alternative approaches which give tighter� less pessimistic� intervals require
assumptions about the underlying distributions�

The oldest method is the assumption of normality� We have already discussed
this in section ������ It has never found universal acceptance and had strong critics
even some �� years ago� �I reject� then� the Gaussian theory of error� without
quali�cation and with the utmost possible emphasis� and with it go all theoretical



grounds for adopting the rules that are based on it ����� p���� � We need add
nothing further to this�

An alternative� which is similar in its general approach to the lower and upper
bounds on the distributions we consider in chapter �� has been considered inde�
pendently by Kuznetsov ���� and Weise ���� � Assuming that the true �error
distribution is symmetrical� unimodal and has �nite support� Kuznetsov ���� cal�
culated a con�dence interval in terms of a variance by using the �mean distribution
derived from lower and upper distribution functions satisfying the distributional as�
sumptions� Weise ���� � somewhat more ambitiously� considered a whole class of
distributions D� He then used a distribution which was a mean of all possible dis�
tributions over D in order to determine a con�dence interval in terms of a given
variance� �Obviously the choice of D� and the fact that the mean distribution is
used� will a�ect the result� di�erent choices will give di�erent results�	 Nevertheless
this approach seems to be a promising way of investigating the e�ects of di�erent
distributional assumptions and of handling di�erent degrees of optimism�

Direct and Exclusive Use of Con�dence Intervals

Although they are preferable to assuming normality� the methods of Kuznetsov and
Weise are still not entirely satisfying� An alternative is to avoid completely the use of
standard deviations as a measure of uncertainty and to use con�dence intervals only
from the outset� M�uller ���� and others have argued against this idea on the grounds
of di
culties in combining con�dence intervals� The general consensus amongst
metrologists seems to be described by the DIN standard ���� part � �Basic Concepts
of Measurements� Treatment of Uncertainties in the Evaluation of Measurements
���� �a summary appears in ���� � This suggests a careful but fairly straight forward
application of the general law for error propagation �in terms of standard deviations	�
No distinction is made between �random and �systematic errors apart from the
methods of initially estimating the numerical value to be attributed� There are
still di
culties in using standard deviations when repeated measurements are not
independent ��� � but these seem to be manageable given some idea of the spectrum
of the error sequence�

Recently Rowe ���� has presented some very interesting results which could lead
to a partial combination of the two techniques �intervals and standard deviations	�
Using two separate approaches� Rowe has determined lower and upper bounds for
�Y and �Y in terms of �X � �X� X � X or limited order statistic information� for a
class of transformations Y � g�X	� Rowe�s approach is preferable to the simple
�rst order Taylor series approximations because lower and upper bounds for �g�X�

and �g�X� are given� These allow a more rigorous propagation of uncertainty� Also�

when X and X or other distributional information is available� the tighter bounds
can be obtained�



Con�dence Curves and Fuzzy Numbers as a Generalisation of Interval Arith�
metic

Finally� to conclude this somewhat discursive exploration of the metrological uses
and signi�cance of interval arithmetic� we can mention the idea of fuzzy arithmetic
���� � This has been suggested as a natural generalisation of interval arithmetic and
error propagation techniques ���� because under the standard sup�min combination
rules �see chapter �	 fuzzy numbers can be combined in terms of interval arithmetic
on the level sets of their membership functions� We examine fuzzy arithmetic� and
point out some similarities to the idea of con�dence curves introduced by Cox ���� 
and developed by Birnbaum and Mau ���������� in chapter �� These con�dence
curves are made up of nested sets of con�dence intervals at di�erent con�dence
levels and they may provide a useful generalisation for the purposes of the theory
and propagation of errors�

��
�� Permutation�Perturbation and Related Methods

The original motivation for interval arithmetic was the automatic control of rounding
errors in numerical calculations� There are several others approaches possible for
this� and some are of interest for our goals as well�

The most widely known is Wilkinson�s analysis of particular algorithms to de�
termine the accuracy of the result that can be expected �������� � More explicitly
stochastic methods have been adopted in recent years� See for example ���������� �

Another method� which has been presented several times by Vignes et al ������
��������������� � is called the Permutation�Perturbation method or cestac �Con�
tr&ole et Estimation Stochastique des Arrondis de Calcul	� The basic idea is to con�
sider the �n perturbations of a result of an n stage numerical computation obtained
by perturbing each operation by an appropriate amount positively or negatively�
This is combined with permutations of the order of computation �which will not
always give the results that would be obtained over � because of the failure of as�
sociativity and distributivity under �oating point arithmetic	� Vignes argues that
only a few �two or three	 of this large number of results need be considered� He
randomly perturbs and permutes the calculation and then estimates the accuracy
of the result� Applications of the method can be found in ��������� �

Stummel ���� has also considered the e�ect of perturbations on intermediate
results in the computation of arithmetic expressions by using the computational
graph concept ��� � He has obtained a number of results for the condition number
of an algorithm and has applied his results to a careful analysis of the numerical
solution of a �� � linear system of equations ���� and the analysis of some interval
arithmetic algorithms ���� �



Chapter �

Numerical Methods for

Calculating Dependency Bounds

and Convolutions

In my view there is a central obligation to face squarely
what we do and do not know� and to study robustness of
conclusion against mistakes in a priori assumptions of

independence� conditional or not�
� William Kruskal

In this chapter we present a new and general numerical method for calculating
convolutions of a wide range of probability distributions� An important feature
of the method is the manner in which the probability distributions are represented�
We use lower and upper discrete approximations to the quantile function �the quasi�
inverse of the distribution function	� This results in any representation error being
always contained within the lower and upper bounds� This method of representation
has advantages over other methods previously proposed� The representation �ts in
well with the idea of dependency bounds�

Stochastic dependencies which arise within the course of a sequence of operations
on random variables are the severest limit to the simple application of convolution
algorithms to the formation of a general probabilistic arithmetic� We examine the
error caused by this e�ect �dependency error	� and show how dependency bounds
are a possible means of reducing its e�ect� Dependency bounds are lower and upper
bounds on the distribution of a function of random variables which contain the
true distribution even when nothing is known of the dependence of the random
variables� They are based on the Fr�echet inequalities for the joint distribution of
a set of random variables in terms of their marginal distributions� We show how
the dependency bounds can be calculated numerically when using our numerical
representation of probability distributions� Examples of the methods we develop
are presented� and we brie�y describe relationships with other work on numerically
handling uncertainties�

The present chapter is a very slightly modi�ed version of the paper ���� � It
is essentially self contained� and thus there is some slight repetition of material
presented elsewhere in this thesis�

��



��� Introduction

In order to develop automated systems for dealing with uncertainty it is necessary
to be able to calculate the basic operations of an uncertainty calculus numerically�
Amongst the many di�erent uncertainty calculi now available� ordinary probability
theory is the oldest� Surprisingly though there has been little detailed examination
of numerical methods for calculating the distribution of arithmetic operations on
random variables� Although there have been a number of schemes proposed� so far
there have been none that meet the following simple criteria�

�� The method should allow the calculation of the distribution of all four arith�
metic functions of random variables �and not just addition and subtraction	�

�� There should be no restrictions �or only very slight restrictions	 on the class
of random variables that can be handled�

�� There should be a careful treatment of all the errors arising in the calculation
�particularly those due to the numerical representation adopted	�

�� The method should be computationally tractable and the algorithms should
be described explicitly�

�� The method should be simple to understand and implement�

The present chapter�s goal then is to develop a method� satisfying these criteria�
for what we will call �probabilistic arithmetic�

In this introductory section we will de�ne the problem to be studied more pre�
cisely �section �����	 and introduce the notions of dependency error and dependency
bounds �sections ����� and �����	� Since we believe it is more worthwhile developing
a method with a rigourous foundation rather than an ad hoc technique which works
for some applications� we will be concentrating on the foundations rather than the
applications of probabilistic arithmetic� Using the description of the necessary lay�
ering of uncertain reasoning systems due to Bonissone ������ � we could say that we
are concentrating on the representation and inference layers but ignoring the control
layer�

It is worthwhile to compare our methods with other probabilistic methods as
well as methods based on other uncertainty calculi �such as the theory of fuzzy
sets	� While we postpone a detailed examination of this to chapter �� we do point
out now that our method has some similarity to Jain�s method for combining fuzzy
numbers �������� � Jain�s method was subsequently criticised by Dubois and Prade
�������� � although there own method �L�R fuzzy numbers ���� 	 is not without
drawbacks either� More recently ���� Dubois and Prade have examined the re�
lationship between Moore�s probabilistic arithmetic ���� �itself an outgrowth of
interval arithmetic ���� 	 and fuzzy arithmetic� by drawing on some results from the
Dempster�Shafer theory of evidence ���� � In chapter � �see also chapter �� section
�	 we will show that the normal combination rules for fuzzy numbers are in fact
equivalent to our dependency bounds and that our limiting result �chapter �	 can



be used to derive a law of large numbers for fuzzy variables under a general extension
principle� Perhaps the work which is closest in spirit to that presented here is that of
Grosof ���� � Grosof has taken much the same approach as we have in analysing the
probabilities of events and combinations of events �rather than arithmetic operations
on random variables	� He has shown that a special case of his interval conditional
probability logic is actually formally identical to the Dempster�Shafer theory of ev�
idence� Several other authors �������� have recently adopted an approach similar
to that outlined in the present chapter �viz� calculation of lower and upper bounds
on probabilities when limited dependence information is available	�

����� The Problem

Consider the following problem� Let X and Y be two random variables with distribu�
tion functions FX and FY respectively� Let Z � X�Y � where � is some arithmetic
�or other	 operation� Then what is FZ� the distribution of Z* For any given ��
if the joint distribution FXY is known� then a solution to the problem in terms of
an integral can be written down� The appropriate integral is determined from the
Jacobian of transformation� In many cases� closed form solutions to the integral do
not exist� Whilst series solutions can generally be obtained� the resulting formulae
are often very complex and are of little value for an automated system�

If the joint distribution of X and Y is not known �i�e� only the marginals FX
and FY are known	� then one can not� even in principle� calculate FZ� One can�
however� calculate lower and upper bounds on FZ� as was recently shown by Frank�
Nelsen� and Schweizer ���� �

The present chapter develops numerical algorithms to solve both of these prob�
lems� Algorithms are developed for calculating lower and upper bounds on FZ when
it is known that X and Y are independent or when there is no knowledge of the
dependency structure of X and Y at all� The techniques developed are quite gen�
eral and can be used for almost all distributions� The method of representing the
distributions and the results obtained for the convolutions are better than other
numerical techniques that have been presented to date� The algorithms can be used
to calculate lower and upper bounds in the manner of Frank� Nelsen� and Schweizer
for a much larger class of distributions than can be managed analytically� All the al�
gorithms are described explicitly and are computationally e
cient� They have been
implemented on a minicomputer and have been used to calculate some example
results which are included in this chapter�

����� The Idea of Probabilistic Arithmetic and the Need for Dependency
Bounds

The problems mentioned above arise naturally in the consideration of probabilistic
arithmetic �the name is due to Kaplan ���� 	� The goal of probabilistic arithmetic is
to replace the usual arithmetic operations on numbers by the appropriate operations
on random variables �which are represented by their distribution functions	� This
is akin to several other ideas that have appeared in the literature� most notably



interval arithmetic ������� and fuzzy arithmetic �������� � The similarities and
connexions with these other ideas are not considered here� but are examined in
some detail in chapter �� One of the goals of probabilistic arithmetic is to solve
random algebraic equations numerically� problems for which the methods of solution
available at present are still rather limited �see �������� for a review of the available
methods and known results	� There are numerous other possible applications if a
successful probabilistic arithmetic can be developed�

Among the problems that need to be considered are the errors that can occur in
a probabilistic arithmetic calculation and how they can be handled� We will show
how one type of error� dependency error� is the most severe restriction on the simple
application of convolution algorithms to the formation of a workable probabilistic
arithmetic� The errors in probabilistic arithmetic can be classi�ed into �ve types�

Representation Error� This is the error caused by the approximation of a func�
tion de�ned on an uncountable subset of � by a �nite number of points or
coe
cients�

Truncation Error� This error� which can be distinguished from general represen�
tation error for some representations� is caused by the necessity �for some
distributions	 of truncating the support of the distributions to a union of �nite
intervals�

Calculation Approximation Error� This is caused by approximations made in
developing the formulae used to implement the probabilistic arithmetic� For
example� if a Taylor series expansion �say for the variance of the product of two
independent random variables in terms of their moments �������� 	 is truncated
after a �nite number of terms� then the rule itself will only be approximate�
This will introduce errors into the calculated results�

Rounding Error� This is simply the error caused by performing numerical com�
putations on machines with a �nite wordlength� This will not be considered
further here because in the absence of ill�conditioning� this can easily be made
arbitrarily small� In any case� it is a problem associated with nearly all nu�
merical algorithms� not only those for probabilistic arithmetic�

Dependency Error� Dependency error is the most important type of error in prob�
abilistic arithmetic� It arises in much the same manner as spurious correlation
���� � It is explained by considering the following sequence of operations where
all the quantities are random variables� Assume that V � X� and Y are inde�
pendent� Then calculate

A � X�Y � B � X � V � C � A � B�

The problem is that even though the three inputs are independent� A and B
are not because they both depend on X�

Although such dependencies can be handled� in principle� by techniques based
on the Jacobian of transformation� it is impractical to contemplate the use of
such techniques for handling sequences of computations of the type commonly



employed in the deterministic case� Thus� in order to carry out sequences
of operations on random variables� one is usually obliged �for tractability	
to assume independence in cases where dependencies� such as the one in the
above equations� exist� A major aim of the present chapter is to investigate
the question of handling the error that arises when independence is assumed
�i�e� dependency error	�

The above classi�cation is useful for comparing the di�erent approaches to rep�
resenting and calculating with distribution functions� This is true even though no
precise de�nition of the �error involved has been given� There does not seem to be
any one �best measure of error between two distributions as the best measure will
depend to a large extent on what the distribution being calculated will be used for�

����� Methods of Handling the Errors in Probabilistic Arithmetic

We only concern ourselves here with representation and dependency errors� �Trun�
cation error and approximation error are discussed in chapter � and rounding errors
are mentioned for a speci�c problem arising in section ������	 In section ��� it will be
shown how a natural representation inspired by the method we develop to combat
dependency error can essentially remove all the problems of representation error�
The basic idea is to use lower and upper approximations to the desired distribution
rather than one single approximation� Any representation error is contained within
these lower and upper bounds�

Our method of handling dependency error is to use the results of Frank� Nelsen�
and Schweizer ���� mentioned above� This allows the calculation of lower and upper
bounds on a required distribution even if the distribution itself can not be calculated
because it is not known that the variables involved are independent� or because the
joint distribution is not available� There are several other possible approaches to
handling dependency error� For instance� to calculate the distribution of

X�Y � Z	 � X�V

it is only necessary to rewrite it as

X�Y � Z � ��V 	

and the problem of dependency error introduced by repeated occurrences of the
variable X disappears� This can be considered as solving the problem in Bonissone�s
control layer as we have changed the order in which the lower level computations are
carried out� This rearrangement of expressions has been used in interval arithmetic
and is discussed in more detail in chapter ��

There are various extensions to the ideas mentioned in the previous paragraph
which are worth studying� One of these� which is discussed brie�y in section ���� is
to use some measure of dependence between the random variables and to modify the
combination rules to take this extra information into account� With respect to this
it is of interest to note a forgotten paper of Kapteyn �it appears to have been cited



no more than three times since publication in ����	� In ���� Kapteyn considers
problems such as the correlation between X and Y where X � A � B � C � D�
Y � A � E � F � G and all the A� � � � � G are independent� Another paper that
deserves mention here is that of Manes ���� �see also ������� 	� Manes shows that
the repeated occurrence of a variable in an expression causes problems in a wide
range of fuzzy �vague or imprecise	 theories �including the theory of fuzzy sets	 and
so the problem is not peculiar to probability theory�

����� Outline of the Rest of This Chapter

The rest of this chapter is organised as follows� Section ��� contains concise de�ni�
tions of concepts which are needed later on� In section ���� the dependency bounds
of Frank� Nelsen� and Schweizer are derived and explained� We extend their results
by proving the pointwise best possible nature of the dependency bounds for opera�
tions other than addition and subtraction� Some examples are calculated by directly
using the formulae for dependency bounds� We show that a better way to calculate
dependency bounds numerically is to use the numerical representation of probabil�
ity distributions developed in section ��� along with special discrete versions of the
dependency bound formulae� Algorithms for calculating ordinary convolutions in
terms of this numerical representation are also developed in section ���� Sections
��� and ��� contain some extensions to the basic results of sections ��� and � and
include suggestions and directions for further research� Finally� section ��� contains
a summary of the contributions of this chapter and some conclusions�

��� De�nitions and Other Preliminaries

We now brie�y present a number of de�nitions we need later on� Most of the material
here is covered in more detail in ���� �

����� Distribution Functions

De�nition ����� Let X be a random variable on �� Then its distribution function
FX is de�ned by df�X	 � FX�x	 � PfX � xg for x � ��

The corresponding density� when it exists� is denoted fX �

De�nition ����� The support of FX� denoted suppFX� is the set of x � � such
that fX�x	 � F �

X�x	 exists and is non zero�

De�nition ����� The set of all distribution functions that are left continuous on �
will be denoted #� The subset of distribution functions in # such that F ��	 � � will
be denoted #��



����� Binary Operations

De�nition ����� A binary operation on a nonempty set S is a function T from
S � S into S�

De�nition ����
 Let T be a binary operation on S� An element a of S is a left
null element of T if T �a� x	 � a for all x � S� it is a right null element of T if
T �x� a	 � a for all x � S� and it is a null element of T if it is both a left and right
null element of T �

A binary operation can have at most one null element�

����� Quasi�Inverses

Quasi�inverses are generalisations of the inverse of a function which are de�ned
even when the function has jump discontinuities� In this chapter we are only con�
cerned with quasi�inverses of non�decreasing distribution functions� Let F be a
non�decreasing function on a closed interval �a� b � Let y � �a� b � Then F���y	 is the
set fxjF �x	 � yg� If F has no jump discontinuities then the cardinality of F���y	
is one and we simply write F���y	 � x� If the cardinality of F���y	 is not one� then
we have to somehow choose between the various elements of F���y	�

De�nition ����� Let F be a non�decreasing function on a closed interval �a� b �
Then Q�F 	 is the set of functions F � �known as quasi�inverses of F 	 de�ned on
�F �a	� F �b	 by


� F ��F �a		 � a and F ��F �b		 � b�

�� If y � RanF then F ��y	 � F���y	�

�� If y �� RanF then F ��y	 � supfxjF �x	 � yg � inffxjF �x	 	 yg�

All F � � Q�F 	 are non�decreasing and coincide except on an at most a denumerable
set of discontinuities� There is a unique function F� � Q�F 	 which is left continuous
on �F �a	� F �b		� and a unique function F
 � Q�F 	 which is right continuous on
�F �a	� F �b		� These are given by

F��y	 � supfxjF �x	 � yg
and

F
�y	 � inffxjF �x	 	 yg�
For all F � � Q�F 	� F� � F � � F
 on �F �a	� F �b		� If F and G are non�decreasing
on �a� b	� then F  G � F� � G� and F
 � G
� If �a� b � �� � � � f����g
�the �extended reals	� then F���	 � ��� This introduces technical di
culties and
so we adopt the convention that F���	 � F
��	 � inf suppF �



����� Triangular�norms

De�nition ����� A binary operation T on a set S is associative if

T �T �x� y	� z	 � T �x� T �y� z		 �x� y� z � S�

De�nition ����	 A triangular norm �or t�norm	 is an associative binary operation
on ��� � that is commutative� non�decreasing in each place� and such that T �a� �	 � a
for all a � ��� � �

����
 Copulas and Joint Distribution Functions

The most important notions for the present chapter are those of the copula and the
Fr�echet bounds�

De�nition ����� A two�dimensional copula C is a mapping C� ��� � ���� � �� ��� � 
such that


� C�a� �	 � C��� a	 � � and C�a� �	 � C��� a	 � a for all a � ��� � �

�� C�a�� b�	�C�a�� b�	�C�a�� b�	 �C�a�� b�	  � for all a�� a�� b�� b� � ��� � such
that a� � a� and b� � b��

All copulas satisfy
W �a� b	 � C�a� b	 �M�a� b	 ������	

for all �a� b	 � ��� � � ��� � � where the t�norms W and M �which are also copulas	
are given by

W �a� b	 � max�a� b� �� �	 ������	

and
M�a� b	 � min�a� b	� ������	

Copulas link joint distributions with their marginals� Let H be a two dimensional
distribution function with marginals F and G� Then there exists a copula C such
that

H�u� v	 � C�F �u	� G�v		 ������	

for all u� v � �� The inverse relation is

C�u� v	 � H�F ��u	� G��v		� ������	

where F � � Q�F 	 and G� � Q�G	� The copula C contains all the dependency infor�
mation of H� If C�u� v	 � +�u� v	 � uv� then the random variables are independent�
Equation ����� is sometimes referred to as the �uniform representation �������� �

Combining ������������	 gives bounds on the joint distribution in terms of the
marginals�

max�F �u	 � G�v	� �� �	 � H�u� v	 � min�F �u	� G�v		� ������	



These are known as the Frechet bounds� A copula is a t�norm if and only if it
is associative� A t�norm T is a copula if and only if it is ��increasing� that is� if
T �a�� b�	� T �a�� b�	� T �a�� b�	�T �a�� b�	 � T �a�� b�	  � for all a�� a�� b�� b� � ��� � 
such that a� � a� and b� � b� �see p���� of ���� 	�

De�nition ������ Let C be a copula� The dual of C is the function Cd de�ned by
Cd�x� y	 � x � y � C�x� y	 for all x� y � ��� � �

The dual copula should not be confused with the conorm of a t�norm T given by
T ��x� y	 � ��T ���x� ��y	� The dual of W is W d�u� v	 � min�u�v� �	� Schweizer
and Sklar ���� use the notation C for a dual copula� We use the overbar notation
for a di�erent purpose below�

����� The Triangle Functions � and � and ��convolutions

The following three operations are of great importance in the sequel� The operations
� and � are introduced by Schweizer and Sklar ���� because of their properties as
triangle functions in the theory of probabilistic metric spaces� They are known
elsewhere as the supremal and in�mal convolutions�

De�nition ������ Let C be a copula and let L be a binary operation from �����

onto �� which is non�decreasing in each place and continuous on �� � �� except
possibly at the points ����	 and ��� �	 �we shall call this class of functions L in
the sequel	� Then �C�L is the function on #� �#� whose value for any F�G � #�

is the function �C�L�F�G	 de�ned on �� by

�C�L�F�G	�x	 � sup
L�u�v��x

�C�F �u	� G�v		 �

De�nition ������ Let C� L� F � and G be as in de�nition ����

� Then �C�L�F�G	
is the function de�ned by

�C�L�F�G	�x	 � inf
L�u�v��x

�Cd�F �u	� G�v		 �

De�nition ������ Let C� L� F � and G be as in de�nition ����

� Then �C�L�F�G	
is the function de�ned by

�C�L�F�G	�x	 �
Z
Lfxg

dC�F �u	� G�v		 x � ����	� ������	

where Lfxg � f�u� v	ju� v � ��� L�u� v	 � xg�

In the sequel we will write
R
L�u�v��x for

R
Lfxg� The function �C�L is the distribution of

L�X�Y 	 where X and Y are random variables with joint distribution FXY �u� v	 �
C�F �u	� G�v		� This operation is called a ��convolution for the operation L �the �
signi�es the additive properties of the integral in contradistinction to the in�mum



and supremum operations in the in�mal and supremal convolutions	� The well
known convolution for C � + and L � Sum given by

���F�G	�x	 �
Z
u�v�x

d+�F �u	� G�v		 �
Z x

��
F �x� t	 dG�t	

is a special case of ������	� For each of the three types of convolution �� � � and �	�
L is sometimes written as an in�x operator � as in Z � X�Y � Explicit formulae
for the other arithmetic operations are given by �������������	�

The �C�L� �C�L and �C�L operations can actually be de�ned on the whole of #�#
for appropriate L� We use these extended de�nitions in the sequel�

��� Dependency Bounds and their Properties

The dependency bounds for the four arithmetic operations of addition� subtraction�
multiplication and division are now derived and their properties examined� Unless
otherwise stated� the random variables considered are almost surely positive� In
other words� their distribution functions are in #�� Bounds on the distribution of
Z � L�X�Y 	 are derived� where L � L� It is then shown how to apply these bounds
to subtraction and division of random variables� Following this� the pointwise best
possible nature of these bounds for general L � L is shown� This was not proven in
���� � although our proof is a fairly straightforward generalisation of the proof there
for L � Sum� Finally a number of examples which have been numerically calculated
are presented�

����� The Dependency Bounds

Let X and Y be random variables on �� with df�X	 � FX and df�Y 	 � FY such
that FX� FY � # and let Z � L�X�Y 	 with df�Z	 � FZ where L � L� Let CXY be
a lower bound on the copula CXY � Then FZ depends on the joint distribution of X
and Y and will be contained within the bounds

ldbCXY
�FX� FY � L	�z	 � FZ�z	 � udbCXY

�FX� FY � L	�z	 �z � ��� ������	

When CXY � W we will simply write ldb and udb� These stand for �lower depen�
dency bound and �upper dependency bound respectively�

Theorem ����� ������� When CXY � W the functions ldb and udb are given by

ldb�FX � FY � L	�x	 � �W�L�FX� FY 	�z	 � sup
L�u�v��x

W �FX�u	� FY �v		 ������	

and

udb�FX � FY � L	�x	 � �W�L�FX� FY 	�z	 � inf
L�u�v��x

W d�FX�u	� FY �v		� ������	



Figure �
�� Illustration for the proof of theorem �
�
�


Sometimes the notation FZ or FZ is used for ldb�FX� FY � L	 or udb�FX� FY � L	
respectively when FX � FY � and L are clear from the context�

Proof� With reference to �gure ��� and to section ������ it is clear that for any
given copula C� and any pair of points �u�� v�	� �u�� v�	 on the line L�u� v	 � x�

W �FX�u�	� FY �v�		 � C�FX�u�	� FY �v�		

�
ZZ

A
dC�FX�u	� FY �v		

� �C�L�FX� FY 	�x	

�
ZZ

B
dC�FX�u	� FY �v		

� FX�u�	 � FY �v�	�C�FX�u�	� FY �v�		

� Cd�FX�u�	� FY �v�		

� W d�FX�u�	� FY �v�		�

The proof is completed by observing that �W�L is simply the greatest value of
W �FX�u�	� FY �v�		 where �u�� v�	 is on the line L�u� v	 � x� Similarly� �W�L is the
smallest value of W d�FX�u�	� FY �v�		 where �u�� v�	 is on the line L�u� v	 � x�

By a similar argument one can show that the more general bounds ldbCXY
and

udbCXY
are given by ������	 and ������	 with W simply replaced by CXY � Note that

since CXY  W always� the bounds of theorem ����� will always hold� However� as
we shall see in section ���� the bounds for CXY �� W are tighter� and thus provide
more information about FZ� We will only concern ourselves with CXY � W in this



section� Note that knowing an upper bound on CXY other than M does not allow
one to construct tighter bounds�

Theorem ����� can be used to bound the distribution of all four arithmetic op�
erations on almost surely positive random variables� The condition of positivity is
necessary because product and quotient are only monotonic on �� or �� and not
over all �� All the results are collected together in the following theorem�

Theorem ����� Let X and Y be almost surely positive random variables with dis�
tributions FX and FY � and let Z � X�Y � where � is one of the four arithmetic
operations � � f�������g� Then the lower and upper dependency bounds for FZ�
the distribution of Z� are given by

ldb�FX� FY ��	�x	 � sup
u�v�x

�max�FX�u	 � FY �v	� �� �		 ������	

udb�FX� FY ��	�x	 � inf
u�v�x

�min�FX�u	 � FY �v	� �		

ldb�FX� FY ��	�x	 � sup
u�v�x

�max�FX�u	� FY ��v	� �		 ������	

udb�FX� FY ��	�x	 � � � inf
u�v�x

�min�FX�u	� FY ��v	� �		

ldb�FX� FY ��	�x	 � sup
uv�x

�max�FX�u	 � FY �v	� �� �		 ������	

udb�FX� FY ��	�x	 � inf
uv�x

�min�FX�u	 � FY �v	� �		

ldb�FX� FY ��	�x	 � sup
uv�x

�max�FX�u	� FY ���v	� �		 ������	

udb�FX� FY ��	�x	 � � � inf
uv�x

�min�FX�u	� FY ���v	� �		�

Proof� The Sum and Product cases follow directly from theorem ������ The
Di�erence and Quotient cases can be seen by noting that on �� these are both
monotonic operations� they are increasing in their �rst argument and decreasing in
their second� They can be converted to Sum and Product as follows� For Di�erence
�Z � X�Y 	� let Y � � �Y � Then FY ��y	 � ��FY ��y	� Substitution into ������	 and
some slight rearrangement yields ������	� For Quotient �Z � X�Y 	� let Y � � ��Y �
Then FY ��y	 � �� FY ���y	� Substitution into ������	 yields ������	�

The bounds for addition and subtraction actually hold for FX� FY � # since
addition and subtraction are monotonic over all ��

����� Pointwise Best�Possible Nature of the Bounds

The bounds in theorem ����� are the pointwise best possible� The exact meaning of
this is given by the theorem below which is a generalisation of theorem ��� of ���� �
Theorem ����� generalises theorem ��� of ���� in two ways� it is for general L � L�
not just L � Sum� and it is for general CXY and not just CXY � W � The proof is
based on that in ���� but is su
ciently modi�ed to warrant inclusion here�



Theorem ����� Let FX and FY be distribution functions in #� let x � �� let L � L
and let CXY be a lower bound on the copula CXY �W � CXY � CXY 	� Then�


� There exists a copula C�t�� dependent only on the value t of �CXY �L
�FX� FY 	 at

x such that
�C�t��L�FX� FY 	�x	 � �CXY �L

�FX � FY 	�x	 � t

if not both FX and FY are discontinuous at u and v respectively such that
L�u� v	 � x�

�� There exists a copula C�r� dependent only on the value r of �CXY �L
�FX� FY 	�x�	

such that
�C�r��L�FX� FY 	�x�	 � �CXY �L

�FX � FY 	�x�	 � r

if not both FX and FY are discontinuous at u and v respectively such that
L�u� v	 � x�

This theorem says that for any dependency bounds there will always be a copula
such that the true ���convolution meets the bound at a given point� In other words
one can not construct bounds any tighter than ������	 and ������	� Thus these
dependency bounds are the pointwise best possible�

Proof� The conditions on the continuity of FX and FY will be ignored for now and
their e�ect discussed later� Consider part � of the theorem �rst� It will be shown
that if C�t��a� b	 is the copula de�ned by

C�t��a� b	 �

�
max�t� CXY �a� b		 �a� b	 � �t� � ��

min�a� b	 otherwise�
������	

then �C�t��L�FX� FY 	�x	 � t� Note that C�t��a� b	  CXY �a� b	 for all �a� b	 � ��� � ��

Since L is continuous and nondecreasing in each argument� for any x� the curve
L�u� v	 � x is continuous and nonincreasing in the u�v plane �see �gure ���	�
De�ne Ax and Bx to be the regions of the extended plane above and below the line
L�u� v	 � x�

Ax � f�u� v	jL�u� v	 	 xg
Bx � f�u� v	jL�u� v	 � xg�

Firstly observe that in view of theorem ������ �CXY �L
�FX� FY 	�x	 � � implies that

�CXY �L
�FX� FY 	�x	 � �� Thus it is necessary to show that for t � ��� �	�

�C�t��L�FX� FY 	�x	 �
ZZ

Bx
dC�t��FX�u	� FY �v		 � t� ������	

The condition is �� t and not �� t to cope with discontinuous FX and FY � if
FX and FY are discontinuous� then �C�t��L�FX� FY 	 is also� and thus the situation

depicted in �gure ��� could arise� In order to show ������	� note that for �u� v	 � Bx
�the closure of Bx	�

CXY �FX�u	� FY �v		 � �CXY �L
�FX� FY 	�L�u� v		 � �CXY �L

�FX � FY 	�x	 � t

� max�t� CXY �FX�u	� FY �v			 � t�



Figure �
�� Graph of L�u� v� � x


Figure �
�� A possible �C�t��FX � FY � when FX and FY have discontinuities




Thus using the de�nition of C�t� in ������	�

C�t��FX�u	� FY �v		 � min�FX�u	� FY �v	� t	� �������	

From this it is obvious that C����FX�u	� FY �v		 � � for all �u� v	 � Bx and so
�C��� �L�FX � FY 	�x	 � ��

It is now only necessary to consider t � ��� �	� Let

u� � supfujFX�u	 � tg
for � � t � �� We show that u� is �nite� Since limu	�� FX�u	 � �� u� 	 ���
Regarding whether u� � �� suppose to the contrary that u� � � and thus that
FX�u	 � t for all �nite u� Now let L� be the two place function de�ned by

L�u�L��x� u		 � x�

That is� if L�u� v	 � x� then L��x� u	 � v� L� is strictly increasing in its �rst
argument and strictly decreasing in its second and if L � Sum� then L� � Di�erence�
For �nite x and u�

FY �L��x� u		 � ��

Since for any copula C� C�a� �	 � a �see section �����	� and since C is nondecreasing
in each argument� for any �  �� C�a� �� �	 � a� Combining these facts gives

CXY �FX�u	� FY �L��x� u			 � FX�u	 � t� �������	

But
�CXY �L

�FX� FY 	�x	 � sup
u

�CXY �FX�u	� FY �L��x� u			 �

and since u in �������	 is arbitrary �but �nite	

t � �CXY �L
�FX� FY 	�x	 � FX�u	 � t�

which is a contradiction and thus u� is �nite�

It is next shown that FY �v	  t whenever v 	 L��x� u�	� Suppose to the contrary
that there exists a v� 	 L��x� u�	 such that FY �v�	 � t� De�ne �L to be the two
place function such that

L��L�x� v	� v	 � x

�i�e� L�u� v	 � x implies �L�x� v	 � u and �L is strictly increasing in its �rst argu�
ment and strictly decreasing in its second	� Since �L�x� v�	 � u�� FX��L�x� v�		 � t�
Thus for u � �L�x� v�	�

CXY �FX�u	� FY �L��x� u			 � FX�u	 � FX��L�x� v�		 � t�

and for u  �L�x� v�	

CXY �FX�u	� FY �L��x� u			 � FY �L��x� u		 � FY �v�	 � t�

and again
t � �CXY �L

�FX� FY 	�x	 � t�



Figure �
�� C�t��FX�u�� FY �v��


This is a contradiction and so FY �v	  t whenever v 	 L��x� u�	�

A �nal fact which is needed is that FX�u�	 � t �because FX�u	 � t for u � u�
and FX is left�continuous	� and thus FX�u	  t for u 	 u�� Also� FY �v	  t for
v 	 L��x� u�	�

Collecting all the facts in the above three paragraphs and substituting into
������	� the de�nition of C�t�� gives

C�t��FX�u	� FY �v		 �

����
���

min�FY �v	� t	 u 	 u��

FX�u	 u � u�� v 	 L��x� u�	�

min�FX�u	� FY �v	 u � u�� v � L��x� u�	�

These values of C�t��FX�u	� FY �v		 are indicated on �gure ���� It now becomes fairly
easy to evaluate �C�t��L�FX� FY 	�

Recall that

�C�t��L�FX� FY 	�x	 �
ZZ

L�u�v��x
dC�t��FX�u	� FY �v		�

Following Frank� Nelsen and Schweizer ���� � the �u� v	 plane is divided into the �ve
regions R�� � � � � R	 given by

R� � ���� u� � � � �v�� v� � � �

R� � ���� u� � ���� v� �



R� � �u�� u� � � � ���� v�� � �

R� � Bx � f�u� v	jv 	 v� � �g�
R	 � Bx � f�u� v	ju 	 u� � �g�

where � 	 �� If

Ik �
ZZ

Rk
dC�t��FX�u	� FY �v		�

then

I� � FX�u� � �	�min�FX�u� � �	� FY �v�		 �

I� � min�FX�u�	� FY �v�		�

I� � min�FY �v� � �	� t	�min�FX�u�	� FY �v� � �		�

I� � ��

I	 � ��

Both I� and I	 are zero because both FX�u	 and min�FY �v	� t	 are constant in one
direction of the �u� v	 plane� The value stated for I� is obvious� and those for I� and
I� follow by consideration of the boundaries of R� and R� respectively �see �gure
���	� Since L� is non�increasing in its second argument and continuous�

�C�t��L�FX� FY 	�x	 � lim
�	��

�I� � I� � I�	

� FX�u�	 � min �FY �v�	� t	�min �FX�u�	� FY �v�		

�

�
t if FY �v�	 	 t�

max�FX�u�	� FY �v�		 � t if FY �v�	 � t�

There are several points worth noting regarding this theorem�

�� Since v� � L��x� u�	� the case that FY �v�	 � t in the above formula implies that
�C�t��L�FX� FY 	�x	 has a jump at x � L�u�� v�	� This is explained below� The
two cases FY �v�	 � t and FY �v�	 � t are considered separately� If FY �v�	 � t
then max�FX�u�	� FY �v�		 � t and so the bound has been met� If FY �v�	 � t
then FY has a jump at v�� This can be seen by noting that FY �v	  t for
v 	 L��x� u�	 and therefore FY �v	  t for v 	 v�� But FY �v�	 �� t and so
FY �v	 	 t for v 	 v�� Thus FY �v�	 � t and FY �v	 	 t for v 	 v�� i�e� there is
a jump at v��

If FX�u�	 � t� max�FX�u�	� FY �v�		 � t and the bound is still met� Assume
then that FX�u�	 � t� Then by a similar argument� FX has a jump at u��
Now if FX has a jump at u� and FY a jump at v�� then since L is continuous�
�C�t��L�FX� FY 	 has a jump at L�u�� v�	 and this is why

�C�t��L�FX� FY 	�L�u�� v�		 � t�

�� The bounds for di�erences and quotients constructed earlier are pointwise best
possible also� This is obvious as the di�erence is determined in terms of a sum



and the quotient in terms of a product� If one wanted to construct an explicit
copula analogous to the C�t� in the above proof� one could use the fact �see
theorem ��ii�� of ���� 	 that if g is a non�increasing function then

CX�g�Y ��u� v	 � u� CXY �u� �� v	�

�� The second part of theorem ������	 can be proved in an entirely analogous
manner �Frank et al� ���� give some details	� The reason for having x� rather
than x in part � of the theorem is due to FX and FY being left�continuous but
not necessarily right�continuous�

�� Note that the �W �FX� FY 	 and �W �FX� FY 	 operations are not distributions of
some function of X and Y �see ���� 	�

����� Examples

Some examples illustrating the lower and upper dependency bounds are now pre�
sented� All of the examples have been calculated numerically� but involve no ap�
proximation apart from rounding error �which is negligible	 and an error due to
the termination of the search for the in�mum or supremum in calculating the �
and � operations� Frank� Nelsen and Schweizer ���� present a few analytical re�
sults obtained using the method of Lagrange multipliers� In general it seems rather
di
cult to obtain exact dependency bounds using this technique� In any case� as
was mentioned in section ���� since it is the numerical values that are ultimately of
interest� there is no real advantage in deriving analytical results if the formulae are
so complicated that a computer program has to be written to calculate their speci�c
values�

In order to calculate the dependency bounds numerically it is useful to rewrite
the formulae ������������	 in the following form�

ldb�FX� FY ��	�x	 �
�
sup
u

�FX�u	 � FY �x� u	� �	
��

� �������	

udb�FX � FY ��	�x	 � � �
�
inf
u

�FX�u	 � FY �x� u		
��

� �������	

ldb�FX� FY ��	�x	 �
�
sup
u

�FX�u	� FY �u� x		
��

� �������	

udb�FX� FY ��	�x	 � � �
�
inf
u

�FX�u	� FY �u� x		
��

� �������	

ldb�FX� FY ��	�x	 �
�
sup
u

�FX�u	 � FY �x�u	� �	
��

� �������	

udb�FX � FY ��	�x	 � � �
�
inf
u

�FX�u	 � FY �x�u		
��

� �������	

ldb�FX � FY ��	�x	 �
�
sup
u

�FX�u	� FY �u�x		
��

� �������	



udb�FX� FY ��	�x	 � � �
�
inf
u

�FX�u	� FY �u�x		
��

� �������	

where �x � � max�x� �	 and �x � � min�x� �	� From these formulae it becomes
straightforward to calculate lower and upper dependency bounds if one has a sub�
routine to calculate FX�x	 and FY �y	� The calculation is simply a search for a
maximum or minimum of a simple function of FX and FY for a given x� This is not
completely trivial to do numerically as the FX and FY are de�ned on a continuum�
The techniques developed in section ��� are better suited for numerical calculation�

All of the examples are for random variables with uniform distributions Ua�b given
by

Ua�b�x	 �

����
���

� x � ���� a 
x�a
b�a x � �a� b 

� x � �b�� �

The examples are presented in �gures ������� and details are provided in the �gure
captions� Some examples of dependency bounds when CXY �� W are given in section
����

Some points to note about these �gures are�

�� Comparison of �gures ��� and ��� reveals the e�ect of the spread of the two
random variables on the distance between the lower and upper dependency
bounds� In fact� if one of the random variables has zero dispersion �a distribu�
tion function equal to a unit step	� then the two bounds are identical�

�� The fact that the lower and upper bounds in �gures ��� and ��� are themselves
of the form Ua�b is not really signi�cant � it is just a peculiarity of the ldb
and udb formulae for sums �and di�erences	 of uniformly distributed random
variables� Figure ��� shows the dependency bounds for a product� It can be
seen that these are not uniform�

�� A comparison of �gures ��� and ��� indicates the e�ect of identical distributions
for numerator and denominator on the dependency bounds of their quotient�
If the random variables are almost surely equal then the distribution of their
quotient will be a unit step at x � �� This possibility is contained within the
bounds of �gure ����

�� The bounds for the following two cases are identical to those in �gures ��� and
��� respectively�

�a	 Z � X � Y with X distributed U��� and Y distributed U����

�b	 Z � X � Y with X distributed U��� and Y distributed U�����

Examples of dependency bounds for random variables with non�uniform distri�
butions are given in section ����



Figure �
�� Lower and upper dependency bounds for X � Y where both X and Y are
uniformly distributed on �	� ��




Figure �
�� Lower and upper dependency bounds for X � Y where X is uniformly dis
tributed on �	� �� and Y is uniformly distributed on �	��� ��




Figure �
�� Lower and upper dependency bounds for X � Y where both X and Y are
uniformly distributed on �	� ��




Figure �
�� Lower and upper dependency bounds for X�Y where X is uniformly dis
tributed on ��� �� and Y is uniformly distributed on ��� ��




Figure �
�� Lower and upper dependency bounds for X�Y where both X and Y are
uniformly distributed on ��� ��




����� Exclusive Use of Lower and Upper Bounds

We will now show how it is possible to work only with the dependency bounds them�
selves� without worrying about the distributions within these bounds �the precise
meaning of this statement is given by the following theorem	�

Theorem ����� Let �FX� FX  and �F Y � FY  be two pairs of distributions functions
such that FX�x	 � FX�x	 and F Y �y	 � FY �y	 for all x� y � �� and let � be non�
decreasing in each argument� Then for any FX � �FX� FX and any FY � �F Y � F Y  

ldbCXY
�FX � F Y ��	 � ldbCXY

�FX� FY ��	 �������	

and
udbCXY

�FX � FY ��	  udbCXY
�FX� FY ��	� �������	

Proof� This follows directly from lemma ����� of ���� �

The only thing that remains to be determined is explicitly how to use the FX

and FX � But this is very simple� The following formulae are derived by considering
the increasing or decreasing nature of the operations � �for � � f���g we only
consider random variables on ��	�

�

��
� FZ � ldb�FX � FY ��	

FZ � udb�FX� F Y ��	

�
��
� FZ � ldb�FX � FY ��	

FZ � udb�FX� F Y ��	

�
��
� FZ � ldb�FX � FY ��	

FZ � udb�FX� F Y ��	

�
��
� FZ � ldb�FX � FY ��	

FZ � udb�FX� F Y ��	

�������	

These formulae provide a consistent and neat method of handling the dependency
error arising in probabilistic arithmetic� In section ��� the numerical implementation
of these bounds will be discussed�

��� Numerical Representation

As the examples in section ����� show� it is possible to use the formulae ��������
������	 to calculate the lower and upper dependency bounds numerically� However�
there are di
culties associated with this scheme� For example the search for the
supremum and in�mum is over a continuum of points without even a bounded
range� In this section new techniques for both determining the lower and upper



dependency bounds �the �W�L and �W�L operations	 and the calculation of the ordi�
nary �L�convolutions will be developed� The main tool used is a duality theorem
relating the operations �W�L and �W�L to functions in terms of quasi�inverses of the
distribution functions involved� The �L�convolutions can also be calculated in terms
of the quasi�inverses� As well as being computationally simpler for all these calcula�
tions� this approach provides a neat solution to the problem of representation error
in the numerical calculation of �L�convolutions� Whilst most other techniques for
the numerical calculation of �L�convolutions of probability distributions allow one
to control the error �in the sense that it approaches zero as the number of points
used to represent the distribution function approaches in�nity	� they do not allow
the calculation of rigorous bounds on the error in any given calculation� In contrast�
the method presented here provides lower and upper bounds between which the
probability distribution in question must lie�

The present section is arranged as follows� In subsection ����� we make use
of a duality theorem to express the quasi�inverses of dependency bounds in terms
of quasi�inverses of the distribution functions� In subsection ����� we introduce
our numerical representation and develop explicit formulae� using the representa�
tion� for calculating dependency bounds� Subsection ����� contains details on how
�L�convolutions can be calculated using this same numerical representation� In sub�
section ����� it is shown how functionals of distribution functions� such as moments�
can be easily calculated in terms of the numerical representation� and in subsection
����� some examples are presented which demonstrate the use of all the techniques
developed here�

����� Duality

The following duality theorem has been presented in a variety of contexts and in
a number of di�erent forms� It is the basis of the level�set �or �cut	 formulae for
implementing the fuzzy number convolutions �see chapter �	� Frank and Schweizer
���� have considered the duality in some detail� Their results are summarised in
theorem ����� of ���� which is restated below�

De�nition ����� For any F in #� let F� be the left continuous quasi�inverse of F
de�ned in section ������ Then r� is the set fF�jF � #�g�

De�nition ����� For any two place function L and any copula C� ��C�L is the func�
tion ��C�L�r� �r� �� r� given by

��C�L�F�� G�	�x	 � inf
C�u�v��x

�L�F��u	� G��v		 �

De�nition ����� For any two place function L and any copula C� ��C�L is the func�
tion ��C�L�r� �r� �� r� given by

��C�L�F�� G�	�x	 � sup
Cd�u�v��x

�L�F��u	� G��v		 �



Theorem ����� �Theorem ����� of ���	�� Let L be a function L��� � �� ��
��� with � as its null element� and which is continuous everywhere� Let C be a
copula� Then for any F�G � #��

�C�L�F�G	 � ���C�L�F�� G�	 ��

��C�L�F�� G�	 � ��C�L�F�G	 ��

�C�L�F�G	 � ���C�L�F�� G�	 ��

��C�L�F�� G�	 � ��C�L�F�G	 ��

The advantage of using the duality theorem becomes apparent when a speci�c
L is considered� For example� if L � Sum� then the quasi�inverse representation of
the lower and upper dependency bounds can be calculated in terms of the quasi�
inverses of the distribution functions of the random variables in question by using
the following formulae� Let Z � X �Y and let ldb�CXY

�FZ	 and udb�CXY
�FZ	 denote

the quasi�inverses of ldbCXY
�FX� FY ��	 and udbCXY

�FX � FY ��	 respectively� Then

ldb�CXY
�F�

X� F
�
Y ��	�x	 � inf

CXY �u�v��x
�F�

X�u	 � F�
Y �v		� ������	

udb�CXY
�F�

X� F
�
Y ��	�x	 � sup

Cd
XY �u�v��x

�F�
X�u	 � F�

Y �v		� ������	

The standard dependency bounds �with CXY � W 	 follow with the appropri�
ate substitution� Equations ����� and ����� are simply the maximum and mini�
mum of the pointwise sum of quasi�inverses� The functions ldb�CXY

�F�
X� F

�
Y ��	 and

udb�CXY
�F�

X � F
�
Y ��	 are quasi�inverses of the lower and upper dependency bounds

and not lower and upper bounds on the quasi�inverses� That is

ldb�CXY
�F�

X� F
�
Y ��	  udb�CXY

�F�
X� F

�
Y ��	 ������	

is the consequence of

ldbCXY
�FX� FY ��	 � udbCXY

�FX� FY ��	�

Note that for L � Sum or Di�erence� theorem ����� holds for any F�G � # �and
not just #�	 because in these cases the point x � � has no special signi�cance�

When CXY � W the formulae are particularly simple� and this gives us a very
simple way of calculating lower and upper dependency bounds� Recalling that
W �u� v	 � max�u � v � �� �	 and W d�u� v	 � min�u � v� �	 we have

ldb� �F�
X� F

�
Y ��	 �x	 �

��
�

inf
u��x���

�F�
X�u	 � F�

Y �x� u � �		 if x �� ��

inf
u�v����

�F�
X�u	 � F�

Y �v		 if x � ��
������	

Since F�
X and F�

Y are non�decreasing� the case for x � � becomes

ldb��F�
X� F

�
Y ��	��	 � F�

X��	 � F�
Y ��	�



Similarly�

udb� �F�
X� F

�
Y ��	 �x	 �

��
�

sup
u����x�

�F�
X�u	 � F�

Y �x� u		 if x �� ��

F�
X��	 � F�

Y ��	 if x � ��
������	

�The restrictions on the range of the supremum and in�mum operations arise from
the fact that v � ��� � because domF� � ��� � �	 Likewise� we have

ldb� �F�
X� F

�
Y ��	 �x	 �

��
� inf

u��x���
�F�

X�u	� F�
Y �x� u � �		 if x �� ��

F�
X��	� F�

Y ��	 if x � �
������	

and

udb� �F�
X� F

�
Y ��	 �x	 �

��
�

sup
u����x�

�F�
X�u	� F�

Y �x� u		 if x �� ��

F�
X��	� F�

Y ��	 if x � ��
������	

Analogous formulae for ldb� and udb� for � � f���g can be determined in a
manner similar to that used to derive ������	 and ������	� Consider the quotient �rst�
Let Y � � ��Y � If FY has a quasi�inverse F�

Y � what is the quasi�inverse of FY �* It is
known that F�

Y �x	 � y� x � FY �y	 and FY ��x	 � ��FY ���x	� If x � ���FY ���y		�
then F�

Y ��x	 � y� But � � x � FY ���y	� Therefore F�
Y �� � x	 � ��y and so

F�
Y ��x	 �

�

F�
Y �� � x	

� y�

Using this and ������������	� it can be shown that

ldb� �F�
X � F

�
Y ��	 �x	 �

��
�

inf
u��x���

�F�
X�u	�F�

Y �u� x		 if x �� ��

F�
X��	�F�

Y ��	 if x � ��
������	

and

udb� �F�
X� F

�
Y ��	 �x	 �

��
�

sup
u����x�

�F�
X�u	�F�

Y �� � u� x		 if x �� ��

F�
X��	�F�

Y ��	 if x � ��
������	

Similarly� it can be shown that if Y � � �Y then F�
Y ��x	 � �F�

Y ���x	� and so using
������	 and ������	

ldb� �F�
X� F

�
Y ��	 �x	 �

��
�

inf
u��x���

�F�
X�u	� F�

Y �u� x		 if x �� ��

F�
X��	� F�

Y ��	 if x � ��
�������	

and

udb� �F�
X � F

�
Y ��	 �x	 �

��
�

sup
u����x�

�F�
X�u	� F�

Y �� � u� x		 if x �� ��

F�
X��	 � F�

Y ��	 if x � ��
�������	

These formulae for ldb� and udb� can be seen to be slightly simpler than the
corresponding formulae for ldb and udb ������������	� The one disadvantage is the



Figure �
�	� The copula W 




Figure �
��� The numerical representation of probability distributions


special case for x � � �for � and �	 or for x � � �for � and �	� The reason these
special cases are necessary becomes apparent upon inspection of �gure ���� which
shows the copula W � When W �u� v	 � x �� �� the values u and v can take are
constrained by a linear relationship� However when W �u� v	 � �� u and v can take
any values within the cross�hatched region� When a numerical representation of the
quasi�inverses is used these special cases actually disappear�

����� Numerical Representation and the Calculation of ldb� and udb�

In order to use equations �������������	 to calculate lower and upper dependency
bounds numerically� it is necessary to have a discrete approximation to probability
distribution functions de�ned on a continuum� The approach taken is illustrated in
�gure ����� The distribution F is approximated by lower and upper discrete approx�
imations denoted F

(
and (F respectively� These are formed by uniformly quantising

F along the vertical axis �see �gure ����	� This de�nes the points x
(
i and (xi� For a

single valued F � x
(
i � (xi�� for i � �� � � � � n � �� We retain the two sets of numbers

fx
(
ig and f(xig for clarity� Interval valued distributions �i�e� lower and upper bounds

on F 	 can result in x
(
i �� (xi��� The end points are

inf suppF � (x��
sup suppF � x

(
n�

�������	

The above approximation of F motivates the following numerical approximation
to F�� Both in anticipation of the exclusive use of upper and lower bounds �to
contain both dependency and representation error	 and to make the ideas clearer�

the discrete approximations F
(
� and (F� to F� and F

�
are presented in �gure ����� In

the following discussion it is not assumed that F� � F
�
� although the same results

do apply to this situation which is often the case at the beginning of a calculation
using probabilistic arithmetic�



Figure �
��� The quasiinverse representation of a distribution function


The discrete approximations (F� and F
(
� are de�ned by

(F��p	 � F
�
�pi	 p � �pi� pi��	� �������	

F
(
��p	 � F��pi��	 p � �pi� pi��	� �������	

for i � �� � � � � N � �� Whether the range in these de�nitions is �pi� pi��	 or �pi� pi�� 
doesn�t really make any di�erence� as long as one choice is used consistently there
are no problems� N is the number of points required to represent either F

(
� or

(F�� In �gure ����� N��� Note that pN � �� The quantisation is uniform and so
pi � i�N for i � �� � � � � N � �� Explicit array representations of F

(
� and (F� suitable

for computer implementation are given by

(F ����i � F
�
�pi	 � F

� � i
N

�
�������	

and
F
(
����i � F��pi��	 � F� � i��

N

�
�������	

for i � �� � � � � N � �� Notice the di�erent conventions used for de�ning F
(
��� and (F ���

in terms of F� and F
�
� This is necessary because of the nature of the approximation�

Two special values worth noting are

(F ����� � F
�
�p�	 � F

�
��	

and
F
(
����N � � � F��pN 	 � F���	�

These two values correspond to the points a and b in �gure ����� Regarding F
(
����� �

recall the convention of rede�ning the value of F� at the end points of the range
�see section �����	� This convention resulted in F���	 � inf suppF � and so (F ����� 
is set equal to this�

An important advantage of this representation is that any representation error
�di�erence between F and F

(
or between F and (F 	 is rigorously contained within the

bounds� That is� it is perfectly correct to state that F
(
� F � (F or F

(
�  F�  (F�



although this does not bound F as tightly as stating F � F � F � By always
performing any necessary rounding approximations in a manner such that the width
between F

(
and (F is made larger ��outwardly directed rounding	� this property is

preserved� This is referred to below as the preservation of the representation error
containment property� The representation error for any given approximation can
be made arbitrarily small by increasing N � The method of approximation proposed
here is better than simply using a single function Fapprox to approximate F for which
jFapprox�x	� F �x	j is �small for �most x�

Now that a numerical representation has been chosen� it is necessary to derive the
appropriate formulae for ldb��� and udb���� the lower and upper dependency bounds
in terms of the numerical representation� We explicitly derive the four cases of the
lower and upper dependency bounds for sums and di�erences�

�i� ldb����F
�

���
X � F

�

���
Y ���

Equations ����� and ������ give

ldb��F�
X � F

�
X ��	�x	 � inf

u��x���
�F�

X�u	 � F�
Y �x� u � �		 �x �� �	�

Let x � i��
N

and u � j��
N

� Then

ldb� �F�
X� F

�
Y ��	

�
i��
N

�
� inf�

j��
N

�
�� i��

N
�� 

�
F�
X

�
j��
N

�
� F�

Y

�
i��
N
� j��

N
��

�� �
i��
N
���

�

� inf
j��i�N���

�
F�
X

�
j��
N

�
� F�

Y

�
i�j�N

N

��
�i �� ��	�

Using the correspondences �������	 and �������	� this can be written as

ldb����F
(
���
X � F

(
���
Y ��	�i � inf

j�i��N��
�F
(
���
X �j � F

(
���
Y �i� j �N � � 	 �i �� ��	� �������	

Since it is only required to calculate ldb����i for i � �� � � � � N � �� the special case
for x � � in ������	 has been avoided �as we mentioned was possible at the end of
section �����	�

�ii� udb����F
�

���
X � F

�

���
Y ���

Equations ������	 and �������	 give

udb�
�
F
�
X� F

�
Y ��

�
�x	 � sup

u����x�

�
F
�
X�u	 � F

�
Y �x� u	

�
�x �� �	

Let x � i
N

and u � j
N

� Then

udb�
�
F
�
X� F

�
Y ��

� �
i
N

�
� sup�

j
N

�
�
h
��

i
N

i �F�
X

�
j
N

�
� F

�
Y

�
i
N
� j

N

�� �
i
N
�� �

�
�



Using the correspondences �������	 and �������	 gives

udb��� � (F ���
X � (F ���

Y ��
�

�i � sup
j����i

�
F
(
���
X �j � F

(
���
Y �i� j 

�
�i �� N	� �������	

for i � �� � � � � N � � and the special case �x � �	 has been avoided�

�iii� ldb����F
�

���
X � �F

���
Y ���

From �������	 and �������	�

ldb�
�
F�
X � F

�
Y ��

�
�x	 � inf

u��x���

�
F�
X�u	� F

�
Y �u� x	

�
�x �� �	�

Set x � i��
N

and u � j��
N

� Then

ldb�
�
F�
X� F

�
Y ��

� �
i��
N

�
� inf�

j��
N

�
�
h
i��
N
� �
i �F�

X

�
j��
N

�
� F

�
Y

�
j��
N
� i��

N

�� �
i��
N
�� �

�
�

Using the correspondences �������	 and �������	

ldb��� �F
(
���
X � (F ���

Y ��
�

�i � inf
j�i��N��

�
F
(
���
X �j � (F ���

Y �j � i 
�

�i �� ��	� �������	

which is all that is required for i � �� � � � � N � ��

�iv� udb���� �F ���
X � F

�

���
Y ���

Using �������	 and �������	�

udb�
�
F
�
X � F

�
Y ��

�
�x	 � sup

u����x�

�
F
�
X�u	� F�

Y �u� x � �	
�

�x �� �	�

Setting x � i
N

and u � j
N

gives

udb�
�
F
�
X� F

�
Y ��

� �
i
N

�
� sup�

j
N

�
�
h
��

i
N

i �F�
X

�
j
N

�
� F�

Y

�
j
N
� i

N
� �

�� �
i
N
�� �

�
�

and thus

udb��� � (F
���
X � F

(
���
Y ��

�
�i � sup

j����i

�
(F
���
X �j � F

(
���
Y �j � i � N � � 

�
�i �� N	� �������	

which holds for i � �� � � � � N � ��

The analogous formulae for product and quotient are

ldb����F
(
���
X � F

(
���
Y ��	�i � inf

j�i��N��
�F
(
���
X �j �F

(
���
Y �i� j �N � � 	 �i �� ��	� �������	

udb��� � (F ���
X � (F ���

Y ��
�

�i � sup
j����i

�
(F ���
X �j � (F ���

Y �i� j 
�

�i �� N	� �������	



ldb���
�
F
(
���
X � (F ���

Y ��
�

�i � inf
j�i��N��

�
F
(
���
X �j � (F ���

Y �j � i 
�

�i �� ��	� �������	

udb��� � (F ���
X � F

(
���
Y ��

�
�i � sup

j����i

�
(F ���
X �j �F

(
���
Y �j � i � N � � 

�
�i �� N	� �������	

All these hold for i � �� � � � � N��� The use of lower and upper bounds alone �instead

of distributions within the bounds	� and whether F
(
���
X or (F ���

X should be used in a
particular instance� is discussed at the end of section ������

Two signi�cant points to note about the above formulae for ldb��� and udb���

are their low computational complexity and their lack of approximation error� To
calculate a dependency bound with N points in terms of two N point discrete
approximations requires only O�N�	 operations� The results are free from error in

the two senses of any representation error being rigorously bounded by F
(
���
X and (F

���
X

�see above	� and the supremum and in�mum operations are exact �compared with
the numerical implementation of the formulae developed in section ��� for which
approximation is required	�

The �nal point which needs to be settled is how to generate F
(
���
X and (F

���
X from

a given exact distribution FX� This is in fact quite simple� One just sets F�
X�p	 �

F
�
X�p	 � F�

X�p	 for p � ��� �	 and uses the de�nitions �������	 and �������	� The
only di
culty is �nding F�

X�p	 given a formula for FX�x	� While for some simple
distributions �such as the uniform and triangular distributions	 an exact formula for
F�
X�p	 can be derived� in general one has to perform a numerical search� This will

give F�
X�p	 to any desired accuracy� This method is described� along with various

techniques for numerically calculating FX for some common distributions� in chapter
� of ���� � Some examples are given later� When the distribution FX has unbounded

support� it is necessary to curtail the distribution so that (F
���
X �� and F

(
���
X �N �� are

�nite�

����� Numerical Calculation of ��Convolutions

We now examine the calculation of ��convolutions in terms of our numerical repre�
sentation� First we determine whether for all FX � �FX � FX and FY � �FY � FY  �

�L�FX � FY 	 � �L�FX� FY 	 � �L�FX � FY 	� �������	

It will be seen that this is indeed the case for arithmetic operations de�ned on ���

To see that �������	 holds for addition and multiplication� it su
ces to inspect
the convolution relations which can be written

FZ�x	 �
Z x

�
FX�x� t	 dFY �t	

and

FZ�x	 �
Z x

�
FX�x�t	 dFY �t	

respectively ���� � If FY is considered as �xed� then since FX is always greater than
�� it is apparent that

FZ�x	 �
Z x

�
FX�x� t	 dFY �t	



is always less than or equal to FZ� Likewise for upper bounds FX � and� by symmetry�
for FY as well� In the same manner it can be seen that

FZ�x	 �
Z x

�
FX�x�t	 dFY �t	

is always less than or equal to FZ if FY is considered �xed� Again by symmetry
this holds for upper bounds and for FY as well� Similar arguments could be used to
show that analogous results hold for di�erence and quotient convolutions� In these
cases it is necessary to use the lower or upper bounds on FX and FY in a manner
similar to equation ������� The details are omitted� As well as showing that only
the lower and upper bounds on a distribution need be considered� the above result
comes in useful in the �condensation procedure which is part of the algorithm for

calculating �
���
L

�
F

���
X � F

���
Y

�
�

The method of calculating �
���
L

�
F

���
X � F

���
Y

�
is best presented in terms of the dis�

crete frequency functions corresponding to F
(
���
X andF

(
���
Y � Thus for the moment� we

will ignore the use of lower and upper distributions� and we will consider the calcu�

lation of �
���
�

�
F

���
X � F

���
Y

�
� Other operations L and the complications of using lower

and upper distributions are considered later on in this subsection�

Given F
(
���
X and F

(
���
Y of N points each� there are corresponding discrete frequency

functions fX and fY given by

fX�x	 �

�
k
N

if x � F
(
���
X �i for k di�erent i�

� otherwise�

fY �x	 �

�


N

if x � F
(
���
Y �i for � di�erent i�

� otherwise�

The discrete frequency function of Z � X � Y is obviously given by

fZ�x	 �

�
m
N� if x � F

(
���
Y �i � F

(
���
Y �j for m di�erent pairs of i and j�

� otherwise�
�������	

This formula for FZ follows directly from the laws of probability and has been
the basis for a number of methods for calculating convolutions in terms of discrete
frequency functions ���� �

We thus have the following simple algorithm for calculating F
���
Z �expressed in

the syntax of the C language ���� � with the exception mentioned in section ���	�

for�i �� �� i � N � i��	f
for�j �� �� j � N � j��	f

F
����U
Z �i� j �N  �� F

���
X �i � F

���
Y �j �

g
g
F

����E
Z �� sort

�
F

����U
Z

�
�

�������	



Figure �
��� Illustration of the condensation procedure


The array F
����U
Z is unsorted �hence the U	 and is of size N�� The array F

����E
Z is the

result of sorting F
����U
Z into increasing order �the E stands for Exact	� Observe that

it is quite possible for F ����E
Z �i � F

����E
Z �j for i �� j� This does not matter at all� it

simply results in a bigger jump in the corresponding FZ� An important fact to notice

is that while F ���
X and F

���
Y have only N points� F ����E

Z has N�� This will obviously
cause severe di
culties if we intend to perform a sequence of operations� the output
of each operation will be an array considerably larger than its input� What is

required is a method for reducing the size of F
����E
Z to N without introducing any

error into the result� The procedure used to do this is called condensation�

If FZ �or F�
Z 	 were simply represented by a single discrete version F

���
Z then it

would be impossible to approximate F
����E
Z by an array of N points without error�

However as both lower and upper approximations are available� �directed rounding

can be used to produce an approximation to F
����E
Z that is not in error in the sense

that the quasi�inverse of the distribution is contained within the bounds� That is�
it will be true that

F
(
���
Z  F

(
����E
Z  F�

Z  (F ����E
Z  (F ���

Z

where the inequality is � �and not ��	 because we are talking about quasi�

inverses� The method of determining F
(
���
Z and (F

���
Z is indicated in �gure ����� Only

the procedure for the lower bound is shown there� The rule for condensation is
simply

F
(
���
Z �i �� F

(
���E�
Z �i�N � N � � �



The analogous condensation with �upward rounding for the upper bound is

(F ���
Z �i �� (F ���E�

Z �i�N  �

The overall algorithm �for the distribution of the sum of random variables	 becomes
algorithm ������ �see below	� The algorithm for products is identical apart from

for�i �� �� i � N � i��	f
for�j �� �� j � N � j��	f

F
(
���U �
Z �i � j �N  �� F

(
���
X �i � F

(
���
Y �j �

(F ���U �
Z �i � j �N  �� (F ���

X �i � (F ���
Y �j �

g
g
F
(
���E�
Z �� sort

�
F
(
���U �
Z

�
�

(F
���E�
Z �� sort

�
(F
���U �
Z

�
�

for�i �� �� i � N � i��	f
F
(
���
Z �i �� F

(
���E�
Z �i �N � N � � �

(F
���
Z �i �� (F

���E�
Z �i �N  �

g

�������	

Algorithm ������

a replacement of the �� on the right hand side of lines � and � by a ��� For
subtraction� lines � and � become

F
(
���U �
Z �i� j �N  �� F

(
���
X �i � (F ���

Y �j �

(F
���U �
Z �i� j �N  �� (F

���
X �i � F

(
���
Y �j � �

The algorithm for quotients is obtained by replacing the subtraction in the above
two lines by a division� Some examples using these algorithms are presented in
section ������

����� Calculation of Moments and other Functionals

We now consider the calculation of moments and other functionals of FX in terms of
F
(
���
X and (F ���

X � Using the change of variables result in lemma ����� of ���� we have

m
�k�
X �

Z
�
xk dFX�x	 �

Z �

�
�F�

X�t		k dt �������	

and

�
�k�
X �

Z
�

�x� �X	k dFX�x	 �
Z �

�
�F�

X�t	� �X	
k
dt� �������	

where �X is the mean and �X � m
���
X � These equations can be used to calculate

moments in terms of F
(
���
X and (F ���

X by replacing the integral by the appropriate



summation and by realising that we will only be able to calculate lower and upper
bounds on the moments� Regarding the lower and upper bounds� it is easy to see
that if

M �i � min
�
F
(
���
X �i � �

X
� (F

���
X �i � �

X
� F

(
���
X �i � �X �

(F
���
X �i � �X

�
�

M �i � max
�
F
(
���
X �i � �

X
� (F ���

X �i � �
X
� F

(
���
X �i � �X �

(F ���
X �i � �X

�
�

and M �i �
h
M �i �M�i 

i
� then

��k�
X

�
�

N

N��X
i��

�M �i 	k

�
�k�
X �

�

N

N��X
i��

�M �i 	k
�������	

will be lower and upper bounds on �
�k�
X for k � �� � � �� The operators ��	k and ��	k are

the interval arithmetic lower and upper bounds for exponentiation by an integral
power� If W � �W�W  � then

W k �

����
���

�W k�W
k
 if W  � or k is odd�

�W
k
�W k if W � � and k is even�

��� jW jk if � � W and k is even�

where jW j � max�jW j� jW j	 ���� �

The use of these equations is discussed in section ����� with reference to some
examples� Functionals other than moments could be calculated in an analogous
manner�

����
 Examples

As an illustration of the ideas developed above we now present some examples� In all
of these� N �the number of sample values of the lower or upper quasi�inverses	 is ���
All the results presented here are outputs of computer programs which implement
the formulae derived above�

Figures ���� and ���� show the distributions arising from the numerical represen�
tation of Y and Z respectively� where Y is uniformly distributed on ��� � and Z has
a Gaussian distribution with � � �� � � � curtailed to ���� These were generated
by using the procedure described in section ������ Note that in each case the lower
and upper distributions touch each other at the �fty sample points� Figure ����

shows the distribution of X � Y�Z calculated using the algorithm for ����
� derived

earlier� Notice that the lower and upper distributions no longer touch� This is due to
the outwardly directed rounding in the condensation procedure� The magnitude of
this e�ect can be seen from �gures ���� and ���� where we present the distribution
calculated directly from the exact quasi�inverse of a triangular distribution centred
at � with spread of ��� and that of the distribution obtained using the algorithm



Figure �
��� Numerical representation of FY �uniform distribution on ��� ��� with N � �	

The moments as calculated by ��
�
��� are � � ������ ������ �� � �	����� 	������ ���� �
��	�		�	�� 	�		�	��� and ���� � �	�	�	�� 	�	����




Figure �
��� Numerical representation of FZ � a Gaussian distribution with � � � and
�� � �� and which is curtailed at � � ��
 It is represented with N � �	
 The values of
the moments as calculated by ��
�
��� are � � ������ ��	��� �� � �	������ ���	���� ���� �
��	������ 	������� and ���� � ������ ������




Figure �
��� Numerical representation of FX where X � Y�Z� and Y and Z are as in
�gures �
�� and �
�� respectively
 This was calculated using the �convolution algorithm




Figure �
��� Numerical representation of an exact triangular distribution centred at � with
a spread of ��




Figure �
��� Output of the ��convolution algorithm for two random variables uniformly
distributed on ��� ��
 This is exactly the same as �gure �
�� apart from the e�ect of the
representation error in the inputs and the outwardly directed rounding in the condensation
procedure




Figure �
��� Lower and upper dependency bounds for the same calculation as for �gure
�
��
 The values of the moments as calculated by ��
�
��� are � � �	������ 	���	��� �� �
�	�		� 	������� ���� � ��	�	��� 	������� and ���� � �	�			� 	��	���


for �
���
� for the sum of two uniformly distributed random variables on ��� � � The

di�erence between this representation width and the dependency width can be seen
by examining �gure ���� where we present the lower and upper dependency bounds
for the same calculation as for �gure �����

The e�ect of the di�erence between lower and upper distributions on the tight�
ness of the bounds for the moments can be seen by comparing the various values
presented� For cases such as that presented in �gure ����� the bounds on the mo�
ments are very loose� especially for the higher order moments� This is to be expected
as one can �t a very wide range of distributions between the lower and upper bounds�
Thus the bounds for moments would appear to be of little value�



��� Incorporating and Updating Dependency Information

��
�� General Idea

So far have shown how to calculate lower and upper bounds on the distribution
of some arithmetic operation on random variables when it is either known that
they are completely independent� or there is no knowledge of their dependency
at all� However there are situations between these two extremes� These are now
considered� It will be seen that the algorithms rapidly become more complicated
as more information is taken into account� The methods involved can be organised
according to the following classi�cation�

�� Using the � � � and � operations�

�� Pairwise bounds on copulas or pairwise measures of dependence�

�� Pairwise joint distributions�

�� Either joint distributions of all the variables or combination of all the variables
at once �rather than pairwise combinations	�

So far in this paper we have only considered type �� In this section� type �� and
in less detail� type �� will be considered� Type � is generally intractable �but see the
section on graph theory in chapter �	�

The fact that a lower bound on a copula CXY other than W can be used to
calculate dependency bounds was shown in section ������ The lower bound CXY

could describe bounds on the dependency of some input random variables� or it
could arise in the process of a probabilistic arithmetic calculation� Dependency
bounds based on CXY  W are closer together than those based on W � In this
section we will brie�y examine di�erent lower bounds on copulas and their e�ect on
the dependency bounds� We will also consider the determination and interpretation
of lower bounds other than W �

��
�� Interpretation of Dependencies Implied by CXY �� W

The e�ect of a CXY other than W is illustrated in �gure ���� where lower and upper
dependency bounds for the sum of X and Y with CXY � Tp are presented� Here X
and Y are both uniformly distributed on ��� � � and Tp is the parameterised t�norm
discussed on pp������ of ���� and given by

Tp�x� y	 � �max�xp � yp � �� �		��p �p �� �	�
T��x� y	 � xy

������	

for p � ���� � � This t�norm is related to W � + � and M by T� � W � T� � +� and
limp	�� Tp � M �

Whilst it is possible to calculate these more general dependency bounds� it is
obviously important that they have a useful interpretation and that the dependency



Figure �
�	� Lower and upper dependency bounds for the sum of two random variables
each uniformly distributed on �	� �� when the lower bound on their connecting copula is
given by Tp for various p




induced byCXY �� W can be understood� The family of copulas fTpj p � ���� � g is
in fact only one of a number of parameterised copulas that provide an in�nite number
of copulas between W and M ���� � All these parameterised copulas are in fact t�
norms� �They have been also used in fuzzy set theory as generalised intersection
operators ����������� �	 Thus the �rst question we should ask is what probabilistic
interpretation can be ascribed to copulas that are also t�norms� i�e� what does
associativity of a copula imply about the dependence of random variables* Schweizer
and Sklar asked this question in problem ����� of ���� � A simple argument presented
in chapter � shows that if a copula CXY is associative and satis�es CXY �a� a	 �
a �a � ��� �	 �i�e� it is Archimedean	� then it is an increasing function of a joint
distribution of independent random variables� CXY �x� y	 � h�FUV �x� y		 �U and
V are independent	� However it is not apparent what this means probabilistically�
Nevertheless such parameterised copulas have been used in practice� See for example
������������������������ 

We are actually interested in these parameterised copulas for their role as lower
bounds on the actual unknown copula� We can understand their e�ect to an extent
by making use of the following result which is given by Jogdeo ���� �

Theorem ��
�� Let F and G be two bivariate distribution functions such that
F �x� y	 � G�x� y	 �x� y � �� Then for every pair of nondecreasing functions f
and g de�ned on ��

covG�f�X	� g�Y 	  covF �f�X	� g�Y 	 �

where covF �f�X	� g�Y 	 is the covariance of f�X	 and g�Y 	 given that X and Y
have joint distribution F �

This says that stochastic ordering of F and G implies stochastic ordering of the
associated covariances� For our purposes it allows us to say that

covCXY
�X�Y 	  covCXY

�X�Y 	

and so covCXY
�X�Y 	 is a lower bound on the covariance of X and Y � By normalising

the covariance appropriately we can calculate lower bounds on the correlation coe
�
cient of X and Y implied by CXY � This gives us an intuitive feel for the dependence
implied by CXY �

The lower bounds on covariance can be calculated as follows� We have the
formulae

cov�X�Y 	 �
Z �

��

Z �

��
�FXY �u� v	� FX�u	FY �v		 du dv

�
Z �

�

Z �

�
�CXY �u� v	� uv	 dF��

X �u	 dF��
Y �v	

�see �������� 	� If we just consider uniform marginals FX � FY � U���� then the
lower bound on the correlation coee�cient r�x� y	 is given by

r�X�Y 	 �
�

D�X	D�Y 	

Z �

�

Z �

�
�CXY �u� v	� uv	 du dv�



p r�X�Y 	
� ��
�
�

��
�	
� �������

� �
�� �
� � �� � ������
�� � � �� ln � � ������
�� �

Table �
�� Lower bounds on the correlation coe�cient implied by lower bounds of the form
Tp on the connecting copula for various p


where D�X	 is the standard deviation of X� For FX � FY � U���� D�X	 � ��
p

���
This will be a lower bound on r only for uniform marginals� Other marginal distri�
butions will give di�erent results� �This is a failing of the correlation coe
cent as
an index of dependence� it is not invariant under transformations of the marginals
���� �	 If CXY � Tp�

r�X�Y 	 � ��
Z �

�

Z �

�

�
�max�xp � yp � �� �		��p � xy

�
dx dy p � ���� � 

� ���I � �
�
	�

where

I �
Z �

�

Z �

�
�max�xp � yp � �� �	��p dx dy�

The integral I can be calculated exactly for p � �� �� � ���������� with the aid of
���� � For example� with p � ��� we have x�� � y�� 	 � ��x� y	 � ��� � � and so

I �
Z �

�
J�y	dy�

Using �������	 of ���� we obtain

J�y	 �
Z �

�



�

x
�

�

y
� �

���
dx

�
y

� � y
�

y�

�� � y	�
ln�y	�

The integral I can then be evaluated �using ������ and ������ of ���� 	 to give
I � 
���� � and thus r�X�Y 	 � �
�� ��� the other cases are determined similarly
and the results are summarised in table ���� Bounds on other indices of dependence
can also be calculated� For example� Genest and Mackay ���� have shown that
Kendall�s � is given by p

��p for Tp� Note that the interpretation of CXY � + is

particularly simple� it says that X and Y are positively quadrant dependent �see �����
��������������� 	� Statistical tests for positive quadrant dependence are considered
in ���� �



��
�� Use of CXY �� W in Probabilistic Arithmetic Calculations

In order to use lower bounds on the connecting copula to calculate tighter depen�
dency bounds it is necessary to calculate the dependency arising through the course
of a probabilistic arithmetic calculation� That is� given random variables W � X and
Y � with Z � X�Y for some arithmetic operation �� calculate CZX � CZY and CZW

in terms of FX � FY and CXY �cf� ���� 	� If there were other variables U � V etc�� it
would be necessary to calculate CZU and CZV etc� Since the calculations would be
of the same form as those for CZW this is not considered further� We will consider
addition �� � �	 here� The details for other operations are similar�

The joint distribution of Z and X is given by

FZX�z�w	 �
ZZ
Dzw

dFXY �x� y	� ������	

where Dzw is the region in the �x� y	 plane such that x� y � z and x � w �see �����
pp����� 	� Thus

FZX�z�w	 �
ZZ
Dzw

dCXY �FX�x	� FY �y		

and so

CZX�u� v	 �
Z Z

DF�
Z
�u��F�

X
�v�

dCXY �FX�x	� FY �y		� ������	

This is very similar to a ��convolution� Using an argument along the lines of that
used to prove theorem ������ it is clear that

CZX�u� v	 � sup
x�y�F�

Z �u�
y�F�

X �v�

�CXY �FX�x	� FY �y		 � ������	

It is possible to use CXY rather than CXY by an argument similar to that used to
prove theorem ������ Equation ����� is not as complex computationally as it seems�
For example� given a value of t � CZX�u� v	� it is easy to calculate CZX�u� v� �	 by

CZX�u� v � �	 � max

�
���� sup
F�

X�v��y�F�

X �v���
x�y�F�

Z �u�

CXY �FX�x	� FY �y		� CZX�u� v	

�
���� � ������	

Obviously CZY can be calculated in a similar manner�

The calculation of CZW is rather more complicated� The joint distribution of Z
and W is given by

FZW �z�w	 �
ZZZ
x�y�z
v�w

dFXYW �x� y� v	 ������	

�
Z

v�w
���FX� FY � v	�z	 dv� ������	



where ���FX � FY � v	�z	 is simply ���FX� FY 	�z	 for a given v �i�e� for W � v	� Thus

CZW �t� u	 �
Z

v�F�

W
�u�

���FX� FY � v	�F�
Z �t		 dv

and

CZW �t� u	 �
Z

v�F�

W �u�

ldbCXY
�FX� FY ��� v	�F�

Z �t		 dv ������	

where ldbCXY
�FX� FY ��� v	 is the lower bound on ���FX� FY � v	 and is given by

ldbCXY
�FX� FY ��� q	�x	 � �CXY ��

�FX��� q	� FY ��� q	 �x	

� �CXY ��
�CXW �FX��	� FW �q		� CY W �FY ��	� FW �q		 �x	

� sup
u�v�x

CXY �CXW �FX�u	� FW �q		� CY W �F Y �v	� FW �q		 �

������	

Upon substituting �with a few changes of variables	 one obtains

CZW �t� u	 �
Z

v�F�

W �u�

�
� sup
a�b�F�

Z �t�
CXY �CXW �FX�a	� FW �v		� CY W �FY �b	� FW �v		 

�
A dv�

Again this is not as computationally complex as it looks because

CZW �t� u� �	 � CZW �
Z

F�

W �u��v�F�

W �u���

�
� 
 
 


�
A dv� �������	

where the term in the parenthesis is the same as that in the previous equation�

The numerical implementation of the above formulae will introduce further com�
plications� For instance� a numerical representation of CXY that �ts in neatly with
the representation already adopted for distribution functions will have to be found�
Further investigation is required to determine the feasability of the approach out�
lined here�

��
�� Measures of Dependence

We have seen that di�erent lower bounds on CXY induce �or imply	 di�erent values
of indices of dependence �e�g� the correlation coe
cient	� The converse is not nec�
essarily true� di�erent values of r do not imply unique corresponding lower bounds
on the copula� Nevertheless� because of the complexity of the approach outlined in
the previous subsection it seems worthwhile to examine what e�ect knowledge of
the values of di�erent measures or indices of dependence can have on the result of
some operation combining two or more random variables� We simply point to some
of the literature here�

Measures of dependence based on copulas are discussed in ������������ � Other
types of dependence measures are numerous� See for example ������������ � Explicit



consideration of the e�ects of convolution on various measures of dependence can
be found in ������������������� �this is not an exhaustive list	� So far we have been
unable to develop an appropriate method of dealing with operations on random
variables when some dependence information is available�

��	 Use of Mixtures for Nonmonotonic Operations

����� Introduction and General Approach

If the random variables to be combined under a division or multiplication opera�
tion are not sign de�nite �i�e� the distributions are not such that F ��	 � � or �	�
then the required ��convolution can not be calculated using the above techniques
or simple modi�cations thereof� In such a case a new approach is called for� and it
is this which is the subject of the present section� Because of the intricacy of the
results so far obtained� and because of some remaining problems� the present sec�
tion gives less detail and is more tentative than other sections in this chapter� The
general idea of handling nonmonotonic operations is to split the operation up into
monotonic segments� perform the operation� and then combine the results together
again� In the case under consideration here� this entails splitting the random vari�
ables involved into positive and negative parts� combining the various parts under
the split operation� and then recombining them� The basic concept we use for this
is a mixture�

The process is easily explained if we restrict consideration to single valued �rather
than lower and upper	 probability distributions which are de�ned on �� �The nu�
merical approximations are considered later�	 Let FX and FY be the probability
distributions of two random variables X and Y � neither of which is sign de�nite�
Do the following for both X and Y �expressions are only given for X	� Split X into
positive and negative parts� If pX is the probability that X is positive� then

pX � �� FX���	� ������	

and the distributions of the parts are

F�
X �x	 � �

pX
�FX�x	� FX��		�

F�
X �x	 � �

��pX �FX��	� FX�x		
������	

for x 	 �� From now on� it will be assumed that FX and FY are continuous at x � �
and so FX���	 � FX��	� There is no loss of generality in doing this as it is always
possible to assume that any jump at x � � is in fact due to the random variable
X being a mixture of two random variables� one without the jump� and the other
consisting solely of the jump �cf� the Lebesgue decomposition theorem ����� p���� 	�
The distribution FX can easily be reconstructed from F�

X and F�
X by

FX�x	 �

��
� pXF

�
X �x	 � ��� pX	 x 	 ��

��� pX	� �� � pX	F�
X ��x	 x � ��

������	



In order to calculate the result of a convolution or dependency bound in terms
of the positive and negative parts� it is simply necessary to observe that the positive
part F�

Z is� for Z � X � Y or Z � X�Y � solely determined by ���F�
X � F

�
Y 	 and

���F�
X � F

�
Y 	 and that the negative part F�

Z is solely determined by ���F�
X � F

�
Y 	 and

���F�
X � F

�
Y 	� Let pZ denote the probability that Z is positive� Then

pZ � pXpY � �� � pX 	��� pY 	� ������	

The parts F�
Z and F�

Z are given by

F�
Z �z	 �

�

pZ

h
pXpY ���F�

X � F
�
Y 	�z	 � ��� pX	�� � pY 	���F�

X � F
�
Y 	�z	

i
� ������	

F�
Z �z	 �

�

� � pZ

h
pX�� � pY 	���F�

X � F
�
Y 	�z	 � ��� pX	pY ���F�

X � F
�
Y 	�z	

i
�

������	
for z 	 � and � � f���g� Substituting Z for X in ������	 gives the formula for
creating FZ from F�

Z and F�
Z �

����� Complications Arising from the use of Lower and Upper Proba�
bility Distributions

The above formulae are quite straightforward� However things become more com�
plicated when the analogous formulae for lower and upper probability distributions
are considered� The corresponding formulae for ������	� ������	 and ������	 are� re�
spectively

p
X

� � � FX��	�

pX � � � FX��	�
������	

F�
X�x	 � �

pX
�FX�x	� FX��		�

F
�
X�x	 � �

pX
�FX�x	� FX��		�

F�
X�x	 � �

��p
X

FX��	� FX��x		�

F
�
X�x	 � �

��p
X

�FX��	� FX��x		�

������	

for x 	 �� and

FX�x	 �

��
�

pXF
�
X�x	 � ��� pX	 x 	 ��

��� p
X

	� �� � p
X

	F
�
X��x	 x � ��

FX�x	 �

��
� pXF

�
X�x	 � ��� pX	 x 	 ��

��� p
X

	� �� � p
X

	F�
X��x	 x � ��

������	

Substitution of ������	 into ������	 gives FX�x	 � FX�x	 and FX�x	 � FX�x	 as
one would expect�

It is apparent that it is possible to calculate the dependency bounds in terms of
the positive and negative parts in the usual manner� What is not apparent however�



Figure �
��� Illustration of �i� quantities used in splitting a distribution into positive and
negative parts� and �ii� the reason why p

X
is not always necessarily associated with FX

nor pX with FX 


is whether such results can be combined together using equation ������	 to give a
meaningful result� Let us �rst examine how to calculate p

Z
and pZ� Remembering

the viewpoint adopted regarding the lower and upper distributions FZ and FZ lower
and upper approximations to a single �xed �but unknown	 distribution FZ� it seems
reasonable to de�ne p

Z
and pZ by

p
Z

� min�t�� t�� t�� t�	�

pZ � max�t�� t�� t�� t�	�
�������	

where

t� � p
X
p
Y

� �� � p
X

	��� p
Y

	�

t� � pXpY � �� � pX	��� pY 	�

t� � p
X
pY � �� � p

X
	��� pY 	�

t� � pXpY � �� � pX	��� p
Y

	�

That is� not both p
X

and pX are used in any one possible choice� pX is uniquely
de�ned � it is just that its value is not known�

In order to combine the various ���s together to give F�
Z � F

�
Z � F�

Z � and F
�
Z � it

must be realised that p
X

is not necessarily associated with FX� This is because the

situations depicted in �gure ���� can occur� Thus it is necessary to calculate F�
Z �

F
�
Z � F�

Z � and F
�
Z � by

F�
Z�z	 � c� min

h
���p

X
� p

Y
	� ���p

X
� pY 	� ���pX� pY 	� ���pX� pY 	

i
�������	

where ���pX � pY 	 � pXpY ���F�
X � F

�
Y 	�z	 � �� � pX 	��� pY 	�

�
�F�

X � F
�
Y 	�z	�

F
�
Z �z	 � c� max

h
�
�

�p
X
� p

Y
	� �

�
�p

X
� pY 	� �

�
�pX � pY 	� �

�
�pX� pY 	

i
�������	



where �
�

�pX � pY 	 � pXpY ���F�
X � F

�
Y 	�z	 � �� � pX 	��� pY 	���F�

X � F
�
Y 	�z	�

F�
Z�z	 � c� min

h
���p

X
� p

Y
	� ���p

X
� pY 	� ���pX� pY 	� ���pX� pY 	

i
�������	

where ���pX � pY 	 � pXpY ���F�
X � F

�
Y 	�z	 � �� � pX 	��� pY 	�

�
�F�

X � F
�
Y 	�z	�

F
�
Z �z	 � c� max

h
�
�

�p
X
� p

Y
	� �

�
�p

X
� pY 	� �

�
�pX � pY 	� �

�
�pX� pY 	

i
�������	

where �
�

�pX � pY 	 � pXpY ���F�
X � F

�
Y 	�z	 � �� � pX 	�� � pY 	���F�

X � F
�
Y 	�z	� In all

of these formulae c is a normalising constant such that FZ��	 � �� The �
�

and
�� functionals are such that the appropriate �lower or upper	 component of its
arguments is chosen �see sections ����� and �����	� Some information is lost in this
procedure �because it is not known that p

X
is necessarily associated with FX etc�	�

and thus the bounds so obtained would not be pointwise best possible �even ignoring
the ordinary approximation error	� Nevertheless� they would appear to be the best
possible given the approach that has been adopted� The question whether ������	

can be used to calculate FZ and FZ from F�
Z � F

�
Z � F�

Z � and F
�
Z � will be examined

below�

����� Di�culties Introduced by Using the Numerical Approximations

Unfortunately further di
culties are introduced when the above formulae are imple�
mented in terms of the numerical approximations of the distribution functions� For
instance� just the splitting of the probability distribution into positive and negative
parts causes problems because of the need to maintain both the equispaced quan�
tisation and the representation error con�nement property� One could either form
positive and negative parts of N points each from an N point initial distribution� or

one could keep the same points �values of F ���
X �i 	 resulting in negative and positive

parts of N� and N� points respectively� with N � N� � N� � �N � The �rst
choice results in approximations being necessary in the form of further outwardly
directed rounding� The second choice has been adopted here� although as will be
seen below� it is not without problems either� Having done this� it is necessary to
generalise our algorithms for calculating lower and upper dependency bounds and
��convolutions to handle inputs of di�ering sizes �i�e� a di�erent number of points
used in the approximations	� The appropriate equations and algorithms� which are
presented below� were derived in a fairly straightforward but longwinded manner
and so the derivations are omitted�

Let N be the number of points with which F
���
Z is to be represented� Let M

be the number of points used for F ���
X and let P be the number of points used for

F
���
Y � This is explicitly indicated in the formulae below by writing F

���M �
X � F

���P �
Y and

ldb���N � or F ���N �
Z � The dependency bounds are given by

ldb���N �
�
F
(
���M �
X � F

(
���P �
Y �

�
�
�
��

�i �

inf
j�b �i���M

N
��c��M��

�
F
(
���M �
X �j 

�
�
�
�
F
(
���P �
Y

h
min

�
P� ��

j
P ��i���M��j���N�NM �

NM
� �

k�i�
�������	



L �� M � P�N �

for�i �� �� i � M � i��	f
for�j �� �� j � P � j��	f

F
(
���M�P�U �
Z �i � P � j �� F

(
���M �
X �i 

�
�
�
�
F
(
���P �
Y �j �

(F
���M�P�U �
Z �i � P � j �� (F

���M �
X �i 

�
�
�
�

(F
���P �
Y �j �

g
g
F
(
���M�P�E�
Z �� sort

�
F
(
���M�P�U �
Z

�
�

(F ���M�P�E�
Z �� sort

�
(F ���M�P�U �
Z

�
�

for�i �� �� i � N � i��	f
F
(
���N �
Z �i �� F

(
���M�P�E�
Z �i � L � L� � �

(F
���N �
Z �i �� (F

���M�P�E�
Z �i � L �

g

�������	

Algorithm ����
�

udb���N �
�

(F
���M �
X � (F

���P �
Y �

�
�
�
��

�i �

sup
j����d iMN e

�
(F ���M �
X �j 

�
�
�
�

(F ���P �
Y

h
max

�
��
l
P �iM�jN�

NM

m�i� �������	

ldb���N �
�
F
(
���M �
X � (F

���P �
Y �

��

��

�i �

inf
j�b �i���M�N

N c��M��

�
F
(
���M �
X �j 

��

�

(F
���P �
Y

h
max

�
��
l
P �N�j����M�i����

NM

m�i� �������	

udb���N �
�

(F ���M �
X � F

(
���P �
Y �

��

��

�i �

sup
j����d iMN e

�
F
(
���M �
X �j 

��

�
F
(
���P �
Y

h
min

�
P � ��

j
P �jN�iM�NM�

NM
� �

k�i� �������	

for i � �� ���� N � �� The symbols
�
�
�
�

and
��

�

mean that the formulae hold for

either � or � �or � or �	 respectively� Equations ������������� reduce to equations
��������������	 when M � P � N � It is important to calculate the complex index
expressions in the way they are written here� Otherwise roundo� error can be
a problem �because of the �oor and ceiling operations	� The only �oating point
operation necessary if the formulae are programmed as written here is a division�
As long as �oating point division of an integer by one of its integer divisors gives an
exact integer as a result� there should be no problems�

The algorithm for calculating ���convolutions needs to be modi�ed also� The
resulting algorithm for � � f���g is presented as algorithm ������ This algo�
rithm will only work if N jMP �i�e� if L is an integer	� Otherwise the condensation



Figure �
��� Result of the numerical calculation of a ��convolution of X and Y 
 The
variable X is uniformly distributed on ��� �� and the variable Y has a Gaussian distribution
with � � � and �� � � and is curtailed to � � ��
 In both cases NY � �	
 The thin line
is for NX � �	� and the thick line for NX � �	�

procedure will have to be considerably more complex and� because of necessary ap�
proximations� it would be less accurate �more outwardly directed rounding would
be required	� The condition N jMP does not matter however� because� as will be
shown below� it is natural to adopt the convention that N � min�M�P 	� and in this
case the divisibility condition always holds� The modi�cations to the ���convolution
algorithm for � � f���g are exactly the same�

The above formulae and algorithms give results which are not at all surprising�
The two examples presented in �gures ���� and ���� show that the representation
error containment property has been preserved�

����� Numerical Algorithms for Splitting Distributions into Positive and
Negative Parts and Recombining Them

Having dispensed with the above preliminaries� our attention can now be focussed
on the details of implementing �������������	� As was the case with the original ���
convolution algorithm �section �����	� it will be found simpler to work directly with
the algorithms� rather than attempting to determine appropriate formulae �rst�



Figure �
��� The lower and upper dependency bounds for subtraction for the same vari
ables as for �gure �
��
 Again NY � �	� and the two cases presented are for NX � �	 and
NX � �	
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Algorithm ������

Algorithm ������ implements ������	 and ������	� Let N be the number of points
in FX� and let N� and N� be the resulting number of points in F�

X and F�
X �

Then algorithm ������ splits FX into F�
X and F�

X � An example calculated with this
algorithm is shown in �gures ���������� The random variable with the distribution
given in �gure ���� was split into positive and negative parts� The two parts are
shown in �gures ���� and ����� This algorithm results in positive and negative
parts that have a number of points equal to the number of points used to represent
the positive and negative values of the original distribution� That is� if imin is the

minimum value of i such that F
(
���
X �i  �� then N� � N � imin� and if jmax is the

maximum value of j such that (F ���
X �j � �� then N� � jmax� It is often the case that

N� � N� 	 N because of the di�erence between p
X

and pX �

Implementing ������	 and ������	 using the numerical representation is rather
more complicated� Let us �rst consider how many points should be used to represent
the results of the various ���convolutions� Because a smaller number of points used
to represent an input distribution results in a greater distance between the lower
and upper output distributions �see the examples presented in �gures ���� and ����	�
it makes sense to restrict the number of points used to represent the output to at
most the minimum of the number used to represent the inputs� This is henceforth
adopted as a convention� It means we do not use an unnecessarily large number of
points to represent the output of a ���convolution calculation�

Having done this� equations ������	 and ������	 can be considered to be simply



Figure �
��� An example distribution which is to be split into positive and negative parts




Figure �
��� The positive part of the distribution in �gure �
��




Figure �
��� The negative part of the distribution in �gure �
��
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Algorithm ������

of the form
H�z	 � aF �z	 � bG�z	� �������	

Ignoring for the moment the complications introduced by having all the above quan�
tities interval valued �see equations �������������	� the general approach used to cal�
culate �������	 is outlined in algorithm ������� Here it is assumed that H� F � and G
are all represented by N points� The idea behind the algorithm can be pictured in
terms of a graph showing both F ��� and G���� Moving along the x�axis from the left to
the right� at each step that is encountered �be it in F or G	� an appropriate amount is
added to H� The variable k keeps track of how high H is and the �while�t � ��N	
loop accumulates su
cient steps in F and G to correspond to a step in H� This
algorithm is only approximate because of the implicit directed rounding associated
with this while loop� Algorithm ������ gives the correct directed rounding for the
lower approximation to H�

When all the additional complications �of a and b being interval valued� and F
and G being interval valued with a di�erent number of points used to represent them	
are incorporated� the algorithm becomes rather more complicated� The details are
omitted here as too much space would be required� The main idea used is that
in �������	� in order to obtain the minimum or maximum at any given z� it is not
necessary to consider the minimum or maximum obtained at some previous z� This
allows the calculation to proceed point by point�

The di
culties mentioned in the above two paragraphs are relatively straight�
forward to solve when compared with those encountered in attempting to calculate
������	 numerically� At �rst sight it is surprising that this is the case as ������	 seems
rather simple� The di
culties arise because of the need to represent FZ and FZ by
the same number of points� and because of the possibility of a �mismatch either
side of the x � � line� while all the time attempting to preserve the representation
error containment property� No �nal solutions to this are o�ered here� It should
be remarked however� that this operation of combining the positive and negative
parts of each of the lower and upper distributions need only be performed if either
the combination of random variables being performed is the last one in an overall



probabilistic arithmetic calculation� or if the following operation requires the whole
distribution� The latter possibility is the case when the following operation is either
a subtraction or an addition� If a given operation is to be followed by a multiplica�
tion �say	� then there is no need to combine the positive and negative parts as the
overall distribution would only have to be split up again�

����
 Conclusions on the use of Mixtures for Nonmonotonic Operations

The use of mixtures for splitting random variables into positive and negative parts
for calculating dependency bounds for nonmonotonic operations has been consid�
ered and many of the details worked out� Because of our desire to maintain the
representation error containment property� the algorithms have been more complex
than they would have been otherwise� Further work is needed to see whether the use
of mixtures can solve all the di
culties associated with nonmonotonic operations�

��
 Conclusions

The idea of probabilistic arithmetic which would allow one to work with random
variables in the same way that one works with ordinary numbers was introduced
in section ���� It was seen that the �rst step in developing such an arithmetic was
to examine ways of numerically calculating convolutions of distribution functions�
The phenomenon of dependency error and a suggested manner of handling it �de�
pendency bounds	 led to a numerical representation of distribution functions� This
representation was shown to be also suitable for numerically calculating ordinary
convolutions� The main di�erence between the representation adopted in this chap�
ter and other methods that have been suggested is that the present method allows
the representation error always to be bounded� By the representation error contain�
ment property of the lower and upper approximations� one always knows that the
true distribution is contained within the lower and upper bounds�

Other methods� in comparison� not only have unknown errors �although the or�
der of magnitude may be known	� but often the combination rules are rather more
complex than those used in this chapter� An example of this is the H�function
based method described in ������������ � This method is based on the use of rules
expressing the distribution of certain convolutions of random variables whose distri�
bution functions are H�functions in terms of other H�functions ���� � Not only is this
method restricted in the type of distributions it can handle �the standard parametric
distributions	� but its combination rules are very complex and even when an answer
is calculated �in terms of H�functions	� a computer program needs to be used to cal�
culate the point values of the distribution because its expression is so complicated�
The method proposed in the present chapter is better than the methods discussed
in chapter ��

Whilst some of the groundwork for a useful probabilistic arithmetic has been laid�
a good deal of further work is required� As well as the speci�c points mentioned
earlier �measures of dependence based on copulas� the use of mixtures for non�



monotonic operations� and the development of algorithms for implementing other
operations such as log and exp	� it will be necessary to examine methods of using
the convolution and dependency bound algorithms to calculate the sort of results we
are after �solutions of random equations	� The appropriate point of departure for
this is the consideration of algorithms which have been used successfully in interval
arithmetic ������� � Since interval arithmetic can be considered as a very crude form
of probabilistic arithmetic where the only information known about a distribution is
the smallest closed interval containing its support� it is hoped that ideas that have
been useful in interval arithmetic will also be of use for more general probabilistic
arithmetic�

Another aspect which deserves consideration is the acquisition of lower and upper
approximations to distribution functions from sample data� A natural idea is to con�
sider the lower and upper bounds as forming a con�dence band� However there are
many problems which arise with this scheme� such as whether the con�dence region
should be considered pointwise or overall and how one should combine the con��
dence levels of two distributions which are combined in the course of a probabilistic
arithmetic calculation� Further investigation is required here� Also worth pursuing
is the relationship between the ideas examined in this chapter and recent ideas on
uncertainty such as fuzzy set theory and generalisations of probability theory �e�g�
Dempster�Shafer theory �������� 	� This is done in the following chapter�

It seems that the phenomenon of dependency error may turn out to be the biggest
obstacle to a successful probabilistic arithmetic� It may be that probabilistic arith�
metic will be no better in terms of accuracy and computational complexity than
Monte Carlo simulations followed by statistical estimation of the resultant proba�
bility distributions� This possible intractability of all methods other than Monte
Carlo simulation has been considered by several authors in the general context of
probabilistic theories of physics� especially quantum mechanics ���������������� � In
���� � Feynmann argues that the only way to �simulate some probabilistic systems
is to use a probabilistic computer� This is because determining all the distribution
functions and then integrating over those we are not interested in is intractable in
many cases�

For example� suppose there are variables in the system that describe the
whole world �xA� xB	 � the variables xA you�re interested in� they�re
�around here� xB are the whole result of the world� If you want to know
the probability that something around here is happening� you would have
to get that by integrating the total probability of all kinds of possibilities
over xB� If we had computed this probability� we would still have to do
the integration

PA�xA	 �
Z
P �xA� xB	 dxB

which is a hard job" But if we have imitated the probability� it�s very
simple to do it� you don�t have to do anything to do the integration� you
simply disregard what the values of xB are� you just look at the region
xA ����� p���� �



What Feynmann is saying here is that if one calculated some complex joint dis�
tribution analytically� then in order to determine �not necessarily one�dimensional	
marginals of this distribution it is necessary to perform the above integration� If�
instead� the probabilistic processes have been simulated �imitated	� one needs only
to look at the quantities of interest� it is not necessary to integrate out the other
variables� This is true regardless of whether the variables are independent or not�

The non�locality of physical theories can be considered to be analogous to depen�
dency error arising in the course of a probabilistic arithmetic calculation� In such a
calculation one needs to keep track explicitly of all the dependencies that arise due
to common subexpressions� whereas in a Monte Carlo simulation these dependen�
cies take care of themselves� The course for an improved probabilistic arithmetic is
thus clear� it will be necessary to develop further methods of handling dependency
error� making controlled approximations in order to avoid intractability� Recalling
Manes� result mentioned in section ����� ���� � such a course may prove useful to
other uncertainty calculi as well�

In summary then� we have developed new methods for calculating convolutions
and dependency bounds for the distributions of functions of random variables which
are better in several respects than previously available methods� We have presented
examples which show that the methods are feasible and readily implemented� We
have suggested that these methods might form the basis of a �probabilistic arith�
metic suitable for calculating the distribution of functions of random variables� We
have seen that the biggest obstacle to such an application is the phenomenon of
dependency error� but we have also shown that the concept of dependency bounds
can be used to reduce the e�ect of this error� The properties of these dependency
bounds are explored further in chapters � and ��



Chapter �

Relationships with Other Ideas

The only essential knowledge pertains to the
inter�relatedness of things�

� Jorge Luis Borges

	M
y subject does not exist because subject matters in
general do not exist� There are no subject matters� no

branches of learning � or� rather� of inquiry� there are
only problems� and the urge to solve them�

� Karl Popper

��� Introduction

The techniques developed in chapter � have a number of interesting connexions with
other ideas� some new� and others surprisingly old� This chapter is devoted to the
study of these connexions� In summary� we will discuss the following issues�

� We shall see that simple cases of the analogue of our dependency bounds for
random events were considered by George Boole in his Investigation of the
Laws of Thought published some ��� years ago and we shall see how these
results have been recently extended �section ���	�

� The prospects of using graph�theoretic techniques for probabilstic arithmetic
calculations will be considered� and we will review a number of ideas related
to this �section ���	�

� Di�erent theories of interval�valued probabilities will be examined and con�
trasted with the probability bounds arising in chapter �� In particular we will
discuss the Dempster�Shafer theory of evidence� It will be shown that none
of the methods presented to date �apart from those discussed in section ���	
derive from the same motivation as our methods �section ���	�

� We shall show that the dependency bounds have an intimate connexion with
the methods of calculating with fuzzy numbers� and thus we will provide a
probabilistic interpretation of fuzzy set theoretic operations �section ���	�

� Finally we will discuss two di�erent approaches to probabilistic arithmetic� the
approach we have taken� and that taken in the study of probabilistic metric

���



spaces� We will show that the latter is a more �positivist notion and we will
argue that our approach is more meaningful� but that it engenders more severe
mathematical di
culties �section ���	�

This chapter became rather larger than the author expected because of the sur�
prising number of interconnexions that were found� However� for ease of reading
and comprehension� each of the sections can be read separately� and there is only a
small amount of cross�referencing between sections�

��� George Boole�s Results on Fr�echet Bounds and Some

Recent Extensions and Applications

Boole means something that no one has understood yet� the
world is not ready to understand him�

� Stanley Jevons

Booles treatment of probability ba�ed his contemporaries�
and I do not pretend to understand him fully�

� Glenn Shafer

Never clearly understood� and considered anyhow to be
wrong� Booles ideas on probability were simply bypassed by
the history of the subject� which developed along other lines�

� Theodore Hailperin

The dependency bounds we examined in chapter � can be traced back to Fr�echet
�������� � Salvemini ���� � Gini ���� �see ���� 	 and eventually to George Boole�
Boole considered problems where no dependency information is known in his book
�An Investigation of the Laws of Thought� on which are founded the Mathematical
Theories of Logic and Probabilities� ��� � In this section we will examine Boole�s
results on these problems� and we will describe some recent work which generalises
his results� Some of these new results suggest directions for further research on our
�dependency bounds for functions of random variables� All of these results are
for probabilities of events� and not for random variables� We shall see that Boole�s
work on probability is not quite as impenetrable or useless as some authors have
suggested� In fact we shall �nd that it contains the groundwork for a potentially
powerful technique of use in Arti�cial Intelligence systems that have to manage
uncertain knowledge and inferences�

We are considerably aided in our study of Boole�s work by Hailperin�s admirable
book ���� �Boole�s Logic and Probability�� Hailperin has presented Boole�s results
in modern notation and has been foremost in extending his results using the modern
techniques of linear programming� His work is discussed in detail below�

����� Boole�s Major and Minor Limits of Probabilities

Boole was unhappy with the need to make many assumptions in the normal appli�
cation of the calculus of probability� As he puts it in a letter to De Morgan dated
�th August �����



The grand di
culty in the common theory is to know what hypotheses
you may lawfully make and what you cannot ����� p��� �

He was particularly concerned with problems where it was necessary to assume in�
dependence of the constituent probabilities in order to arrive at a de�nite answer�
Interestingly �and confusingly	� Boole is not consistent in his approach to such dif�
�culties� For example� on page ��� of ��� he says

When the probabilities of events are given� but all information respecting
their dependence withheld� the mind regards them as independent�

Hailperin ����� p���� adds that �in the face of a speci�c problem with material
content Boole appears to back down from his position� We shall see below that it
is quite the opposite view which seems appropriate for interpreting Boole�s minor
and major limits�

The above quoted position of Boole came under criticism by Wilbraham ���� 
�subsequently replied to by Boole ��� 	� and more recently by Jaynes ���� � Wilbra�
ham�s critcism and Boole�s reply are discussed in detail by Hailperin ����� pp�����
��� � Jaynes� criticism is by far the most powerful� and� as seems invariably the case
in arguments about the foundations of statistics� not a little acrimonious� He is quite
contemptuous of Boole who he takes to task for ill�founded criticism of Laplace�s use
of prior distributions �in Bayesian type inference	� �Boole was actually in�uenced
quite a lot by Laplace� MacHale ����� p���� says Laplace �played a signi�cant part
in Boole�s Development�	 Jaynes notes� with irony� that

Boole� after criticizing Laplace�s prior distribution based on the principle
of indi�erence� then invokes that principle to defend his own methods
against the criticisms of Wilbraham�

He goes on to say that

�Boole�s own work on probability theory contains ludicruous errors� far
worse than any committed by Laplace� � � � While Laplace considered real
problems and got scienti�cally useful answers� Boole invented arti�cial
school�room type problems� and often gave absurd answers ����� pp�����
��� �

Boole made a number of mistakes confusing probabilities of conditionals with con�
ditional probabilities� His work on minor and major limits is essentially sound in
principle though �if not in all its details	� Nevertheless it seems to have been largely
ignored up until very recently�

Surprisingly� however� Boole has been given very little credit for his contri�
butions in this area �probability theory by present�day probability the�
orists and historians of mathematics� many textbooks or even history
books on the subject do not even mention his name ����� p���� �



Boole �rst examined the type of problems we are concerned with in a paper
he wrote around ����� but which was not published until after his death� when
it was communicated to the Transactions of the Cambridge Philosophical Society
by his friend Augustus De Morgan ��� � Boole was led to examine bounds on the
probabilities of certain compound events for which his �general method for solving
probability questions gave indeterminate answers� Boole describes these cases by
saying that the data given �are insu
cient to render determinant the value sought
and thus �the �nal expression will contain terms with arbitrary constant coe
cients
���� p��� � Under these circumstances� one can either obtain new data �if possible	
to �render the numerical solution complete� or� �by giving to their constants their
limiting values � and �� determine the limits within which the probability sought must
lie independently of all experience ���� p��� �emphasis added	�

Boole obtained �major and minor limits for the probabilities of certain combi�
nations of the events in terms of the unconditional event probabilities� On page ���
of ��� he gives the following bounds for the probability of a conjunction�

max�P �x	 � P �y	� �� �	 � P �x � y	 � min�P �x	� P �y		� ������	

although he does not use this notation �see also ����� p���� 	� Boole also obtained
analogous but rather more complex results for more complicated logical expressions�
The above bounds are a special case of the more general results considered by Fr�echet
���� which are given by

Theorem ����� Let x�� � � � � xn be events with absolute probabilities of occurence of
p�� � � � � pn respectively� Then the bounds

max�p�� p�� � � � � pn	 � P �x� � x� � 
 
 
 � xn	 � min��� p� � p� � 
 
 
� pn	 ������	

and

max��� p� � p� � 
 
 
� pn � �n� �		 � P �x� � x� � 
 
 
 � xn	 � min�p�� p�� � � � � pn	
������	

are the best possible given no further information�

Proof� We will simply prove that the bounds for n � � hold� The case for
general n follows by induction� The best possible nature of the bounds is proved by
constructing a set of events �for any given set of fpig	 such that the bounds are met
���� � The bounds ������	 and ������	 follow from the standard rules of probability
theory� For events A and B� these state that

P �A	  ��

P �A	 � � if A � 	�
P ��A	 � � � P �A	�

P �A �B	 � P �A	 � P �B	� P �A � B	�

P �A �B	 � P �AjB	� P �B	�

First we prove the bounds for conjunction� We have P �A � B	 � P �A	 � P �B	 �
P �A � B	 � P �A � B	 � P �A	 � P �B	 � P �A � B	� But P �A � B	 � �� and



so P �A � B	  P �A	 � P �B	 � �� We also have P �A � B	  �� and therefore
P �A � B	  max��� P �A	 � P �B	 � �	� The upper bound for P �A � B	 follows
from the fact that P �A � B	 � P �AjB	P �B	 � P �BjA	P �A	� Since P �AjB	 � �
and P �BjA	 � �� we have P �A � B	 � P �B	 and P �A � B	 � P �A	� Thus
P �A �B	 � min�P �A	� P �B		�

The bounds for disjunction are derived similarly� P �A � B	 � P �A	 � P �B	 �
P �A�B	 and P �A�B	  � imply P �A�B	 � P �A	�P �B	� But P �A�B	 � � and
so P �A�B	 � min��� P �A	 �P �B		� We also have P �A�B	 � ��P ���A�B		 �
� � P �A �B	  � �min�P �A	� P �B		 � max�P �A	� P �B		�

It is instructive to examine Boole�s interpretation of his results on bounds for the
probabilities of compound events� One might expect� given the somewhat strange
motivations for his logic ���� � that his interpretation of probability would be pecu�
liar� Boole has often been accused of psychologism� in his interpretation of logic�
Richards ���� � following the reading of Boole by Van Evra ���� � has argued that
whilst motivated by psychological considerations originally� Boole �was most cer�
tainly not a defender of logical psychologism ����� p��� � As already noted� Boole
was not consistent in his interpretations� Perhaps the best we can do is to quote
the following passage from the the introductory chapter to The Laws of Thought

It will be manifest that the ulterior value of the theory of Probabilities
must depend very much upon the correct formation of such mediate hy�
pothesis� where the purely experimental data are insu
cient for de�nite
solution� and where that further experience indicated by the interpreta�
tion of the �nal logical equation is unattainable� Upon the other hand�
an undue readiness to form hypotheses in subjects which from their very
nature are placed beyond human ken� must re�act upon the credit of the
theory of Probabilities� and tend to throw doubt in the general mind over
its most legitimate conclusions ���� p��� �

����� Hailperin�s Reformulation and Extension of Boole�s Bounds Using
Linear Programming Methods

Hailperin �������� has considerably extended Boole�s results using the modern
theory of linear programming� His bounds are for general Boolean functions of a set
of events fAigni��� His results do not seem very well known and so we state them in
the following two theorems ���� �

Theorem ����� Given any Boolean expression ��A�� � � � � An	�


� There are numerical�valued n�ary functions L� and U� depending only on the
�Boolean	 structure of �� such that the inequalities

L��a�� � � � � an	 � P ���A�� � � � � An		 � U��a�� � � � � an	 ������	

hold in any probability algebra for which P �Ai	 � ai �i � �� � � � � n	�

�Psychologism is the position that �psychology is the most fundamental branch of science� and that all
other disciplines are special branches of psychology� ����� pp��	
��



�� The bounds in ������	 are the best possible� and

�� The functions L� and U� are e�ectively determinable �by solving a linear pro�
gramming problem	 from the structure of ��

Hailperin extends this result to the case where only bounds are known �in place of
the ai � P �Ai		� He gives

Theorem ����� Given Boolean polynomial expressions �� ��� � � � � �m in the vari�
ables A�� � � � � An�


� There are two �m�ary numerical functions L���
� and U ���

� depending only on the
structures of �� ��� � � � � �m� such that the inequalities

L
���
� �a�� � � � � am� b�� � � � � bm	 � P ���A�� � � � � An		

� U
���
� �a�� � � � � am� b�� � � � � bm	

������	

hold in any probability algebra for which

ai � P ��i�A�� � � � � An		 � bi �i � �� � � � �m	�

�� The bounds in ������	 are the best possible� and

�� The functions L
���
� and U

���
� are e�ectively determinable �by solving a linear

programming problem	 from the structures of �� ��� � � � � �m�

A particularly useful special case of this theorem occurs when �i�A�� � � � � An	 � Ai

for i � �� � � � � n � m� In such a case� theorem ����� says that given bounds of the
form

ai � P �Ai	 � bi �i � �� � � � � n	� ������	

it is possible to determine bounds on P ���A�� � � � � An		 in terms of the intervals
�ai� bi � P �Ai	 �i � �� � � � � n	� Theorem ����� only has content when f�ig satis�es
some consistency constraints� For any given sets f�ig� faig and fbig� the consistency
is e�ectively decidable�

The proofs of these two theorems are essentially contained in ���� � We omit
all details of the actual determination of the bounds in terms of the formulation as
a linear programming problem� However we do remark that it was only through
clever use of duality theorems that Hailperin obtained his results� Ursic ���� has
considered the same problems as Hailperin and used similar techniques �linear alge�
bra and linear programming	 in an attempt to solve them� He studies the problem
of calculating bounds which� although not the best�possible� are easier to compute�
He describes how one can trade o� tightness of the bounds against computational
tractability� Ursic�s results are far too intricate to summarise brie�y here� Further
work is needed to determine the practical value of his results�

Adams and Levine �� have also considered problems similar to those studied by
Hailperin in his development of probability logic �see below	� They too �with Ursic	



seem to be unaware of Hailperin�s work in this area� Their results are essentially a
subset of Hailperin�s and are not discussed further� However their interpretation of
the results is interesting� They use their results to determine the degree to which a
given uncertain inference is deductive� This allows an objective statement of the va�
lidity of an inference in terms of uncertain propositions� As Genesereth and Nilsson
���� point out� this could be of considerable value in Arti�cial Intelligence systems
dealing with uncertain inference� A number of other authors �such as Grosof ���� �
Wise and Henrion ������������ � Ruspini et al� ������������������� and Driankov
���� 	 have also considered the use of lower and upper bounds on probabilities along
the lines of those discussed above� We will examine their work in the following
subsection�

����� Application of the Fr�echet Type Bounds to Probability Logic

Hailperin uses the results in theorem ����� to develop a probability logic which allows
inferences in terms of the lower and upper bounds for propositions� For example�
generalising material implication� If P �A	 � p� P �A � B	 � q then his results
imply p�B	 � �p � q � �� q under the consistency condition p � q  �� Hailperin�s
results provide a completely general and rigorous framework for uncertain inference�
Not only is no new measure of uncertainty required �such as fuzzy sets or belief
functions	� but no interpretation problems are caused by the use of these results�

The notion of probability is presupposed as part of the semantics� and
questions as to its nature will play no more role than does the nature of
truth in usual logic ����� p���� �

Hailperin�s notion of probability logic seems to be the thing Popper had in mind
when he discussed �probability logic ����� p���� �

�T here exists a logical interpretation of the probability calculus which
makes logical derivability a special case of a relation expressible in terms
of the calculus of probability� Thus I assert the existence of a probability
logic which is a genuine generalization of deductive logic��

The idea of a probabilistic logic can be traced back to Leibniz �see ����� p���� 	�
Since then several authors have examined probabilistic generalisations of logic� Let
us just mention Scott and Krauss ���� � Suppes ���� � R�enyi ���� � Lewis ���� and
Calabrese ���� �

Implications for Dependency Bounds for Random Variables

Hailperin presented a number of examples of lower and upper bounds on the prob�
ability of Boolean functions� In many cases these bounds were obtained using his

�Popper was discussing this in order to refute the idea of an inductive probability logic that allowed
�probabilistic� inductive inferences�



�full�blown linear algebra technique ����� p���� � However the bounds can often be
calculated in a simpler manner� For instance� the results of the example mentioned
above �material implication	 follow easily from application of the bounds for � and
the fact that P ��A	 � � � P �A	� given that A� B � B � �A� This is not always
the case� As an example� Hailperin considers the determination of an upper bound
for

P ��A� �A� �A� � �A� � A� �A� � �A� �A� �A�	 ������	

given P �Ai	 � ai for i � �� �� �� The best upper bound is obtained �using the general
linear programming technique	 as

minf�a� � a� � a�	��� a� � a�� a� � a�� a� � a�� �� a� � � � a� � �� a�g� ������	

Hailperin ����� p���� observes that this result can not be obtained by composition
of the simple results for �� � and ��

The reason why the composition techniques fail for ������	 is quite simple but
important� Equation ������	 can not be rewritten in a form with no repeated vari�
ables� This is why the probability bounds can not be determined pairwise� Observe
that this is very reminsiscent of Manes� result ���� mentioned in section ������ The
repeated variables cause the pairwise bounds to be not necessarily the best possible
because not all possible combinations of probabilities will be allowable � there will
be certain constraints which will prevent this�� The fact that the pairwise bounds
are quite loose when repeated variables occur was the reason for Cleary�s dissatisfac�
tion with the use of ����	 and ����	 ����� p���� � Even when there are not repeated
variables� the bounds can rapidly become quite loose �see the example in ���� p���� 	�
This should not be taken as an argument against the probability bounds technique
though� What it is does show is the danger� even in simple problems� of assuming
independence in order to obtain a unique value at the end�

This result has implications for dependency bounds for functions of random
variables� Obviously the pairwise composition of bounds will give the best possible
bounds when there are no repeated variables� This will not necessarily be the
case when repeated variables occur� �Whether or not� in a particular instance� the
pairwise bounds are best possible is an open problem�	 In such cases the prospects
for determining the best possible bounds are quite daunting� Whereas Hailperin�s
problem is one of �nding functions over �n� the determination of dependency bounds
for random variables entails �nding functions over #n� This will be� in general� very
di
cult� and it would seem that the e�ort would rarely be justi�ed�� �One may as
well calculate the actual distribution of the function of random variables in question
by integrating out the Jacobian of transformation� It was due to the complexity of
this that we adopted the use of the �pairwise	 dependency bounds in the �rst place�	

�Repeated variables do not imply that the pairwise bounds will not be the best possible� the occurence
of repeated variables is a necessary but not su�cient condition for this to be the case�

�However see our discussion of Haneveld�s results on stochastic programming problems below�



Boole�Fr�echet Bounds in Uncertainty in Arti�cial Intelligence

The use of the Boole�Fr�echet bounds for �uncertain deduction has been proposed
by a number of workers in a �eld which has come to be known as �Uncertainty in
Arti�cial Intelligence� Two collections of papers have been recently published �����
��� in the �eld�

Quinlan ���� was perhaps the �rst in the Arti�cial Intelligence community to
discuss the use of ������������	 in his �Cautious Approach to Uncertain Inference�
It has most recently been considered by Grosof ���� who has developed Nilsson�s
ideas further �������� � Nilsson ����� p��� has rederived Hailperin�s result on un�
certain modus ponens� He was aware �like Hailperin	 of the need for �consistency
conditions� Nilsson says

In principle� the probabilistic entailment problem can be solved by linear
programming methods� but the size of problems encountered in proba�
bilistic reasoning is usually much too large to permit a direct solution
����� p��� �

�Nilsson was unaware of Hailperin�s use of duality results which reduce the com�
plexity considerably�	 Grosof ���� � who only considers the calculation of probability
bounds for disjunction and conjunction� makes the following points about the use
of ������������	 in a probability bounds logic�

� The use of probability bounds gives a closed and consistent uncertain inference
system�

� Underdetermined information can be represented�

� The direct use of lower and upper probabilities gives a more general system
than the Dempster�Shafer theory �see section ��� below	�

� No unjusti�able independence assumptions are required�

� Lower and upper probabilities can be empirically acquired via standard con��
dence interval procedures�

� The combination rules of fuzzy set theory are a special case of the Boole�Fr�echet
bounds �see section ��� below	�

Appelbaum and Ruspini ��� and Montogomery �������� have also proposed the
use of Boole�Fr�echet bounds� They too ����� p��� say that the use of linear pro�
gramming in order to �nd the best possible bounds �is impractical� They argue
that the probability bounds approach is preferable to the use of the �principle of
insu
cient reason �assumption of independence given no information to the con�
trary	 because the probability bounds approach is rigorous � the result will always
be correct� Following Martin�Clouaire and Prade ���� � Appelbaum et al� ���� p�����
���� p��� have considered more general lower and upper bounds on the probability



of conjunction and disjunction based on t�norms and t�conorms� Neither Martin�
Clouaire and Prade nor Appelbaum et al� provide a good justi�cation for these�
Their discussion is in terms of valuations v and they set

v��a	 � � � v�a	

v��a	 � � � v�a	

v�a � b	 � T �v�a	� v�b		

v�a � b	 � T �v�a	� v�b		

v�a � b	 � T ��v�a	� v�b		

v�a � b	 � T ��v�a	� v�b		�

Appelbaum et al� used T � + and M in their experiments with these formulae and
found that the upper bounds were of little practical value� A more realistic �proba�
bilistic	 approach would be �in analogy with the dependency bounds for CXY �� W 	
along the lines

T �v�a	� v�b		 � v�a � b	 � v�a � b	 � T �v�a	� v�b		 ������	

�and a similar relationship for v�a� b	 in terms of T �	� The lower and upper bounds
on T � when set to W and M would give the standard Boole�Fr�echet bounds� If
W � T or T � M then tighter bounds would be obtained� Other authors �such
as Bonissone ������ and Goodman ���� 	 have also considered the use of general t�
norms for the combination of uncertain evidence� Their methods are more subjective
and non�probabilistic and are of little value to us�

Wise and Henrion ������������ have considered the use of the Boole�Fr�echet
inequalities in a manner similar to that described in the previous paragraph� In
���� they consider three separate rules for conjunction and disjunction�

�� �Maximum Correlation

p�A � B	 � min�p�A	� p�B		

p�A � B	 � max�p�A	� p�B		

�� �Independence

p�A �B	 � p�A	p�B	

p�A �B	 � p�A	 � p�B	� p�A	p�B	

�� �Minimum Correlation

p�A �B	 � max��� p�A	 � p�B	� �	

p�A �B	 � min��� p�A	 � p�B		�

We would suggest they be used as in ����	 thus allowing one to write �if one knew
events A and B were never �negatively dependent	

p�A	p�B	 � p�A �B	 � min�p�A	� p�B		

p�A	 � p�B	� p�A	p�B	 � p�A �B	 � max�p�A	� p�B		�



Wise and Henrion ����� p��� also consider �probabilistic modus ponens in the
same manner as Hailperin� They also note that the �Maximum Correlation rules
are those of fuzzy set theory �see section ��� below	� Henrion ����� p���� make
the point �with which we agree	 that the representability of some notion of depen�
dence is a more important feature of uncertainty calculi than the �ne details of
representation of single events or propositions� He also makes a number of other
points which we will be discussing elsewhere �use of graph models and �local event
groups �section ���	 and Monte�Carlo methods or �logic sampling	� Cooper ���� 
has also used the idea of probability bounds and has combined this with the use of
a graph to represent conditional dependence information� He is aware of the linear
programming formulation of the problem� but is unaware of Hailperin�s work on
using duality results to simplify this�

Grosof ���� and many other authors �e�g� Hailperin and Shafer	 studying lower
and upper probabilities have made use of the relationship

p��A	 � �� p�A	 �������	

which comes from the fact that p�A	 � p��A	 � �� Grosof suggests that �������	
allows one to work with lower probabilities only �rather than lower and upper	 �
if one knows the lower probability of every event� then one automatically has an
upper probability for every event� We mention this because it is in fact of no use
when random variables are considered� To see this consider

FX�x	 � PfX � xg � P �A	�

Thus ��A � �X  x� Assume we know FX�x	 �the lower bound on the dis�
tribution function of X	� Now P ��A	 � P �X  x	 � � � FX�x	� However
��FX�x	 � SX�x	 �the survival function of X	� Thus we can use lower probabilities
only� if we carry around the lower distribution function and the lower survival func�
tion� This is equivalent to carrying both the lower and upper distribution function
and so no advantage is gained�

����� Further Results on Distributions known only by their Marginals

We will now review some further recent work on problems where only marginal
distributions are known� We will brie�y look at the problem of compatibility of
joint distributions and then consider some problems arising in project planning�
Perhaps the most surprising feature of some of these problems is that the more
general �and more useful	 problem where only the marginal distributions are known
is easier to solve than the problem where independence is assumed�

Compatibility of Marginal Distributions and the Existence of Joint Distribu�

tions

One problem which has attracted a lot of attention is that of the compatibility of
marginal distribution functions� especially higher dimensional marginals ���� � This



is related to the general problem of the existence of multivariate distributions with
given marginals� Let us just mention some of the literature on the topic� ���������
��������������������������������������� � Schweizer and Sklar discuss the compat�
ibility problem in terms of copulas in ���� � The extension of bivariate results to
higher dimensions has proved surprisingly di
cult� For example the analogue of
the ��copula W is in fact the best lower bound on multidimensional distribution
functions with uniform marginals� but it is not itself a copula� A good �but some�
what dated	 review of the compatibility problem is given by Dall�Aglio ���� � This
problem does not concern us directly and is not discussed any further� It would
be of considerable importance however if tighter bounds on compound expressions
involving more than two variables were to be studied further�

Project Planning and Other Network Problems

Problems formulated in terms of sets of random variables known only by their
marginals arise naturally in network problems� Let I � f�� � � � � ng be a set of
nodes and let I�� � � � � Ik be subsets of I such that �kj��Ij � I and so no two Ij are
ordered by inclusion �fIjg is known as a clutter over I	� The blocking clutter to
fIjg is a clutter J�� � � � � Jl such that Ir � Js � 	 �r� s and Jj are minimal sets with
this property� Given a DAG �Directed Acyclic Graph	� I is known as a system and
fIjgkj�� and fJjglj�� are the paths and cuts of the system� Each node i has a weight
Xi associated with it�

The problems we will discuss are various optimal value functions of fXig� These
include

PERT Critical Path M � max
��j�k

X
i�Ij

Xi over the clutter of paths��������	

Maximum Flow L � min
��j�l

X
i�Jj

Xi over the clutter of cuts� �������	

Shortest Route S � min
��j�k

X
i�Ij

Xi over the clutter of paths� �������	

Reliability System Lifetime T � max
��j�k

min
i�Ij

Xj � min
i�j�l

max
i�Jj

Xi� �������	

Two special cases are the pure parallel �k � n� Ij � fjg � � j � n	 in which case
M � S � T � maxi�I Xi and L �

P
i�I Xi� and the pure series �k � �	 in which

case M � S �
P

i�IXi and L � T � mini�I Xi�

Lai and Robbins ���� have considered the determination of EMn where Mn �
max�X�� � � � �Xn	� They were actually interested in determining EMn when all the
Xi are independent� Whilst it is known that in this case

EMn � n
Z �

��
xF n���x	dF �X	 � m�

n� �������	

where F is the common marginal distribution of Xi� �������	 is in general very
di
cult to evaluate� In the maximally dependent case it can be shown that

EMn � an � n
Z �

an
�� � F �x		dx � mn



where an � inffxjF �x	  �� �
n
g� Lai and Robbins study how close mn and m�

n are�
�They turn out to be surprisingly close�	 We note that their constructions would be
a lot simpler if the concept of a copula was used�

More interesting to us �with regard to probabilistic arithmetic	 is the evaluation
of the distribution of M in the pure series case� R�uschendorf ���� has used a
general duality result obtained in ���� and discussed in ���� in order to obtain
lower and upper bounds on PfM � xg� R�uschendorf�s results in ���� are similar
to our dependency bounds for sums� In describing these bounds he simply writes
supx�F �x�	 �G�t� x		 and infx�F �x�	 �G�t� x		� obviously implicitly including
the max and min operations required to keep the result within ��� � � His results were
published contemporaneously with Makarov�s ���� �the precursor to Frank� Nelsen
and Schweizer�s paper ���� 	� R�uschendorf obtains one explicit result for bounds on
df�

Pn
i��Xi	 when df�Xi	 � U��� �the uniform distribution on ��� � 	� These are a

special case of Alsina�s results ��� �

�W���Ua�b� Uc�d	 � Ua�c�max�a�d�b�c�

and
�W���Ua�b� Uc�d	 � Umin�a�d�b�c��b�d�

R�uschendorf also gives some results on

�n�t	 � sup
F�H�F���Fn�

Pf
nX
i��

Xi � tg

where Fi � df�Xi	 for i � �� � � � � n and F is the joint distribution function� If G
is a subadditive� strictly isotone function with G � F��

i �x	 � x for all x � ��� � �
then �n�t	 � �

n
G�t	� If G is a superadditive isotone function with G � F��

i �x	  x

for all x � ��� � � then �n�t	 � �
n
G�t	� R�uschendorf�s results should be compared

to those in chapter � of this thesis where we examine the dependency bounds for
df� �

N

PN
i��Xi	 as N ��� R�uschendorf did not use copulas and seems unaware of

the work of Schweizer et al� in this area� Nevertheless he has found the viewpoint
of copulas or uniform representations useful recently ���� �

Klein Haneveld	s use of Duality Results

Klein Haneveld ���� made use of several duality results and rearrangement tech�
niques �������� in order to determine distributions of project completion times in
PERT networks� He assumes the marginal distributions of the subproject comple�
tion times are known� but not the joint distribution� He calculates the worst case
results over all possible joint distributions� His paper contains a large number of
detailed results and we can not do it justice in the space available here�

We note that Klein Haneveld�s �inner problem was of the following form� De�
termine h�t	� where

h�t	 � sup
H�H�F���Fn�

EHf���� � � � � �n	 t � �� �������	



f�x	 � ft�x	 � �M�x	� t �� x � ���� � � � � �n	 � �n�

M�x	 � max
j����k

X
i�Ij

xi�

x � �n �the project completion time	 and EH denotes the expectation over H�
This calculates the cost of a �promised completion time of t� If independence of
the random variables is assumed it is possible to obtain bounds for the expected
value of M�x	 �������� or its distribution function �������� � The problems de�ned
by �������	 have also been studied by Cambanis et al� ������������ � They have
determined bounds for EHk�X�Y 	 where H � H�FX � FY 	 and k is �quasi�monotone
�i�e� ��increasing like a copula	� Whilst these problems are somewhat di�erent to
the type of problems we have been concerned with� they are of interest because the
same basic approach has been taken �determining lower and upper bounds assuming
no dependency information	�

One of Klein Haneveld�s most surprising results is his analysis of �worst�case
marginals� Assume we only know very limited information about the marginal
distributions� Then what are the worst possible marginals �in terms of project
completion time	 satisfying the known information* Klein Haneveld solves this
problem for the situation where the support� or the support and mean or mode
of the marginals are known� He notes that the case of knowing the support and
mode �is the most interesting� since it contains precisely the information which is
usually supposed to be known in PERT networks ����� p���� � Using results of
,Za,ckov�a ���� and Dupa,cov�a ���� � Klein Haneveld manages to solve this problem
in an elegant manner� We will brie�y return to a discussion of this in section ���
below where we consider fuzzy PERT networks� Duality in marginal problems was
also the subject of Kellerer�s di
cult paper ���� �

��� A Forest of Graph�Theoretical Ideas

Structure between variables has received too little attention
in statistics�

� S�L� Lauritzen and D�J� Spiegelhalter

Probability is not really about numbers� it is about the
structure of reasoning�

� Glenn Shafer

The use of graphs ���� for representing structural relationships �conditional in�
dependence	 between random quantities is a powerful technique with apparently
considerable potential for probabilistic reasoning and probabilistic arithmetic� In
this present section we will review the applications of graph theory to stochastic
problems and show how it can be used to understand problems arising in proba�
bilistic arithmetic� Our aim is to explore the possibility of using graph�theoretical
techniques to aid probabilistic arithmetic� We have already seen �section �����	 the
study of probabilistic PERT� which is a problem involving random variables on a
series�parallel graph�

In subsection ����� we will see how graphs have been used in studying networks
of events� Most of this work has appeared in the arti�cial intelligence literature�



Subsection ����� examines analogous ideas for networks of random variables� These
methods have appeared mainly in the statistical� biological and sociological liter�
ature� They are used in studying causal models� These methods can in fact be
considered as a rather weak and restricted form of probabilistic arithmetic� A graph
representation aids the understanding of the control layer for probabilistic arithmetic
calculations� In subsection ����� we will consider how techniques used by computer
scientists in the construction of optimizing compilers might be pro�tably employed
in probabilistic arithmetic� This is a quite di�erent use of graph�theoretical tech�
niques� We shall see that whilst certainly providing a clear understanding of the
problems� unfortunately these methods do not manage to produce solutions for the
situations we are concerned with� Finally in subsection ����� we will draw some
conclusions on the use of graph theoretical ideas for probabilistic arithmetic�

The one theme that is repeated through this section is the desirability of having a
graphical structure which is a tree� We have already mentioned �section ���	 Manes�
general result ���� which shows this e�ect for a variety of uncertainty calculi�

����� Networks of Probabilities of Events� Bayesian Networks� Belief
Networks and In�uence Diagrams

Bayesian networks or causal networks or belief networks are a way of representing a
set of interdependent probabilities by use of directed graphs� Pearl	 �������������
��� has been foremost in developing these methods �see also the recent review by
Cooper ���� 	� The basic idea is to use a directed graph to represent the conditional
independence ���� properties of the probabilities of a set of events� This is best
explained by an example�

Given a joint probability P �x�� � � � � xn	 of n events we can always write

P �x�� � � � � xn	 � P �xnjxn��� � � � � x�	 
 
 
P �x�jx�� x�	P �x�jx�	P �x�	� ������	

This expansion can sometimes be simpli�ed� For example we may be able to write

P �x�� � � � � xn	 � P �x�jx		P �x	jx�� x�	P �x�jx�� x�	P �x�jx�	P �x�jx�	P �x�	� ������	

Equation ������	 can be expressed graphically as in �gure ����	 which describes some
conditional independence relations� For example x� is independent of x� given x��
But x� may not be independent of x� given x� and x� because x� depends on x	 which
in turn depends on x� and x�� It is possible ����� p���� to determine conditional
independence relations solely in terms of the graph model�

The main advantage of this graphical representation is computational� it allows
advantage to be taken of conditional independence in order to reduce the com�
putational complexity� Whilst theoretically this is of course possible without the
graphical representation� it is much harder to do so� The graphical representation is
easily understood in an intuitive manner� Pearl has shown �������� how� given a set

�The review of Pearl�s work below was written before the author could read ����� This book provides
a detailed examination of the material summarised below plus a lot of other ideas� It is now the preferred
reference for this material�
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of probabilities with a tree structure �which is unknown	� it is possible to determine
the actual tree structure solely from the pairwise dependencies of the leaves� This
can be done in O�n log n	 time� where n is the number of leaves� Whilst of interest�
this is not of enormous practical use because the method is extremely sensitive to
errors in the estimates of the correlation coe
cients� Furthermore it does not solve
the �still open	 problem of determining good tree structured approximations to sets
of probabilities that are not in fact tree structured�

Given a network which is not a tree� there are several approaches which can be
taken� Brute force methods can always in principle be used to propagate proba�
bilities� but these are intractable for realistic problems� Instead� one can attempt
to transform the graph into a tree� Pearl ���� discusses two ways of doing this�
clustering and conditioning�

Conditioning �reasoning by assumptions	 entails instantiating a node �setting it
to a �xed value	 and then computing the probabilities� One then sets the node
to a di�erent value and recalculates� The largest probability is then chosen� The
e�ectiveness of this method depends to a large extent on the topological properties
of the network� �It is necessary to instantiate an entire cycle cutset to make the
network singly connected� This results in a complexity exponential in the size of the
cyclic cutsets ����� p���� �	 More promising is the clustering approach� This entails
forming compound events �local event groups	 such that the resulting network �of
clustered events	 is a tree� As noticed by Barlow ����� p���� � this is similar to Chat�
terjee�s ���� modularisation of fault trees�� It is also reminiscent of Downs� Cook

	In the same volume as Chatterjee�s paper there are several other papers� the results of which may be
pro�tably applied to belief networks� These include Mazumdar on importance sampling ���� �this would
increase the e�ciency of stochastic simulations of belief networks�� Rosenthal ��	� on the NP�completeness
of �nding the reliability of the top event when the fault �tree� is not in fact a tree �common cause events�
� this is an analogue of the NP�completeness results known for general belief networks ����� and Lambert
��		 on measures of importance in fault trees and cutsets �this might be useful in deciding which nodes
in a belief network could be discarded� in order to reduce computational complexity� without a�ecting the



and Rogers� partitioning approach for the statistical analysis of interconnected sys�
tems ���� � One method of clustering Pearl has studied in some detail ���� � is based
on the formation of clique�trees using an algorithm of Tarjan and Yannakakis ���� �
These transformation methods are in fact relevant to a wide variety of problems on
graphs �we return to this shortly below	�

A method of handling graphs which are not trees which does not involve trans�
forming the graph is to use stochastic simulation ���� � This uses random samples
�Monte Carlo methods	 in order to estimate propagated probabilities� The method
has been suggested by several authors ���� � �Pearl ���� gives a brief review of early
attempts�	 Pearl improves the e
ciency of the simple application of the method by
taking some account of the structure of the graph involved� Recall that we have
already discussed �section ���	 the use of Monte Carlo simulations to perform prob�
abilistic arithmetic type calculations�

Loops in Networks in Constraint Satisfaction Problems

As well as occurring in probabilistic problems� the presence of loops in a network
�non�tree structure	 causes di
culties in �any problem where globally de�ned solu�
tions are produced by local computations� be it probabilistic� deterministic� logical�
numerical or hybrids thereof ����� p���� � Examples of such problems include the
class of Constraint Satisfaction Problems �CSP	 ������������ � A number of prob�
lems arising in arti�cial intelligence can be formulated in this manner� Constraint�
Satisfaction problems are easy if they are �backtrack�free ����� p�� � This is equiv�
alent to their graph being a tree� In ���� Pearl shows how the propagation of
probabilities in a belief network can be considered as a CSP� In ���� he describes
an algorithm for rearranging a graph in order to make it easier to handle� The algo�
rithm uses the ideas of triangulating a graph� identi�cation of maximal cliques and
the notion of a dual graph� Di�erent CSPs soluble by these methods are described
in ���� �

Constraint propagation formulations� of problems similar to those we have been
studying in this thesis were examined by Davis ���� � The type of problems he
considers are explained by the following example� Consider three nodes with the
labels X � ��� �� � Y � ��� � and Z � ��� � combined with the constraints X�Y � Z
and Y � X� Davis shows how application of the Waltz algorithm ���� tightens the
labels to become X � ��� � � Y � ��� � and Z � ��� � � This idea has been applied
to the analysis of electrical circuits ���� and geometrical reasoning ���� � Davis
encountered exactly the same sort of problems as we have been discussing in this
section� When the graph representing the structure of the problem is not a tree� then
the standard methods give poor results ����� p���� and ��� � Nonlinear constraints
also cause severe di
culties� In fact Davis concludes rather negatively on the whole
enterprise� �We have not found any arguments that the partial results computed by

�nal results greatly��

Constraint propagation can be considered to be simply a programming style �see ������ Constraint

programming languages are declarative and non�procedural and seem to be a natural and simple way of
formulating many problems arising in arti�cial intelligence�



label inference should be adequate for the purposes of AI ����� p���� �

In
uence Diagrams

In�uence diagrams are similar to Pearl�s belief networks with the addition of de�
cision information� In�uence diagrams were developed some time ago as an aid
to automated decision analysis ���� and have been promoted recently by Shachter
�������� and others� The value of in�uence diagrams is that they allow a graphi�
cal means for manipulating and exploiting conditional independence structure� For
example whilst the fact that

P �x� y� z	 � P �x	P �yjx	P �zjy	 ������	

is equivalent to
P �x� y� z	 � P �y	P �xjy	P �zjy	 ������	

can be readily determined using the rules of the probability calculus� similar trans�
formations on larger sets of variables are rather more di
cult� The rules for in�uence
diagram transformations are simply a way of performing such transformations in a
manner that is easier to use�

Apart from being a suitable basis for the construction of expert systems which
deal with uncertain information ��������� � and representing �semantic modularity
for plausible reasoning ���� � in�uence diagrams have been used for analysis purposes
������ � Barlow ��� has suggested them as an alternative to the decision tree for
Bayesian decision analysis� He describes an application of this idea �calibration of
a measuring instrument	 in ��� �

The mathematical basis of in�uence diagrams or belief networks is presented most
clearly by Smith in ���� where all the relevant theorems are rigorously proved� A
good recent and general review which does not go into too many details is ���� �
Another recent �and very detailed	 paper with considerable discussion at the end
is Lauritzen and Spiegelhalter�s ���� � At the end of their paper they suggest the
following extensions as suitable goals for further research�

�� The incorporation of imprecision in probabilites �lower and upper bounds	�
These bounds could then be propagated through the system in order to provide
lower and upper bounds for the �nal result�

�� Consideration of the �meta�level of control� The point is that global propa�
gation may be unnecessary because of high level restructuring�

�� Extension to nodes representing continuous measurements�

Item � above is obviously reminiscent of our probability bounds� Item � corresponds
to Bonissone�s ������ �control layer� Item � was solved to an extent by the recent
paper ���� which integrates belief networks with covariance structure models� These
are graphical models which describe interrelationships between continuous random
variables� They are the topic of the next subsection� Another possible extension



�suggested by Smith ����� pp������ 	 is the depiction of �weak relationships �
i�e� relationships which are �almost conditionally independent� This is related to
the use of correlation coe
cients in path models �see below	 and our preliminary
attempts at just this problem in section ����

����� Path Analysis and Covariance Structure Modelling

Path analysis is a graphical technique for statistical modelling which Moran �����
p��� has suggested should be regarded �solely as a shorthand aid to the correct use
of the regression equations such as ������	 and ������	�

E�X�jWi� Vi� Ui� � � �	 �
X
j

x�jWj � � � � ������	

where the x�j are constants and

E�X�X�jWi	 � E�X�jWi	E�X�jWi	

�

�
�X

j

x�jWj

�
A
X

k

x�kWk

�

�
X
jk

x�jx�kWjWk�

������	

Nevertheless it is a very useful aid and one that is continuing to �nd wide application
in the biological and social sciences�

The technique involves making the following assumptions�

�� All the variables in the system under consideration have a joint probability
distribution with �nite �rst and second moments� �Normality is not assumed
though�	

�� The conditional expectations are linear functions of the other variables ������	�

�� The variates are related by a conditional independence structure� Thus when
conditioned on the appropriate variates� the conditional distributions are in�
dependent of all the other variables �which we have not conditioned on	�

Path analysis can be explained simply in terms of a �covariance algebra �����
chapter � � Writing C�X�Y 	 for the covariance between X and Y � the rules of this
are that

�� C�X� k	 � ��

�� C�kX� Y 	 � kC�X�Y 	�

�� C�X�X	 � V �X	 �the variance	�

�� C�X�Y � Z	 � C�X�Y 	 � C�X�Z	�
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If all the variates are standardised� �zero mean� unit variance	 by change of units�
then we can represent linear models as in the following example�

X� � aX� � bX� ������	

and
X� � cX� � dX� � eX�� ������	

This can be represented as in �gure ����	� The quantities a� b� c� d� e are known as
path coe�cients and ��� is the correlation between X� and X� �which equals the
covariance because of the standardisation	� The two main tools of path analysis are
the �rst law and the tracing rule�

The �rst law says
�Y Z �

X
i

pY Xi�XiZ ������	

where pY Xi is the path coe
cient �or �causal parameter	 from Xi to Y � �XiZ is the
correlation between Xi and Z� and fXig is the set of all variables that are �causes
of Y � This law follows from rules � and � of the covariance algebra�

The tracing rule �which only applies to hierarchical models without loops	 is as
follows� The correlation between Xi and Xj equals the sum of the product of all the
paths obtained from each of the possible tracings beween i and j� The set of tracings
includes all the possible routes from Xi to Xj given that a	 the same variable is not
entered twice� and b	 a variable is not both entered through an arrowhead and exited
through an arrowhead� For the above example this rule says that ��� � a�b���� The
whole point of path analysis in practice is to help determine the causal parameters
�the p�s	� although this is sometimes impossible ����� pp���� �

Path analysis is not intended to be a black box procedure for accomplishing
the �impossible task of deducing causal relations from the values of the correlation
coe
cients ����� p���� �but see our mention of the recently developed tetrad

program below	� The theory was originally developed by the geneticist Sewall Wright
�������� and has since found wide application in the social ������������������� and
biological ���������� sciences�

�The advantages of using standardised variables and coe�cients are explained in detail by Wright in
���	�



There are� of course� many aspects we have not mentioned in this very concise
overview of path analysis and covariance structure modelling� These include the dif�
ferent types of models �recursive versus nonrecursive ���� 	� di
culties encountered
when the number of equations is far greater than the number of coe
cients to be
determined ����� p���� � the problem of estimating the parameters of the models
�������� � and the problem of interpreting the models ������������ � Further details
can be found in the books on the subject which include ����������� � A good concise
review is given in ���� � A more recent review is ���� �

From our point of view �investigating probabilistic arithmetic	� the most serious
problem is the di
culty in handling product terms �XY 	� Whilst the relationships
in standard path analysis do not have to be entirely linear� they have to be linear
over the range of values considered ����� p��� � which of course amounts to the
same thing� The topic of interaction �as it is called	 has �received scant attention
����� p���� � The term �interaction is used because the situation considered is
Y � �a � bZ	X instead of Y � aX� Here Z is another random variable� In his
original presentation of path diagrams ����� p���� Wright recognized �multiplying
factors �as amongst the most important� He suggests that if the coe
cients of
variation ��X��X	 are small� then the approximate formula

��
XZ � �X�

�
Z � �Z�

�
X � �X�Z

could be used �see section �����	�

Product terms have been considered in more detail in ����������� and ratio terms
are examined in ���� � Glass ���� has used Pearson�s formula ���� for spurious
correlation �see section ���	 and ���� 	 in order to study e�ects of product terms in
path models� Cohen ���� has generalised Glass�s results and provides a discussion
of the interpretation of product terms as interactions� He also considers powers
of variables and compound product and polynomial terms� Nevertheless� all these
e�orts will only work well for small coe
cients of variation because the formulae
used are all based on the linearisation of a nonlinear function by a Taylor series
expansion� In general� nonlinear functions are handled quite poorly� Whether the
more sophisticated approach outlined in section ��� of will prove better is a matter
for further research�

Finally let us just mention that graph�theoretical models have received increased
attention in recent years with the development of sophisticated computer programs
such as lisrel and tetrad which allow more complex models to be examined�
lisrel is described in ���� � It is a method of estimating the parameters of co�
variance structure models� The more complex task of estimating the structure has
also received attention� tetrad ������������ is a program designed to do just this�
Such a task is obviously at the core of scienti�c research and thus not surprisingly
there is considerable debate about the philosophy behind this approach� There is a
wide literature on the philosophy of probabilistic causality� Some of the more recent
works include �������������������������������������������� �

There is obviously room for a lot more work to be done in extending the methods
of path analysis to more general operations and relationships between random vari�
ables� Perhaps eventually it will be possible to integrate the techniques discussed



here with the copula based methods discussed in section ���� Use of di�erent mea�
sures of association �instead of the correlation coe
cient	 would be the �rst step in
this direction�

����� Common Subexpression Elimination in Probabilistic Arithmetic
by DAG Manipulations

A rather di�erent use of graph�theoretical ideas for probabilistic arithmetic arises in
the elimination of common subexpressions from arithmetic expressions� An example
of this is can be found in chapter � where we evaluate �by hand	 the distribution
of the elements of the inverse of a random � � � matrix� The entries of the inverse
matrix in terms of the entries of the original matrix can be written in the form

X �
A

AD �BC
� �������	

It is not possible to evaluate the distribution of X in terms of pairwise applications
of the �L�convolution formulae because the A term appears twice� However we can
see that dividing through by A gives

X �
�

D � BC
A

�������	

which can be analysed in terms of pairwise �L�convolutions� It is the purpose of the
present subsection to study when and how such transformations can be performed�
and to consider the prospects for an algorithmic application of these transformations�

This goal has arisen before in the �eld of code generation for compilers� The
problem there is� given an expression such as �������	� determine a sequence of
machine instructions which will evaluate �������	� preferably in the shortest time
possible� It is common to use a DAG �Directed Acyclic Graph	 representation of
expressions in order to analyse this problem� We can represent �������	 and �������	
by the DAGs in �gure ���� Note that the direction of the arcs is implicit in these
diagrams by the ordering vertically down the page� We can immediately see that
the property of having no common terms �or subexpressions	 corresponds to the
DAG being a tree� For completeness� a straight�line program implementing �--	 is
given by

r� � � B�

r� � � r� � C�

r� � � r��A�

r� � � D � r��

r� � � ��r��

�Straight�line programs play an important role in computer science� not only practically but theoretically
as well� Lynch ���� has suggested a number of reasons why straight�line program length is a good measure
of algorithmic complexity� Straight�line programs have also been used as a method for representing and
manipulating polynomials in symbolic algebra systems �����see also ����on the optimal evaluation of
expressions in such algebra systems�� We return to this aspect in the following subsection�
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where r� and r� are registers�

In generating code within a compiler it is usual to not assume that the algebraic
laws �such as distributivity	 hold because of the rounding error in �oating point
arithmetic� Nevertheless� the problem of optimal code generation for arbitrary ex�
pressions �with common subexpressions	 is NP�complete ��� �there are still di
cul�
ties in determining the evaluation order over the DAG	� The problem is relatively
easy for trees ��� or �collapsible graphs ���� � Taking account of associative and
commutative properties of operators is easy on trees ���� but is di
cult otherwise�

The general problem �which is of interest to us	 where both algebraic laws are
assumed to hold and common subexpressions or repeated terms can occur �has re�
ceived little attention in the literature ����� p���� � The only papers explicitly
addressing this issue are ���� and ���� � The second reference simply reports the
application of a method similar to Horner�s rule ����� p���� � Gonzalez and Ja�Ja�
���� have made a detailed and intricate study of the problem� They consider only
multiplications and additions and assume that the distributive law holds� They de�
velop an algorithm which will transform an expression DAG into a tree whenever
this is possible and another which determines whether an expression calculated by
the new DAG is the same as the original one� Gonzalez and Ja�Ja� prove a theorem
�their theorem ���	 which characterises when an expression can be transformed into
a tree� It essentially says that this can occur only when there are no repeated terms
when expressed in a standard canonical form� �This is hardly surprising�	 They also
present a number of complexity results including the fact that even if the arithmetic
expressions are of degree � �degree of the expression when viewed as a polynomial	�
then determination of an equivalent expression with the minimal number of arith�
metic operations is NP�hard ���� � Their results are not extendable to the more
general case we are interested in �arbitrary expressions including subtraction and
division operations	�

More complex results have been obtained recently by Reif� Lewis and Tarjan



�������� � They consider more general program structures �not just straight�line
programs	� and more general arithmetic operations� Their original motivation was
the �symbolic analysis of programs� This involves constructing� for each expres�
sion in a program� a symbolic expression whose value is equal to the value of the
program expression for all possible executions of the program� Whilst reasonably
e
cient algorithms for a restricted class of programs can be developed ���� � the
general problem� even over the integers� is not only di
cult but it is provably un�
decidable��� Whilst this result only shows the impossibility of general global �ow
problems� it certainly removes some of the hope we may have had for the possibility
of automatic rearrangement of even simple programs for the purposes of probabilis�
tic arithmetic� Note that whilst there exist a number of tools and results on more
general graphical structures for representing programs with control �ow �such as the
program dependence graph ���������������� 	� these are unlikely to be of value for
our purposes�

Whilst the above results do not help us greatly in solving the problem of repeated
variables in probabilistic arithmetic� they do provide good understanding of the
di
culties involved� Manes ���� has made use of a general semantics of �owgraphs
������� in order to prove his powerful �meta�theorem on the e�ect of tree structures
in uncertainty calculi� There is still some hope for useful results in this area� but
see our comments in the following subsection�

����� Conclusions� The Di�culties of Manipulating Graphs of Random
Variables

Having trekked through such forests of trees what can we conclude* Unfortunately
very little which can not be summarised in the motto Trees are trivial� Nets are
not� We have seen that whether it be belief networks� covariance structure models
or arithmetic expressions in compiler construction� the existence of a tree structure
makes the problem feasible��� Whilst there are other classes of graphs which tend to
be relatively easy �such as series�parallel graphs��	� in general non�treelike structures
cause severe di
culties�

Ironically� the relationship between graph structures and probability theory �from
the point of view of rearranging expressions to remove common subexpressions	 may
well be in the opposite direction to that which we envisaged� In ���� � Freeman et
al� have considered the use of straight�line programs as a representation of polyno�
mials in symbolic algebra systems� They often obtain large �greater than ���� line	
programs in the course of computations and have investigated ways of optimizing

��In order to prove this important result Reif and Lewis ����� p����make use of Matijasevic�s
���� negative solution to Hilbert�s tenth problem which says that determining whether a polynomial
Q�X��X�� � � � �Xk� has a root over the integers is recursively unsolvable�

��Recently a very wide variety of �easy� problems on graphs have been uni�ed by the notion of tree�
decomposibility ���� These problems extend past the implementation of uncertainty calculi�

��Sahner and Trivedi ���� study probabilistic problems very similar to ours �they consider addition�
max� min and selection of kth largest operations on random variables� on series�parallel graphs� Their
method of solution� perhaps not surprisingly� entails decomposing the graph into a tree using the algorithm
in �����



these programs in the manner of ��� � A very e
cient and clever method they have
developed to do this is their StraightOpt� procedure which works as follows�

All instructions in the program are evaluated at random values for the
indeterminates modulo a random prime� Then a binary search tree is
built to sort their values� If a value of a new instruction is found in an
existing leaf� the corresponding instructions are assumed to compute the
same function and the new one is eliminated from the program� The al�
gorithm is Monte Carlo and its running time is that of sorting� essentially
O�l log l	� where l is the length of the �straight�line program � since� with
high probability� the search tree is well balanced ����� p���� �

Application of StraightOpt� to a ����� line program produced by a factorisation
algorithm resulted in a ��% saving in instructions�

Whilst StraightOpt� is Monte Carlo and thus can be wrong� the probability of
this occurring could be made arbitrarily low� Thus again we see the advantage
of Monte Carlo algorithms� Such algorithms have been used for multi�dimensional
integration for some time now� and have recently found applications in primality
testing� optimization ���� and other �hard problems� It is our contention that
ultimately it will only be Monte Carlo based methods which will be able to handle
complex systems of interacting uncertainties�

��� Other Lower and Upper Probability Methods

Our results indicate that an objectivist� frequency� or
propensity�oriented� view of probability does not necessitate

an additive probability concept� and that interval�valued
probability models can represent a type of indeterminancy

not captured by additive probability�
� Peter Walley and Terrence Fine

My preference is for intervals because they can be based on
objective knowledge of distributions� and because this

compatibility is demonstrable�
� Henry Kyburg

The use of dependency bounds or Boole�Fr�echet bounds leads to lower and upper
probability distributions or probabilities� Since there have been a number of pro�
posed systems utilising lower and upper �or interval�valued	 probabilities in recent
years� it seems worthwhile to compare these models with our use of lower and upper
probabilities� We will see that interval�valued probabilities have been introduced in
a wide variety of ways� Some authors have explored epistemic �subjective	 proba�
bilites and credal states in this manner� Others� notably Fine and his co�workers�
have proposed an objective frequentist interpretation of interval�valued probabili�
ties and have shown how such e�ects can arise in real physical systems� We will
examine these and other systems below� We do not go into these in much detail� In
some cases �especially Fine�s work	� there are a lot of very technical results which
it is impossible to summarise in a couple of pages� Instead we will present a fairly
non�technical overview�



����� The Dempster�Shafer Theory of Belief Functions

I do not believe in belief�
� Karl Popper

First we will examine the Dempster�Shafer theory of belief functions which has
attracted a lot of attention in recent years� It is based on Shafer�s �������� exten�
sions of Dempster�s ���������������� � The method has found a number of appli�
cations ����������� � and has been recommended as being suitable for uncertainty
propagation in expert systems� It has recently been extended by Yager to enable
representation and arithmetic operations on belief functions representing imprecise
numbers ���� ��� We shall see below that the lower and upper probabilities arising in
the Dempster�Shafer theory are quite di�erent to those arising from our dependency
bounds� The main di�erence is that we consider the bounds to be secondary to the
primary notion of a single valued probability� Lower and upper probabilities arise
in Dempster�Shafer theory because of imprecise assignment of the probabilities in
the sample space� probabilities are assigned to subsets of the sample space rather
than single elements of it� Thus they are more of a primary notion�

The Elements of the Dempster�Shafer Theory of Evidence

The following brief summary is based on that appearing in ���� � Let X be the
universe of discourse �akin to the sample space	� We assume X � fx�� x�� � � � � xng
is �nite� although most results can be extended to in�nite spaces ���� � Let m be a
measure on �X �the power set of X	 such that

�� � � m�A	 � � �A � X�

�� m�		 � ��

��
X
A�X

m�A	 � ��

The measure m is called a basic probability assignment �bpa	 function� A focal
element is any subset A of X such that m�A	 	 �� If all the focal elements are
singletons� then the belief structure is called a Bayesian belief structure and all the
results reduce to the standard rules of probability theory� The union of all the focal
elements of a belief function is called the core�

The Belief and Plausibility functions de�ned by

Bel�B	 �
X
A�B

m�A	 A � B � X ������	

��Yager�s work can be considered to be a straight�forward analogue of the histogram or DPD methods for
calculating functions of random variables in terms of discrete representations of their distribution functions
�see section ����� Yager does not consider methods of condensation of the resultant belief structures
�although this would not be di�cult to do�� In this sense Yager�s results are trivial� and since he has not
described any applications of the method� it seems to be of little interest to us here� Of course this is not
to say that it does not have the potential to be useful� Indeed� this is why we are examining the basis of
the Dempster�Shafer theory�



and
Pl�B	 �

X
A�B ���

m�A	 A�B � X ������	

are important in the theory and behave like lower and upper bounds on P �A	 �we
always have Bel�A	 � P �A	 � Pl�A		� Writing the complement of B as B � X nB�
we can state an important property of Bel and Pl as

Bel�B	 � �� Pl�B	

Pl�B	 � �� Bel�B	�

This can be rewritten as

Bel�B	 � Bel�B	 � � ������	

Pl�B	 � Pl�B	  �� ������	

If the belief structure is Bayesian then Bel�A	 � P �A	 � Pl�A	� Equations �����
and ����� are why the theory is called nonadditive� Shafer �������� sets considerable
store by this� arguing that it is a more accurate model of human reasoning under
uncertainty� Berres ���� pp����� has shown how the �degree of nonadditivity of
a belief function can be measured in terms of an integral de�ned over the belief
function�

The point of the above constructions is to allow a �more uncertain assignment of
probabilities to events� Instead of specifying an exact probability of an event� one can
assign some probability to a subset A � X without specifying how the probability
mass is to be distributed within A� It is argued that this gives a more realistic
representation of total ignorance than the assignment of a uniform or noninformative
prior in the ordinary Bayesian probability model�

Combination of Belief Functions

When we have two pieces of evidence represented by belief functions we may wish
to �combine them in to one piece of evidence� The usual method of doing this
is to use Dempster�s rule of combination ���� � although alternative rules do exist�
Dempster�s rule is also called the orthogonal sum ��	 of belief functions� The
operator is essentially �anding independent belief structures� Let m and m� be the
bpa�s of the belief functions Bel and Bel� with cores fA�� � � � � Apg and fB�� � � � � Bqg
respectively� Then

�m�m�	�A	 �

X
Ai�Bj�A

m�Ai	 
m��Bj	

X
Ai�Bj ���

m�Ai	 
m��Bj	
if A �� 	 ������	

and �m � m�	�		 � �� Since p and q are of the order of �jXj� this rule can have a
very high computational complexity� Very recently approximations to ������	 which
reduce its complexity have been considered ���� � Dempster�s combination rule can



be represented in terms of the theory of Markov chains� Norton ���� has used this
representation to study the limiting e�ect of updating belief functions with ������	�
�That is� he studies limn	�

Ln
i��mi�	 His results can be summarised by saying

that evidential support tends to converge to single focal elements �or small groups
of them	� The actual details depend on the speci�cs of the corresponding Markov
model used�

The assumption of indepedence of the separate pieces of evidence is important
for ������	 to be valid� This assumption has been criticised by a number of authors
�������� � Williams ���� has argued that not only should independence not be
assumed �for epistemic probabilities	� but that the very notion of independence �is
not de�neable within the terms of the theory given its view of the nature of evidence
����� p���� � Errors resulting from repeated nodes �common cause events	 in a fault
�tree when analysed using Dempster�Shafer theory have been reported by Guth
���� � His suggested solution to this amounts to the computation of a global belief
function �akin to working with the complete joint distribution	� However� as he
confesses in a footnote� this scheme is impractical �computationally	� for even a
small example it was necessary to resort to Monte Carlo simulation� Dempster and
Kong ���� have made some progress in applying the ideas of Lauritzen� Spiegelhalter
and Pearl �see the previous section	�� on graph theoretical techniques for handling
complex probability structures to the Dempster�Shafer framework� They use the
idea of trees of cliques in order to be able to independently combine subgroupings
of nodes� Nevertheless� they too conclude� �We expect� however� that realistic
practice will quickly drive us to Monte Carlo approximations� the study of which
is just beginning ����� p���� Further work on more complex structures of belief
functions has been reported by Kohlas ���� and Shafer and Logan ���� �

Further Problems with the Dempster�Shafer Theory and its Relationship to

Classical Probability Theory

As well as the di
culties of independence in combinations reported above� the
Dempster�Shafer theory has been criticised in terms of the empirical acquisition
of belief functions� Whilst introduced by Dempster in the context of sampling in�
ference ������������ � there are many di
culties still to be resolved� Lemmer ���� 
has said that there is

strong support for the conjecture that Dempster�Shafer theory cannot�
in principle� be empirically interpreted as a calculus applicable to sam�
ple spaces� if the belief functions about these sample spaces arise from
the real world by any sort of reasonably error free process of observation�
Thus though the numbers produced by this theory are often termed prob�
abilities� they cannot be interpreted as probabilities about sample spaces
����� p���� �

��Pearl ���� has compared the Dempster�Shafer theory with Bayesian probability structures on trees
and has argued in favour of the latter�



Statistical aspects of Dempster�Shafer theory have recently begun to receive further
attention �������� �

It is tempting to ask whether the problems associated with Dempster�Shafer
theory are simply a result of it masquerading as ordinary probability theory� In
any case it is interesting to examine to what extent the procedures of the theory
can be derived from the standard basis of probability theory �based on Bayesian
belief structures	��	 Baron ��� has examined Dempster�Shafer theory in the light
of �second�order probabilities �probabilities of probabilities	� and has shown that
Dempster�s rule of combination is a special case of a more general rule for combining
second order probabilities� This general rule is derived using just the usual basis
for probability� Baron considers belief functions to be a special case of second�order
probabilities�

Falmagne ���� has studied the embedding of belief functions in higher�order
probability spaces and has shown that �the values of the belief function have � � � an
interpretation in terms of events� in the embedding space� involving random vari�
ables ���� p��� � He proves a theorem �his theorem �	 which gives a representation
of a belief function Bel over a �nite set X in terms of a collection f��j � � Xg of
jointly distributed random variables� In this representation� the belief in B � X is
interpreted as the random event

fmaxf��j � � Bg 	 � 	 maxf��j � � �X nB	gg � ������	

Falmagne explains how ������	 can be understood in terms of a random utility model�

Kyburg� Suppes� Zanotti and the Relationship Between Dependency Bounds
and Belief Functions

Of more interest to us is the work of Kyburg ���� and Suppes and Zanotti ���� �
Kyburg proves the following theorem�

Theorem ����� Let m be a probability mass function de�ned over a frame of dis�
cernment �� Let Bel be the corresponding belief function� Bel�X	 �

P
A�X m�A	�

Then there is a closed� convex set of classical probability functions SP de�ned over
the atoms of � such that for every subset X of ��

Bel�X	 � min
P�SP

P �X	�

This theorem says that any belief function can be represented as a lower probability�
The converse is not true without a further restriction� That is� not every lower
probability is a belief function� Su
cient conditions are given by Kyburg�s theorem
�A��	�

��The question of whether Dempster�Shafer theory is better than ordinary probability theory for some
problem is a di�erent matter altogether� We will brie�y discuss this below in the context of other uncer�
tainty calculi as well� For now just note that Smets ���� has constructed an example problem which he
solves with both theories� The reader is then invited to choose which answer he likes best and thus choose
the appropriate theory�



Theorem ����� If SP is a closed convex set of classical probability functions de�ned
over the atoms of �� and for every A�� � � � � An � ��

min P �A� � 
 
 
 � An	 � X
I�f���ng

���	jIj�� min P


�
i�I

Ai

�
� ������	

then there is a mass function m de�ned over the subsets of � such that for every X
in �� the corresponding Bel function satis�es

Bel�X	 � min
P�SP

P �X	�

This says that for a lower probability function to be a belief function it must be a
capacity of in�nite order �������� � �The right�hand side of equation ����� describes
a capacity of order n� which is the highest order possible here�	 Not all lower
probabilities satisfy this� For example� Suppes and Zanotti ����� p���� point out
that if P is some arbitrary but nonempty set of probability measures� then

P �A	 � inf
P�P

P �A	 ������	

is not a capacity of in�nite order� and �thus cannot be generated by a random
relation on a probability space�

The result of this is that belief functions are special types of lower probabilities�
Lower probabilities de�ned by ������	 �and the analogous upper probabilites de�ned
by P �A	 � supP�P P �A		 are not belief and plausibility functions� Since we feel that
it is these lower and upper probabilities that are of the most interest �they are how
the dependency bounds arise	� the theory of belief functions has little to contribute
to the theory of dependency bounds and the lower and upper probabilities generated
by them�

Dempster�Shafer Theory as an Alternative Uncertainty Calculus

Although Dempster�Shafer theory is of no apparent value for our dependency bound
studies� it does have a number of other advantages for the purposes of a general cal�
culus of uncertainty� We do not have the space �or the motive	 to review this here�
Instead we simply refer the reader to some recent reviews on this topic� Bonissone
and Tong ��� and Pang et al� ���� have both presented brief reviews of di�erent
methods� Two better reviews giving a lot more detail are �������� � These pa�
pers compare Bayesian probability� Dempster�Shafer theory� Fuzzy set theory and
the mycin certainty factors� The conclusions drawn include the fact that each
method has advantages and disadvantages and thus no one method is best in all
circumstances� in some applications it does not seem to matter much which is used�
although in others it does� and all four methods are quite closely related �see es�
pecially ����� p���� 	� Relationships between belief functions and other uncertainty
calculi have also been explored in �������� �



����� Fine�s Interval�Valued Probabilities

Fine �������������������������������� and his co�workers have developed a theory of
interval�valued probability which has some elements similar to the Dempster�Shafer
theory� However Fine�s motivation was rather di�erent to Shafer�s� Whereas Shafer�s
theory was developed from the point of view of epistemic �subjective	 probability
judgements� Fine has worked closer to the objective interpretations of probability�
This is not to say he discards epistemological uncertainties� In fact he suggests
that his model can handle both ontological and epistemological indeterminancies
���� � Elsewhere� Wolfenson and Fine ���� have considered the decision theoretic
viewpoint �instead of the inferential	�

From an engineering point of view one of the most interesting applications of
the theory is the construction of stochastic models for empirical processes that are
stationary but have �uctuating �diverging	 time averages� These can not be mod�
elled by a standard probability model �by the Ergodic theorem	� but they can be
modelled by interval�valued probability models �������� � An example of this is the
modelling of �icker noise in quartz crystal oscillators� We do not have the space to
provide any technical details on Fine�s work here� A very good recent review article
has been published by Fine ���� � In any case� the main point is that he considers
lower and upper probabilities which arise in circumstances quite di�erent to those
we study �which arise from dependency bounds	� However there seems to be no
reason why these two approaches could not be integrated� although further research
is needed in order to achieve this� What we feel is the most surprising aspect of
Fine�s theories is that they do not appear to have been adopted and studied further
by other authors� It is not just a matter of developing a nice theory for its own sake�
As Fine has said

Overall� our objective is not the creation of yet another anemic math�
ematical )theory�� Rather we wish to come to grips� through selected
probability�like structures� with certain features of naturally occurring
nondeterministic phenomena so that we can better understand and make
use of these phenomena�

����� Other Lower�Upper Probability Theories

There have been a wide variety of other lower�upper probability theories proposed
over the years� We just mention some of them brie�y�

Epistemic theories of interval�valued probabilities have been studied by Koopman
�������� � Smith �������� and Suppes �������� � Higher�order probabilities �the
probability of a probability	 are discussed by Skyrms ���� � Cyranski ���� � and Good
�������� � Models of comparative probability �instead of numerical probability	 have
also been suggested as being more suitable for modelling human judgement �����
��� � Issues regarding making decisions based on probability bounds or lower�upper
probabilities are discussed in �������� � �There is in fact no great di
culty in making
decisions based on interval�valued probabilities�	 Some good general discussions of



the idea of �intervalism �use of lower and upper probabilities in preference to single
valued ones	 can be found in �������������������� � Levi�s discussion in ����� section
��� is particularly relevant with a regard to our earlier remarks comparing the two
approaches of taking probability intervals as primary or secondary objects� Levi
takes convex sets of credal states and derives lower and upper probability envelopes�
He argues �page ���	 that this is preferable to beginning with an interval�valued
probability measure and then developing other notions in terms of it�

Because of the amount of literature on the topic �we have not been at all exhaus�
tive in our above citations	� we do not make any further attempt to synthesise or
summarise what are in many cases quite divergent opinions� We feel however that
the main aim of the section has been achieved� to show that there is a wide variety of
lower�upper probability theories� but in all cases the lower�upper probability arise
in quite a di�erent manner to our dependency bounds�

��� Fuzzy Arithmetic of Fuzzy Numbers

The concept of fuzzy numbers is expected to play important
roles in solving problems describing ambiguous systems such
as mathematical programming and deterministic systems as

is applied to fuzzy language probability� fuzzy programs�
fuzzy neurons etc�

� Masaharu Mizumoto and Kokichi Tanaka ���	��

Algebraic calculus on real fuzzy sets is devoted 	sic
 to play
a central role in the development of the theory of fuzzy sets

and its applications to systems science�
� Didier Dubois and Henri Prade ���	��

A great amount of work has already been accomplished�
However� the ability to apply fuzzy concepts to practical

problems requires a somewhat deeper understanding of the
speci�city of Zadehs theory�

� Didier Dubois and Henri Prade ����
�

It is still too early to utter de�nite judgements about the
actual bene�t of introducing fuzzy numbers in topology or
random variable theories� as well as the usefulness of this

concept in engineering applications�
� Didier Dubois and Henri Prade ����	�

Fuzzy arithmetic is a topic� rather similar to probabilistic arithmetic� which has
received considerable attention in recent years� In this section we will compare these
two ideas in some detail� We will study the di�erences between the two ideas in terms
of their philosophical basis and interpretations� practical computation methods and
practical e
cacy� We will show that the fuzzy arithmetic combination rules are
in fact almost identical to the dependency bounds we developed in the previous
chapter� This allows a probabilistic interpretation of fuzzy set operations� Much
of what we have to say may be considered controversial to some� but we feel our
arguments are sound and there is a only a very small amount of speculation �and
this is clearly indicated as such	� We begin with an outline of fuzzy sets�

Given some universe U � a fuzzy set F ���� on U is an imprecise subset of U �
The set F is described by its membership function �F which takes values on ��� � �
Thus if U � �� then for some x � U � if �F �x	 � �� then x is de�nitely in F � if



�F �x	 � �� then x is de�nitely not in F � The value of �X�x	 expresses the �degree
of membership of x in F � As long as there is at least one x such that �F �x	 � ��
then F is said to be normal� A fuzzy set is usually considered to represent linguistic
vagueness rather than stochastic uncertainty� However this is not always the case�

Fuzzy sets can be combined under the normal set�theoretic operations as follows�

Intersection �F�G�x	 � min��F �x	� �G�x		

Union �F�G�x	 � max��F �x	� �G�x		

Complement �F �x	 � �� �F �x	�

Alternative combination rules de�ned in terms of t�norms and t�conorms have also
been considered� We will discuss these below� Many other operations can be per�
formed on fuzzy sets� but as we shall see there is considerable dispute about the
correct de�nitions and interpretations for many of these� Of most interest to us
is the situation where the fuzzy set represents an imprecise number� In this case
one can de�ne rules for arithmetic operations on these fuzzy numbers� This is the
subject matter of fuzzy arithmetic and is the focus of the present section�

There are two main types of fuzzy numbers which we will discuss� �Whilst
Dijkman et al� ���� talk of several di�erent types� they can all be considered to
be variations of the two types we will consider�	 The �rst type� studied by H�ohle�
Klement� Lowen and others ������������ � considers a fuzzy number to be de�ned
by a nondecreasing membership function �which looks like a probability distribution
function	� This approach is very similar to the use of distribution functions in
probabilistic metric spaces ���� � We will brie�y return to this idea of a fuzzy
number below where we compare it with the other �more widespread	 notion�

Fuzzy numbers are considered by Dubois and Prade and others �������������
��� to be a fuzzy generalisation of the notion of an interval in interval analysis�
they are fuzzy sets of real numbers� We say X is a fuzzy number if its fuzzy
membership function �X is normalised �supx �X�x	 � �	 and is pseudo�convex or
quasi�convex �������� ��X�y	  min��X�x	� �X�z		 �y � �x� z � �	� �Note that
pseudo�convexity� otherwise known as unimodality� has sometimes erroneously been
called simply �convexity in the fuzzy set literature� Of course convexity is inti�
mately related to unimodality� see ���� �	

By an analogy with the method of calculating functions of random variables�
the extension principle�� ����� p���� is used to calculate the membership function
of Z � f�X�� � � � �Xn	 where Xi are fuzzy numbers with membership functions
�Xi � i � �� � � � � n� This says that

�Z�z	 � sup
z�f�x���xn�

min��X��x�	� � � � � �Xn�xn		� ������	

�	Manes ���	� p���� has said that �Mathematicians do not usually feel that the existence of such
formulas deserves to be called a �principle� � � ��� He goes on to point out a number of severe de�ciencies in
the mathematical basis of fuzzy set theory and contrasts it with Topos theory and his general distributional
set theories �see ������ We do not have space here to describe Manes� substantial results and we simply
remark that his work should be classed amongst the major contributions of the �eld�

Some authors have given derivations of the extension principle ��������� but these are quite di�erent
to Manes�s and their interpretations of fuzzy sets have a number of shortcomings�



When n � � and f � �� we have the �sup�min convolution

�Z�z	 � sup
x��x��z

min��X��x�	� �X��x�		�

The min operator is the fuzzy set intersection operator and it can be replaced ��� 
by a general t�norm T � We then obtain the more general extension principle �for
n � �	 as

�f�X�Y ��z	 � sup
f�x�y��z

T ��X�x	� �Y �y		� ������	

This is obviously very similar to the �T�L operations we have encountered in studying
dependency bounds� The di�erence is mostly in interpretation �although there is
the minor di�erence that �X is unimodal whereas FX is monotonic � this leads to
only slight changes in the procedures used to numerically calculate ������		� The
theory of fuzzy numbers outlined above is nowadays described in terms of �possibility
theory and �possibility distributions� We shall return to this topic after we have
examined the general interpretation of the modal terms �possible� �probable� and
�necessary� A review of the theory of fuzzy numbers including work up to ���� is
given by Dubois and Prade in ���� �

The rest of this section will cover the following material�

�� Numerical methods for calculating the fuzzy number combinations described
by the extension principle� We will also consider the notion of interactivity of
fuzzy numbers which is an analogue of dependence for random variables�

�� A general critical discussion of the interpretations of the modal terms �possi�
ble� �probable� and �necessary� This was undertaken because of the recent
appeal by fuzzy set theorists to a �theory of possibility on which fuzzy num�
bers are based� We show that the modal logic interpretations of �possible
which they use to support their development of posibility theory are not the
only valid ones� and that a probabilistic semantics for modal terms is preferable
for a number of reasons�

�� We also present a general discussion of the relationship between fuzzy set
theory and probability� This contentious issue is as old as the theory of fuzzy
sets� We aim to restrict ourselves to a concise review of the arguments on this
topic and try to add something of our own�

�� The relationships between interval fuzzy numbers� especially in terms of pos�
sibility and necessity measures� and con�dence curves is then examined� Con�
�dence curves are an old but rarely used statistical technique which we show
are very similar in their form and intuitive interpretation to fuzzy numbers�

�� Finally we summarise what we see as the relationships between fuzzy numbers
and random variables in the light of the dependency bound operations�

This section is rather longer than most in this chapter �and thesis	 solely for the
reason that there is now an enormous literature �over ���� papers	 on the theory of
fuzzy sets� and thus there are many di�erent points to discuss�



In a single sentence� our conclusions could be put as follows� The theory of
fuzzy numbers� as developed to date� does essentially nothing new compared to the
theory of random variables �when proper account is taken of missing independence
information	� and would appear to be of little value in engineering applications�

��
�� Numerical Methods for Fuzzy Convolutions and the Notion of
Interactive Fuzzy Variables

There are a variety of methods available for numerically calculating fuzzy arithmetic
convolutions ����	� They can be classi�ed into three basic types�

Trapezoidal� triangular and L�R fuzzy numbers ������������������������ �
These are all parametric methods� The idea is that a fuzzy number is repre�
sented by �� � or � parameters and the arithmetic operations are implemented
in terms of operations on the parameters� The implicit assumption in these
methods is that these few ��	 parameters �are adequate to capture the fuzzy
uncertainties in human intuition ����� p��� � The formulae for products and
quotients are necessarily approximate� The only reason the sum and di�er�
ence formulae are exact is because the t�norm Min is used and so there is a
�shape�preservation e�ect� We discuss this in detail later on�

The basic idea of L�R fuzzy numbers is to represent the membership function
�X of a fuzzy number by

�X�x	 �

����
���

L
�
m�x
�

�
x � m

� x � �m�m 

R
�
x�m
	

�
x  m�

here �m�m is the core and �m��m� � is the support of �X � The functions
L and R from � onto ��� � are known as shape�functions� Fuzzy number
arithmetic operations can be determined �sometimes exactly	 in terms of m�
m�  and � for the fuzzy numbers involved�

Sampling along the x�axis �to represent �X�x	� ������������ �
This simple technique which entails only using values �X �xi	 for some set
fxigni�� is related to Baekeland and Kerre�s piecewise linear fuzzy quantities
��� and the DPD method �������� for calculating convolutions of probabil�
ity densities� and su�ers from the same sorts of problems� It should be said
however that the problems can be circumvented in similar ways� For example�
one of Dubois and Prade�s ���� criticisms of Jain�s method �������� can be
solved by using the condensation procedure as used by Kaplan in ���� or by
us in chapter � ���� �

Interval Arithmetic on the Level Sets ������������������������ �
This is perhaps the most interesting method� We examine it below and show
that

�� It is particularly simple for T � M for a good reason and it can be
extended to other t�norm intersection operators�



�� The apparent success and simplicity of the method are not su
cient jus�
ti�cation for the claim that fuzzy arithmetic is the natural generalisation
of interval arithmetic�

�� The �fundamental result that allows calculation of fuzzy number convo�
lutions in terms of level sets is a special case of a duality result that has
been known for some time�

Let us write F� for the �cut or �level set of some fuzzy set F with membership
function �F � That is� F� � fx � �j�F �x	  g� Dubois and Prade ����� p��� 
state the following �fundamental result� Let M and N be two fuzzy intervals
with upper semi�continuous membership functions and assume that M� � � and
N� � � for  	 �� Let f ��� �� � be continuous and order�preserving �that is�
�u  u�� �v  v� f�u� v	  f�u�� v�		� Then� for all  	 ��

�f�M�N	 � � f�M�� N�	� ������	

This means that f�M�N	 can be calculated in terms of interval arithmetic on the
�cuts of M and N � Dubois and Prade credit this result to Nguyen ���� who says
the original idea was due to Mizumota and Tanaka ���� �

Fenchel	s Duality Theorem

We will now show that ������	 is in fact a special case of a more general duality result
���� which we made use of in chapter � to calculate dependency bounds numerically
in an e
cient manner� Let '�p� q� r� s	 denote the set of all non�decreasing functions
from �p� q into �r� s satisfying '�p	 � r and '�q	 � s� where p � q� r � s and
p� q� r� s � �� � � � f����g� Recall the de�nition of the quasi�inverse F� of a
function F � '�p� q� r� s	 �������� �

F��y	 � supfxjF �x	 � yg�
De�ne the binary operation ��C�L on the space of quasi�inverses of the elements of
'�p� q� r� s	 by

��C�L�F�� G�	�x	 � inf
C�u�v��x

�L�F��u	� G��v		 � ������	

Theorem ��
�� Let C � C� L � L� F�G � '�p� q� r� s	� Then

��C�L�F�G	 � � ��C�L�F�� G�	� ������	

Upon letting C � M � it can be seen that ������	 says the same thing as the �funda�
mental result ������	� This is because the in�mum in ������	 will always occur at
u � v � x since L� F and G are non�decreasing� In other words we can write

�M�L�F�G	�x	 � �L�F�� G�	 ��x	� ������	

When L � Sum� ������	 reduces to

�M���F�G	�x	 � �F� � G� �x	�



This was proved directly by Sherwood and Taylor in ���� ���� �see their proposition
� on page ����	 and used by Klement in ���� who was only aware of the result for
T � M and L � � and could not see how it could be extended� Equation ������	
can be used for calculating fuzzy number convolutions by decomposing membership
functions into an increasing part and a decreasing part and operating on two parts
separately �see chapter � below	� In fact this duality result can be traced back to a
result of Fenchel ���� in the theory of convex functions�

Fenchel�s duality theorem is best explained with the aid of some diagrams� This is
not done in ���� nor in Fenchel�s original paper ���� � We shall follow Luenberger�s
presentation ���� which does contain diagrams� The main idea we require is that
of a dual functional on the dual space of some linear vector space� We consider
a convex function f over a convex domain C� The dual space C� and the dual
functional f� are given by

C� � fx� � X�j sup
x�C

�hx� x�i � f�x	 � ��g�

and
f��x�	 � sup

x�C
�hx� x�i � f�x	 �

where hx� x�i denotes the value of the functional x� corresponding to x� �Note that
x� is a functional� even when x is a point�	 The space X� is called the dual space
of a linear vector space X� It comprises the linear functionals on X and is itself a
linear vector space�

This should be much clearer upon consideration of �gure ����	 which depicts a
convex region C with a convex function f de�ned over it� The conjugate function
f� is a functional de�ned over the space X� of dual functionals� In the example
we consider� f��x�	 is a hyperplane� In other words� for each point f�x	 there
corresponds a line f��x�	 � hx� x�i � r� We refer to the set �f�C as the epigraph
of f over C� The set �f�C is itself convex if f and C are� One can similarly de�ne
conjugate concave functionals of concave functionals of concave functions g on a
concave set D� We have

D� � fx� � X�j inf
x�D

�hx� x�i � g�x	 	 ��g�

and
g��x�	 � inf

x�D
�hx� x�i � g�x	 �

These conjugate functions are useful in solving optimization problems ������� �
Consider determining

inf
C�D

�f�x	� g�x	 ������	

where f is convex over C and g is concave over D� Examination of �gure ����	 shows
this entails �nding the length of the shortest dashed line in that �gure � i�e� the
smallest vertical distance between �f�C and �g�D � The Fenchel duality theorem
allows this problem to be solved in terms of the conjugate functionals f� and g��
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�� Illustration of a convex function f on C � X and its conjugate dual f� on the
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Figure �
�� The idea behind Fenchel�s duality theorem


Theorem ��
�� Assume that f and g are� respectively� convex and concave func�
tionals on the convex sets C and D in a normed space X� Assume that C � D
contains points in the relative interior of C and D and that either �f�C or �g�D 
has a nonempty interior� Suppose further that � � inf

x�C�D
�f�x	 � g�x	 is �nite�

Then
� � inf

x�C�D
�f�x	� g�x	 � max

x��C��D�

�g��x�	� f��x�	 

where the maximum on the right side is achieved for sone x�� � C� � D�� If the
in�mum on the left is achieved by some x� � C �D� then

max
x�C

�hx� x��i � f�x	 � hx�� x��i � f�x�	

and
min
x�D

�hx� x��i � g�x	 � hx�� x��i � g�x�	�

The idea behind this theorem is shown in �gure ����	� The minimum vertical dis�
tance between f and g is the maximum vertical distance between the two parallel
hyperplanes separating �f�C and �g�D �



The relationship between this theorem and theorem ������	 is only sketched here�
Firstly consider the more general optimization problem

��x	 � inf
u�v�x

u�C
v�D

�f�u	� g�v	 � ������	

Setting v � x�u and assuming the conditions u � C and v � D implicitly� this can
be written as

��x	 � inf
u

�f�u	� g�x� u	 �

If we now set h�x	 � �g�x	 �so h is concave	� and apply an exponential transfor�
mation �letting F �x	 � ef�x� and H�x	 � eh�x�	� we obtain

'�x	 � inf
u

�F �u	H�x� u	 �

Finally� by use of the multiplicative generator representation of Archimedian t�norms
�or t�conorms	� this can be transformed into something of the form��

'�x	 � inf
u
T ��F �u	�H�x� u		�

This is the dependency bound formula and the fuzzy number convolution formula�

The Fenchel duality theorem is very closely related to the Maximum transform
developed by Bellman and Karush ������ � They developed their results indepen�
dently of Fenchel �see ���� p���� 	� The maximum transform is the basis for the
T�conjugate transform studied in chapter ��

We expect that the duality theorems discussed above will prove useful in a num�
ber of di�erent ways� We also feel there are several new results possible� One idea
which we brie�y examine in chapter � is the discrete T�conjugate transform which
we think will enable an even more e
cient numerical calculation of dependency
bounds and fuzzy number convolutions�

The duality theorem �theorem �����	 presented above is for general t�norms�
Whilst not as simple for the case of T � min� it is still useful� The theory of �T
convolutions and T �conjugate transforms developed by Moynihan �������� appears
to o�er some promise of improved methods for numerically calculating fuzzy number
convolutions under general t�norm intersection operators �������� � A di�erent gen�
eralisation of ������	 is given by H�ohle ���� � H�ohle�s proposition ��� �p����	� which
we will not quote here� can be viewed as �a generalisation of �������	 to the scope
of Brouwerian lattices whose duals are also Brouwerian� Interpreting his results�
H�ohle says

There always exists a stochastic model in which L�fuzzy quantities admit
an interpretation of abstract valued random variables� and the binary

�
It is only �of the form� as there are a number of complications we have glossed over here� Further
details can be found in chapter � and ��	��



operations ��� &� correspond to the usual multiplication of random vari�
ables� Thus contrary to the widespread opinion there exists a point of
view from which the theory of ���� �fuzzy concepts can be regarded as a
part of probability theory ����� p���� �

H�ohle�s �� and &� operations are generalisations of �T and �T to completely distribu�
tive complete lattices� As Dubois and Prade point out ���� � H�ohle�s approach to
�fuzzy numbers is quite di�erent to theirs �see also ���� and ����� p���� 	� We will
compare H�ohle�s more positivist approach with ours and others in more detail in
section ����

Shape Invariance of Fuzzy Number Addition under Min Intersection and its

E�ects

A feature of the sup�min fuzzy number addition that is presented as an advantage
is its shape invariance�

Addition of fuzzy numbers is remarkably shape�invariant contrary to ran�
dom variable convolution� adding triangular distributions yields trian�
gular distributions� adding parabolic distributions yields paraboles etc�
���� �

Dubois and Prade ���� conclude from this that fuzzy arithmetic is better than a
stochastic approach for �nding the shortest path of a graph ���� �

As soon as we allow distances between vertices to be random� we are
faced with many di
culties among which are the intricate dependency
of paths� the necessity of performing repeated convolutions of random
variables�

Viewing the sup�min convolution as the convolution of completely positively de�
pendent random variables provides the understanding of what is happening here�
The pairwise dependence problem is ignored �because all the variables are com�
pletely positively dependent upon one another	� and therefore the variables can be
combined simply pairwise� Similar arguments have been given by Yazenin ���� �

The ironic thing is that whilst the problem of determining stochastic shortest
routes when all the variables are independent is in fact di
cult� the more general
and more useful problem of determining bounds on the shortest routes when the joint
dependence structure is unknown is computationally simpler� This is explained in
detail in Klein Haneveld�s excellent paper ���� �see the discussion of this in section
��� above	� Thus the claimed advantages of using fuzzy numbers for uncertain
network problems are overstated� The more di
cult but more useful stochastic
problem can be solved using appropriate techniques� We feel that Klein Haneveld�s
work in particular demonstrates that the stochastic approach to operations research
problems is feasible and that the bene�ts of the fuzzy approach �����������������
������� have been exaggerated �but see the review by Zimmerman ���� � especially
his discussion of the lack of duality results for fuzzy programming �p���		�



Relationships with Interval Arithmetic

We turn now to a brief examination of the relationship between fuzzy arithmetic�
probabilistic arithmetic and interval arithmetic� Our main point is that the fol�
lowing point of view �due to Dubois and Prade	 is at best quite misleading� and�
in our opinion� completely wrong� Dubois and Prade �������� contend that fuzzy
arithmetic is the natural generalisation of interval arithmetic ����������� �

The all�or�nothing nature of interval analysis� in contrast to probability
theory� which admits gradations� introduces an asymmetry between them�
which one would like to remove� It is clear that the latter does not
generalize the former� since a function of a uniformly distributed random
variable �the probabilistic counterpart of an error interval	 does not in
general itself have a uniform distribution� One of the major contributions
of this book is to propose a canonical generalization of interval analysis
that admits of appropriate gradations ����� p�� �

Our argument runs as follows� The shape�preservation property �see above	 which
holds when T � M should be considered as a point against fuzzy arithmetic� If the
shapes of the initial membership functions are preserved so well� then one may as well
dispense with the function all together and simply work with the support interval�
The fact that adding two independent uniformly distributed random variables results
in a triangular distribution shows that we have somehow included some information
about the addition operation� The most important point though is the trivial fact
that random variable addition does naturally generalise interval arithmetic if one
considers the support of the distributions of the random variables involved� In
fact� one can think of the probability distributions describing the distribution of
values within the support interval� Consider two random variables X and Y with
distribution functions FX and FY � having support ��X� uX  and ��Y � uY  respectively�
If FZ � df�Z � X � Y 	� then

suppFZ � ��X � �Y � uX � uY  � ������	

This is simply the interval arithmetic addition of suppFX and suppFY � Thus it
is incorrect to maintain that �a probabilistic approach to extend ������	 �interval
addition would fail ����� p���� � See also our discussion of the relationship between
probabilistic arithmetic and interval arithmetic in ���� � We return to the topic of
intervals in section ����� where we examine nested sets of con�dence intervals�

Noninteraction of Fuzzy Variables

One of our dissatisfactions with fuzzy arithmetic is that there has been little careful
consideration of dependency� We have already mentioned the connection between
the use of min intersection operators in the extension principle and complete positive
dependence of random variables� Like Suppes� we feel that the concept of indepen�
dence �and hence dependence	 �is one of the most profound and fundamental ideas



not only of probability theory but of science in general ����� p���� and thus de�
serves careful consideration in any uncertainty calculus� Manes ���� has shown that
the phenomenon of dependency error ���� will arise in a large class of uncertainty
calculi� Smith �������� �see especially section � of ���� 	 has argued that the notion
of conditional independence explicated with the use of directed graphs is useful for
a number of di�erent uncertainty calculi� �We have examined the use of graphs in
probability theory in section � above�	 For now we shall explore the fuzzy set ana�
logues of probabilistic independence� We shall see that not only is the analogue of
independence still poorly interpreted� but the analogues of dependence and measures
of dependence have barely been considered�

The analogue of probabilistic independence in the theory of fuzzy variables is
called noninteractivity �������� or unrelatedness �������� � Noninteractivity has
been assumed implicitly in our discussion of extension principle in the introductory
comments to this section above� Noninteractivity is de�ned in terms of a �joint
membership function� If

�XY �x� y	 � min��X�x	� �Y �y		 ��x� y	 � supp �X � supp �Y �������	

�or the equivalent statement in terms of possibility distributions	� then X and Y are
noninteractive� The interpretation of noninteractivity is rather more problematic
than its de�nition� Dubois and Prade argue as follows�

Noninteraction plays the same role in possibility theory as independence
in probability theory� but they do not convey the same meaning at all�
interaction simply means a lack of functional links between the variables
while� in the frequentistic view of probability� an event A is said to be
independent from B if� asymptotically� A is observed as often whether it
simultaneously occurs with B or B ����� p�� �

This passage would seem to mean that noninteraction is a much weaker notion
than independence� It is certainly not an entirely satisfactory explanation of how
noninteraction is to be understood� Perhaps the main di
culty is that there is no
analogue of a fuzzy event �although some authors have tried to de�ne this ���� 	�
In probability theory the idea of a functional link is something which may cause
stochastic dependence� but is not considered to be equivalent to it �see studies on
probabilistic causality ���� and section ��� on graphical ideas	� Noninteraction of
fuzzy variables is also discussed in ���������������� �

Statistical independence arises in the theory of fuzzy variables when membership
functions �or possibility distributions	 are determined from statistical experiments�

Possibility measures usually refer to non�statistical types of imprecision�
such as the one pervading natural language and subjective knowledge�
Recently� however� a statistical interpretation of possibility measures has
been proposed in the framework of random experiments yielding impre�
cise outcomes� however� the concept of statistical independence under
imprecise measurements has yet to be de�ned ����� p�� �



Since the notion of independence is logically prior to that of a statistical experiment
���� � the above de�ciency is a serious problem�

Four Types of Interaction of Fuzzy Variables

There are at least four types of interaction of fuzzy variables which have been dis�
cussed in the literature to date� We will now examine each of these in turn and we
will note their relationships with each other and with the statistical concepts from
which they were motivated�

The �rst type we consider is more accurately described as a generalisation of
the noninteractivity de�ned by �������	� Two fuzzy variables X and Y are weakly
noninteractive ���� or T �noninteractive ���� or ��independent ��� if

�XY �x� y	 � T ��X�x	� �Y �y		 ��x� y	 � supp �X � supp �Y �������	

where T is some t�norm other than min� Whilst it is easy to de�ne� very little com�
putation seems to have been done with weakly noninteractive fuzzy variables� The
�extension principle for T �noninteractive fuzzy variables is the general form ������	�
Dubois and Prade ����� pp�������� have derived some properties of additions of
T �noninteractive L�R fuzzy numbers for T � Z� W and + but have not made much
use of them� It is in fact possible to calculate arbitrarily good approximations to
the sup�T convolutions using the discretisation of the quantiles and the additive or
multiplicative generator decomposition of an Archimedean t�norm� We will study
T �noninteractive fuzzy additions further in chapter ��

The idea of strong non�fuzzy interaction is to restrict the joint membership fuc�
tion as follows�

�XY �x� y	 � min��X�x	� �Y �y		 ��x� y	 � D � supp �X � supp �Y �������	

This can be trivially extended to higher dimensions� Dubois and Prade ���� 
have used this idea to determine sums of �fuzzy probabilities �under the restric�
tion that probabilities always must sum to one	� Strong non�fuzzy interaction is
equivalent to the recently introduced statistical idea of regional dependence ���� �
Given two random variables U and V with FU � df�U	 and FV � df�V 	� the
idea of regional dependence is where the joint distribution FUV is only equal to
the product of the marginals on some limited region� FUV �u� v	 � FU�u	FV �v	 for
�u� v	 � D � suppFU�suppFV � Thus U and V are �independent on D� Regionally
dependent random variables can exhibit many of the characteristics of independence
such as zero correlation� constant regression functions and zero �local dependence
�see ���� 	� Strongly non�fuzzily interactive fuzzy variables have also been studied
by Dong and Wong ���� who have very brie�y considered how the �vertex method
���� �a generalisation of simple interval arithmetic on the level sets of member�
ship functions	 can handle such interactions which arise in the solution of certain
equations�

Strong fuzzy interaction is a further generalisation of strong non�fuzzy interaction
where the region D is a fuzzy set� In this case the joint membership function is given



by

�XY �x� y	 � min��X�x	� �Y �y	� �D�x� y		 ��x� y	 � supp�X�supp �Y � �������	

The fuzzy set �D is called a fuzzy relation� Although Dubois and Prade ����� p���
���� p��� discuss the possibility of calculating functions of strongly fuzzily interac�
tive fuzzy variables using a generalisation of the extension principle such as

�f�X�Y �D��z	 � sup
z�f�x�y�

�min��X�x	� �Y �y	� �D�x� y		 � �������	

they say that �the study of the properties� and even more the calculation� of
f�X�Y �D	 are in general very di
cult ����� p��� � We are unaware of any ex�
amples of such calculations in the literature� although very recently Sarna ���� has
considered the fast calculation of the related but simpler formula

sup
x�y

min��X�x	� �Y �y	� �D�x� y	 � �������	

where �X and �Y are rectangular or triangular fuzzy numbers and

�D�x� y	 �
min�x� y	

max�x� y	

with �D��� �	 � �� His results appear to be of little value for our purposes�

The fourth type of interaction is a further generalisation of �������	 which has
only really been noted in passing� Two fuzzy variables are weakly fuzzily interactive
����� p���� if

�XY �x� y	 � T �min��X�x	� �Y �y		� �D�x� y		� �������	

No examples using this have been presented�

Before we leave the topic of interactive fuzzy variables let us brie�y examine
the idea of measures of association� By analogy with measures of association in
probability theory �such as the correlation coe
cient	� Buckley has considered the
use of a single� or perhaps interval� parameter describing the �degree of association
between two fuzzy variables� Buckley and Siler have used �probabilistic analogies
rather freely ����� p���� to develop an ad hoc measure of association between
two fuzzy sets �not fuzzy numbers	� Their measure of association R is de�ned
�implicitly ����� p���� by a strongly probabilistic analogy� They consider the lower
and upper Fr�echet bounds for AND and OR operations and use R as a parameter
taking on values within ������ to give a mixture of the extreme rules� �This is
very similar to the parameterised families of bivariate probability distributions	�

Our criticism of Buckley and Siler�s approach is that they have e�ectively �put
the cart before the horse� They have suggested a way of using R to vary the
combination rules without�� saying where the values of R are to come from� Of
course an appeal could always be made to �subjective intuitive judgement � a
common panacea of subjective methods" Buckley has used these ideas in an expert

��Their unsupported statement that �The proposed measures �of association does �sic seem to o�er a
convenient way to estimate prior associations� ����� p���� notwithstanding�



system ���� � He has more recently turned his attention to interactive fuzzy numbers
�������� where he just de�nes the correlation coe
cient �but does not use it	 and
considers the e�ects of strong nonfuzzy interaction on sums and products of fuzzy
numbers� He considers the region D to be de�ned by the intersection of supp �X �
supp �Y and a quadrilateral region� His results seem to be of little value�

Our conclusion upon examining this material can be put as follows� The idea of
dependence �or interaction	 is more important in uncertain reasoning than the purely
�distributional� e�ects� In other words� dependence �or interactivity	 is something
arising in uncertain reasoning which has no real counterpart in the deterministic case�
Until acceptable theories of dependence are available� the theory of fuzzy variables
will remain de�cient� This is true even for purely subjective interpretations� Under
these interpretations there are still further di
culties in considering what is meant
by independence�dependence� See the discussion of this matter with regard to
subjective theories of probability in Popper�s Realism and the Aim of Science ���� �
the idea of independence turns out to be contradictory under such an interpretation�

��
�� The Modalities �Possible� and �Probable� and their Relationship
to Fuzzy Set Theory and Possibility Theory

It is natural to admit degrees of possibility and of necessity
as for probability�

� Didier Dubois and Henri Prade

There can be degrees of probability� but not of possibility�
� Alan White

The use of fuzzy numbers has lately been advocated in terms of their basis in
possibility theory� which is said to be quite di�erent to probability theory� We will
now present an analysis of the notions �possible and �probable and will suggest
that it is incorrect to talk about degrees of possibility in the manner of the advocates
of fuzzy set theory� The following review of interpretations of the modalities possible
and probable was motivated by the apparent lack of balance in fuzzy set theorists�
discussions of the topic�

Our main thesis is that the discussion to date on the interpretation of possibility
has been quite confused and mostly wrong� We will argue that the subjective empha�
sis is misplaced or overrated and that clear and consistent objective interpretations
of possibility are available� Furthermore such interpretations clear up the distinction
between possibility and probability and make clear the fact that possibility does not
admit degrees� That is� it is pointless to talk of �degrees of possibility� The main
point to keep in mind is that the split between epistemic and physical possibilities
closely mirrors that between epistemic and physical probabilities� We do not try to
argue for one or the other here �such arguments in the past have not resolved the
on�going debate	� but rather point out some advantages and disadvantages of these
two approaches� Our own preference is for the physical point of view�



All Kinds of Possibilities

Proponents of fuzzy set based possibility theories often allude to the �possibility
of modal logic ���� � stressing the distinction between these two concepts� Thus
Zadeh� in his well known paper Fuzzy Sets as a Basis for a Theory of Possibility�
says �The interpretation of the concept of possibility in the theory of possibility
�based on fuzzy sets is quite di�erent from that of modal logic� Four years later� in
a paper presented �appropriately enough�	 at the Sixth International Wittgenstein
symposium� he says�

The possibility theory which serves as a basis for test�score semantics is
distinct from � but not totally unrelated to � the possibility theories
related to modal logic and possible world semantics ����� p���� �

Dubois and Prade �������� have appealed to modal logic� and in particular Aris�
totle�s de�nition of necessity in terms of possibility �see below	� They do not make a
clear distinction between their notion of possibility �based on fuzzy sets	 and that of
ordinary modal logic� However they do distinguish between epistemic and physical
possibility� We examine this distinction further below�

Our purpose here is not to answer the question �What is possibility* or �What
is the true meaning or essence of possibility* Like Popper ������������ � we dismiss
such essentialist questions as being irrelevant� In any case� as Morgan has argued�

To ask for the �true meaning of necessity and possibility is parallel to
asking for the true meaning of negation� Such notions have no universally
constant meaning other than the minimal way they interact with our
acceptance of propositions of various sorts ����� p��� �

Instead� we will examine the distinctions between a number of di�erent concepts of
possibility� Hacking ���� distinguishes between many di�erent kinds of possibility�
�A di�erent classi�cation is given by Lacey ���� 	� The main distinction� which
is of medieval origin� is between de re modalities and de dicto modalities� This
division� which is still controversial� is explained as follows� De re modalities refer to
properties of things� whereas de dicto modalities refer to properties of propositions�
Thus we could talk of physical modalities �de re	 and epistemic �de dicto	 modalities�
Plantinga has discussed this distinction in some detail in ���� �

The notion of possibility is interpreted in modal logic by means of Kripkean
���� �possible worlds semantics ���� � This amounts to postulating an in�nity of
�possible worlds and explaining modal terms with respect to identity and common
properties �or accessibility ����� pp������ 	 across all possible worlds� An obvious
criticism of this� as Loux recognises� runs as follows ���� �

���Appropriately enough� because Wittgenstein developed a philosophy based on the meaning of words�
�Recall fuzzy set theory�s linguistic basis�� His famous blue book ���� opens with the question� �What is
the meaning of a word�� A number of philosophers� the most eminent being Karl Popper� have explicitly
argued against such a conception of philosophy ��������



The trouble with possible worlds� we want to say� is that they repre�
sent an exotic piece of metaphysical machinery� the armchair invention of
a speculative ontologist lacking what Bertrand Russell called �a robust
sense of reality�

Another di
culty is that interpreting �possibility in terms of possible worlds comes
very close to being a circular argument� We need not concern ourselves with possible
worlds further here �but see Morgan�s probabilistic semantics of modal terms below	�
and we simply refer the reader to �������� for the history of the subject� The
idea of possible worlds has been combined with the idea of fuzzy sets by Forbes in
chapter � of ���� � Noting what appears �to us	 to be a devastating self�criticism by
Forbes ����� p��� ��The role of modal logic is more to make the theses absolutely
precise than to facilitate any substantial consequences from them� � �	� we simply
state that Forbes attempts to use the idea of degree of membership in the possible
worlds setting to examine some s�orites type modal paradoxes associated with vague
transworld identity relations� We state his conclusions in his own words as we are
unable to follow his reasoning su
ciently to make them any clearer�

Thus while every de dicto modal thesis about identity has the same truth
value in the present framework as it has in the classical framework� a
di�erence emerges over the de re� not because identity somehow becomes
fuzzy� but because de re sentences introduce a new fuzzy relation� that
of counterparthood which in turn gives rise to degrees of possibility �����
p���� �

The Relationship between Possibility and Probability

Fuzzy set theorists often talk about the dual notions of possibility and necessity�
We shall see below that their idea of the interrelationship between possibility and
necessity is not shared by everyone� The duality they refer to is due to Aristotle and
is widely accepted in modal logic� It says that a proposition is necessary as soon as
the converse proposition is not possible� We will only concern ourselves here with
possibility�

The notion of possibility is hardly new in a probabilistic context� Recall the
equipossible de�nitions of probability �������� � It is interesting to note that whilst
the Greeks �e�g� Aristotle	 did have a notion of empirical �as opposed to logical	
possibility� and thus �believed in the existence of real contingency ����� p��� �
they did not develop a notion of the probable� nor did they observe the long run
stability of relative frequencies ����� pp�������� � This is quite surprising given their
penchant for gambling and given the similarities of their views otherwise� Sambursky
���� notes that the Stoics� who were� like Laplace� rigid determinists� interpreted
possibility in terms of equal ignorance� Hacking ���� recalls a remark of Boudet
���� that the �perennial question about probability is whether it is de re or de dicto
����� p���� � Thus we can distinguish between de dicto �epistemic	 probability and
de re �physical	 probability�



The mapping of the distinction between possibilities to probabilities and the
widespread distinction between the two types of probability is considered by Hacking
in ���� � Such a carrying across to probability of the distinctions between possibilities
makes sense if one can in fact de�ne probabilities in terms of possibilities� However�
as Hacking and others have observed� this is ultimately a circular exercise� to say
that some events are equipossible is simply to say that they are equally probable�
All this reinforces our view that it is pointless to talk of degrees of possibility� If
probability is interpreted as relative frequencies� or in terms of propensities �����
������� � such a circularity does not arise� The probability so de�ned is de�nitely
physical �de re	� The role of possibility in such a context is discussed below� Hacking
observes that Laplace� the champion of the epistemic view of probability� does in
fact make the de re�de dicto distinction�

When he �Laplace needs a word to refer to an unknown physical char�
acteristic he picks on �possibility using it in the old de re sense� This
was the language of his early papers� When he wants to emphasise the
epistemological concept which �nally captivated him� he uses �possibil�
ity in what he makes clear is the de dicto� epistemological sense �����
pp�������� �

We will now consider the place of possibility within objective theories of prob�
ability� Three authors� views on the matter are examined in some detail� We will
progress from the less to the more formal and rigorous� beginning with White ���� �

White	s Problematic and Existential Possibilities

White ���� actually distinguishes between existential and problematic probability
�p���	� He distinguishes these two concepts in terms of the possibility of �can and
that of �may�

Existential possibility� It is possible for X to V �can	�
Problematic possibility� It is possible that X Vs �may	�

He argues that it is problematic ��may	 possibility which is relevant to proba�
bility� White�s views on the relationship between possibility and probability are
summarised by saying�

Probability enters at this stage which is intermediate between the exclu�
sion of the possibility of something and the exclusion of the possibility of
its opposite � � � There can be degrees of probability� but not of possibil�
ity� Something can be highly probable or extremely improbable� but not
highly possible or extremely impossible� One thing can be more or less
probable but not more or less possible than another� The probability� but
not the possibility� of something can increase or decrease� Its possibility
can only appear or vanish ����� pp������ �



Modal Language Exact �Probabilistic	 Language�
x is possible There is a scienti�c theory in which Pr�x	  ��
x is contingent There is a scienti�c theory in which � � Pr�x	 � ��
x is necessary There is a scienti�c theory in which Pr�x	 � ��
x is impossible There is no scienti�c theory in which Pr�x	  ��
x is almost impossible There is a scienti�c theory in which Pr�x	 � ��
x is almost necessary There is a scienti�c theory in which Pr�x	 � ��

Table �
�� Bunge�s probabilistic interpretation of modal terms �����


White�s interpretation of probability is objective and he rejects both the epistemic
degrees of belief interpretation and the Keynesian propositional interpretation ����
��� � White says �The relation of probability to possibility is parallel with that of
con�dence to belief � � �� Furthermore �Just as there can be degrees of probability�
but not of possibility� so one can have degrees of con�dence but not of belief �����
p��� � The notion of possibility is not� for White� the opposite of necessity� but rather
it is the opposite of certainty� White also examines the de re�de dicto distinctions
and argues that de dicto modalities do not exist�

In the sense discussed� there is no such thing as modality de dicto� As
we saw in detail� a wide variety of things can be quali�ed by di�erent
modals� but it is a variety which can all be classed as de re� The danger
of the thesis that modality is de dicto is that it tempts one� particularly
with such modalities as necessity� possibility� probability and certainty� to
embrace subjective theories of modality according to which modality is
a characteristic of thought rather than that which can be thought about
����� p���� �

Bunge	s Probabilistic Degrees of Possibility and Necessity

Bunge ���� has views quite similar to those of White� Bunge argues that Aristotle�s
de�nition of necessity in terms of possibility is not applicable to physical possibility
because it ignores the component of circumstance �p���	� Bunge interprets proba�
bility in terms of propensities� but di�ers with Popper ���� in some respects� He
says that �Probability exacti�es possibility but not everything possible can be as�
signed a probability� Ignoring a number of points Bunge makes in his discussion of
the interpretation of possibility and probability� we can present his view simply by
reproducing table �� Bunge notes with respect to this table that �Whereas in modal
logic there is a gap between possibility and necessity� in a probabilistic context there
is a continuum between them ����� pp������ � He also remarks on what is essen�
tially Aristotle�s statistical interpretation of modality �although he does not call it
this� see ���� 	� This is the simple fact that �What is merely possible in the short
run �for a small sample or a short run of trials	 may become necessary or nearly so
in the long run ����� p��� � Finally note that �real possibility cannot be given an



)operational de�nition�� say in terms of frequency because whatever is measured is
actual� and not just possible� Probability as a degree of possibility was also consid�
ered by Kattso� �������� � who� however� used a Keynesian ���� propositional logic
framework� Hart ���� considered relative frequencies across possible worlds to give
degrees of possibility� Since this is based on the Kripkean possible worlds semantics
�see above	 it is of little interest to us�

Morgan	s Probabilistic Semantics for Modal Terms

Morgan ���� has developed a probabilistic semantics for propositional modal log�
ics� His motivation for doing this was a dissatisfaction with the standard �possible
worlds intepretation� which� apart from being circular �interpreting �possibility
in terms of possible worlds	� does not admit a rigorous quantitative foundation�
Morgan�s starting point is Popper�s work on conditional probability �see appendices
-ii�-iv of ���� and also ���������������� 	� We will not attempt to present Morgan�s
rather technical results in the limited space we have available here� Let us just say
that his probabilistic model of standard modal logic is provably sound and complete
and is a strict generalisation of any possible worlds model� Morgan also discusses
the mechanisms of belief updating and the choice of alternative logics� Although
arguing that his probabilistic semantics has considerable advantages �over the pos�
sible worlds semantics	� Morgan does not present his model as the only possible
solution� As well as having a greater computational complexity� the probabilistic
model �as currently developed	 only allows the changes in the belief of the necessity
of a proposition to occur in �rather large jumps ����� p���� � In any case� Mor�
gan has said elsewhere ����� p��� that a single unique and correct interpretation of
modality is unlikely�

Our confusion and uncertainties with regard to many modal proposi�
tions and many arguments containing the modalities is certainly strong
evidence in favour of the semantically underdetermined character of ne�
cessity and possibility�

Possibility as a Degree of E�ort

An alternative objective interpretation of possibility is due to von Mises� On page
�� of ���� Von Mises says how �ordinary speech recognises di�erent degrees of
possibility� He interprets possibility in terms of the varying degrees of �e�ort
involved in producing a particular outcome� This seems to be the sort of thing
Zadeh ���� had in mind when he spoke of the possibility of squeezing a certain
number of tennis balls into a box� The larger the number of balls� the lesser is the
possibility of doing it� the greater the degree of e�ort is required� Unfortunately
there does not seem to be much we can do with such an interpretation because the
�degree of e�ort does not seem to be adequately formalizable� Nevertheless it does
seem to be the concept of possibility that has been adopted by some proponents of
fuzzy set theory�



With a probabilistic type model we are answering a question about what
percentage of the number of times we perform an experiment will a given
outcome occur� Whereas with possibility we are addressing questions
about how easy it is for a particular outcome to occur ����� p���� �

Yager ���� does not de�ne or explain his notion of possibility apart from saying
that �In many instances the information with respect to the possibility distribution
associated with a variable can be inferred from information conveyed via natural
language� In other words� the degree of possibility is to be determined in terms of
membership functions of fuzzy sets�

Taking all the above into account� it still seems that von Mises� interpretation
of possibility as �the degree of ease is probability in disguise� Consider how we
think it is �hard ��requires a lot of e�ort	 to throw � bullseyes in a game of darts�
Considered in terms of scatter properties� this is just another way of saying that
with the given experimental arrangement� the probability of achieving this situation
is low� Thus the degree of ease interpretation seems quite useless for any practical
purposes�

Some Fuzzy Set Theorists	 Views

We now examine some fuzzy set theorists� views on the modalities of possible and
probable ���������������� � Dubois and Prade ���� distinguish between physical
and epistemic possibility�

The former pertains to whether it is di
cult or not to perform some
action� i�e� questions such as �is it possible to squeeze eight tennis balls
in this box* ����� p���� 

This obviously parallels the von Misian interpretation mentioned above� Dubois and
Prade are really only interested in epistemic subjective interpretations� and agree
with Zadeh that �epistemic possibility can be related to imprecise verbal state�
ments� Although they are ultimately interested in the subjective possibilities� they
do argue that �natural language statements are not the only reasonable source of
knowledge about the possibility of occurence of events� Thus �epistemic possibility
and statistical data are not completely unrelated �although as we shall see below�
their supposed relationship is by no means clear	� Dubois and Prade go on to con�
sider this relationship in more detail� Perhaps their clearest statement of how they
view the two concepts of possibility and probability is the following�

P �A	 denotes the probability of A� understood as how frequent A is� 
�A	
denotes the possibility of A� i�e� a number assessing someone�s knowledge
about this possibility� in rely to the question )may A occur*��

Later they say �p� ���	



Possibility is thus a weak notion of evidence� In �particular what is
probable must be possible but not conversely� so that we may require
grades of probability to act as lower bounds on grades of possibility�

We shall discuss Dubois and Prade�s possibility and necessity measures below in
section ������ This idea of possibility as an upper bound for probability has been
developed further by Giles� We will now examine his arguments�

Giles	 Interpretation of Possibility as an Upper Bound on Probability

Giles �������� has made a careful study of the relationship between possibility�
probability and necessity in fuzzy set theory and has developed an interpretation
along the same lines as ours in that he makes use of lower and upper probabilities�

Giles� motivation for his work is that the �ordinary approach to fuzzy sets

gives no indication of how one is to decide what particular numerical value
to assign to a grade of membership �possibility etc�	 in a given situation�
or of how one should use such values in �for instance	 decision making�
As a result� the grounds for application of the resulting theory are� to say
the least� very insecure ����� p���� �

He goes on to develop a de�nition of grades of membership in terms of �test�
procedures� A grade of membership is de�ned in terms of bets on the outcome
of these test�procedures�

Giles� betting interpretation� which is based on the Bayesian ideas of de Finetti�
Lindley and Savage� is more general than their methods because �we are not obliged
to retain the assumption that every rational agent should be a )Bayesian agent��
Thus Giles� interpretation �partially	 answers the criticisms of the betting interpre�
tation of probability put forward by Popper ����� p��� � Giles also admits �����
p���� that his interpretation is not the only correct or valid one�

Giles� interpretation is of particular interest to us because of his consideration of
possibility in terms of lower and upper probabilities� He introduces these ideas as
follows�

Any rational agent behaves as though he believes that each proposition
A has some �true probability� but he is not himself aware of its value�
knowing only that it lies in the closed interval �p
�A	� pu�A	 �

Perhaps the best exposition of Giles� ideas is his paper ���� � In this he says how
�we interpret the assignment of a degree of possibility to A as an assignment of an
upper bound on the probability of A� Most interesting for us are Giles� results
characterising possibility functions� Without presenting all the de�nitions and in�
troductory material necessary for a complete understanding of his results� we can
give an idea of their �avour ����� p���� �



�Theorem �	 If f
ij i � Ig is a set of possibility functions then 
� where�
for every proposition A 
�a	 � supf
i ji � Ig� is also a possibility func�
tion�
�Example �	 Let P be any nonempty set of probability measures on �some
Boolean algebra B


P �A	 � supfp�A	j p � Pg �A � B	 �������	

then P is a possibility function� �This example is very important� for
every possibility function arises in this way�
�Theorem �	 If 
 is any possibility function then there exists a nonempty
set P of probability measures on T �a totally disconnected compact Haus�
dor� space such that B is isomorphic to the Boolean algebra of all closed
and open subsets of T  such that 
 � 
P � where P is de�ned by �������	�

He interprets theorem � as saying that

every rational agent behaves as though he believes each proposition A has
some objective probability p�A	 of being true� the probability assignment
p� however� not being known precisely� but known only to be in a subset
of P of all probability assignments� For he who has such a belief will o�er
to bet only if he would not expect to lose no matter where p lies in P �
�p� ���	

This use of lower and upper bounds on probabilities is identical to that which we
advocated in chapter �� Note that one can adopt this interpretation without neces�
sarily talking of a betting interpretation of probability� The probability of an event
�which we assume to be an objective quantity	 is unknown� We know bounds on
this though� and we work with these bounds in much the same manner that we use
ordinary interval arithmetic for calculating with simple quantities� when we only
know lower and upper bounds on the quantities�

An important departure from Giles� interpretation occurs however when we con�
sider the combination operations� We have already seen that in fuzzy set theory
possibility measures are combined using the �T operations� These correspond to our
lower dependency bounds� The upper bounds are combined and calculated with
the �T operations� However we use these operations without introducing the idea
of �possibility� Furthermore� for the oft used special case of T � M � we have the
fact that �T � �T ����� theorem ����� � In this case our lower and upper dependency
bounds are identical�

Giles has also brie�y mentioned the more general idea of belief structures �set
of all acceptable bets	 of rational agents corresponding to closed convex sets of
probability measures ����� p���� � This idea has been discussed in more detail in
section ��� where we discuss the work of Kyburg and others on lower and upper
probabilities�



Some Possible Conclusions� or The Necessity of Probable Possibility

What can we conclude from this general discussion of the modal terms �possible
and �probable* Firstly it is apparent that there is no consensus as to how these
terms are related and what role the various notions should play in the examination
of uncertainty� Secondly� the �degrees of possibility that fuzzy set theorists talk
about only make sense if possibility and probability are considered in an epistemic
sense� We have also seen that the epistemic�objective �de dicto�de re	 distinction
applies equally well to possibility and probability� Furthermore� if an objective
interpretation is accepted� then probability is the degree or measure of possibility�
The notion of degree of possibility as somehow corresponding to a degree of e�ort or
di
culty does not seem tenable� Nor do the �possible worlds semantics seem very
valuable in this regard� We have also seen attempts �Giles	 to consider possibility
and probability in terms of bounds� We have examined this idea elsewhere �sections
��� and ���	 where we review work along the same lines as our interpretation of the
fuzzy set theoretic operations in terms of dependency bounds�

��
�� The Relationship Between Probability Theory and Fuzzy Set The�
ory

Ultimately we may think of bridging the gap between fuzzy
interval arithmetic and the calculus of random variables�

i�e� embedding both into a unique setting�
� Didier Dubois and Henri Prade

Arti�cial Intelligence is philosophical explication turned
into computer programs�

� Clark Glymour

We will now attempt to brie�y review various arguments on the topic of proba�
bility theory versus�� fuzzy set theory� and their general interrelationship� This is�
after twenty��ve years� still a contentious topic� We have certainly not aimed for
completeness �that would require far more space	� but we have aimed to be rea�
sonably representative� Although our preference should quickly become apparent
anyway� let us explicitly state our opinions here� We feel that fuzzy set theory is
of little value in engineering applications� Our reasons for this conclusion are sev�
eral� but the main two are the philosophical basis �which we believe to be confused
and wrong	� and the practical e
cacy �apparently close to zero� when reasonably
compared with probability theory	� Since we do not have space to fully develop
our arguments� we do not expect to convert many people in the following text�
Nevertheless we feel the issue too important to pass over in silence�

A lot of the debate between proponents of probability and fuzzy set theory is
essentially philosophical� Whilst the immediate reaction of the engineer is to avoid
this �just get on with building something that works	� it turns out that this is neither
desirable nor possible� This is especially true given that one of the main application

��As many people have observed� the question is really less a matter of probability versus fuzzy set
theory than a balanced comparison of their merits� The point is that the two approaches can be� and have
been� combined in a number of di�erent ways� Nevertheless� since it is the purpose of the present section
to highlight the di�erences� asking the question in the above form is reasonable�



areas for the methods we have been discussing is Arti�cial Intelligence� We agree
with Glymour who says that arti�cial intelligence is philosophy� He argues that

Since AI is philosophy� the philosophical theory a program implements
should be explicit� Any claim that a program solves some well�studied
problem� � � � but doesn�t say how� should be disbelieved ����� p���� �

We aim to show� inter alia� that the philosophical basis of fuzzy set theory is inad�
equate for engineering and arti�cial intelligence problems�

One of the di
culties in critically discussing fuzzy set theory was explained by
Cheeseman as follows�

Unfortunately this �the comparison between fuzzy and non�fuzzy theories 
is not as easy as it sounds because the �fuzzy approach is itself fuzzy
� there are fuzzy sets� fuzzy logic� possibility theory and various higher
order generalisations of these �e�g� fuzzy numbers within fuzzy set theory	�
This diversity complicates the task of critiquing the fuzzy approach �����
p��� �

Toth ���� has recently tried to clarify some of the distinctions� and to develop a
more rigorous foundation for fuzzy set�theory� The reason we mention Cheeseman�s
complaint is that because of the variety of di�erent views� it is di
cult to know
which to criticise� any criticism can be de�ected by changing ground slightly� In
general we will refrain from attacking the most absurd and the weakest arguments
in favour of fuzzy set theory� and we will concentrate on what appears to be the
most useful material���

To us� the two most convincing arguments are as follows�

�� The whole enterprise of fuzzy set theory is based on the �inherent imprecision
of natural language� This is supposed to be an �uncertainty of a completely
di�erent kind to the uncertainty of probability theory� It has its roots in s�orites
type paradoxes ���������� � Arbib ��� has presented a simple argument against
this� He observes that although �people can certainly draw a )degree of tallness�
curve if pushed to it� � � � this does not show that our concept of tallness has such
a form ���� p���� � He goes on to note that vague terms are normally context
sensitive �a notion fuzzy set theory either ignores� or handles in a very poor
manner	� and that natural language is not �inherently imprecise� although it
may be used imprecisely in some circumstances�

Perhaps the most distressing mistake of fuzzy set theorists is to be�
lieve that a natural language like English is imprecise� The fact that

��We allow ourselves one irresistable exception� namely Goguen�s argument for the �social nature of
truth� ���	� Goguen� upon realising the di�culties in actually determining grades of membership or
degrees of truth� suggested that the notion of objective truth was not as useful as one based on social con�
sensus� �This paper suggests we must abandon classical presuppositions about truth� and view assertions
in their social context� ���	� p���� Whilst this may appeal to totalitarian governments� it has little to
recommend it otherwise�



many people use English badly is no proof of inherent imprecision
���� p���� �

In any case� the point at issue� for practical purposes� is the referent of a word
�what the word describes	� rather than the word itself� A concentration on
linguistic aspects was the cause for severe di
culties in a stream of twentieth
century philosophy which followed Ludwig Wittgenstein �see ��� 	�

�� Our second argument is more appealing to the engineer� Fuzzy set theory based
methods do not work� More precisely� it seems generally fair to say that fuzzy
set theory has not been used to develop any methods for any problems that
are demonstrably better than probabilistic or non�fuzzy methods� Although
numerous applications have been reported� the �fuzziness of the methods is
not essential to any success they may have� Furthermore there has been very
little hard�headed and honest comparison with non�fuzzy techniques� We will
use the example of fuzzy control to illustrate this point below�

Regarding the general applicability of fuzzy set theory� Zeleny ����� p���� has
argued that apart from human decision making and judgement� �there are no
other areas of application� We agree with this� but would even question the
applicability to human decision making���

Fuzzy Control

An example of a suggested engineering application of fuzzy set theory is fuzzy con�
trol� The idea of this� which seems to have been �rst studied by Mamdami ���� �
is to develop automatic controllers for dynamic plants by using linguistic informa�
tion obtained by questioning human operators of the plant� That is� one asks the
operator how he controls the plant� and then incorporates these �fuzzy rules into
an automatic controller� It is suggested that this approach �which does still seem
to show some promise	 is suitable for highly non�linear plants which it is di
cult to
model explicitly� A survey of fuzzy control is given by Sugeno ���� � Fuzzy control
is considered to be one of the most developed and �successful application�s of the
theory of fuzzy sets ����� p���� � Sugeno argues that �Fuzzy control is without
doubt one of the most exciting and promising �elds in fuzzy engineering ���� �
Not only are the fuzzy controllers rarely compared with the classical designs� but
when they are� it is only with the simplest PID �Proportional� Integral� Derivative	
controllers and little advantage �if any	 is claimed ���� � The main disadvantage of
fuzzy control �and this is admitted by Sugeno in his survey ����� p��� 	 is that there
are no analytical tools to test the stability of these controllers� Furthermore� as has

��Some authors consider fuzzy set theory as a purely mathematical theory and suggest that it be judged
on its mathematical merits� Whilst we admit that there has been some very interesting mathematical
work �especially by H�ohle� Lowen and others�� we generally agree with MacLane�s assessment �see ����
and the papers following� that most of fuzzy mathematics is valueless� It is believed that there are far
too many mistakes and that most of the results are trivial� �A cynic might say that the same argument
applies to all modern mathematics� to which we would reply �perhaps� but it applies more so to fuzzy
mathematics��� See also Johnstone�s open letter to Ian Graham� �Fuzzy mathematics is NOT an excuse
for fuzzy thinking� �����



been recently shown by Buckley and Ying ���� � many fuzzy controllers are more
closely related to linear controllers than previously thought� As the number of rules
in a fuzzy linear controller is increased� its behaviour approaches that of a simple
linear controller�

We argue that it is more the structure of the fuzzy controllers �such as those
discussed in ������������ 	 rather than the use of fuzziness per se that contributes
to their performance� In fact� there exists a little known probabilistic analogue to
these fuzzy controllers� Black ������ has developed a method based on conditional
expectation arrays which would appear to be a considerable advance over the fuzzy
controllers �for the application areas envisaged	� The aim of Black�s work is similar�
control of plants which can not be readily modelled� but which seem to be control�
lable by a human operator� Not only do Black�s methods appear to perform better�
but they have a sounder basis� Rather than implementing what the operator says he
does� the conditional expectation controller observes what he actually does� and im�
plements control laws based on these observations� Although some fuzzy controllers
which adapt according to the operator�s actions have been reported ���� �see also
����� p��� 	� these are the exception to the rule� Czoga.la ���� has suggested the use
of combined fuzzy and probabilistic control rules� Further work is needed in order
to determine the practical value of this�

To sum up� fuzzy controllers� if one of the most successful applications of fuzzy set
theory� are not a good case for the practical value of fuzzy set theory for engineering
applications� Whilst the methods do seem to work� they are little or no better than
alternative approaches� and perhaps more importantly� there are no analytical means
to test stability and robustness� �Admittedly the second point applies equally to
Black�s fuzzy expectation array controllers at present�	 A more detailed comparison
of fuzzy set based methods and probabilistic methods for a speci�c engineering
problem can be found in ���� �

Discussions of the Relationship between Fuzzy Set Theory and Probability

Theory in the Literature

Let us now note some of the previous literature which compares fuzzy set theory
with probability theory� and which discusses the foundations of fuzzy set theory�
There does not yet appear to exist a comprehensive �and balanced	 discussion of
these topics�

Several authors �������� feel that there is value in saying that� to an extent�
probability and possibility �fuzzy set theory	 convey �roughly the same information�
�This is sometimes called the �possibility�probability consistency principle���	 Muir
���� has shown that restricting fuzzy set theory in order to save the law of excluded
middle results in a probabilistic Boolean algebra� In ����� p���� he gives a more
discursive account of these matters� He notes �as we have done already � see section
�����	 that fuzzy set theory does not provide su
cient mechanisms for dealing with

���This informal principle may be translated as� the degree of possibility of an event is greater than
or equal to its degree of probability� which must be itself greater than or equal to its degree of necessity�
����� p�����



relationships �dependence	�

Ralsecu ���� has argued that probability and fuzzy set theory can be combined
by considering fuzzy random variables �������� �random variables taking on inexact
values	� Goodman ���� has considered interconnections between fuzzy sets and
random sets� This provides a bridge between fuzzy sets and probability theory� It
is along quite di�erent lines to that which we have proceeded�

An interesting episode is the discussion of Cox�s theorem� by Zadeh and others
������������ � Cox�s theorem ���� says that under a number of reasonable assump�
tions �including additivity	� probability is the only measure of uncertainty� �In other
words� given a few reasonable axioms for a measure of uncertainty� probability is
the only one which satis�es all of them�	 Lindley ���� argues along similar lines
and concludes that no reasonable �scoring rule will lead to the combination laws of
fuzzy sets� Zadeh�s reply ����� pp������ is of considerable interest� Zadeh says that
he would agree with Lindley�s conclusions were it not for the necessary assumption
of additivity� �There would be no issue to argue about if Professor Lindley�s pa�
per were )Scoring rules and the inevitability of probability under additivity�� �See
also page ��� of ���� 	� Since we �and others	 have shown that the �non�additive	
fuzzy set theoretic combination rules arise naturally in probability theory when one
makes no independence assumptions� Zadeh�s comment seems to imply a tacit agree�
ment with our conclusion� Fuzzy set theory is e�ectively no di�erent to the use of
probability theory when independence is not assumed�

Some Further Discussions� Hisdal� Cheeseman and Others

Hisdal is another author who has examined the relationship between fuzzy sets and
probability and has studied the interpretation of grades of membership �������� �
She has developed an alternative foundation for fuzzy set theory which she calls the
TEE model �Threshold� Error� and assumption of Equivalence	 �������� � This was
developed in response to a number of perceived inadequacies of the standard theory
���� �such as the ad hoc modi�cations often necessary to the combination rules�
the plethora of combination operators that have been proposed ��� � the lack of con�
sensus on the interpretation of membership functions� and questions on the place
of probability in fuzzy set theory �������� 	� We do not have space to summarise
Hisdal�s rather intricate model� Let it su
ce to say that Hisdal seems unaware of
the probabilistic Boole�Fr�echet bound interpretation of the standard fuzzy set com�
bination operators� In fact she derives �to the credit of her TEE model	 combination
formulae di�erent to the standard min�max rules�

A number of authors have noticed the connexion between the Boole�Fr�echet
bounds and the fuzzy set operators� We have already discussed this point in section
������ Let us now just make a few additional remarks� Cheeseman ���� � who
has noticed the connexion� has gone on to argue that one can use probabilities
to do things which fuzzy set theorists maintain can only be done with fuzzy sets�
The important point� he says� is that a strict frequentist view of probability is not
always necessary� By admitting subjective probabilities� many �fuzzy problems
are solvable by probabilistic means� Cheeseman argues that probability theory is



a richer and more powerful framework than fuzzy set theory because it allows the
rigorous representation of dependencies� He agrees with Stallings ���� that for any
given problem� probability based methods seem at least as good as� or better than�
fuzzy set based methods� Zadeh�s reply ���� to Cheeseman is weakly argued and
essentially comprises proof by example and proof by vehement assertion �see ��� 	�

Grosof �������� and Heckerman ���� have both shown how a large number of
measures of uncertainty �including fuzzy sets	 which have been proposed recently
can be given straight�forward probabilistic intepretations� Wise� Henrion� Ruspini�
Appelbaum and others have also compared fuzzy set theory with probability� See
our discussion of their work in section ������ Henrion ���� has presented a closely
reasoned argument in favour of probabilistic methods for handling uncertainty in ar�
ti�cial intelligence� As well as pointing out that probabilities can be used in a wider
range of problems than sometimes stated� he notes several advantages of probabilis�
tic schemes over non�probabilistic ones �including fuzzy set methods	� These include
the ability to take account of the non�independence of di�erent sources of evidence�
Whilst there are computational problems with probabilistic methods �see the con�
cluding chapter of this thesis	� these can be overcome by Monte�Carlo methods �his
�logic sampling	� This points out another disadvantage of fuzzy methods� There
is no way one can simulate the correct result to check the validity of a proposed
computation method�

Concluding Remarks

Fuzzy set theory is based on the misguided premise that �People reason with words�
not numbers ����� p��� �they do neither� they reason with ideas	� Thus the lin�
guistic basis is the wrong starting point even for purely human problems� Even if
this �rst point is not admitted� then fuzzy sets are still of very little use for engi�
neering problems� Recall the example of fuzzy control� It seems to be much better
engineering to observe what an operator does than to ask him to say what he does�
In any case� there is still no convincing argument that fuzzy sets are either correct
or necessary in dealing with the �inherent imprecision of natural language� When
one considers the practical e
cacy of fuzzy methods the story is the same� there is
no evidence for superiority over probabilistic methods� neither in the breadth of the
possible domains of application nor in the performance in a given domain� Finally�
we have the argument which we feel clinches the matter� the fuzzy set theory combi�
nation operations can be explained simply in probabilistic terms by considering the
situation where no dependency information is available� The other supposed advan�
tages of fuzzy set theory over probability theory are also untenable� For example�
it is often said that the frequentist interpretation of probability theory severely re�
stricts its domain of application to repeatable experiments� This is incorrect� Either
the subjective or the propensity interpretations of probability can assign meaning
to the probability of singular events�

We conclude by speculating that one of the reasons for the appeal of fuzzy set
theory� particularly in the �eld of arti�cial intelligence� is that naive introspection
can lead one to believe that fuzzy sets do accurately model human thinking� The



goal of AI at present seems to be to mimic or implement human thinking on a
computer� We suggest� following Lem ���� � in fact the wrong goal� for engineering
applications� Certainly intelligent machines are desired� but that does not mean they
have to have anything in common with human intelligence� Lem has noted �in a
retrospective review of military history of the ��st century	 that arti�cial intelligence
�became a force to be reckoned with precisely because it did not become the machine
embodiment of the human mind ����� pp������ �

��
�� Con�dence Curves� Possibility and Necessity Measures and Inter�
val Fuzzy Numbers

There is a little known statistical technique known as con�dence curves which seems
to be surprisingly closely related to fuzzy numbers� We will now explore this rela�
tionship� Our aim is not to show that they are identical �they are not	� but rather
to show that the �intuitive information they capture is nearly identical�

Con�dence Curves� Their De�nition and Application

Con�dence curves were introduced by Cox ���� in ����� They were developed
further by Birnbaum ������ but have received very little attention since��� The
basic idea of con�dence curves is to have a set of nested con�dence intervals for
some parameter at di�erent con�dence levels� Cox�s motivation for this was that
the ordinary con�dence intervals do not give any measure of the �informativeness
of a sample�

�W hen we write down the con�dence interval

�x� ������
p
n� x � ������

p
n	

for a completely unknown normal mean� there is certainly a sense in which
the unknown mean � is likely to lie near the centre of the interval� and
rather unlikely to lie near the ends and in which� in this case� even if �
does lie outside the interval� it is probably not far outside� The usual
theory of con�dence intervals gives no direct expression of these facts
����� p���� �

Birnbaum ��� de�nes con�dence curves as follows�

For each c� � � c � ���� let �L�t� c	 and �U�t� c	 respectively� denote lower
and upper con�dence limits for an unknown parameter � at the � � c
level� based on the observed value of some suitable statistic t� Such a
pair of estimates also represents a � � �c level con�dence interval� In
the ��� c	 plane� for each c � ��� plot the two points ��L�t� c	� c	 and

��Consultation of the Science Citation Index revealed the only references to Birnbaum�s two papers were
�� By Birnbaum� but not concerned with con�dence curves� �� Irrelevant �said nothing of value with regard
to con�dence curves�� or �� The papers by Kiefer ���� and Mau ���� which we discuss below�
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Figure �
�� A typical con�dence curve �after Birnbaum �����


��U�t� c	� c	� For c � ���� we have �L�t� c	 � �U�t� c	� which is a median�
unbiased point estimate of �� represented by the point ��L�t� ���	� ���	 � � �
We denote this graph� or the function of � which it represents� by c��� t	�
In most problems of interest such a graph is continuous and resembles
that in �gure ��� ���� p���� �

Birnbaum ���� p���� gives the following simple example of a con�dence curve� Con�
sider an estimate of �� the mean of a normally distributed random variable with unit
variance� Then

c��� x	 �

�
'�� � x	� �� � � � x
� �'�� � x	� x � � � ��

�������	

There are many problems which arise in the use of con�dence curves� particularly
admissibility� These are considered by Birnbaum in some detail in ��� �

Further Work on Con�dence Curves for Statistical Inference

We will now examine Kiefer and Mau�s comments on con�dence curves� �This con�
stitutes a comprehensive literature review of the topic"	 Kiefer ���� mentioned
con�dence curves in his criticism of the general theory of con�dence intervals� His
main complaint can be best described by the following simple example �see ���� 	�
Choose between two hypotheses H�� df�X	 � N��� �	 and H�� df�X	 � N��� �	 on
the basis of a single observation x of X� The standard procedure would be to not
reject H� ��accept	 if x � ��� and accept H� if x 	 ���� the probability being
����� that a correct decison will follow from this procedure� Kiefer�s complaint is
that given two di�erent observations x � ��� or x � ���� the same degree of con�
clusiveness is expressed by the test� Similar complaints have been voiced by other
authors �������������������� � and it is often said that con�dence intervals give good
estimates of the validity of conclusion before the data has been seen� but not after�
wards� Kiefer�s solution is to use conditional con�dence intervals ������������ � For
the above problem� this would involve partitioning the sample space into �for ex�
ample	 three sets� ���� � � ����	� ��� � � ��� � and ��� � � The probability of the
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Figure �
�� A Fuzzy Number �FN� and a Flat Fuzzy Number �FFN�

correctness of the decision to accept or reject H� is now conditional on which of
these sets the sample value x falls within� The probabilities are ������� ����� and
����� respectively� Kiefer says ����� p���� that the method of nested con�dence sets
�con�dence curves	� although it �does have the frequentist interpretation of con��
dence� without conditioning �it su�ers from the the same defect as �the example
above � This is not necessarily true �although considerable further research is re�
quired to resolve the problem completely	� Birnbaum ���� p���� has given di�erent
con�dence curves for di�erent sample values x� The intuitively �more informative
sample gives a narrower con�dence curve� re�ecting a more conclusive result��	 It
is surprising that these ideas have received such little attention in the literature�

Mau ���� has recently examined the use of con�dence curves �he calls them
con�dence distributions	� He carefully derives some of the properties of con�dence
distributions and shows how their use �quanti�es the strength of evidence against a
null hypothesis in the light of given data ����� p���� He also develops properties of
central and symmetric con�dence distributions� One of the most interesting points
Mau makes is that con�dence distribution procedures are very similar to Bayesian
procedures� In fact� with one restriction� Mau�s formula for updating a con�dence
distribution �in the process of accumulating data	 is essentially Bayes�s formula�
This connexion between the two sides of statistical inference is very interesting and
deserves further research�

Relationship Between Con�dence Curves and Fuzzy Numbers

Our motivation for examining the relationship between con�dence curves and fuzzy
numbers comes from comparing �gure ����	 with �gure ����	� Apart from the factor
of two di�erence in the vertical scaling� these two graphical representations are very
similar� Furthermore the con�dence curve is very directly related to the distribution
function of the quantity in question� �Recall equation �������	 There are several

��Birnbaum�s example is for a two sample test of the di�erence between two quantities�
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Figure �
�� Membership function constructed from histogram data

di�erent approaches for developing a tighter analogy between the two concepts� We
will examine the possibility of conditional con�dence curves as an analogy of �at
fuzzy numbers below� For now� let us consider two ideas relating fuzzy numbers and
statistical data�

Dubois and Prade ����� pp�������� have discussed how to determine member�
ship functions �possibility distributions	 from statistical data� They begin with a
nested set of intervals fIigni�� such that

�a� b � I� � I� � 
 
 
 � In � �A�B � �������	

They consider a series of q �imprecise experiments for which the outcome is an
interval �ak� bk �k � �� � � � � q	� They impose a consistency requirement that�

i����q

�ai� bi � �a� b �� 	 �������	

and let �A�B �
S
i����q�ai� bi � Then they construct a �possibility distribution or

membership function �F �x	 along the following lines �although their notation and
presentation is rather di�erent	�

�F �x	 �

�����
����

� if x �� In
�
q

nP
j��

jfkj � � k � q� �ak� bk � Ij n Ij��gj if x � In n I�
� if x � I�

�������	

The result is a membership function which looks something like �gure ����	� Apart
from the maximum value being � rather than ���� this is identical to the con�dence



curve procedure � the vertical scale being �degree of membership rather than
�con�dence� Thus at least for �statistical data the fuzzy set method provides no
more information or insight than the classical probabilistic methods� �Admittedly
this is not the domain of application that proponents of fuzzy set theory have aimed
for� We return to this later�	

Dubois and Prade go on to suggest the use of possibility and necessity measures
based on the above acquistion procedure� McCain ���� has also considered a con�
�dence interval interpretation of fuzzy numbers� However his hard to follow paper
says very little of substance� The construction of membership functions from statis�
tical data has also been considered by Civanlar and Trussell ���� � Their conclusions
are of negligible value�

Interval Fuzzy Numbers� Possibility and NecessityMeasures� Lower and Upper
Probability Distributions and Higher Order Fuzzy Numbers

We will now examine Dubois and Prade�s possibility and necessity measures and
their relationship with lower and upper probability distributions� We will follow the
presentation in ���� � More detail can be found in ���� � Further work on �interval
valued fuzzy numbers and higher order fuzzy sets �a related idea	 can be found in
�������������������� �

Possibility and necessity measures are �con�dence measures that satisfy

+�A � B	 � max�+�A	�+�B		

and
N�A � B	 � min�N�A	� N�B		

respectively for any �events A and B� They are related by

+�A	 � � �N�A	�

Given a �possibility distribution 
��	 �corresponding to a membership function
���		 this means that

+�A	 � supf
��	j� � ag �������	

and
N�A	 � inff�� 
��	j� �� Ag� �������	

The relationship between possibility distributions and possibility measures is con�
sidered to be analogous to the relationship between probability densities and prob�
ability distributions� Possibility measures have the property that +�

S
i�I Ai	 �

supi�I +�Ai	� Dubois and Prade show that possibility and necessity measures are
related to probability by

N�A	 � P �A	 � +�A	�

They present the theory of fuzzy numbers in terms of possibility theory and show
how a fuzzy number �or� as they prefer to say� a fuzzy interval	 describes lower and
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Figure �
�	� Lower and upper probability distributions for which there is no corresponding
normal fuzzy number

upper probability distributions as follows�

F ��u	 � P ����� u 	 � +����� u 	 � supf�Q�r	j r � ug
�

�
�Q�u	 u � q��
� u 	 q��

and

F��u	 � P ����� u 	 � N����� u 	 � inff�� �Q�r	j r 	 ug
�

�
� u � q��
�� �Q�u�	 u  q��

The fuzzy quantity Q has a membership function with a ��at in the interval �q�� q� 
�corresponding to the region b in �gure ����	� When there is no �at �q� � q�	� there
is only one value of x �x � q�	 such that F��x	 � � and F ��x	 � �� Since the lower
and probability distributions are derived from normal fuzzy numbers� the situation
depicted in �gure �����	 can never occur� Admittedly� by sacri�cing normality� one
could stretch the analogy to cover this case� We feel that taking the lower and
upper probability distributions as primary �as bounds on some inaccurately known
probability distribution	 is preferable to the above approach�

Finally we note in passing that Dubois and Prade have used the connexion be�
tween possibility and necessity measures and lower and upper probability distribu�
tions in order to de�ne and study the properties of the �mean value of a fuzzy
number ���� � They de�ne expectations of fuzzy numbers in terms of the expecta�
tions of random variables which have the lower and upper probability distributions�
They also note some connexions with the theory of random sets �������� � Dubois
and Prade�s ����� p���� suggestions for further research include a study of the de�
termination of P�M �N	 in terms of P�M	 and P�N	 where

P�Q	 � fP j �A measurable� +�A	  P �A	  N�A	g



for some fuzzy number Q� where � denotes the sup�min convolution and +�A	 and
N�A	 are de�ned above� Our dependency bounds in chapter � essentially answer
this question for a more general class of probability measures� Dubois and Prade
����� p���� also discuss the relationship between their notion of a fuzzy number and
H�ohle�s �and others � see the beginning of section ��� and section ���	� Dubois and
Prade�s conclusion is of some interest to us� They say that �Ultimately we may think
of bridging the gap between fuzzy interval arithmetic and the calculus of random
variables� i�e� embedding both into a unique setting ����� p���� � This has been our
aim in the present section� We conclude by saying that there is a reasonably close
correspondence between membership functions and con�dence curves� This par�
allels the correspondence between possibility�necessity measures and lower�upper
distribution functions�

��	 General Interpretations  Positivist vs Realist

All the things in fact� that we approached by our senses
reason or intellect are so di�erent from one another that

there is no precise equality between them�
� Nicolas Cusanus ���
�������

Elaboration of this idea leads to the concept of a space in
which a distribution function rather than a de�nite number

is associated with every pair of elements�
� Karl Menger

The object of this section is to compare two points of view for using distribu�
tion functions as a generalisation of numbers� One approach is that which we have
adopted� This entails taking the view of random variables of orthodox �Kolmogorov	
probability theory� The random variables are the primary entities and they are ma�
nipulated in terms of their distribution functions� The other viewpoint is that taken
in the development of probabilistic metric spaces� In this case the distribution func�
tions are considered primary and operations are performed on distribution functions
without reference to any underlying random variables�

We shall see that one of the advantages of the latter viewpoint no longer holds�
It was originally adopted for two reasons� The �rst was the severe mathematical
di
culties arising in the random variable viewpoint because of intricate dependency
relations� The second was that there were many functions of distribution functions
which were not expressible in terms of random variables��� The interpretation of
the �T�L and �T�L operations as dependency bounds changes this� because now these
operations can be interpreted in terms of random variables�

����� Probabilistic Metric Spaces

We now present a very brief outline of the theory of probabilistic metric spaces�
More details can be found in the excellent book by Schweizer and Sklar ���� � See

�	Historically this statement is not true � the reasons why the development of probabilistic metric
spaces went the way it did are more complex than the few sentences above would indicate� However� the
main point �that the random variable viewpoint did not allow all operations� is true�



also the review of the book by Brooke ���� who mentions some of the possible
physical applications of the theory� Rosen �������� has also considered the idea
and suggested uses in physics�

The original idea of probabilistic metric spaces was proposed by Menger �����
��� who was motivated by Poincar�e�s paradox �������� �see also ����� p���� 	�
Poincar�e noted that for physical measurements� given that A � B and B � C� one
could not necessarily conclude that A � C when the equality relation is interpreted
physically� Menger suggested that a distribution function be associated with each
pair of quantities� thus providing a generalisation of the notion of a metric space
��rst introduced by Fr�echet in ����	�

The distribution function associated with two elements of a statistical
metric space might be said to give� for every x� the probability that the
distance between the two points in question does not exceed x ���� �

Menger subsequently developed his ideas further in ���� where he suggested that
the theory could be applied to psychophysics and physics �both microscopic and
macroscopic	�

Menger�s original proposal was for triangle functions T such that� inter alia� the
triangle inequality

Fpr�x � y	  T �Fpq�x	� Fqr�y		 ������	

would hold �Fpr is the distance distribution function for the two points p and r	�
Wald ���� suggested that ������	 could be replaced by

Fpr�x	  �Fpq � Fqr	�x	 ������	

where � denotes convolution� This has the simple probabilistic interpretation that
the probability that the distance from p to r is less than x is at least as large as the
probability that the sum of the distances from p to q and from q to r� regarded as
independent� is less than x� These Wald spaces have not generated much interest or
many results because of the severe mathematical di
culties caused by the complex
dependency structure induced on the underlying random variables�

The majority of the work on probabilistic metric spaces has taken the original
approach of Menger� and studied a variety of di�erent triangle functions� One of
these is the �T�L operation given by

�T�L�F�G	�x	 � sup
L�u�v��x

T �F �u	� G�v		 ������	

for some t�norm T � An important result due to Schweizer and Sklar ���� is that
apart from L � max and T � min the function �T�L is not derivable from a function
on random variables� �See also Schweizer�s recent remark in ���� �	 This means
that for any F and G in #� there do not exist random variables X and Y where
F � df�X	 and G � df�Y 	� and a Borel measurable function V ������ �� �� such
that df�V �X�Y 		 � �T�L�F�G	� This implies that the viewpoint taking distribution
functions as primary is in a sense more powerful� However� as we have seen �and in



fact as Schweizer et al� were the �rst to show	� the �T�L operations do arise naturally
as dependency bounds for functions of random variables� The impact of this on the
development of probabilistic metric spaces remains to be seen� It is certainly a topic
which deserves further investigation�

����� Philosophical Aspects of Probabilistic Metric Spaces

Menger developed a number of philosophical ideas from his work on probabilistic
metric spaces��� His general view of the theory was that it was a �positivist geom�
etry �������� � Positivism� or rather logical positivism� is a philosophical doctrine
which can trace its roots to Hume�s empiricism� It holds that no propositions should
be considered to be true unless veri�ed by direct sense experience� It has been shown
by a number of authors� most notably Karl Popper ���� � that the whole scheme
is fundamentally �awed� It is fair to say that positivism is dead� Menger�s use of
the term was to indicate that the objects of geometry which we perceive and can
�verify are not the ideal points or lines of Platonic geometry� but rather the blobs
and fuzzy regions of a probabilistic geometry� This seems to be the appropriate
viewpoint for interpreting current work on probabilisitic metric spaces���

The viewpoint we adopt is that random variables are randomly varying quan�
tities� We would prefer the quantities to be not varying� in which case we could
readily calculate the functions of interest� Instead� the best we can do is to try
to determine the distribution of the functions of interest� given the distribution of
the random variables� This viewpoint seems similar to that necessary for interpret�
ing a random metric space �see chapter � of ���� 	� Random metric spaces� �rst
introduced by ,Spa,cek �������� � have been shown by Schweizer and Sklar ���� to
in fact be �a proper part of the theory of probabilistic metric spaces� Calabrese�s
investigations in this area seem potentially useful ���� � He shows that when the
standard �distribution based	 approach is examined in terms of random variabes�
quite peculiar e�ects can arise� We feel that there is considerable scope for further
research in this area� especially if the dependency bound viewpoint is adopted� We
hope to pursue some of these issues ourselves at a later date�

��
 General Conclusions

We have seen a surprisingly large number of connexions between the material we
developed in chapter � and other ideas� Some of these connnexions have suggested
areas for future research� and others have shown that some results that have been

�
Amongst those which we do not discuss here� perhaps the most interesting and promising is his very
careful analysis of the idea of a random variable from the point of view of a general theory of variables or
�uents ����� He developed new improved notation for the concepts of variables and functions ���������
��	���� �see also ������ which he used in a calculus textbook ����� This aspect of his work has received
little attention in the literature since�

��It is no accident that the standard probabilistic metric space structure has been adopted by some
fuzzy set theorists � the goals and techniques are the same� both sidestep the issue of dependence� See
for example the works by H�ohle� Klement� Lowen and others �������	��	�
�	����������



presented in the literature duplicate earlier work� The most useful connexions and
directions for future research are as follows�

� The extensions by Hailperin of the Boole�Fr�echet bounds using the techniques
of linear programming suggest the similar application of general mathematical
programming ideas to dependency bounds for functions of random variables�
This would generalise the bounds to functions of more than two variables�

� Graph�theoretic techniques may be of use in probabilistic arithmetic� There are
two issues� the control of calculations �using the structure of the graph	 and
determination and approximation of complex stochastic dependencies using
graph theoretic methods� and the possibility of transforming expression DAGs
in order to make determination of distribution functions easier� As we saw
however� the prospects for the latter are not very good�

� Our viewpoint taken in interpreting our bounds on probability distribution
functions is quite di�erent to that taken in most contemporary theories of
lower�upper probabilities� However it seems that it might be possible to inte�
grate our approach with other theories� In particular� Fine�s theories of lower
probabilities deserve more attention�

� The theory and practice of fuzzy arithmetic and fuzzy numbers has a lot in
common with probabilistic arithmetic which makes use of dependency bounds�
The duality theory we used to develop our numerical methods encompasses
the results used in calculating operations on fuzzy numbers and shows how
extensions are possible� The intuitive ideas captured by fuzzy numbers can
be equally well represented using probabilistic techniques such as con�dence
curves�

� Our viewpoint is somewhat di�erent to that adopted in the theory of prob�
abilistic metric spaces� although there is some scope for integrating the two
approaches�

To summarise the chapter as brie�y as possible� There are numerous connexions with
other results� some apparently of no use at all� some of �interest�� some immediately
useful in other areas� and some potentially useful and suitable subjects for further
research�



Chapter �

An Extreme Limit Theorem for

Dependency Bounds of

Normalised Sums of Random

Variables

This becomes clearer when you restrict your considerations
to the maximum and minimum of quantity�

� Nicolas Cusanaus

This chapter presents a new result on the behaviour of dependency bounds of
iterated normalised sums� We show that the dependency bounds converge to step
functions as the number of summands increases� The step functions are positioned
at points which depend only on the extremes of the supports of the summand�s
distribution functions� With very minor di�erences� this chapter will appear in
Information Sciences �with the same title as this chapter	� In order to make this
chapter self�contained there is some reiteration of material covered in chapter ��
Since most of this material is not widely known� this does no harm�

��� Introduction

Dependency bounds are lower and upper bounds on the distribution of functions
of random variables when all that is known about the random variables is their
marginal distributions� They have been recently studied by Frank� Nelsen and
Schweizer ���� who showed that Makarov�s solution ���� to a question originally
posed by Kolmogorov follows naturally from the theory of copulas �������� � Depen�
dency bounds arise in the development of probabilistic arithmetic �see chapter �	�
and it is in this context which we study the question of limit results for dependency
bounds of normalised sums�

If we write ldb�SN 	 and udb�SN 	 for the lower and upper dependency bounds
of SN � �

N

PN
i��Xi� and fXig is a sequence of random variables with distribution

functions Fi� then we show that as N approaches in�nity� ldb�SN 	 and udb�SN 	

���



approach unit step functions� The position of the step functions depends only on the
support of the Fi and this is why we refer to our result as an extreme limit theorem�
�Note that our result is actually more analogous to the law of large numbers than
the central limit theorem� The central limit theorem describes the behaviour of
�p
N

PN
i��Xi�	

We prove our result in a fairly straightforward manner by making use of the
properties of T �conjugate transforms� These transforms� which play a role analogous
to the Laplace�Stieltjes transform in the central limit theorem for sums of random
variables ���� � have been developed by Richard Moynihan �������� � Apart from
being mathematically interesting� our limit theorem has a practical interpretation
with regard to the suitability of interval arithmetic for certain problems� We show
that if one has to calculate the dependency bounds for the sum of a large number
of random variables� then one can use interval arithmetic from the outset �using
just the endpoints of the supports of the distributions	 because one will lose little
information in doing so�

The reason why one would want to calculate dependency bounds rather than
ordinary convolutions can be explained by considering probabilistic arithmetic� The
aim of this is to replace the ordinary arithmetic operations on numbers by appropri�
ate convolutions of probability distribution functions of random variables� However�
when one does this� the phenomenon of dependency error occurs� This is caused
by stochastic dependencies arising between intermediate results of a calculation� In
order to avoid errors in the calculations� one has to take cognizance of these depen�
dencies when they exist� If� as seems to be the case practically with probabilistic
arithmetic� one can only determine whether or not two quantities are independent
�and not any measure of dependence if they are not	� then one has to assume the
worst and calculate dependency bounds�

The rest of this chapter is organised as follows� Section ��� contains all the
preliminary information we require in order to prove our main result in section ����
We formally de�ne the notions of dependency bounds� copulas� t�norms� the �T and
�T operations� and T �conjugate transforms as well as discussing the representation
of Archimedean t�norms and the characterisation of associative copulas� Section ���
is devoted to the proof of our main result �theorem �����	 and section ��� gives an
explicit formula for ldb�SN	 for a special case� This enables us to examine the rate of
convergence for theorem ������ In section ��� we present some examples illustrating
the results of sections ��� and ���� These examples are calculated using the numerical
representations and algorithms developed in chapter �� Finally� section ��� draws
some general conclusions from the results of this chapter�

��� De�nitions and Other Preliminaries

We now introduce the notation and results needed to prove our result in section ���
in su
cient detail to make this chapter self contained� The general references for
this section are ������������ � We will often write inequalities between two functions
F and G as F � G� This is to be interpreted as meaning F �x	 � G�x	 for all x in



the common domains of F and G� A convex function f de�ned on some set A is
one which satis�es

f�x� � ��� 	x�	 � f�x�	 � ��� 	f�x�	

for all x�� x� � A and all  � ��� �	� If the above inequality is reversed then f is
concave� We write �i� for �if and only if�


���� Distribution Functions

The distribution function of a random variable X is denoted df�X	 and is given by

df�X	 � F �x	 � PfX � xg
and is a left continuous function from� onto I �I � ��� � 	� The set of all distribution
functions is denoted #� The subset #�� de�ned by

#� � fF � #jF ��	 � �g�
is the set of distribution functions of random variables that are almost surely positive�
The support of a distribution function is de�ned by

suppF � ��F � uF  

where
�F � inffxjF �x	 	 �g ������	

and
uF � supfxjF �x	 � �g� ������	

Three subsets of # are de�ned by

#L � fF � #j �F 	 ��g�
#U � fF � #juF ��g�

and
#LU � #L �#U �

We also have

#�
U � fF � #�juF ��g�

#�
L � fF � #�j �F 	 �g�

and
#�

LU � #�
L �#�

U �

The step function �a � # is de�ned by

�a�x	 �

�
� x � a�
� x 	 a�




���� Triangular Norms

A t�norm �triangular norm	 T is a two place function T � I � I �� I which is sym�
metric� associative� non�decreasing in each place and has � as a unit �i�e� T �a� a	 �
T ��� a	 � a �a � I	� An Archimedean t�norm is one which satis�es T �a� a	 � a �a �
��� �	� A strict t�norm is one which is continuous on I� and is strictly increasing in
each place on ��� � �� All t�norms T satisfy Z � T �M � where

Z�x� y	 �

���
��

x x � I� y � ��
y x � �� y � I�
� x � ��� �	� y � ��� �	�

and
M�x� y	 � min�x� y	 x� y � I�

Two other t�norms we will use are W and + given by

W �x� y	 � max�x� y � �� �	

and
+�x� y	 � xy�

These four t�norms have the following properties�

Z is Archimedean� but not continuous�

W is Archimedean and continuous� but not strict�

M is continuous� but neither Archimedean nor strict�

+ is continuous� strict and Archimedean�

Any strict t�norm is Archimedean� We de�ne T by

T � fT jT is a continuous t�normg�
and TA by

TA � fT � T jT is Archimedeang�
If T is a t�norm� then T � de�ned by

T ��x� y	 � �� T ��� x� �� y	 ������	

is known as a t�conorm �see section ��� of ���� 	�


���� Representation of Archimedean t�norms

Archimedean t�norms are of special interest because of the following representation
theorems ���� �



Theorem 
���� A t�norm T is continuous and Archimedean i�

T �x� y	 � fT �gT �x	 � gT �y		�

where


� gT is a continuous strictly decreasing function from I into �� with gT ��	 � ��

�� fT is a continuous function from �� onto I such that it is strictly decreasing
on ��� gT ��	 and such that fT �x	 � � �x  gT ��	�

�� fT is a quasi�inverse of gT �see section ��� of this thesis	�

The functions fT and gT are known as the outer and inner additive generators of T
and are unique up to a multiplicative constant� If we set hT �x	 � fT �� log x	 and
kT �x	 � exp��gT �x		 we obtain a multiplicative analogue�

Theorem 
���� A t�norm T is continuous and Archimedean i�

T �x� y	 � hT �kT �x	kT �y		�

where


� kT is a continuous strictly increasing function from I into I with kT ��	 � ��

�� hT is a continuous function from I onto I that is strictly increasing on �kT ��	� � 
and such that hT �x	 � � �x � ��� kT ��	 �

�� hT is a quasi�inverse of kT �

The functions hT and kT are known as the outer and inner multiplicative generators
of T and are unique up to an exponentiation� T is strict i� hT � k��T and kT ��	 � ��
For any T � TA� hT and kT satisfy

hTkT �x	 � x �x � I

kThT �x	 � max�kT ��	� x	 �x � I�

If T � W we have hW �x	 � max�� � log x� �	 and kW �x	 � ex���


���� Copulas

A ��copula �or just copula	 is a mapping C� I� �� I such that � is the null element�
� the unit and C is ��increasing�

C�a�� b�	�C�a�� b�	�C�a�� b�	 � C�a�� b�	  �

for all a�� a�� b�� b� � I such that a� � a� and b� � b�� The set of all copulas is
denoted C� All copulas satisfy W � C �M and are continuous�

Copulas link joint distribution functions with their marginals� If H��� �� I is a
two dimensional joint distribution function corresponding to the random variables



X and Y �i�e� H�x� y	 � PfX � x� Y � yg	� and F � df�X	 and G � df�Y 	 are
the marginals� then

H�x� y	 � C�F �x	� G�y		

for some copula C� known as the connecting copula for X and Y � The copula
contains the dependency information relating the random variables X and Y � If
C � +� then X and Y are independent�

The dual of a copula� written Cd� is de�ned by

Cd�x� y	 � x � y � C�x� y	� ������	

For any C � C� the operations �C and �C from #�# onto # are de�ned pointwise
by

�C�F�G	�x	 � sup
u�v�x

C�F �u	� G�v		

and
�C�F�G	�x	 � inf

u�v�x
Cd�F �u	� G�v		�

These operations have been studied because of their properties as triangle functions
when C � T in the theory of probabilistic metric spaces ���� � If C � T � then �C
and �C are associative� They are also non�decreasing in each place �lemma ����� of
���� 	�

The only additional requirement on C � C for C to also be in T is associativity�
In fact� under one weak condition� C must be Archimedean�

Theorem 
���� Let T � T � C be such that T �x� y	 �� min�x� y	 ��x� y	 � ��� �	��
Then T � TA�

Proof� This follows at once from theorem ����� of ���� and the fact that C �M
for all C � C�

We de�ne the set of T that satis�es the condition of theorem ����� as TC � T � C�

Since we will restrict ourselves to associative copulas in this chapter� it is of
interest to have a probabilistic characterisation of them� This is part of problem
����� of ���� � Archimedean copulas have been studied by Genest and MacKay ���� 
who have looked at stochastic orderings and sequences of copulas� and have used
their results to develop new parameterised families of copulas satisfying certain
conditions� Schweizer and Sklar ���� present the following two theorems �their
theorems ����� and �����	�

Theorem 
���� A t�norm T is a copula i�

T �c� b	� T �a� b	 � c� a �a� b� c � I� with a � c�

Theorem 
���
 Let T � TA� then T � C i� either fT or gT �the additive generators
of T 	 is convex�



Restricting C to be associative restricts the type of dependency structure two ran�
dom variables X and Y can have� Noting that if C is a copula� it can be considered
as the joint distribution function of X and Y � where X and Y have uniform marginal
distributions on ��� � � we can proceed as follows� If C is Archimedean� then

C�x� y	 � hC�+�kC�x	� kC�y			�

where + is the joint distribution function of two independent random variables with
uniform marginals on I� Therefore

+�kC�x	� kC�y		 � PfX � kC�x	� Y � kC�y	g
� Pfk��C �X	 � x� k��C �Y 	 � yg
� FUV �x� y	

where FUV is the joint distribution function of U and V � U � hC�X	� and V �
hC�Y 	� We thus have

C�x� y	 � hC�FUV �x� y		�

Noting that U and V are independent �because X and Y are	� we have shown
that if C is associative then it is an increasing function of a joint distribution of
independent random variables� This demonstrates the restriction on the types of
dependencies an associative copula can represent� but is not a wholly satisfying
characterisation because there seems to be no natural probabilistic interpretation of
such a dependence structure�


���
 Dependency Bounds

We now formally de�ne dependency bounds and show how they are related to the
�C and �C operations� We �rstly consider sums of two random variables and then
examine when we can extend the results to sums of N random variables�

Let X and Y be two random variables with distribution functions F � df�X	
and G � df�Y 	� Let their joint distribution function be given by H�x� y	 �
C�F �x	� G�y		 where C is the connecting copula for X and Y � Then the lower
and upper dependency bounds ldbC and udbC on df�X � Y 	 are such that

ldbC�F�G	 � df�X � Y 	 � udbC�F�G	

for all C  C � W � The function C is the lower bound on the connecting copula
C� The crucial result we need is given by

Theorem 
����

ldbC�F�G	 � �C�F�G	

and
udbC�F�G	 � �C�F�G	�

and these bounds are the pointwise best possible�



Proof� See chapter � and ���� �

An analogue of this theorem holds for operations other than addition on random
variables� �See chapter ��	 We will be interested in the case that C � TC in which
case we will write T instead of C�

These dependency bounds can be extended to sums of the form

SN �
NX
i��

Xi�

where fXigNi�� is a set of random variables with distribution functions Fi � df�Xi	
and such that for all i �� j �i� j � �� � � � � N	�

CXiXj  T� ������	

where CXiXj is the connecting copula for the pair of random variables �Xi�Xj	�
In such a case� because addition is associative and commutative� and because any
T � TC is also� we �nd that �T and �T are as well and we can write ����� p���� �

ldbT �F�� � � � � FN 	 � �
�N�
T �F�� � � � � FN	 � df�SN 	

� �
�N�
T �F�� � � � � FN	

� udbT �F�� � � � � FN	�

The N �place functions � �N�
T and �

�N�
T are given by

�
���
T �F�G	 � �T �F�G	

�
�N�
T �F�� � � � � FN	 � �T �F�� �

�N���
T �F�� � � � � FN		 � �T �� �N���T �F�� � � � � FN��	� FN	

������	
and

�
���
T �F�G	 � �T �F�G	

�
�N�
T �F�� � � � � FN	 � �T �F�� �

�N���
T �F�� � � � � FN		 � �T ��

�N���
T �F�� � � � � FN��	� FN	

������	
We will generally drop the �N	 superscript as no confusion can arise when the
arguments are explicitly stated�

The condition ������	 is not equivalent to

CX�XN
 T �N��

where CX�XN
is an N �copula and T �N� is an N �iterate of a t�norm�

T �N��x�� � � � � xN	 � T �T �N����x�� � � � � xN��	� xN	�

The problem of relating high order copulas to their lower order marginals is still
open� See the problems at the end of chapter � of ���� � It is known that all
N �copulas C satisfy

WN�� � C �MN��� ������	



that +N�� and MN�� are copulas� but that WN�� is not ����� p��� � The fact that
WN is not a copula for N 	 � can be understood simply as follows� For N � �� if
C � W is a connecting copula for X and Y � then X and Y are decreasing functions
of each other� However it is impossible� given three or more variables X�� � � � �XN �
for each Xi to be a decreasing function of all of the others� Nevertheless� the lower
bound in ������	 cannot be improved�


���� T�conjugate Transforms

Before introducing T �conjugate transforms we note how T can be represented in
terms of ��� hT and kT �

Theorem 
���� ��
���� Let T � TA and F � #�� De�ne kTF � #� by

kTF �x	 �

�
� x � ��
kT �F �x		 � � x�

������	

Then for all F and G in #�� both �T �F�G	 � #� and ���kTF� kTG	 � #� and in
fact

�T �F�G	 � hT ����kTF� kTG		�

This follows directly from theorem ������

De�nition 
���	 Let T � TA and F � #�� Then the T �conjugate transform of F �
denoted CTF � is de�ned by

CTF �z	 � sup
x��

e�xzkTF �x	 �z � ��� �������	

where kTF is given by ������	�

The study of T �conjugate transforms is due to Moynihan �������� who extended
the Prod�conjugate transform C�F by using theorem ������ Note that CTF �
C��kTF 	� The CT transform has a number of properties in relation to �T analogous
to the Laplace transform�s properties with respect to ordinary convolutions� The
essential one is

Theorem 
���� �Theorem ��� of �
���� Let T � TA and let F�G � #�� Then

CT ��T �F�G		�z	 � maxfkT ��	� CTF �z	� CTG�z	g �z  �� �������	

If T is strict� �����

	 becomes

CT ��T �F�G		 � CTF �CTG� �������	

We also have ����� theorem ��� �



Theorem 
����� Let

A � f���� �� ��� � j � is non�increasing� positive�

continuous and log�convexg � f/�g�
where /��z	 � � �z  �� Then for all T � TA� if

AT � f� � Aj��z	  kT ��	 �z  �g�
then AT � fCTF jF � #�g� Thus AT � A and equality holds i� T is strict�

The inverse T�conjugate transform C�
T is de�ned by

De�nition 
����� Let T � TA and let � � AT � Then

C�
T��x	 � hT �inf

z��
exz��z		 �x � �� �������	

and C�
T� is normalised to be left�continuous�

If F � #�� then we say F is log�concave if logF is concave on ��F ��	� and that
F � #� is T�log�concave if kTF is log�concave� We de�ne

#�
T � fF � #�jF is T �log�concaveg�

The log�concave�envelope� denoted F � of F � #� is de�ned by

F �x	 � � x � �F

log F �x	 � supfp logF �x�	 � q logF �x�	j p� q  ��
p � q � �� x�� x� 	 �F and x � px� � qx�g x 	 �F �

In other words� the graph of log F is the upper boundary of the concave hull of the
graph of log F on ��F ��	� The T�log�concave envelope of F � denoted F �T �� is in #�

and is given by
F �T � � hT �kTF 	�

With this notation we state the following properties of conjugate transforms� T �
log�concave envelopes and �T functions which we shall require later� Proofs can be
found in �������� �

Theorem 
����� For all T � TA and all F�G � #��


� C�
TCTF � F �T ��

�� F �T �  F and F �T � � F i� F � #�
T �

�� F �T � � G�T � i� CTF � CTG�

�� C�
T �CTF � CTG	 � �T

�
F �T �� G�T �

�
�

�� ��T �F�G		�T �  �T
�
F �T �� G�T �

�
with equality i� T is strict�



�� G�x	 � F �ax	 �a� x 	 � � CTG�z	 � CTF �z�a	 �z  ��

�� CTF ��	 � limx	� kTF �x	�

�� �T �F�G	 � �T
�
F �T �� G�T �

�
�

�� ��T �� � �� �a � ���

In order to prove our limit results we also need the following theorem �theorem
��� of ���� 	 which follows by induction from theorem ������

Theorem 
����� Let T � TA and Fi � #�� i � �� � � � � N � Then for all z  �

CT ��T �F�� � � � � FN		�z	 � max

�
kT ��	�

NY
i��

CTFi�z	

�
�

Finally we de�ne the notion of weak convergence in order to state theorem ������
below�

De�nition 
����� Let fFig and F be in #�� Then we say fFig converges weakly
to F � and write

Fi
w� F

if Fi�x	 � F �x	 at each continuity point x of F �

This topology is in fact metrizable �see section ��� of ���� 	� The relationship be�
tween weak convergence of probability distributions and convergence of T�conjugate
transforms is given by �theorem ��� of ���� 	

Theorem 
����
 Let T � TA and let fFig be a sequence of Fi � #�� Then for
F � #��

F
�T �
i

w� F �T � i� CTFi�z	 � CTF �z	 �z 	 ��

��� Convergence of Dependency Bounds of Normalised Sums

This section is devoted to a proof of our main result which is

Theorem 
���� Let fXig be a sequence of random variables with distribution func�
tions Fi � df�Xi	 � #LU and let T � TC � Then

ldbT



�

N

NX
i��

Xi

�
w� �� ������	

as N ��� where  � limN	� �
N

PN
i�� uFi and uFi is as in ������	�



This theorem has the following two corollaries�

Corollary 
���� Let fXig� fFig and T be as above� Then

udbT



�

N

NX
i��

Xi

�
w� �	 ������	

as N � �� where � � limN	� �
N

PN
i�� �Fi and �Fi is as in �����
	� Note that in

the above two results if uFi � uF and �Fi � �F for all i� then  � uF and � � �F �

Corollary 
���� Let fXig be a sequence of random variables with distributions
Fi � df�Xi	 � #�

LU and let T � TC � Then

ldbT

�
�
 NY

i��

Xi

���N�A w� �a ������	

and

udbT

�
�
 NY

i��

Xi

���N�A w� �b ������	

as N ��� where a � limN	�
�QN

i�� uFi
���N

and b � limN	�
�QN

i�� �Fi
���N

In order to prove theorem ����� we prove the following lemmata� The proof of
the theorem follows from their conjunction�

Lemma 
���� Let F � #�
U and let T � TA� Then there exists a zu 	 � such that

for all z � ��� zu	
CTF �z	 � e�uF z� ������	

where uF is given by ������	�

Proof� Recall that

CTF �z	 � sup
x��

e�xzkTF �x	 z � ��� ������	

However kT is strictly increasing and continuous and so kTF is increasing� Also
kT ��	 � � and so kT �x	 � � for x � �� Therefore

kTF �x	

�
� � x  uF �
� � x � uF �

Now since the slope of e�xz can always be made as close to zero as desired by making
z smaller� it can be seen that for any F � #�

U � for small enough z the supremum
in ������	 must occur at x � uF �see �gure ���	� If� for a given zu the supremum
occurs at x � uF � then obviously it will occur at x � uF for all z � zu�



Figure �
�� Illustration for the proof of lemma �
�
�




Lemma 
���� Let ��z	 � maxfkT ��	� e��zg for z � ���  � ����	� where kT is
the inner multiplicative generator of some T � TA� Then the inverse transform of �
is given by

C�
T��x	 � ���x	 �x � ���

Proof� We know ����� theorem ����� �vi	 that CT ���z	 � maxfkT ��	� e��zg for
all � z � ����	� We also know �theorem ������� part �	 that for all T � TA and for
all F � #�� C�

TCTF � F �T �� The lemma then follows directly from the fact that
��T �� � ���

Lemma 
���� Let T � TC and let fXig be a sequence of random variables with
distribution functions Fi � df�Xi	� where Fi � #�

U for i � �� �� � � �� Then

lim
N	�

CT



ldbT



�

N

NX
i��

Xi

��
�z	 � maxfkT ��	� e��zg ������	

where  � limN	� �
N

PN
i�� uFi�

Proof� Theorem ����� and the discussion following it tells us that ldbT
�PN

i��X
�
i

�
�

�T �F �
�� � � � � F

�
N 	� where F �

i � df�X �
i	 � #�� If we set X �

i � Xi�N � then obviously
F �
i �x	 � Fi�Nx	 for i � �� �� � � � and for N 	 �� We also know �theorem ������	 that

CT ��T �F �
�� � � � � F

�
N		�z	 � max

�
kT ��	�

NY
i��

CTF
�
i �z	

�

and that CTF
�
i �z	 � CTFi�z�N	 �theorem ������� part �	� Thus

CT
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�

N

NX
i��

Xi

��
�z	 � max

�
kT ��	�

NY
i��

CTFi�z�N	

�
�

However since Fi � #�
U � lemma ����� tells us that

CTFi�x	 � exp ��uFix	 for x � z�i�u

for i � �� �� � � � � N � where z�i�u is the zu of lemma ����� for a given Fi� If we let
zu � minifz�i�u g we can then write

CT
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�

N

NX
i��

Xi

��
�z	 � max

�
kT ��	�

NY
i��

exp ��uFiz�N	

�
�
�
z
N

�
� ��� zu	�

������	
Now for any z � ��� there exists an integer Nm such that for all N 	 Nm� �z�N	 �
zu� Therefore� for all z � ��� ������	 holds for su
ciently large N � If we now observe
that

NY
i��

exp ��uFiz�N 	 � exp



� �

N



NX
i��

uFi

�
z

�
� e��z

the proof is completed�



Lemma 
���� LetH�T � � �ldbT �SN 		�T � be the T�log�concave envelope of ldbT �SN 	�
where SN � �

N

PN
i��Xi� T � TC � and fXig is a sequence of random variables with

distribution functions Fi � df�Xi	 � #�
U � Then

H�T � w� �� ������	

as N �� and  is as in lemma ������

Proof� This follows directly from theorem ������� lemma ������ lemma ����� and
theorem ������ �part �	�

Lemma 
���
 Let SN � T � and  be as in lemma ������ Then

lim
N	�

sup supp ldbT �SN	 � � �������	

Proof� This follows by induction from the case when N � �� Thus we now prove
that

sup supp ldbT �X� � X�	 � uF� � uF��

Theorem ����� tells us that

ldbT �X� � X�	 � sup
u�v�x

T �F��u	� F��v		�

Since T is an Archimedean t�norm and a copula we know that T � M and that
T �a� b	 � � implies a � b � �� Therefore the minimum x such that F��u	 � F��v	 �
� is x � uF� � uF��

Lemma 
���� Let H � #�
U be such that H�T � � �ldbT �SN 		�T � as in lemma ������

Then
H

w� ���

Proof� Let H�T � � fG � #�
U j G�T � � H�T �g� Then

�G � H�T � H�T �  G �������	

�theorem ������� part �	� That is� H�T � is the maximal element in H�T �� The only
H that satis�es ������	 and H � �� � ��T �� is H � ���

Lemma 
���� Let fFig be a sequence of distribution functions in #L and let T �
TA� Then if � � minif�Fig�

�T �F�� � � � � FN	�x	 � �T �F �
�� � � � � F

�
N	�x� �N	�

where F �
i �x	 � Fi�x� �	 and F �

i � #� for i � �� � � � � N �



Proof� For N � � the result follows directly from the de�nition of �T � The result

for general N then follows by induction using the iterative construction of � �N�
T given

by ������	�

Proof of theorem ����� Immediate from lemmas ����� and ������

Proof of corollary ����� We �rstly prove a restricted version of corollary �����
by a method which gives an understanding of why it works in a case of special
interest �T � W 	�

Corollary 
����� Let fXig and fFig be as in corollary ����
 and let T � TA be such
that T � � T d �see ������	 and ������		� Then

udbT



�

N

NX
i��

Xi

�
w� �	

as N ��� and � � limN	� �
N

PN
i�� �Fi �

Proof� We prove this by expressing udbT in terms of the lower dependency bounds
of some transformed random variables� Again we consider N � � and the general
case follows by induction� Let X �

i � �Xi� Then F �
i �x	 � � � Fi��x	� Observe that

�T �F �
�� F

�
�	�x	 � sup

u�v�x
T �F �

��u	� F �
��v		

� sup
u�v�x

T ��� F���u	� �� F���v		

� sup
u�v�x

��� T ��F���u	� F���v		 

� � � inf
u�v�x

T ��F���u	� F���v		

� � � inf
u�v��x T

d�F��u	� F��v		

� � � �T �F�� F�	��x	

� � � udbT �X� � X�	��x	�

Writing this the other way around we have

udbT �X� � X�	�x	 � �� ldbT �X �
� � X �

�	��x	 �������	

and we can apply theorem ����� noting that the roles of uFi and �Fi will be reversed�

The question of when T � � T d has in fact been solved by Frank ���� who showed
that apart from T � W and T � +� the only T � TA satisfying T � � T d are given
by

Ts�x� y	 � log



� �

�sx � �	�sy � �	

s� �

�
� log s

for s � ����	� s �� �� In fact� Ts � TC �



The more general corollary ����� is proved in a di�erent manner�
Proof of corollary ������ Corollary ������ establishes the result for T � W �
We also know ����� theorem � that for any copulas C� and C� such that C� � C��
�C� � �C� � That is

�F�G � #� �C��F�G	 � �C��F�G	�

Since all copulas C satisfy W � C we have

�C � �W � �������	

Combining �������	 with the fact �to be proved below	 that inffxj �C�x	 � �g � �
for all C � TC completes the proof�

In order to see that

inffxj �C�F�� � � � � FN	�x	 � �g � � �������	

for all F�� � � � � FN � #L and any C � TC we again use induction on N and start
with N � �� Consider then

�C�F�� F�	�x	 � inf
u�v�x

Cd�F��u	� F��v		�

Now Cd has � as a null element� That is Cd�x� �	 � Cd��� x	 � � for all x � I�
Therefore in order for Cd�x� y	 to equal one it is necessary only that either x or y
equal one� Thus for Cd�F��u	� F��v		 to equal one either F��u	 � � or F��v	 � �� The
smallest x such that u� v � x and either F��u	 or F��v	 equals one is x � �F� � �F� �
The rest of the proof follows by induction noting that we have to take account of
the ��N term�

Proof of corollary ����� Simply let X �
i � log Xi� apply the results of theorem

����� and corollary ������ and exponentiate the result�

��� Rates of Convergence

Theorem ����� says that ldbT �SN 	
w� ��� We now examine how fast the convergence

is� The main tool we use is theorem ��� of ���� which we state below as theorem
������ Since if T � TA is not strict then #�

T is not closed under �T ����� page �� �
we de�ne the set BT which is� Firstly de�ne �kTF 	
 � #� by

�kTF 	
�x	 �

�
� x � �F
kT �F �x		 x 	 �F

where �F is given by ������	� Then de�ne

BT � fF � #�j �kTF 	
 is log�concaveg�
If T is strict BT � #�

T � Otherwise #�
T � BT Now if for any � 	 � and F � BT with

F �� �� we de�ne F ��� � #� by

F ����x	 � hT ��kTF 	
�x��		�

and let F ��� � � we can then state



Theorem 
���� ��
����

�T
�
F ���� F ���

�
� F ����� ��� �  ��

Theorem 
���� Let T � TC and let fXig be a sequence of random variables with
identical distribution functions df�Xi	 � F � BT � Then

ldbT



�

N

NX
i��

Xi

�
�x	 � hT

h
��kTF 	
�x		N

i
�

Proof� The result follows immediately from theorem ����� when the �
N

is taken
account of in the manner of the proof of lemma ������

A particularly interesting and important special case of theorem ����� occurs
when T � W � In this case we have kW �x	 � ex�� and so

BW � fF � #�j F is concave on ��F ��	g
and

�kWF 	
�x	 �

�
� x � �F
eF �x��� x 	 �F �

Recalling that

hw�x	 �

�
� � � x � e���
� � log x e�� � x � ��

we have
hW

h
��kWF 	
�x		N

i
� � for ��kw	
�x		N � e���

The condition here is equivalent to

�eF �x���	N � e��� ������	

If we assume that F has an inverse F��� then ������	 implies

x � F��
�

� � �

N

�
�

In other words� with fXig as in theorem ������

ldbW
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N

NX
i��

Xi

�
�x	 � � for x � F��

�
� � �

N

�
�

If x 	 F��
�
� � �

N

�
� then hW �x	 � � � log x and so

ldbW
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N

NX
i��

Xi

�
�x	 � � � log

�h
eF �x���

iN�
� � � N�F �x	� �	�



Again assuming that F has an inverse we can write

ldb��W



�

N

NX
i��

Xi

�
�y	 � F��

�
y � �

N
� �

�
� ������	

The convergence to �� is apparent from ������	 upon setting y � � and y � �� In
these cases we have

ldb��W
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N

NX
i��

Xi

�
��	 � F����	 ������	

and

ldb��W



�

N

NX
i��

Xi

�
��	 � F��

�
�� �

N

�
� ������	

Equations ������	 and ������	 tell us that the rate of convergence is O�N	�

Another interesting special case is when T � + in which case

ldb�



�

N

NX
i��

Xi

�
�x	 � �F �x	 N�

which is a particularly simple result� The condition T � + is equivalent to Lehman�
n�s positive quadrant dependence ���� � Two random variables X and Y are posi�
tively quadrant dependent if

FXY �x� y	  FX�x	FY �y	�

Positive quadrant dependence has been studied and compared with other measures
of dependence in ������������ �

If F �� BT we can use the fact �theorem ������� part �	 that �T �F�G	 � �T �F �T �� G�T �	
for any T � TA to bound the rate of convergence� For example� using ������	 we can
say that for any F � #�

sup
 
xj ldbW

�
X� � X�

�

�
�x	 � �

!
 F �T �

�
�
�

�
�

This behaviour can be seen in �gure ��� presented in the next section� Rates of
convergence for udbT are similar and follow directly using the arguments used to
prove corollaries ����� and �������

��� Examples

We will now present some examples illustrating the results of sections ��� and ����
We restrict ourselves to the case T � W and use the algorithms developed in chapter
� for numerically calculating �W �F�G	 and �W �F�G	 when F and G are represented
by discrete approximations� We check the accuracy of the results so obtained in
�gure ��� where we compare the W obtained using the numerical approximations
with that obtained using ������	�
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Figures ��� and ��� show the lower and upper dependency bounds for SN �
�
N

PN
i��Xi� In this case� all the Xi are identically distributed� Their distribution is

presented as the two central curves in �gures ��� and ��� �F and F 	� The reason why
there are two curves is because they are the output of a con�dence interval estimation
procedure designed to generate the lower and upper discrete approximations to
probability distribution functions developed in chapter �� In this case we estimated
the distribution of a population consisting of a mixture of samples from N��� �	 and
N��� �	 distributions� In both cases the normal distributions were curtailed at ��
Figure ��� shows ldbW �SN 	 and udbW �SN 	 for N � �� �� � � � � �� This was generated
by iteratively calculating

F i � ldbW �F �F i��	

F i � udbW �F�F i��	�
������	

In order to speed up our view of the convergence� in �gure ��� we used the iteration

F i � ldbW �F i��� F i��	

F i � udbW �F i��� F i��	�
������	

Equation ����� has the e�ect of doubling N at each iteration� Thus �gure ��� shows
ldbW �SN 	 and udbW �SN	 for N � �� �� �� � � � � ���� It can be seen that cases for
N � �� � and � are identical to those in �gure ���� The convergence of ldbW �SN 	
and udbW �SN	 to �� and �	 is apparent�

Figures ���� ��� and ��� are all related to SN where df�Xi	 � F for all i and
F is an upper half Gaussian distribution� That is F �x	 � �'�x	 � ���� where
' is the distribution of a N��� �	 random variable� In this case F is curtailed at
���� � �� Again we represent F by lower and upper discrete approximations �this
time touching each other	 and these can be seen as the central curves in �gure ����
Recalling the symmetry relationship between ldbW and udbW �see corollary ������	�
we will be able to observe the e�ect of both a concave and convex F � �The lower
and upper dependency bounds for F being a lower half Gaussian distribution can be
seen by viewing �gures ������� upside down and changing the axes appropriately�	
Figure ��� shows the dependency bounds calculated using equation ������ As can
be seen from �gure ��� and by comparing �gures ��� and ���� the results agree
very closely with those obtained using the numerical approximations� The only
di�erence is due to the chording e�ect apparent in �gure ���� This is an artifact
of the numerical representation we use in ���� � We approximate F by uniformly
discretising its quantiles� Considering the e�ect of ������	 it can be seen that the
top most discrete levels are stretched down in successive iterations to result in the
straight line segments which appear in �gure ���� The bounds obtained numerically
are still correct� but they are not as tight as the true dependency bounds� Once
there are straight line segments� they remain present in successive iterations� This
can be understood in terms of Alsina�s result ��� that

�W �Ua�b� Uc�d	 � Umin�a�d�b�c��b�d

and
�W �Ua�b� Uc�d	 � Ua�c�max�a�d�b�c�



Figure �
�� Dependency bounds for SN where df�Xi� is upper half Gaussian




Figure �
�� Dependency bounds for the same problem as �gure �
�� but calculated using
��
�
��




Figure �
�� Comparison between the exact and numerical calculation of the dependency
bounds ��gures �
� and �
��




where Ua�b is the uniform distribution function on �a� b �

Observe that udbW converges to �	 more rapidly than ldbW converges to �� �or
equivalently� ldbW converges to �� more rapidly for lower half Gaussian F than it
does for upper half Gaussian F 	� This is due to the concavity �or convexity	 of F �
Looking at �gure ��� upside down demonstrates the e�ect mentioned at the end of
section ���� Line �m	 is F �T � for F being lower half Gaussian and it can be seen that

sup
 
xj ldbW

�
X� � X�

�

�
�x	 � �

!
� F �T �����	�

��	 Conclusions

Apart from being mathematically interesting� the results presented in this chapter
have a useful practical interpretation� Theorem ����� says that in order to determine
dependency bounds for the sum of a large number of random variables it is only
necessary to consider the values of supp F � ��F � uF  � In other words� dependency
bounds reduce to Minkowski sums �or products	 of intervals and the methods of
interval arithmetic ��������������� could be used for their calculation� The signif�
icant point is that the shapes of the Fi within supp Fi have no e�ect on the �nal
result�

Observe that this situtation is quite di�erent to the classical central limit theorem
and law of large numbers for sums �where we are looking at ordinary convolutions
rather than dependency bounds	 ���� � In this case the support of the compo�
nent distributions is irrelevant to the �nal limiting distribution apart from some
non�degeneracy conditions� Note also that this result has a bearing on statistical
inference� It is often considered adequate to �t a distribution to some data in such
a manner that the �t is close over the central part of the distribution� When the
densities are plotted in the usual manner anomalies in the tails do not show up�
However� as Bagnold has shown ��� � populations that appear to have normal dis�
tributions when plotted in the usual manner are quite apparently non�normal in the
tails when a logarithmic vertical scale is used� Determination of the tail behaviour
is of course the domain of the theory of statistics of extremes �������� and has
signi�cant practical application to the study of rare events�

The results presented in this chapter can also be applied to fuzzy numbers� In
this case a general law of large numbers under a general t�norm extension principle
is obtained �see the following chapter	�



Chapter �

A Law of Large Numbers for

Fuzzy Variables

The use of fuzzy numbers for calculation with imprecisely known quantities has
been advocated by a number of di�erent authors� Fuzzy numbers are combined us�
ing extended arithmetic operations developed using the extension principle� When
a general t�norm is used for the intersection operator� a general t�norm extension
principle is obtained� The purpose of this chapter is to present a result for the law of
large numbers for fuzzy variables when using this general t�norm extension principle�
The result is that convergence to a crisp set is obtained for all Archimedean t�norm
intersection operators� This generalises a previous result of Badard who conjectured
that something along the lines of that presented here would be true� The result is
proved by deriving it from a similar result for the law of large numbers for depen�
dency bounds� Dependency bounds arise in probabilistic arithmetic when nothing
is known of the joint distribution of two random variables apart from the marginal
distributions� The bridge used to connect dependency bounds with fuzzy number
operations under the t�norm extension principle can be used to give a probabilistic
interpretation of fuzzy number combination� Some remarks on this interconnection
are made in the �nal section of the chapter�

This chapter� after undergoing some revisions� will be resubmitted to Fuzzy Sets
and Systems under the title �The Law of Large Numbers for Fuzzy Variables under
a General Triangular Norm Extension Principle�

	�� Introduction

Fuzzy numbers or variables are developed from the theory of fuzzy sets by using the
extension principle ���������������� � Their properties and methods of calculating
with them have been studied by a number of authors� A more general extension
principle ���� makes use of a general t�norm intersection operator ���������� � When
this is used� the sum of two normal fuzzy variables X and Y with membership

���



functions �X and �Y is given by

�Z�z	 � sup
x�y�z

T ��X�x	� �Y �y		� ������	

where T is some triangular norm �or t�norm	� A natural question to ask is� What
is the limiting behaviour of

Z �
�

N

NX
i��

Xi ������	

where fXig are fuzzy variables and we use the sup�T convolution ������	 to calculate
the membership function of their sum* This is the fuzzy analogue of the law of large
numbers for random variables ���� �

In this paper we will show that for nearly all t�norm intersection operators� the
membership function of Z approaches that of a crisp set or interval� This result
generalises some special cases reported by Badard ��� and Rao and Rashed ���� �
The result was also mentioned by Dubois and Prade in ����� p��� � The result in
the present paper is a law of large numbers for fuzzy variables �not fuzzy random
variables ���������������� which are random variables that take on fuzzy values	�
We prove the result in three seperate ways� each of which gives a di�erent insight
into the problem� The �rst is a short and simple direct proof� The second uses a
recently developed theorem on a related question for dependency bounds of sums of
random variables ���� � We thus incidentally provide a probabilistic interpretation
of the sup�T convolution ������	 used for fuzzy number addition� A third proof
�only sketched here	 shows how T �conjugate transforms can be used in the study
of operations of the form ������	� These transforms play a role analogous to that of
the Fourier transform in probability theory�

Some numerical examples are presented which illustrate the convergence of mem�
bership functions in calculating ������	� These examples are of independent interest
because they are the �rst �exact  calculation of operations on fuzzy numbers �not
just addition	 for t�norms other than min� �Dubois and Prade worked in terms
of their simple L�R representation in ���� and their formulae are necessarily only
approximate for operations other than addition or subtraction	� We give details on
the new methods used to calculate our examples�

The rest of this paper is organised as follows� Section � presents the main theorem
and the simple direct proof� Section � brie�y introduces the notion of dependency
bounds� This is necessary for the understanding of theorem � which is used in the
second derivation of theorem �� Section � is devoted to this derivation and in section
� we outline a di�erent approach to proving theorem � by introducing the bilateral
T �conjugate transform� Section � introduces a means of numerically calculating
the sup�T convolutions� and some examples using this method are presented in sec�
tion �� These examples graphically illustrate the convergence of theorem �� Finally�
in section � we mention some interpretation issues raised by the bridge between
probabilistic dependency bounds and fuzzy variable convolutions�



	�� Theorem and Direct Proof

The fuzzy variables we will be concerned with are normal and T�noninteractive� A
normal fuzzy number X has a membership function �X such that supx �X�x	 � ��
If fXigNi�� is a set of fuzzy variables with normalised unimodal continuous mem�
bership functions f�Xig and joint membership function �X�XN

� then fXig are T �
noninteractive if

�X� XN
�x�� � � � � xN	 � TN����X��x�	� � � � � �XN

�xN		�

where TN�� is the �N � �	th serial iterate of some t�norm T ����� page �� de�ned
by TN���x�� � � � � xN	 � T �TN���x�� � � � � xN��	� xN	 with T � � T � The notion of T �
noninteractivity is called ��independence by Badard ��� and weak noninteraction by
Dubois and Prade ���� � T �noninteractivity is a generalisation of Rao and Rashed�s
���� min�relatedness�

Whilst noninteractivity is often assumed in discussions in the literature� the study
of interactive variables has only begun recently �������������������� � Without clear
semantics for the notion of interaction of fuzzy variables� there is little incentive for
pursuing it further�

The t�norms we will be concerned with are Archimedean� An Archimedean t�
norm is one which satis�es T �a� a	 � a �a � ��� �	� Apart from min� nearly all of the
t�norms suggested in the fuzzy set literature ������������������ are Archimedean�

Theorem ����� Let fXigNi�� be a set of T �noninteractive fuzzy variables with mem�
bership functions �Xi� i � �� � � � � N � Assume that T is Archimedean� Let

Xi � inffxj�Xi�x	 � �g� ������	

�Xi � supfxj�Xi�x	 � �g ������	

and let

Z �
�

N

NX
i��

Xi

have a membership function �Z � Let Z and �Z be de�ned analogously to Xi and
�Xi� Then

Z � lim
N	�

�

N

NX
i��

Xi�

�Z � lim
N	�

�

N

NX
i��

�Xi�

and
�Z

w� ���Z�	Z� ������	

as N � �� The symbol
w� in ������	 means weak convergence �convergence at

every continuity point	� and ��a�b� denotes the indicator function of the interval �a� b 
de�ned by

��a�b��x	 �

�
� x � �a� b 

� otherwise�



This theorem says that only the values of Xi and �Xi have any e�ect on the limiting
membership function� which is that of a crisp �non�fuzzy	 set� If Xi � �Xi for all
i� then none of the fuzzy variables have a ��at in their membership functions� and
�Z converges to a single delta function�

�Z�x	 �

�
� x � Z

� x �� Z �

In other words the �shape preservation property of sup�min convolutions is a special
case �min is not Archimedean	�

Proof� Using the fact that T is Archimedean� and the relationship T �b� �	 �
T ��� b	 � b �b � ��� � �which holds for all t�norms	� it can be seen that �TZ�z	 �
supx�y�z T ��X�x	� �Y �y		 � � only if there exists x and y such that x � y � z
and �X�x	 � �Y �y	 � �� Upon noting that all Archimedean t�norms are strictly
less than min� then one can use the fact that sup�min convolution has the shape
preservation property to argue that �TZ�z	 � �MZ �z	 for all z such that �TZ�z	 � ��
Since ������	 is an associative operation ���� � inductive application of the above
argument completes the proof�

	�� Dependency Bounds

This section provides the minimum background necessary to understand the state�
ment of theorem � and the discussion in section �� Further details can be found in
������������ �

A copula is a function that links multivariate distribution functions to their
marginals� It su
ces to consider the bivariate case� If H�x� y	 is the joint distri�
bution of two random variables X and Y de�ned on a common probability space�
then H�x� y	 � CXY �FX�x	� FY �y		� where FX�x	 � df�X	 � PrfX � xg and
FY �y	 � df�Y 	 � PrfY � yg are the marginal distributions of X and Y respectively�
and CXY is their connecting copula� In other words CXY �x� y	 � H�F��

X �x	� F��
Y �y		�

All ��copulas are ��increasing �C�a�� b�	�C�a�� b�	�C�a�� b�	�C�a�� b�	  � for all
a�� a�� b�� b� � I	 and satisfy W � CXY �M � where W �x� y	 � max�x�y��� �	 and
M�x� y	 � min�x� y	� If CXY �x� y	 � +�x� y	 � xy� then X and Y are stochastically
independent� Copulas are t�norms if they are associative and t�norms are copulas if
they are ��increasing�

Dependency bounds ���� are lower and upper bounds on the distribution of
functions of random variables when only the marginal distributions are known� A
more general form of dependency bounds considered in ���� provides tighter bounds
when some lower bound CXY 	 W on the connecting copula is known� We will
assume that CXY is a t�norm and use the traditional T to represent it� If T � W �
then we obtain the bounds of ���� � We write the dependency bounds as

ldbT �X � Y 	 � df�X � Y 	 � udbT �X � Y 	

where ldbT � df and udbT refer to lower dependency bound� distribution function



and upper dependency bound respectively� The main result we need is ���� 

ldbT �X � Y 	�z	 � �T �FX� FY 	�z	 � sup
u�v�z

T �FX�u	� FY �v		 ������	

and

udbT �X � Y 	�z	 � �T �FX� FY 	�z	 � inf
u�v�z

T d�FX�u	� FY �v		� ������	

where FX � df�X	� FY � df�Y 	� and T d is the dual copula given by

T d�x� y	 � x � y � T �x� y	�

This should not be confused with the t�conorm S de�ned by

S�x� y	 � �� T ��� x� �� y	�

Since the �T and �T operations are associative ���� � we can iteratively calculate
ldbT �X�� � � � �XN 	 and udbT �X�� � � � �XN 	� Theorem �� presented below� charac�
terises the behaviour of these quantities as N ���

Theorem ����� Let fYigNi�� be a sequence of random variables with distribution
functions Fi � df�Yi	 such that ��Fi� uFi  is a bounded closed interval for i � �� � � � � N �
where �Fi � inffxjFi�x	 	 �g and uFi � supfxjFi�x	 � �g� Also let T be an
Archimedean t�norm and copula� Then

ldbT



�

N

NX
i��

Yi

�
w� �� and udbT



�

N

NX
i��

Yi

�
w� ��

as N � �� where � � limN	� �
N

PN
i�� uFi � � � limN	� �

N

PN
i�� �Fi � and �� is the

unit step distribution function at ��

���x	 �

�
� x � ��
� x 	 ��

Proof� See ���� �

	�� Proof of Theorem � via Decomposition

Theorem � can also be proved by representing the membership functions �Xi by
two probability distributions and then applying theorem � �which is in terms of
probability distributions	�

We decompose the membership function �X of some fuzzy variable X as follows�
Let

�iX�x	 �

�
�X�x	 x � X �

� x 	 X �



and

�dX�x	 �

�
�X�x	 x  �X�

� x � �X�

where X and �X are given by ������	 and ������	� We will work with the related
pair ��IX � �

D
X	� where

�IX�x	 � �iX�x	� ������	

but
�DX�x	 � � � �dX�x	� ������	

Note that �IX and �DX are both distribution functions �continuous� non�decreasing
with range ��� � 	�

We now need to calculate �IZ and �DZ in terms of the pairs ��IX � �
I
Y 	 and ��DX � �

D
Y 	

respectively� The key observation to make is that upon examining ������	 and noting
that T �a� �	 � T ��� a	 � a for all a � ��� � � we �nd that

Z � X � Y and �Z � �X � �Y �

Thus we have

�IZ�z	 � �iZ�z	 � �T ��iX � �
i
Y 	�z	 � sup

x�y�z
T ��iX�x	� �iY �y		 ������	

and
�dZ�z	 � sup

x�y�z
T ��dZ�x	� �dZ�y		� ������	

Substituting ������	 into ������	 gives

� � �DZ �z	 � sup
x�y�z

T ��� �DX�x	� �� �DY �y		�

Therefore

�DZ �z	 � � � sup
x�y�z

T ��� �DX�x	� �� �DY �y		

� inf
x�y�z

S��DX�x	� �DY �y		�

If in fact S � T d� we obtain

�DZ �z	 � �T ��DX � �
D
Y 	�

Therefore we can use ������	 and ������	 and theorem � to prove theorem � for all
T such that S � T d� This condition can be removed by using an argument along
the lines of that used in ���� to prove the udbT part of theorem � for general
Archimedean T � �One uses the fact that T is increasing in both places and a bound
R on T such that the corresponding t�conorm �of R	 equals its dual copula Rd�

We note in passing that one could also examine the rate of convergence in theorem
� by using the results in section � of ���� � The details are omitted here� Note also
that the above decomposition is of course unnecessary when the notion of a fuzzy
number adopted by H�ohle and others ������������ is used�



Triangular norms Generators

W �x� y	 � max�x � y � �� �	
gW �x	 � ��� x	
g��W �x	 � max��� x� �	

+�x� y	 � xy
g��x	 � � log x
g��� �x	 � exp��x	

T �Sch�
p �x� y	 �

�
p

q
max�xp � yp � �� �	 p �� �

+�x� y	 p � �

g
T
�Sch�
p

�x	 � �� xp

g��
T
�Sch�
p

�x	 � p
p

� � y
p � ���� � 

T �Y ag�
p �x� y	 � ��min��� p

q
��� x	p � ��� y	p	

g
T
�Y ag�
p

�x	 � ��� x	p

g��
T
�Y ag�
p

�x	 � �� p
p
y

p � ����	

T �Fra�
p �x� y	 � logp

h
� � �px����py���

p��
i p � ����	
p �� �

g
T
�Fra�
p

�x	 � logp
h
p��
px��

i
g��
T
�Fra�
p

�x	 � logp
h
� � �p���

pex

i
Table �
�� Some Archimedean tnorms and their additive generators


	�� A Direct Proof Using Bilateral T�conjugate Transforms

Theorem � was proved in ���� by using the properties of T �conjugate transforms
�������� � By extending the de�nition of these transforms� it is possible to construct
an alternative proof of theorem �� with no reference to dependency bounds� Most
of the details would be the same as for the dependency bound case and they are
omitted here� Nevertheless it seems worth mentioning the extension and its possible
applications� We begin with the representation of Archimedean t�norms� These are
also used in section ��

A continuous Archimedean t�norm T can always be written ����� theorem ����� 

T �x� y	 � fT �gT �x	 � gT �y		� ������	

where

� gT �an inner additive generator of T 	 is a continuous and strictly decreasing
function from I � ��� � into �� � fxjx � � and x  �g with g��	 � ��

� fT �the outer additive generator of T 	 is a continuous function from �� onto
I that is strictly decreasing on ��� gT ��	 and such that fT �x	 � � for all x 
gT ��	�

� fT and gT are quasi�inverses of each other and unique up to a multiplicative
constant�

If T is strict �continuous and strictly increasing in each place on ��� � �	� then fT �
g��T and gT ��	 � �� Some examples of t�norms and their additive generators have
been recently collected by Mizumoto ���� and a selection are given in table �� Note
the following special cases of the parameterised t�norms �Schweizer ���� � Frank
���� � Yager ���� 	�

W � T
�Sch�
� � T

�Y ag�
� � lim

p	� T �Fra�
p



+ � T
�Sch�
� � lim

p	�
T �Fra�
p

M � lim
p	�� T �Sch�

p � lim
p	�T �Y ag�

p � T
�Fra�
� �

There is also a multiplicative representation� A continuous Archimedean t�norm
T can always be written

T �x� y	 � hT �kT �x	kT �y		� ������	

where

� kT �the inner multiplicative generator	 is a continuous strictly increasing func�
tion from I into I with kT ��	 � ��

� hT �the outer multiplicative generator	 is a continuous function from I onto I
that is strictly increasing on �kT ��	� � and such that hT �x	 � � �x � ��� kT ��	 �

� hT is a quasi�inverse of kT and they are both unique up to an exponentiation�

The T�conjugate transform of a probability distribution function F is de�ned
by �������� 

CTF �z	 � sup
x��

e�xzkTF �x	 �z � ��� ������	

where

kTF �x	 �

�
� x � ��

kT �F �x		 � � x�

kT is an inner multiplicative generator of the Archimedean t�norm T � and it is
assumed that F ��	 � �� There is an inverse transform given by

C�
T��x	 � hT �inf

z��
exz��z		 �x � ���

where hT is an outer multiplicative generator of T � The signi�cance of these trans�
forms for the study of the �T �convolutions is that the following property is satis�ed�

C�
T �CTF � CTG	 � �T �F �T �� G�T �	

where F �T � is the T�log�concave envelope of F ���� � This means that for certain
classes of F and G� it is possible to calculate �T �convolutions by pointwise multipli�
cation of the T �conjugate transforms followed by an inverse T �conjugate transform�
This is analogous to the use of the Fourier transform or characteristic function
in probability theory ���� � The T �conjugate transform is in fact closely related
to Fenchel�s duality theorem ����������� � In fact� the duality result of Frank and
Schweizer described in the following section is yet another manifestation of Fenchel�s
theorem�

In order to apply T �conjugate transforms to the addition of fuzzy variables it is
necessary to extend their domain of de�nition from probability distributions �non�
decreasing	 to more general unimodal functions� The obvious idea of applying the



transform to the two parts �IX and �DX separately turns out to be equivalent to the
simple replacement of the condition z � �� in ������	 by the condition z � �� We
thus obtain the bilateral T�conjugate transform�

CT�X�z	 � sup
x��

e�xzkT�X�x	 �z � �� ������	

This is an analogue of the Fourier transform for fuzzy variable addition�

	�	 Numerical Calculation of sup�T Convolutions

In order to compute some examples which illustrate the convergence described by
theorem �� it is necessary to be able to calculate the sup�T convolutions ������	
accurately and easily� In this section we will present a new method for performing
this calculation� The numerical representation is very similar to that developed
in ���� for calculating convolutions and dependency bounds �when T � W 	� The
method presented here is for quite general Archimedean T and determines the result
in terms of the inner additive generator gT of T �

As well as enabling an illustration of theorem � to be calculated� the method
seems to be the �rst to allow the calculation of ������	� Whilst some simple prop�
erties of ������	 were presented by Dubois and Prade ���� in terms of L�R fuzzy
numbers� these were only for the special cases of T � W � + and M � In contrast�
the present method allows the use of arbitrary parameterized Archimedean t�norms�
Furthermore� operations other than addition are handled just as easily�

We will consider the increasing and decreasing parts of �Z separately�

����� Increasing Part

The main tool we use is the duality theorem of Frank and Schweizer ���� � In order
to do so� consider the more general form of ������	 de�ned by

�T�L�F�G	�x	 � sup
L�u�v��x

T �F �u	� G�v		 ������	

where F and G are non�decreasing left continuous functions from �� onto I ��� �
� � f����g and I � ��� � 	 and L is a binary operation� In other words F and G
are distribution functions� We denote the quasi�inverse of F by F� where

F��y	 � supfxjF �x	 � yg� ������	

Note that if F is continuous� F� � F��� The inverse distribution function is known
as the quantile distribution in probability theory� and of course corresponds to the
level�sets or �cuts of fuzzy set theory� Frank and Schweizer have shown that

��T�L�F�� G�	�x	 � inf
T �u�v��x

L�F��u	� G��v		� ������	



When T � M �the in�mum in ������	 will occur at u � v � x� and ������	 reduces to
the well known result ������������ 

��M�L�F�� G�	�x	 � L�F��x	� G��x		� ������	

This means that interval arithmetic on the level sets can be used to calculate the sup�
min convolution of fuzzy numbers� Note that H�ohle ���� has given a generalistion
of ������	 �when T � M	 to completely distributive complete lattices�

If we now observe that any Archimedean t�norm can be decomposed in terms of
its additive generators �see the previous section	� we can develop a simple way to
calculate sup�T convolutions in terms of level sets� Firstly we rewrite the condition
for the in�mum in ������	 as

fT �gT �u	 � gT �v		 � x ������	

for a given Archimedean T � Assuming that T is strict and thus that fT � g��T � we
obtain

gT �u	 � gT �v	 � gT �x	

� u � g��T �gT �x	� gT �v		

and v is constrained to range over �x� g��T �gT �x	� gT ��		 � �x� � � Therefore ������	
can be rewritten as

��T�L�F�� G�	�x	 � inf
v��x���

L�F��g��T �gT �x	� gT �v			� G��v		� ������	

����� Decreasing Part

Considering the decreasing part� we have

�dZ�z	 � sup
L�x�y��z

T ��dX�x	� �dY �y		 ������	

and so

�� �DZ �z	 � sup
L�x�y��z

T ��� �DX�x	� �� �DY �y		

� �DZ �z	 � �� sup
L�x�y��z

T ��� �DX�x	� �� �DY �y		�

Let S�x� y	 � �� T ��� x� �� y	 be the t�conorm corresponding to T � We can thus
write

�DZ �z	 � inf
L�x�y��z

S��DX�x	� �DY �y		� ������	

Frank and Schweizer ���� have shown that if

�S�L�F�G	�x	 � inf
L�u�v��x

S�F �u	� G�v		 ������	



then
��S�L�F�� G�	�x	 � sup

S�u�v��x
L�F��u	� G��v		� �������	

A t�conorm S derived from an Archimedean t�norm T can be decomposed by

S�x� y	 � f�T �g�T �x	 � g�T �y		 �������	

where f�T � �� fT �x	 and g�T �x	 � gT ��� x	� The condition S�u� v	 � x in �������	
can be rewritten as

S�u� v	 � � � g��T �gT ��� u	 � gT ��� v		 � x

� gT ��� u	 � gT �� � v	 � gT �� � x	

� u � � � g��T �gT ��� x	� gT ��� v		�

Therefore

��S�L�F�� G�	�x	 � sup
v����z�

L�F��� � g��T �gT ��� x	� gT �� � v			� G��v		� �������	

Using ������	 and �������	 and changing back to the fuzzy set notation we can
write

�I�Z �z	 � inf
v��z���

L��I�X �g��T �gT �z	� gT �v			� �I�Y �v		 �������	

and

�D�Z �z	 � sup
v����z�

L��D�X ��� g��T �gT �� � z	� gT ��� v			� �D�Y �v		� �������	

Formulae �������	 and �������	 provide a general and fast way of calculating sup�T
convolutions for arbitrary Archimedean t�norms in terms of the level sets of the
membership functions of the fuzzy variables in question� Note that for operations
such as subtraction and division� the formula for �I�Z will be in terms of �I�X and
�D�Y � and that for �D�Z will be in terms of �D�X and �I�Y � �Subtraction is thought of
as negation of the right argument followed by addition�	

����� Discretisation

In order to calculate �������	 and �������	 numerically� we discretise �X � �Y and thus

�Z � We will set �
I ���
X �i � �I�X � i

P
	 for i � �� � � � � P �i�e� P � � points	� In fact we

will adopt an approach similar to that used in ���� where we used lower and upper
approximations� If � is known exactly� then � � � � �� We thus have

(���x	 � ��� i
P

	 �x �
h
i
P
� i��

P

�
�������	

�
(
��x	 � ��� i

P
	 �x �

�
i��
P
� i
P

i
�������	

for x � ��� � and i � �� � � � � P � The advantage of this representation is that �directed
rounding can be used in order to ensure that the true result is contained within the



interval ��
(Z

�z	� (�Z�z	 � This can be seen in equations �������	 and �������	 below�

We de�ne the array g
� �
T by

g
� �
T �i � gT �i�P 	 i � �� � � � � P �������	

and can then write the formulae

�
I���
Z �i � inf

j�i��P
L��I���X �hP � g��T �g� �T �i � g

� �
T �j 	i � �I ���Y �j 	 �������	

and

�
D���
Z �i � sup

j����i
L��

D���
X �hP � ��� g��T �g

� �
T �P � i � g

� �
T �P � j 		i � �D���

Y �j 	 �������	

for i � �� � � � � P � where

h
i � b
c for (�I���Z �

h
i � d
e for �
(
I���
Z

and the �I���X � �I ���Y � �D���
X and �

D���
Y are lower or upper approximations as appropriate

�this depends on L	� Note that the rounding is downwards for the upper approxi�
mations because we are dealing with the inverse membership function �or the level
sets	� Some examples calculated using �������	 and �������	 are presented below�



Chapter �

The Inverse and Determinant of a

�� � Uniformly Distributed

Random Matrix


�� Introduction

This chapter presents two results on ��� matrices with iid �independent identically
distributed	 uniformly distributed elements� Theorem � gives an expression for the
density of the determinant of a matrix whose elements are iid uniformly on ��� � �
Theorem � gives an expression for the density of the elements of the inverse of this
matrix� Both of these results are derived in a straightforward manner� but they
do not seem to have appeared in the literature previously� The only hint of such a
result which the author has found is a single sentence on page ��� of the book by
Prohorov and Rozanov ���� �

The distribution of �the determinant of a random matrix is known
only in two cases� if the �column vectors are uniformly distributed on
��dimensional unit sphere of the ��dimensional space and if the �column
vectors are normally distributed with vanishing mean vector and non�
degenerate correlation matrix�

We make use of the convolution relations for the di�erence� product and quo�
tient of two random variables ���� � The original motivation for the results derived
here was to construct an explicit example to show the misleading nature of Szulc�s
���� de�nition of �almost everywhere non�singular matrices �see also ���� 	� This
chapter has been published in Statistics and Probability Letters� �� �������� �����	
under the same title as this chapter�

���




�� Results

Theorem ����� Let

A �

�
a�� a��
a�� a��

�

be a � � � matrix with elements aij �i� j � �� �	� where aij are iid random variables
with density

fa�x	 �

�
� x � ��� � 

� elsewhere�

and let D � det A� If fD�x	 is the probability density of D then

fD�x	 �

������������
�����������

�x� �	�� � log�x � �		 � x

�
� log��x	 �

�X
k��

���	k��

k

�



kX
i��



k

i

�
�x� �	k�i���x	i � �	

i
� �x� �	k log��x	

��
x � ���� �	�

fD��x	 x � ��� � �

� elsewhere�
������	

Proof� Let p � a��a��� q � a��a�� and so D � p � q� Obviously p and q are iid
with density

fq�z	 � fp�z	 �
Z �

��
�

jxjfx�z�x	fa�x	 dx

� � log z z � ��� � �

Now

fD�x	 �
Z �

��
fp�w � x	fq�w	 dw

�

������
�����

Z �

�x
log�w � x	 log�w	 dw x � ���� �	�Z ��x

�
log�w � x	 log�w	 dw x � ��� � �

� elsewhere�

The two cases are symmetric �fD��x	 � fD�x		 and so we will only consider x �
���� �	� Let

Ix�w	 �
Z

log�w � x	 log�w	 dw x � ���� �	�

Integration by parts twice gives

Ix�w	 � w��� log w	 � �w � x	 log�w � x	�log�w	� �	 � x���Kx�w		

where

Kx�w	 �
Z log�w � x	

w
dw



Figure �
�� The probability density fD


and cannot be expressed as a �nite combination of elementary functions ����� eq�
������ � We can determine a series expansion though�

log�w � x	

w
�

�X
k��

���	k��
�w � x� �	k

wk
� � w � x � ��

This can be integrated termwise within the region of convergence and so

Kx�w	 �
�X
k��

���	k��

k

Z �w � x� �	k

wk
dw�

where the integral can only be over a range such that � � w � x � �� Using a
binomial expansion of the integrand and then integrating termwise we obtain

Kx�w	 �
�X
k��

���	k��

k

�
kX
i��
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wi

i
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Evaluating Ix�w	j�w��x gives ������	� A graph of fD�x	 calculated using only the
�rst �� terms of the in�nite series is shown in �gure ����

Theorem ����� Let A be as in theorem ����
 and let

A�� �

�
a��

a��a���a��a��
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a��a���a��a���a��
a��a���a��a��
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�
�

�
p q
r s

�
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Then p� q� r and s are identically distributed �although not independent	 with com�
mon density function fs�x	 given by

fs�x	 �

������������
�����������

�

x�
�

�

�x��� x	
�

�� � log����x	

�x�
x � ������	�

�

��� � x	
x � ���� �	�

� x � ��� �	�

�x� �	�� � � log��� x��		
�x�

x � ����	�

������	

Proof� The fact that p� q� r and s are identically distributed is obvious due to the
interchangability of the aij �they are iid	� We rewrite the expression for s as

s �
�

a�� � a��a��
a��

�
�

b� c
d

�
�

b� e
�

�

g

and then successively determine the densities of c� e� g� and s� We already know
�from the proof of theorem �����	 that

fc�x	 �

�
log x x � ��� � �

� elsewhere�

The densities of e and g are determined by the convolution relations for quotient
and di�erence �see ���� 	� We obtain

fe�x	 �

�������
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� log x

�
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�x�
x � ����	�

and
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��� � x	� ��� � x	 log��� x	

�
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The distribution of s � ��g is given by

fs�x	 �
�

x�
fg���x	� ������	

Substituting ������	 into ������	 gives ������	� A graph of fs�x	 is presented in �gure
����



Figure �
�� The probability density fs



�� Discussion

Observe that limjxj	� fs�jxj	 � �� and so A is almost surely non�singular in the
conventional measure theoretic sense� The matrix A would not be considered to be
almost everywhere nonsingular using Szulc�s de�nition though� Szulc �������� is
concerned with interval matrices� and de�nes an interval matrix AI to be almost
everywhere non�singular if there exists only a �nite number of real singular matrices
contained in AI� The interpretation of an interval matrix as being a random matrix
with uniformly distributed elements seems perfectly natural� and so Szulc�s de�nition
is misleading� Komlos ���� has studied the singularity of random matrices and has
shown that if �i�j �i� j � �� �� � � �	 are iid with a non�degenerate distribution� then

lim
n	� P
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����������

���� ���� 
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���� ���� 
 
 
 ���n
���

� � �
���
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 �n�n

����������
� �

�
����� � ��

He also settled ���� the problem of the number of singular matrices there are when
the elements can be either � or ��

There are very few exact results on the distribution of random determinants� A
number of authors have derived results in terms of moments for a few special cases
������������������� � Nyquist� Rice� and Riordan ���� considered the determinants



of random matrices with independent identically normally distributed elements with
zero means and derived exact densities for the ���� ���� and ��� cases� They also
investigated the moments of the determinant in the case of nonnormally distributed
elements with zero means� Nicholson ���� studied the � � � case for independent
identically distributed elements with normal distributions having nonzero means
and derived a complicated in�nite series for the cumulative distribution function
of the determinant� Alagar ��� has derived an expression for the density of the
absolute value of the determinant of a �� � matrix with independent exponentially
distributed elements� It is in terms of ��x	 � d

dx
�log $�x		� He also presented a

complex result for the � � � determinant in terms of G�functions�

Instead of calculating the marginal densities we could calculate the joint density�
While this has a fairly simple analytical form �and can be calculated directly for the
special case we are interested in or from the general result of Fox and Quirk ���� 	�
it is of limited value� Usually one will ultimately be interested in the densities of
the individual elements� and to obtain these from the joint density it is necessary to
perform multiple integrations with variable limits� The joint density itself is hard
to conceptualise �it is four dimensional	� Note that we cannot calculate correlation
coe
cients to determine the dependence of the elements as none of the moments of
fs exist�



Chapter �

Conclusions

I hate quotation� Tell me what you know�
� Ralph Waldo Emerson

��� Overview

The main objectives of this thesis were to study the idea of probabilistic arithmetic�
to identify the major problems� and to attempt to provide solutions to some of
these problems� It soon became clear that the greatest obstacle in the path to the
development of probabilistic arithmetic is the phenomenon of dependency error� It is
not su
cient that all the inputs to a calculation are independent since dependencies
can arise in the course of a calculation because of repeated occurrences of terms�
The details of how the probability distributions are represented� measured� or the
��convolutions calculated� are of much less signi�cance�

We have developed one approach to the handling of stochastic dependencies
in the form of dependency bounds� These allow the calculation of lower and upper
bounds on the distribution of a function of random variables when only the marginal
distributions are known� We have seen that when some information is known �a lower
bound on their copula greater than W 	� then tighter bounds can be determined�
However it should be realised that these bounds do not provide a complete solution
to the problem of dependency error in probabilistic arithmetic calculations� There
are many other issues including the possible rearrangement of expressions in order
to remove repeated terms� which have greater potential value in this regard�

Probabilistic arithmetic is similar in its motivations and problems to interval
arithmetic� In fact interval arithmetic can be considered as a special case of prob�
abilistic arithmetic� However interval arithmetic is considerably simpler because
dependency error manifests itself as �dependency width� which simply causes a
wider �nal result than could otherwise have been obtained� �Compare this with
the situation where probability distributions are involved� there is no analogous
simple idea of �containment of results�	 In order to achieve a similar situation
with probability distributions we have to somehow incorporate the notion of con�
tainment �one probability distribution containing another	� This is the advantage

���



of our lower and upper bounds on probability distributions� Whilst simple problems
�for example determining the distribution of the root of a linear equation by calcu�
lating the distribution of the quotient of the two coe
cients	� are readily solvable
using the methods presented in this thesis� more complex problems require further
investigation�

Nevertheless there are a number of positive results to come out of this work�
The dependency bounds and the numerical methods for calculating them seem to
be of independent interest� These bounds can be used to determine the robustness
of untestable independence assumptions� The connexion between these dependency
bounds and the fuzzy number sup�T convolutions is also of particular interest� Not
only does this provide �via our numerical method based on the duality theorem	
an e
cient way of calculating operations on fuzzy numbers� but it also gives a very
close link between fuzzy set theory and probability theory� Whilst the connexion
between the Boole�Fr�echet formulae for conjunction and disjunction and the fuzzy
set intersection and union operations was known before� the knowledge that this
can be extended to the case of random and fuzzy variables is new� and further
strengthens the argument that to a large extent the fuzzy set theory operations are
better considered in terms of probability theory�

Other contributions of this thesis include

� A detailed review of methods for numerically calculating ��convolutions of
probability distribution functions�

� The new �L�convolution algorithm developed in chapter �� Whilst this does
not solve all the problems of probabilistic arithmetic� it is still a useful and
necessary tool� Our method is computationally e
cient� accurate� and simple�
It is better than any of the methods discussed in chapter ��

� The extreme limit theorem derived in chapter �� This shows that when one has
no knowledge of the dependence structure of a set of random variables� almost
any distribution consistent with the constraints imposed by interval arithmetic
on their supports is possible for their weighted sum�

� The result in chapter � on the inverse and determinant of a ��� random matrix�
although simple� is new and demonstrates the strange results obtainable with
just a few operations on random variables�

Many of the issues raised in this thesis are suitable topics for future research� In
fact the author already has partial results on some of these which are not included
in this thesis� The following section gives a list of possible directions for further
investigation�

��� Directions for Future Research

There are many areas for further research suggested by the work presented in this
thesis� We will very brie�y mention some of these� Some of the items below �espe�



cially items �� �� � and ��	 have already been studied to an extent by the author�
Results will be reported elsewhere�

�� Con�dence Interval Procedures� The numerical representation of probabil�
ity distributions adopted in chapter � �lower and upper bounds on a distribu�
tion function	 obviously suggests the use of con�dence intervals for acquiring
sample distributions� This would allow a consistent representation from mea�
surement to the �nal result� There are a number of results available in the
literature concerning con�dence intervals for quantiles� Some of the questions
still to be answered are� Should the con�dence intervals be overall �for the
entire distribution	 or should they be constructed point by point*� What dis�
tributional assumptions are necessary*� Can a fast algorithm be developed for
implementing the procedure chosen*� and� Given two estimated distributions
with certain con�dence levels� if the two distributions are combined� is there
anything that can be said about the con�dence of the result� �This last ques�
tion lies at the heart of debates on the foundations of statistics�	 We already
have some answers to some of these questions and we hope to report these
elsewhere�

�� Dependency Bounds for Functions of More than � Arguments� As we
mentioned in section ���� it is possible to use linear programming techniques
to calculate Boole�Fr�echet bounds on the probability of complex compound
events� When there are repeated terms these bounds are tighter than those
obtained by repeated application of the pairwise bounds for conjunction and
disjunction� Can similar techniques be applied to the determination of de�
pendency bounds for more complex functions of random variables* This is
obviously a much harder problem for random variables than it is for random
events�

�� Rearrangement Methods for Convolutions� The �L�convolution algorithm
developed in chapter � makes essential use of sorting� Is there a continuous
analogue of this algorithm* Note that the continuous analogue of sorting
a discrete function into monotonic order is an equimeasurable rearrangement
���� � Rearrangement techniques have been recently applied to some statistical
optimization problems ���� � and it seems likely that further results can be
obtained using these ideas� In other words it may be possible to develop
results for convolutions in terms of rearrangements of distribution functions or
probability densities�

�� Bucketing Algorithms for ��convolutions� The ��convolution algorithm we
developed has a computational complexity of O�N� log N	 where N is the
number of points used to represent the distribution functions� This means
that it runs rather slower than the algorithm for dependency bounds� which
is O�N�	 �but see item � below	� It is possible to construct an algorithm for
��convolutions which has average case complexity O�N�	 by using bucketing
algorithms ���� � It would appear that this can be further improved by using
adaptive recursive bucketing� This would also provide a solution to a computer



science problem� known as sorting and selection in multisets ���� � which is
very similar to the problem of calculating ��convolutions�


� Discrete T�conjugate Transforms� The T�conjugate transform used in chap�
ter � to prove the extremal limit result can be converted into a discrete form�
Furthermore there exists a fast divide and conquer algorithm for calculating
this� This allows the calculation of the T�log�concave envelopes of �T�� opera�
tions in O�N logN	 time� A bilateral version could be used for the very fast
calculation of the sup�T convolutions of fuzzy number membership functions�
This has yet to be implemented in the form of a computer program�

�� Application of Interval Arithmetic Algorithms� There exists a wide range
of special algorithms developed for interval arithmetic ������� � It is possible
that some of these may be of use for probabilistic arithmetic calculations� They
were developed in order to reduce the amount of dependency width incurred
when calculating things like the inverses of interval matrices using Gaussian
elimination� In order to use these algorithms it will be necessary to develop a
means whereby di�erent lower bounds on copulas are used in the calculation of
the dependency bounds so that the lower and upper bounds on the distribution
functions do not diverge too far� �See the next item�	

�� Further Study of Dependency Bounds for CXY �� W � The dependency
bounds studied in section ��� deserve further attention� A �rst step would
be the implementation of equation ����� as a fast means of calculating de�
pendency bounds when CXY �� W � We have had no experience yet with the
updating of copulas in the manner suggested in section ���� The relationship
between the dependencies induced by these lower bounds and other types of
dependence also merits further investigation�

	� Con�dence Curve Procedures� The con�dence curves discussed in section
����� would appear to deserve further consideration� As mentioned in sec�
tion ������ there is a possibility of con�dence curves providing a link between
Bayesian style and con�dence interval style procedures in statistics� Their
interpretation along the lines of fuzzy numbers also requires a closer look� An�
other aspect is the direct combination of con�dence curves� could they be used
�instead of distribution functions	 as representations of random quantities*

�� Measures of Dependence Based on Copulas and Dependency Bounds�
As we mentioned in section ������ there are a number of measures or indices of
dependence which can be de�ned in terms of copulas� These have been inves�
tigated by Wol� and others ���� � The question is whether they can be used
to provide tighter dependency bounds on distributions of functions of random
variables� The e�ects on measures of dependence of operations on random
variables also deserves investigation�

��� Empirical Copulas� Very recently Quesada�Molina ���� has suggested the
notion of an empirical copula� Whilst this is obviously little more than a trans�
formation of the empirical joint distribution function� its statistical properties



require investigation� Given the e�ect of lower bounds on copulas on the tight�
ness of dependency bounds� it would also be worthwhile investigating one�sided
lower con�dence bounds on the empirical copula�

��� Empirical Multiplicative Generators of Archimedean Copulas� A re�
lated idea is to use the multiplicative generator representation of an Archimed�
ean copula and thus to estimate the multiplicative generator� This is a one
dimensional function rather than two dimensional� Alsina and Ger�s result
��� on the convergence of t�norms in terms of convergence of their generators
may be of use here�

��� History of Quotient Normal Random Variables� In the course of our in�
vestigations of probabilistic arithmetic we have made a study of the history
of the distribution of the quotient of two normal random variables� This is
obviously the sort of problem we expect our numerical methods to be able
to calculate� The history of the analytical attempts on this problem� which
begins with the �rst determination of the distribution of a quotient of random
variables by Crofton in ����� p���� � and continues to the present day with a
number of rediscoveries� is another interesting aspect we aim to write up one
day�

��� Application to Random Equations and Practical Problems� As we
mentioned above� the probabilistic arithmetic methods developed in this thesis
have so far only been studied in terms of their foundations� It remains to be
seen whether they are of value for practical problems�

��� Use of Graph Representations� The use of graph representations was dis�
cussed in section ���� There it was noted that further research is needed to
determine whether these methods will be of use in probabilistic arithmetic� We
expect that this will be the case if complex calculations are attempted� The
�rst step would be to implement a simple expression rearrangement procedure�

�
� Relationship with Fine�s Interval Valued Probabilities� Although our
lower and upper bounds on probability distributions can be completely un�
derstood in terms of the standard single valued notion of probability� it seems
worthwhile examining whether they can be usefully integrated with Fine�s in�
terval valued probabilities �section ���	�

��� Relationship with Probabilistic Metric Spaces� Nearly all of the mathe�
matical tools we have used in this thesis were originally developed in the �eld
of probabilistic metric spaces� We have already discussed the relationship be�
tween our methods and those of that �eld �section ���	� However we suspect
that there may be further results obtainable by studying this� particularly
from the viewpoint of considering the �T�L and �T�L operations as dependency
bounds rather than just as triangle functions�

��� Use of Mixtures for Nonmonotonic Operations� Further work is needed
to determine the practical value of the use of mixtures advocated in section ���
for calculating both convolutions and dependency bounds under nonmonotonic



operations on random variables� Whilst analytically there are no di
culties�
there still remain some numerical problems to be solved�

��� Some General Philosophical Conclusions

Phenomena that are statistically calculable do not become
statistically incalculable suddenly� at a well�de�ned

boundary� but� rather� by degrees� The scholar takes a
position of cognitive optimism� that is� he assumes that the
subjects he studies will yield to calculation� It is nicest if
they do so deterministically � � �� It is not quite so nice if

calculable probability has to substitute for certainty� But it
is not nice at all when absolutely nothing can be calculated�

� Stansilaw Lem

The work presented in this thesis can be considered to be just part of a general
long term trend to constructing probabilistic models of reality� General discussions
on the probabilistic view of the world can be found in �������� � This �probabilisitic
imperative forms the background to a large portion of recent science and philosophy
of science� Popper has presented a number of arguments against determinism ���� �
and the deterministic world view is �or at least should be	 considered dead�

However� having adopted a probabilistic world view� problems arise that were
absent in the simpler deterministic situation� For example� there is the problem of
acquisition of probability values� This problem� seemingly innocuous at �rst� leads
one through the tortuous maze of interpretations of probability� Nearly ��� years
after Laplace� there is still no sign of consensus in the scienti�c community about
this� Thus it becomes necessary for us to try and make up our own minds� Whilst
we have managed to avoid the problem in this thesis� let us just mention now our
preference for the propensity interpretation ������������ with the rider that we are
aware of many remaining problems with this�

Apart from these philosophical concerns� there is the practical problem of how
one proceeds to calculate with the probabilities� We have already seen �section ���	
the di�erence between our viewpoint �based on random variables	 and that adopted
by the majority of workers in the �eld of probabilistic metric spaces� Even ignoring
this distinction� there remain the severe practical di
culties of solving even some
of the most simply stated probabilistic problems� For example� whilst there has
been some encouraging progress recently in the study of polynomials with random
coe
cients through the use of Kharitonov�s theorem ������� � the situation remains
much the same as it did in ���� when Hammersley confessed he was �still very far
from having solved the practical problem of determining the distribution of the
roots of a random polynomial�

The point is that there is a very deep hierarchy of problems in terms of their prac�
tical di
culty� This di
culty is not the �in principle di
culty which determinists
were always sure could be removed by being clever enough� Nowadays we can state
the di
culty more precisely in terms of computational complexity theory� Many
problems are �insoluble because of their exponential computational complexity�
What we have seen in this thesis is a further example of this� The exact calculation
of the distribution of complex functions of random variables is generally intractable�



However it is possible to calculate lower and upper bounds on the solution by use of
the dependency bounds� This approach seems preferable to the alternative of invok�
ing the principle of maximum entropy and assuming independence solely in order
to get a single valued probability for a result� Nevertheless� randomness ultimately
wins� and for the time being at least� Monte�Carlo simulation will remain the major
tool for solving complex random problems�
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Page ���� Glenn Shafer� ����� p���� �
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