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A major limitation towards more widespread implementation of Bayesian ap-
proaches is that obtaining the posterior distribution often requires the integration
of high-dimensional functions. This can be computationally very difficult, but
several approaches short of direct integration have been proposed (reviewed by
Smith 1991, Evans and Swartz 1995, Tanner 1996). We focus here on Markov
Chain Monte Carlo (MCMC) methods, which attempt to simulate direct draws
from some complex distribution of interest. MCMC approaches are so-named be-
cause one uses the previous sample values to randomly generate the next sample
value, generating a Markov chain (as the transition probabilities between sample
values are only a function of the most recent sample value).

The realization in the early 1990’s (Gelfand and Smith 1990) that one particu-
lar MCMC method, the Gibbs sampler, is very widely applicable to a broad class
of Bayesian problems has sparked a major increase in the application of Bayesian
analysis, and this interest is likely to continue expanding for sometime to come.
MCMC methods have their roots in the Metropolis algorithm (Metropolis and
Ulam 1949, Metropolis et al. 1953), an attempt by physicists to compute com-
plex integrals by expressing them as expectations for some distribution and then
estimate this expectation by drawing samples from that distribution. The Gibbs
sampler (Geman and Geman 1984) has its origins in image processing. It is thus
somewhat ironic that the powerful machinery of MCMC methods had essentially
no impact on the field of statistics until rather recently. Excellent (and detailed)
treatments of MCMC methods are found in Tanner (1996) and Chapter two of
Draper (2000). Additional references are given in the particular sections below.

MONTE CARLO INTEGRATION

The original Monte Carlo approach was a method developed by physicists to use
random number generation to compute integrals. Suppose we wish to compute
a complex integral ∫ b

a

h(x) dx (1a)

If we can decompose h(x) into the production of a function f(x) and a probability
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density function p(x) defined over the interval (a, b), then note that∫ b

a

h(x) dx =
∫ b

a

f(x) p(x) dx = Ep(x)[ f(x) ] (1b)

so that the integral can be expressed as an expectation of f(x) over the density
p(x). Thus, if we draw a large number x1, · · · , xn of random variables from the
density p(x), then ∫ b

a

h(x) dx = Ep(x)[ f(x) ] ' 1
n

n∑
i=1

f(xi) (1c)

This is referred to as Monte Carlo integration.
Monte Carlo integration can be used to approximate posterior (or marginal

posterior) distributions required for a Bayesian analysis. Consider the integral
I(y) =

∫
f(y |x) p(x) dx, which we approximate by

Î(y) =
1
n

n∑
i=1

f(y |xi) (2a)

where xi are draws from the density p(x). The estimated Monte Carlo standard
error is given by

SE2[ Î(y) ] =
1
n

(
1

n− 1

n∑
i=1

(
f(y |xi)− Î(y)

)2
)

(2b)

Importance Sampling

Suppose the density p(x) roughly approximates the density (of interest) q(x), then∫
f(x) q(x)dx =

∫
f(x)

(
q(x)
p(x)

)
p(x)dx = Ep(x)

[
f(x)

(
q(x)
p(x)

)]
(3a)

This forms the basis for the method of importance sampling, with∫
f(x) q(x)dx ' 1

n

n∑
i=1

f(xi)
(
q(xi)
p(xi)

)
(3b)

where the xi are drawn from the distribution given by p(x). For example, if we
are interested in a marginal density as a function of y, J(y) =

∫
f(y |x) q(x)dx,

we approximate this by

J(y) ' 1
n

n∑
i=1

f(y |xi)
(
q(xi)
p(xi)

)
(4)
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where xi are drawn from the approximating density p.
An alternative formulation of importance sampling is to use∫

f(x) q(x)dx ' Î =
n∑
i=1

wif(xi)
/ n∑

i=1

wi, where wi =
g(xi)
p(xi)

(5a)

where xi are drawn from the density p(x). This has an associated Monte Carlo
variance of

Var
(
Î
)

=
n∑
i=1

wi

(
f(xi)− Î

)2
/ n∑

i=1

wi (5b)

INTRODUCTION TO MARKOV CHAINS

Before introducing the Metropolis-Hastings algorithm and the Gibbs sampler, a
few introductory comments on Markov chains are in order. LetXt denote the value
of a random variable at time t, and let the state space refer to the range of possible
X values. The random variable is a Markov process if the transition probabilities
between different values in the state space depend only on the random variable’s
current state, i.e.,

Pr(Xt+1 = sj |X0 = sk, · · · , Xt = si) = Pr(Xt+1 = sj |Xt = si) (6)

Thus for a Markov random variable the only information about the past needed
to predict the future is the current state of the random variable, knowledge of the
values of earlier states do not change the transition probability. A Markov chain
refers to a sequence of random variables (X0, · · · , Xn) generated by a Markov
process. A particular chain is defined most critically by its transition probabilities
(or the transition kernel), P (i, j) = P (i → j), which is the probability that a
process at state space si moves to state sj in a single step,

P (i, j) = P (i→ j) = Pr(Xt+1 = sj |Xt = si) (7a)

We will often use the notation P (i→ j) to imply a move from i to j, as many texts
define P (i, j) = P (j → i), so we will use the arrow notation to avoid confusion.
Let

πj(t) = Pr(Xt = sj) (7b)

denote the probability that the chain is in state j at time t, and let π(t) denote the
row vector of the state space probabilities at step t. We start the chain by specifying
a starting vector π(0). Often all the elements of π(0) are zero except for a single
element of 1, corresponding to the process starting in that particular state. As
the chain progresses, the probability values get spread out over the possible state
space.
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The probability that the chain has state value si at time (or step) t + 1 is
given by the Chapman-Kolomogrov equation, which sums over the probability
of being in a particular state at the current step and the transition probability from
that state into state si,

πi(t+ 1) = Pr(Xt+1 = si)

=
∑
k

Pr(Xt+1 = si |Xt = sk) · Pr(Xt = sk)

=
∑
k

P (k → i)πk(t) =
∑
k

P (k, i)πk(t) (7)

Successive iteration of the Chapman-Kolomogrov equation describes the evolu-
tion of the chain.

We can more compactly write the Chapman-Kolomogrov equations in matrix
form as follows. Define the probability transition matrix P as the matrix whose
i, jth element is P (i, j), the probability of moving from state i to state j, P (i→ j).
(Note this implies that the rows sum to one, as

∑
j P (i, j) =

∑
j P (i → j) = 1.)

The Chapman-Kolomogrov equation becomes

π(t+ 1) = π(t)P (8a)

Using the matrix form, we immediately see how to quickly interate the Chapman-
Kolomogrov equation, as

π(t) = π(t− 1)P = (π(t− 2)P)P = π(t− 2)P2 (8b)

Continuing in this fashion shows that

π(t) = π(0)Pt (8c)

Defining the n-step transition probability p(n)
ij as the probability that the process

is in state j given that it started in state i n steps ago, i..e.,

p
(n)
ij = Pr(Xt+n = sj |Xt = si) (8d)

it immediately follows that p(n)
ij is just the ij-th element of Pn.

Finally, a Markov chain is said to be irreducibile if there exists a positive
integer such that p(nij)

ij > 0 for all i, j. That is, all states communicate with each
other, as one can always go from any state to any other state (although it may take
more than one step). Likewise, a chain is said to be aperiodic when the number
of steps required to move between two states (say x and y) is not required to be
multiple of some integer. Put another way, the chain is not forced into some cycle
of fixed length between certain states.
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Example 1. Suppose the state space are (Rain, Sunny, Cloudy) and weather
follows a Markov process. Thus, the probability of tomorrow’s weather simply
depends on today’s weather, and not any other previous days. If this is the case, the
observation that it has rained for three straight days does not alter the probability
of tomorrow weather compared to the situation where (say) it rained today but
was sunny for the last week. Suppose the probability transitions given today is
rainy are

P( Rain tomorrow | Rain today ) = 0.5,
P( Sunny tomorrow | Rain today ) = 0.25,
P( Cloudy tomorrow | Rain today ) = 0.25,

The first row of the transition probability matrix thus becomes (0.5, 0.25, 0.25).
Suppose the rest of the transition matrix is given by

P =

 0.5 0.25 0.25
0.5 0 0.5
0.25 0.25 0.5


Note that this Markov chain is irreducible, as all states communicate with each
other.

Suppose today is sunny. What is the expected weather two days from now? Seven
days? Here π(0) = ( 0 1 0 ), giving

π(2) = π(0)P2 = ( 0.375 0.25 0.375 )

and
π(7) = π(0)P7 = ( 0.4 0.2 0.4 )

Conversely, suppose today is rainy, so that π(0) = ( 1 0 0 ). The expected
weather becomes

π(2) = ( 0.4375 0.1875 0.375 ) and π(7) = ( 0.4 0.2 0.4 )

Note that after a sufficient amount of time, the expected weather in independent of
the starting value. In other words, the chain has reached a stationary distribution,
where the probability values are independent of the actual starting value.

As the above example illustrates, a Markov chain may reach a stationary
distribution π∗, where the vector of probabilities of being in any particular given
state is independent of the initial condition. The stationary distribution satisfies

π∗ = π∗P (9)
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In other words, π∗ is the left eigenvalue associated with the eigenvalue λ = 1
of P. The conditions for a stationary distribution is that the chain is irreducible
and aperiodic. When a chain is periodic, it can cycle in a deterministic fashion
between states and hence never settles down to a stationary distribution (in effect,
this cycling is the stationary distribution for this chain). A little thought will show
that if P has no eigenvalues equal to −1 that it is aperiodic.

A sufficient condition for a unique stationary distribution is that the detailed
balance equation holds (for all i and j),

P (j → k)π∗j = P (k → j)π∗k (10a)

or if you prefer the notation

P (j, k)π∗j = P (k, j)π∗k (10b)

If Equation 10 holds for all i, k, the Markov chain is said to be reversible, and hence
Equation 10 is also called the reversibility condition. Note that this condition
implies π = πP, as the jth element of πP is

(πP)j =
∑
i

πi P (i→ j) =
∑
i

πj P (j → i) = πj
∑
i

P (j → i) = πj

With the last step following since rows sum to one.
The basic idea of discrete-state Markov chain can be generalized to a contin-

uous state Markov process by having a probability kernel P (x, y) that satisfies∫
P (x, y) dy = 1

and the continuous extension of the Chapman-Kologronvo equation becomes

πt(y) =
∫
πt−1(x)P (x, y) dy (11a)

At equilibrium, that stationary distribution satisfies

π∗(y) =
∫
π∗(x)P (x, y) dy (11b)

THE METROPOLIS-HASTING ALGORITHM

One problem with applying Monte Carlo integration is in obtaining samples
from some complex probability distribution p(x). Attempts to solve this prob-
lem are the roots of MCMC methods. In particular, they trace to attempts by
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mathematical physicists to integrate very complex functions by random sam-
pling (Metropolis and Ulam 1949, Metropolis et al. 1953, Hastings 1970), and
the resulting Metropolis-Hastings algorithm. A detailed review of this method is
given by Chib and Greenberg (1995).

Suppose our goal is to draw samples from some distribution p(θ) where
p(θ) = f(θ)/K, where the normalizing constant K may not be known, and very
difficult to compute. The Metropolis algorithm ((Metropolis and Ulam 1949,
Metropolis et al. 1953) generates a sequence of draws from this distribution is
as follows:

1. Start with any initial value θ0 satisfying f (θ0) > 0.

2. Using current θ value, sample a candidate point θ∗ from some jumping
distribution q(θ1, θ2), which is the probability of returning a value of θ2

given a previous value of θ1. This distribution is also referred to as the
proposal or candidate-generating distribution. The only restriction on
the jump density in the Metropolis algorithm is that it is symmetric, i.e.,
q(θ1, θ2) = q(θ2, θ1).

3. Given the candidate point θ∗, calculate the ratio of the density at the
candidate (θ∗) and current (θt−1) points,

α =
p(θ∗)
p(θt−1)

=
f(θ∗)
f(θt−1)

Notice that because we are considering the ratio of p(x) under two dif-
ferent values, the normalizing constant K cancels out.

4. If the jump increases the density (α > 1), accept the candidate point (set
θt = θ∗) and return to step 2. If the jump decreases the density (α < 1),
then with probability α accept the candidate point, else reject it and
return to step 2.

We can summarize the Metropolis sampling as first computing

α = min
(
f(θ∗)
f(θt−1)

, 1
)

(12)

and then accepting a candidate point with probability α (the probability of a
move). This generates a Markov chain (θ0, θ1, · · · , θk, · · ·), as the transition prob-
abilities from θt to θt+1 depends only on θt and not (θ0, · · · , θt−1). Following
a sufficient burn-in period (of, say, k steps), the chain approaches its station-
ary distribution and (as we will demonstrate shortly), samples from the vector
(θk+1, · · · , θk+n) are samples from p(x).

Hastings (1970) generalized the Metropolis algorithm by using an arbitrary
transition probability function q(θ1, θ2) = Pr(θ1 → θ2), and setting the acceptance
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probability for a candidate point as

α = min
(
f(θ∗) q(θ∗, θt−1)
f(θt−1) q(θt−1, θ∗)

, 1
)

(13)

This is the Metropolis-Hastings algorithm. Assuming that the proposal distribu-
tion is symmetric, i.e., q(x, y) = q(y, x), recovers the original Metropolis algorithm

Example 2. Consider the scaled inverse-χ2 distribution,

p(θ) = C · θ−n/2 · exp
(
−a
2θ

)
and suppose we wish to simulate draws from this distribution with (say) n = 5
degrees of freedom and scaling factor a = 4 using the Metropolis algorithm.

Suppose we take as our candidate-generating distribution a uniform distribution
on (say) (0, 100). Clearly, there is probability mass above 100, but we assume this
is sufficiently small so that we can ignore it. Now let’s run the algorithm. Take
θ0 = 1 as our starting value, and suppose the uniform returns a candidate value
of θ∗ = 39.82. Here

α = min
(
f(θ∗)
f(θt−1)

, 1
)

= min
(

(39.82)−2.5 · exp(−2/39.82)
(1)−2.5 · exp(−2/2 · 1)

, 1
)

= 0.0007

Since (this case) α < 1, θ∗ is accepted with probability 0.007. Thus, we randomly
drawnU from a uniform (0, 1) and accept θ∗ ifU ≤ α. In this case, the candidate
is rejected, and we draw another candidate value from the proposal distribution
(which turns out to be 71.36) and continue as above. The resulting first 500 values
of θ are plotted below.
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Notice that there are long flat periods (corresponding to all θ∗ values being re-
jected). Such a chain is called poorly mixing.

In contrast, suppose we use as our proposal distribution aχ2
1. Here, the candidate

distribution is no longer symmetric, and we must employ Metropolis-Hastings
(see Example 3 for the details). In this case, a resulting Metropolis-Hastings sam-
pling run is shown below. Note that the time series looks like white noise, and
the chain is said to be well mixing.

Metropolis-Hasting Sampling as a Markov Chain

To demonstrate that the Metropolis-Hasting sampling generates a Markov chain
whose equilibrium density is that candidate density p(x), it is sufficient to show
that the Metropolis-Hasting transition kernel satisfy the detailed balance equation
(Equation 10) with p(x).

Under the Metropolis-Hasting algorithm , we sample from q(x, y) = Pr(x→
y | q) and then accept the move with probability α(x, y), so that the transition
probability kernel is given by

Pr(x→ y) = q(x, y)α(x, y) = q(x, y) ·min
[
p(y) q(y, x)
p(x) q(x, y)

, 1
]

(14)

Thus if the Metropolis-Hasting kernel satisfies P (x → y) p(x) = P (y → x) p(y),
or

q(x, y)α(x, y) p(x) = q(y, x)α(y, x) p(y) for all x, y

then that stationary distribution from this kernel corresponds to draws from the
target distribution. We show that the balance equation is indeed satisfied with
this kernel by considering the three possible cases for any particular x, y pair.
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1. q(x, y) p(x) = q(y, x) p(y). Here α(x, y) = α(y, x) = 1 implying

P (x, y) p(x) = q(x, y) p(x) and P (y, x)p(y) = q(y, x) p(y)

and hence P (x, y) p(x) = P (y, x) p(y), showing that (for this case), the
detailed balance equation holds.

2. q(x, y) p(x) > q(y, x) p(y), in which case

α(x, y) =
p(y) q(y, x)
p(x) q(x, y)

and α(y, x) = 1

Hence

P (x, y) p(x) = q(x, y)α(x, y) p(x)

= q(x, y)
p(y) q(y, x)
p(x) q(x, y)

p(x)

= q(y, x) p(y) = q(y, x)α(y, x) p(y)
= P (y, x) p(y)

3. q(x, y) p(x) < q(y, x) p(y). Here

α(x, y) = 1 and α(y, x) =
q(x, y) p(x)
q(y, x) p(y)

Hence

P (y, x) p(y) = q(y, x)α(y, x) p(y)

= q(y, x)
(
q(x, y) p(x)
q(y, x) p(y)

)
p(y)

= q(x, y) p(x) = q(x, y)α(x, y) p(x)
= P (x, y) p(x)

Burning-in the Sampler

A key issue in the successful implementation of Metropolis-Hastings or any other
MCMC sampler is the number of runs (steps) until the chain approaches station-
arity (the length of the burn-in period). Typically the first 1000 to 5000 elements
are thrown out, and then one of the various convergence tests (see below) is used
to assess whether stationarity has indeed been reached.

A poor choice of starting values and/or proposal distribution can greatly in-
crease the required burn-in time, and an area of much current research is whether
an optimal starting point and proposal distribution can be found. For now, we
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simply offer some basic rules. One suggestion for a starting value is to start the
chain as close to the center of the distribution as possible, for example taking a
value close to the distribution’s mode (such as using an approximate MLE as the
starting value).

A chain is said to be poorly mixing if it says in small regions of the parameter
space for long periods of time, as opposed to a well mixing chain that seems to
happily explore the space. A poorly mixing chain can arise because the target
distribution is multimodal and our choice of starting values traps us near one of
the modes (such multimodal posteriors can arise if we have a strong prior in con-
flict with the observed data). Two approaches have been suggested for situations
where the target distribution may have multiple peaks. The most straightforward
is to use multiple highly dispersed initial values to start several different chains
(Gelman and Rubin 1992). A less obvious approach is to use simulated annealing
on a single-chain.

Simulated Annealing

Simulated annealing was developed as an approach for finding the maximum of
complex functions with multiple peaks where standard hill-climbing approaches
may trap the algorithm at a less that optimal peak. The idea is that when we
initially start sampling the space, we will accept a reasonable probability of a
down-hill move in order to explore the entire space. As the process proceeds, we
decrease the probability of such down-hill moves. The analogy (and hence the
term) is the annealing of a crystal as temperate decreases — initially there is a lot
of movement, which gets smaller and smaller as the temperature cools. Simulated
annealing is very closely related to Metropolis sampling, differing only in that the
probability α of a move is given by

αSA = min

[
1,
(
p(θ∗)
p(θt−1)

)1/T (t)
]

(15a)

where the function T (t) is called the cooling schedule (setting T = 1 recovers
Metropolis sampling), and the particular value of T at any point in the chain
is called the temperature. For example, suppose that p(θ∗)/p(θt−1) = 0.5. With
T = 100, α = 0.93, while for T = 1, α = 0.5, and for T = 1/10, = 0.0098. Hence,
we start off with a high jump probability and then cool down to a very low (for
T = 0, a zero value!) jump probability.

Typically, a function with geometric decline for the temperature is used. For
example, to start out at T0 and “cool” down to a final “temperature” of Tf over n
steps, we can set

T (t) = T0

(
Tf
T0

)t/n
(15b)

More generally if we wish to cool off toTf by timen, and then keep the temperature
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constant at Tf for the rest of the run, we can take

T (t) = max

(
T0

(
Tf
T0

)t/n
, Tf

)
(15c)

Thus, to cool down to Metropolis sampling, we setTf = 1 and the cooling schedule
become

T (t) = max
(
T

1−t/n
0 , 1

)
(15c)

Choosing a Jumping (Proposal) Distribution

Since the Metropolis sampler works with any symmetric distribution, while
Hasting-Metropolis is even more general, what are our best options for proposal
distributions? There are two general approaches — random walks and indepen-
dent chain sampling. Under a sampler using proposal distribution based on a
random walk chain, the new value y equals the current value x plus a random
variable z,

y = x+ z

In this case, q(x, y) = g(y − x) = g(z), the density associated with the random
variable z. If g(z) = g(−z), i.e., the density for the random variable z is symmetric
(as occurs with a normal or multivariate normal with mean zero, or a uniform
centered around zero), then we can use Metropolis sampling as q(x, y)/q(y, x) =
g(z)/g(−z) = 1. The variance of the proposal distribution can be thought of as a
tuning parameter that we can adjust to get better mixing.

Under a proposal distribution using an independent chain, the probability
of jumping to point y is independent of the current position (x) of the chain, i.e.,
q(x, y) = g(y). Thus the candidate value is simply drawn from a distribution
of interest, independent of the current value. Again, any number of standard
distributions can be used for g(y). Note that in this case, the proposal distribution
is generally not symmetric, as g(x) is generally not equal to g(y), and Metropolis-
Hasting sampling must be used.

As mentioned, we can tune the proposal distribution to adjust the mixing,
and in particular the acceptance probability, of the chain. This is generally done
by adjusting the standard deviation (SD), of the proposal distribution. For exam-
ple, by adjusting the variance (or the eigenvalues of the covariance matrix) for
a normal (or multivariate normal), increasing or decreasing the range (−a, a) if
a uniform is used, or changing the degrees of freedom if a χ2 is used (variance
increasing with the df). To increase the acceptance probability, one decreases the
proposal distribution SD (Draper 2000). Draper also notes a tradeoff in that if
the SD is too large, moves are large (which is good), but are not accepted often
(bad). This leads to high autocorrelation (see below) and very poor mixing, re-
quiring much longer chains. If the proposal SD is too small, moves are generally
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accepted (high acceptance probability), but they are also small, again generating
high autocorrelations and poor mixing.

Example 3. Suppose we wish to use a χ2 distribution as our candidate density,
by simply drawing from a χ2 distribution independent of the current position.
Recall for x ∼ χ2

n, that
g(x) ∝ xn/2−1e−x/2

Thus, q(x, y) = g(y) = C · yn/2−1e−y/2. Note that q(x, y) is not symmetric,
as q(y, x) = g(x) 6= g(y) = q(x, y). Hence, we must use Metropolis-Hastings
sampling, with acceptance probability

α(x, y) = min
[
p(y) q(y, x)
p(x) q(x, y)

, 1
]

= min
[
p(y)xn/2−1e−x/2

p(x) yn/2−1e−y/2
, 1
]

Using the same target distribution as in Example 2, p(x) = C · x−2.5 e−2/x, the
rejection probability becomes

α(x, y) = min
[

( y−2.5 e−2/y ) (xn/2−1e−x/2 )
(x−2.5 e−2/x ) ( yn/2−1e−y/2 )

, 1
]

Results for a single run of the sampler under two different proposal distributions
(a χ2

2 and a χ2
10) are plotted below. The χ2

2 has the smaller variance, and thus a
higher acceptance probability.
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CONVERGENCE DIAGONISTICS

The careful reader will note that we have still not answered the question of how to
determine whether the sampler has reached its stationary distribution. Further,
given that members in a Metropolis-Hasting sample are very likely correlated,
how does this affect use of the sequence for estimating parameters of interest
from the distribution? We (partly) address these issues here.

Autocorrelation and Sample Size Inflation

We expect adjacent members from a Metropolis-Hastings sequence to be posi-
tively correlated, and we can quantify the nature of this correlation by using an
autocorrelation function. Consider a sequence (θ1, · · · , θn) of length n. Correla-
tions can occur between adjacent members (ρ(θi, θi+1) 6= 0), and (more generally)
between more distant members (ρ(θi, θi+k) 6= 0). The kth order autocorrelation
ρk can be estimated by

ρ̂k =
Cov(θt, θt+k)

Var(θt)
=

n−k∑
t=1

(
θt − θ

) (
θt−k − θ

)
n−k∑
t=1

(
θt − θ

)2 , with θ =
1
n

n∑
t=1

θt (16)

An important result from the theory of time series analysis is that if the θt
are from a stationary (and correlated) process, correlated draws still provide an
unbiased picture of the distribution provided the sample size is sufficiently large.

Some indication of the required sample size comes from the theory of a first-
order autoregressive process (or AR1), where

θt = µ+ α( θt−1 − µ ) + ε (17a)

where ε is white noise, that is ε ∼ N(0, σ2). Here ρ1 = α and the kth order
autocorrelation is given by ρk = ρk1 . Under this process, E( θ ) = µ with standard
error

SE
(
θ
)

=
σ√
n

√
1 + ρ

1− ρ (17b)

The first ratio is the standard error for white noise, while the second ratio,√
(1 + ρ)/(1− ρ), is the sample size inflation factor, or SSIF, which shows how

the autocorrelation inflates the sampling variance. For example, for ρ = 0.5, 0.75,
0.9, 0.95, and 0.99, the associated SSIF are 3, 7, 19, 39, and 199 (respectively). Thus
with an autocorrelation of 0.95 (which is not uncommon in a Metropolis-Hastings
sequence), roughly forty times as many points are required for the same precision
as with an uncorrelated sequence.

One strategy for reducing autocorrelation is thinning the output, storing only
everymth point after the burn-in period. Suppose a Metropolis-Hastings sequence
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follows an AR1 model with ρ1 = 0.99. In this case, sampling every 50, 100, and
500 points gives the correlation between the thinned samples as 0.605(= 0.9950),
0.366, and 0.007 (respectively). In addition to reducing autocorrelation, thinning
the sequence also saves computer memory.

Tests for Convergence

As shown in Examples 2 and 3, one should always look at the time series trace, the
plot of the random variable(s) being generated versus the number of iterations.
In addition to showing evidence for poor mixing, such traces can also suggest a
minimum burn-in period for some starting value. For example, suppose the trace
moves very slowly away from the initial value to a rather different value (say
after 5000 iterations) around which is appears to settle down. Clearly, the burn-in
period is at least 5000 in this case. It must be cautioned that the actual time may
be far longer than suggested by the trace. Nevertheless, the trace often indicates
that the burn-in is still not complete.

Two other graphs that are very useful in accessing a MCMC sampler look
at the serial autocorrelations as a function of the time lag. A plot of αk vs. k
(the kth order autocorrelation vs. the lag) should show geometric decay is the
sampler series closely follows anAR1 model. A plot of the partial autocorrelations
as a function of lag is also useful. The kth partial autocorrelation is the excess
correlation not accounted for by a k−1 order autogressive model (ARk−1). Hence,
if the first order model fits, the second order partial autocorrelation is zero, as
the lagged autocorrelations are completed accounted for the AR1 model (i.e.,
ρk = ρk1 ). Both of these autocorrelation plots may indicate underlying correlation
structure in the series not obvious from the time series trace.

What formal tests are available to test for stationarity of the sampler after a
given point? We consider two here (additional diagnostic checks for stationary
are discussed by Geyer 1992; Gelman and Rubin 1992; Raftery and Lewis 1992b;
and Robert 1995). The Geweke test ( Geweke 1992) splits sample (after removing
a burn-in period) into two parts: say the first 10% and last 50%. If the chain is at
stationarity, the means of the two samples should be equal. A modified z-test can
be used to compare the two subsamples, and the resulting test statistic is often
referred to as a Geweke z-score. A value larger than 2 indicates that the mean of
the series is still drifting, and a longer burn-in is required before monitoring the
chain (to extract a sampler) can begin.

A more informative approach is the Raftery-Lewis test (Raftery and Lewis
1992a). Here, one specifies a particular quantile q of the distribution of interest
(typically 2.5% and 97.5%, to give a 95% confidence interval), an accuracy ε of the
quantile, and a power 1− β for achieving this accuracy on the specified quantile.
With these three parameters set, the Raftery-Lewis test breaks the chain into a
(1,0) sequence — 1 if θt ≤ q, zero otherwise. This generates a two-state Markov
chain, and the Raftery-Lewis test uses the sequence to estimate the transition
probabilities. With these probabilities in hand, one can then estimate the number
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of addition burn-ins (if any) required to approach stationarity, the thinning ratio
(how many points should be discarded for each sampled point) and the total chain
length required to achieve the preset level of accuracy.

One Long Chain or Many Smaller Chains?

One can either use a single long chain (Geyer 1992, Raftery and Lewis 1992b)
or multiple chains each starting from different initial values (Gelman and Rubin
1992). Note that with parallel processing machines, using multiple chains may be
computationally more efficient than a single long chain. Geyer, however, argues
that using a single longer chain is the best approach. If long burn-in periods
are required, or if the chains have very high autocorrelations, using a number
of smaller chains may result in each not being long enough to be of any value.
Applying the diagnostic tests discussed above can resolve some of these issues
for any particular sampler.

THE GIBBS SAMPLER

The Gibbs sampler (introduced in the context of image processing by Geman
and Geman 1984), is a special case of Metropolis-Hastings sampling wherein the
random value is always accepted (i.e. α = 1). The task remains to specify how
to construct a Markov Chain whose values converge to the target distribution.
The key to the Gibbs sampler is that one only considers univariate conditional
distributions — the distribution when all of the random variables but one are
assigned fixed values. Such conditional distributions are far easier to simulate than
complex joint distributions and usually have simple forms (often being normals,
inverse χ2, or other common prior distributions). Thus, one simulates n random
variables sequentially from the n univariate conditionals rather than generating
a single n-dimensional vector in a single pass using the full joint distribution.

To introduce the Gibbs sampler, consider a bivariate random variable (x, y),
and suppose we wish to compute one or both marginals, p(x) and p(y). The idea
behind the sampler is that it is far easier to consider a sequence of conditional
distributions, p(x | y) and p(y |x), than it is to obtain the marginal by integration
of the joint density p(x, y), e.g., p(x) =

∫
p(x, y)dy. The sampler starts with some

initial value y0 for y and obtains x0 by generating a random variable from the
conditional distribution p(x | y = y0). The sampler then uses x0 to generate a new
value of y1, drawing from the conditional distribution based on the value x0,
p(y |x = x0). The sampler proceeds as follows

xi ∼ p(x | y = yi−1) (18a)

yi ∼ p(y |x = xi) (18b)

Repeating this process k times, generates a Gibbs sequence of length k, where
a subset of points (xj , yj) for 1 ≤ j ≤ m < k are taken as our simulated draws
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from the full joint distribution. (One iteration of all the univariate distributions
is often called a scan of the sampler. To obtain the desired total of m sample
points (here each “point” on the sampler is a vector of the two parameters), one
samples the chain (i) after a sufficient burn-in to removal the effects of the initial
sampling values and (ii) at set time points (say every n samples) following the
burn-in. The Gibbs sequence converges to a stationary (equilibrium) distribution
that is independent of the starting values, and by construction this stationary
distribution is the target distribution we are trying to simulate (Tierney 1994).

Example 4. The following distribution is from Casella and George (1992). Sup-
pose the joint distribution of x = 0, 1, · · ·n and 0 ≤ y ≤ 1 is given by

p(x, y) =
n!

(n− x)!x!
y x+α−1 (1− y)n−x+β−1

Note that x is discrete while y is continuous. While the joint density is complex,
the conditional densities are simple distributions. To see this, first recall that a
binomial random variable z has a density proportional to

p(z | q, n) ∝ qz(1− q)n−z
z!(n− z)! for 0 ≤ z ≤ n

where 0 < q < 1 is the success parameter and n the number of traits, and
we denote z ∼ B(n, p). Likewise recall the density for z ∼ Beta(a, b), a beta
distribution with shape parameters a and b is given by

p(z | a, b) ∝ za−1(1− z)b−1 for 0 ≤ z ≤ 1

With these probability distributions in hand, note that the conditional distribution
of x (treating y as a fixed constant) is x | y ∼ B(n, y), while y |x ∼ Beta(x +
α, n− x+ β).

The power of the Gibbs sampler is that by computing a sequence of these univari-
ate conditional random variables (a binomial and then a beta) we can compute
any feature of either marginal distribution. Suppose n = 10 and α = 1, β = 2.
Start the sampler with (say) y0 = 1/2, and we will take the sampler through
three full iterations.

(i) x0 is obtained by generating a random B(n, y0) = B(10, 1/2) random
variable, giving x0 = 5 in our simulation.

(ii) y1 is obtained from a Beta(x0 +α, n−x0 +β) = Beta(5+1, 10−5+2)
random variable, giving y1 = 0.33.

(iii) x1 is a realization of a B(n, y1) = B(10, 0.33) random variable, giving
x1 = 3.
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(iv) y2 is obtained from a Beta(x1+α, n−x1+β) = Beta(3+1, 10−3+2)
random variable, giving y2 = 0.56.

(v) x2 is obtained from a B(n, y2) = B(10, 0.56) random variable, giving
x2 = 0.7.

Our particular realization of the Gibbs sequence after three iterations is thus (5,
0.5), (3, 0.33), (7, 0.56). We can continue this process to generate a chain of the de-
sired length. Obviously, the initial values in the chain are highly dependent upon
the y0 value chosen to start the chain. This dependence decays as the sequence
length increases and so we typically start recording the sequence after a sufficient
number of burn-in iterations have occurred to remove any effects of the starting
conditions.

When more than two variables are involved, the sampler is extended in the
obvious fashion. In particular, the value of the kth variable is drawn from the
distribution p(θ(k) |Θ(−k)) where Θ(−k) denotes a vector containing all off the
variables but k. Thus, during the ith iteration of the sample, to obtain the value
of θ(k)

i we draw from the distribution

θ
(k)
i ∼ p(θ(k) | θ(1) = θ

(1)
i , · · · , θ(k−1) = θ

(k−1)
i , θ(k+1) = θ

(k+1)
i−1 , · · · , θ(n) = θ

(n)
i−1)

For example, if there are four variables, (w, x, y, z), the sampler becomes

wi ∼ p(w |x = xi−1, y = yi−1, z = zi−1)
xi ∼ p(x |w = wi, y = yi−1, z = zi−1)
yi ∼ p(y |w = wi, x = xi, z = zi−1)
zi ∼ p(z |w = wi, x = xi, y = yi)

Gelfand and Smith (1990) illustrated the power of the Gibbs sampler to ad-
dress a wide variety of statistical issues, while Smith and Roberts (1993) showed
the natural marriage of the Gibbs sampler with Bayesian statistics (in obtaining
posterior distributions). A nice introduction to the sampler is given by Casella
and George (1992), while further details can be found in Tanner (1996), Besag et
al. (1995), and Lee (1997). Finally, note that the Gibbs sampler can be thought of as
a stochastic analog to the EM (Expectation-Maximization) approaches used to ob-
tain likelihood functions when missing data are present. In the sampler, random
sampling replaces the expectation and maximization steps.

Using the Gibbs Sampler to Approximate Marginal Distributions

Any feature of interest for the marginals can be computed from them realizations
of the Gibbs sequence. For example, the expectation of any function f of the
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random variable x is approximated by

E[f(x)]m =
1
m

m∑
i=1

f(xi) (19a)

This is the Monte-Carlo (MC) estimate of f(x), asE[f(x)]m → E[f(x)] asm→∞.
Likewise, the MC estimate for any function of n variables (θ(1), · · · , θ(n)) is given
by

E[f(θ(1), · · · , θ(n))]m =
1
m

m∑
i=1

f(θ(1)
i , · · · , θ(n)

i ) (19b)

Example 5. Although the sequence of length 3 computed in Example 4 is too
short (and too dependent on the starting value) to be a proper Gibbs sequence,
for illustrative purposes we can use it to compute Monte-Carlo estimates. The
MC estimate of the means of x and y are

x3 =
5 + 3 + 7

3
= 5, y3 =

0.5 + 0.33 + 0.56
3

= 0.46

Similarly,
(
x2
)

3
= 27.67 and

(
y2
)

3
= 0.22, giving the MC estimates of the

variances of x and y as

Var(x)3 =
(
x2
)

3
− (x3)2 = 2.67

and
Var(y)3 =

(
y2
)

3
− (y3)2 = 0.25

While computing the MC estimate of any moment using the sampler is
straightforward, computing the actual shape of the marginal density is slightly
more involved. While one might use the Gibbs sequence of (say) xi values to give
a rough approximation of the marginal distribution of x, this turns out to be inef-
ficient, especially for obtaining the tails of the distribution. A better approach is to
use the average of the conditional densities p(x | y = yi), as the function form of
the conditional density contains more information about the shape of the entire
distribution than the sequence of individual realizations xi (Gelfand and Smith
1990, Liu et al. 1991). Since

p(x) =
∫
p(x | y) p(y) dy = Ey [ p(x | y) ] (20a)
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one can approximate the marginal density using

p̂m(x) =
1
m

m∑
i=1

p(x | y = yi) (20b)

Example 6. Returning to the Gibbs sequence generated in Example 4, recall
that the distribution of x given y is binomial, with x | y ∼ B(n, y). Applying
Equation 20b the estimate (based on this sequence) of the marginal distribution
of x is the weighted sum of three binomials with success parameters 0.5, 0.33, and
0.56, giving

p3(x) = 10!
[

0.5x(1− 0.5)10−x + 0.33x(1− 0.33)10−x + 0.56x(1− 0.56)10−x

3x!(10− x)!

]
As the figure below shows, the resulting distribution (solid bars), although a
weighted sum of binomials, departs substantially from the best-fitting binomial
(success parameter 0.46333, stripped bars)

The Monte Carlo Variance of a Gibbs-Sampler Based Estimate

Suppose we are interested in using an appropriately thinned and burned-in Gibbs
sequence θ1, · · · , θn to estimate some function h(θ) of the target distribution, such
as a mean, variance, or specific quantile (cumulative probability value). Since we
are drawing random variables, there is some sampling variance associated with
the Monte Carlo estimate

ĥ =
1
n

n∑
i=1

h(θi) (21)
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By increasing the length of the chain (increasing n), we can decrease the sampling
variance of ĥ, but it would be nice to have some estimate of the size of this variance.
One direct approach is to run several chains and use the between-chain variance
in ĥ. Specifically, if ĥj denotes the estimate for chain j (1 ≤ j ≤ m) where each of
them chains has the same length, then the estimated variance of the Monte Carlo
estimate is

Var
(
ĥ
)

=
1

m− 1

m∑
j=1

(
ĥj − ĥ∗

)2

where ĥ∗ =
1
m

m∑
j=1

ĥj (22)

Using only a single chain, an alternative approach is to use results from the
theory of time series. Estimate the lag-k autocovariance associated with h by

γ̂(k) =
1
n

n−k∑
i=1

[ (
h(θi)− ĥ

)(
h(θi+k)− ĥ

) ]
(23)

This is natural generalization of the k-th order autocorrelation to the random
variable generated by h(θi). The resulting estimate of the Monte Carlo variance is

Var
(
ĥ
)

=
1
n

(
γ̂(0) + 2

2δ+1∑
i=1

γ̂(i)

)
(24)

Here δ is the smallest positive integer satisfying γ̂(2δ) + γ̂(2δ + 1) > 0, (i.e., the
higher order (lag) autocovariances are zero).

One measure of the effects of autocorrelation between elements in the sampler
is the effective chain size,

n̂ =
γ̂(0)

Var
(
ĥ
) (25)

In the absence of autocorrelation between members, n̂ = n.

Convergence Diagonistics: The Gibbs Stopper

Our discussion of the various diagnostics for Metropolis-Hastings (MH) also ap-
plies to Gibbs sampler, as Gibbs is a special case of MH. As with MH sampling, we
can reduce the autocorrelation between monitored points in the sampler sequence
by increasing the thinning ratio (increasing the number of points discarded be-
tween each sampled point). Draper (2000) notes that the Gibbs sampler usually
produces chains with smaller autocorrelations that other MCMC samplers.

Tanner (1996) discusses an approach for monitoring approach to convergence
based on the Gibbs stopper, in which weights based on comparing the Gibbs
sampler and the target distribution are computed and plotted as a function of the
sampler iteration number. As the sampler approaches stationary, the distribution
of the weights is expected to spike. See Tanner for more details.



22 MCMC AND GIBBS SAMPLING

Implementation of Gibbs: BUGS

Hopefully by now you have some appreciation of the power of using a Gibbs
sampler. One obvious concern is how to derive all the various univariate pri-
ors for your particular model. Fortunately, there is a free software package that
implements Gibbs sampling under a very wide variety of conditions – BUGS
for Bayesian inference using Gibbs Sampling. BUGS comes to us from the
good folks (David Spiegelhalter, Wally Gilks, and colleagues) at the MRC Bio-
statistics Unit in Cambridge (UK), and is downloadable from http://www.mrc-
bsu.cam.ac.uk/bugs/Welcome.html. With BUGS, one simply needs to make some
general specifications about the model and off you go, as it computes all the
required univariate marginals.

Online Resources

MCMC Preprint Service:
http://www.maths.surrey.ac.uk/personal/st/S.Brooks/MCMC/

BUGS: Bayesian inference using Gibbs Sampling:
http://www.mrc-bsu.cam.ac.uk/bugs/Welcome.html

References

Besag, J., P. J. Green, D. Higdon, and K. L. M. Mengersen. 1995. Bayesian compu-
tation and stochastic systems (with discussion). Statistical Science 10: 3–66.

Blasco, A., D. Sorensen, and J. P. Bidanel. 1998. Bayesian inference of genetic
parameters and selection response for litter size components in pigs. Genetics 149:
301–306.

Casella, G., and E. I. George. 1992. Explaining the Gibbs sampler. Am. Stat. 46:
167–174.

Chib, S., and E. Greenberg. 1995. Understanding the Metropolis-Hastings algo-
rithm. American Statistician 49: 327–335.

Draper, David. 2000. Bayesian Hierarchical Modeling. Draft version can be found
on the web at http://www.bath.ac.uk/∼masdd/

Evans, M., and T. Swartz. 1995. Methods for approximating integrals in statistics
with special emphasis on Bayesian integration problems. Statistical Science 10:
254–272.

Gammerman, D. 1997. Markov chain Monte Carlo Chapman and Hall.



MCMC AND GIBBS SAMPLING 23

Gelfand, A. E., and A. F. M. Smith. 1990. Sampling-based approaches to calculating
marginal densities. J. Am. Stat. Asso. 85: 398–409.

Gelman, A., and D. B. Rubin. 1992. Inferences from iterative simulation using
multiple sequences (with discussion). Statistical Science 7: 457 - 511.

Geman, S. and D. Geman. 1984. Stochastic relaxation, Gibbs distribution and
Bayesian restoration of images. IEE Transactions on Pattern Analysis and Machine
Intelligence 6: 721–741.

Geweke, J. 1992. Evaluating the accuracy of sampling-based approaches to the
calculation of posterior moments. In, Bayesian Statistics 4, J. M. Bernardo, J. O.
Berger, A. P. Dawid, and A. F. M. Smith (eds.), pp. 169-193. Oxford University
Press.

Geyer, C. J. 1992. Practical Markov chain Monte Carlo (with discussion). Stat. Sci.
7: 473–511.

Hastings, W. K. 1970. Monte Carlo sampling methods using Markov Chains and
their applications. Biometrika 57: 97–109.

Lee, P. 1997. Bayesian Statistics: An introduction, 2nd Ed. John WIley, New York.

Liu, J., W. H. Wong, and A. Kong. 1991. Correlation structure and convergence
rates of the Gibbs Sampler (I): Application to the comparison of estimators and
augmentation schemes. Technical Report 299, Dept. Statistics, University of
Chicago.

Metropolis, N., and S. Ulam. 1949. The Monte Carlo method. J. Amer. Statist. Assoc.
44: 335–341.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A.Teller, and H. Teller. 1953.
Equations of state calculations by fast computing machines. Journal of Chemical
Physics 21: 1087–1091.

Raftery, A. E., and S. Lewis. 1992a. How many iterations in the Gibbs sampler? In,
Bayesian Statistics 4, J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith
(eds.), pp. 763–773. Oxford University Press.

Raftery, A. E., and S. Lewis. 1992b. Comment: One long run with diagnostics:
Implementation strategies for Markov Chain Monte Carlo. Stat. Sci. 7: 493–497.

Robert, C. P., and G. Casella. 1999. Monte Carlo Statistical Methods. Springer Verlag.

Smith, A. F. M. 1991. Bayesian computational methods. Phil. Trans. R. Soc. Lond.



24 MCMC AND GIBBS SAMPLING

A 337: 369–386.

Smith, A. F. M., and G. O. Roberts. 1993. Bayesian computation via the Gibbs
sampler and related Markov chain Monte-Carlo methods (with discussion). J.
Roy. Stat. Soc. Series B 55: 3-23.

Sorensen, D. A., C. S. Wang, J. Jensen, and D. Gianola. 1994. Bayesian analysis of
genetic change due to selection using Gibbs sampling. Genet. Sel. Evol. 26: 333–360.

Tanner, M. A. 1996. Tools for statistical inference, 3rd ed. Springer-Verlag, New York.

Tierney, L. 1994. Markov chains for exploring posterior distributions (with dis-
cussion). Ann. Statist. 22: 1701–1762.


