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8.6 The Method of Steepest Descent 233

Hence «, converges to some « and y =x + ad. Let

fx+ad) — f(x)

,d, @)=
o, d, o) @V f(x)d
Then £ < ¢(x,, d;, a;) < 1—¢g for all k. By our assumptions on f(x), ¢ is
continuous. Thus ¢(x,, d,, a,) > ¢(x, d, «)and e < d(x, d, a) < 1—g, which
implies y € S(x, d). [l

Wolfe Test

If derivatives of the objective function, as well as its values, can be evaluated
relatively easily, then the Wolfe test, which is a variation of the above, is sometimes
preferred. In this case & is selected with 0 < & < 1/2, and « is required to
satisfy (24) and

¢'(a) = (1-2)¢'(0).

This test is illustrated in Fig. 8.8(c). An advantage of this test is that this last
criterion is invariant to scale-factor changes, whereas (25) in the Goldstein test
is not.

Backtracking

A simplified method of line search is available when a good estimate of a suitable
step length is available. This is the case for the multi-dimensional Newton’s method
for minimization discussed in the next chapter. Here a good initial choice is @ = 1.
Backtracking is defined by the initial guess « and two positive parameters 17 > 1
and ¢ < 1 (usually & < .5). The stopping criterion used is the same as the first part
of Amijo’s rule or the Goldstein test. That is, defining ¢() = f(x, + ad,), the
procedure is terminated at the current « if ¢(a) < ¢(0)+ ¢’ (0) . If this criterion
is not satisfied, then « is reduced by the factor 1/%. That is, «,., = @,4/1. Often
7 of about 1.1 or 1.2 is used.

If the intial @ (such as « = 1) satisfies the test, then it is taken as the step size.
Otherwise, « is reduced by 1/7. Repeating this successively, the first « that satisfies
the test is declared the final value. By definition it is known that the previous value
Ogq = Chey, M does not pass the first test, and this means that it passes the second
condition of Amijo’s rule.

8.6 THE METHOD OF STEEPEST DESCENT

One of the oldest and most widely known methods for minimizing a function of
several variables is the method of steepest descent (often referred to as the gradient
method). The method is extremely important from a theoretical viewpoint, since
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it is one of the simplest for which a satisfactory analysis exists. More advanced
algorithms are often motivated by an attempt to modify the basic steepest descent
technique in such a way that the new algorithm will have superior convergence
properties. The method of steepest descent remains, therefore, not only the technique
most often first tried on a new problem but also the standard of reference against
which other techniques are measured. The principles used for its analysis will be
used throughout this book.

The Method

Let f have continuous first partial derivatives on E". We will frequently have need
for the gradient vector of f and therefore we introduce some simplifying notation.
The gradient V f(x) is, according to our conventions, defined as a n-dimensional row
vector. For convenience we define the n-dimensional column vector g(x) = Vf(x)”.
When there is no chance for ambiguity, we sometimes suppress the argument x
and, for example, write g, for g(x;) = Vf(x;)".

The method of steepest descent is defined by the iterative algorithm

X1 = X — 04 8y

where «, is a nonnegative scalar minimizing f(x, — «g,). In words, from the point
x, we search along the direction of the negative gradient —g, to a minimum point
on this line; this minimum point is taken to be x, ;.

In formal terms, the overall algorithm A : E" — E" which gives x;,; € A(x;)
can be decomposed in the form A = SG. Here G : E" — E*" is defined by G(x) =
(x, —g(x)), giving the initial point and direction of a line search. This is followed
by the line search S : E*" — E" defined in Section 8.4.

Global Convergence

It was shown in Section 8.4 that S is closed if Vf(x) # 0, and it is clear that G is
continuous. Therefore, by Corollary 2 in Section 7.7 A is closed.

We define the solution set to be the points x where V f(x) =0. Then Z(x) = f(x)
is a descent function for A, since for V f(x) # 0

imf(x— ag(x) < f(%).

Thus by the Global Convergence Theorem, if the sequence {x,} is bounded, it will
have limit points and each of these is a solution.
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The Quadratic Case

Essentially all of the important local convergence characteristics of the method of
steepest descent are revealed by an investigation of the method when applied to
quadratic problems. Consider

f(x) = 1x"Qx —x"b, (26)

where Q is a positive definite symmetric n x n matrix. Since Q is positive definite,
all of its eigenvalues are positive. We assume that these eigenvalues are ordered: 0 <
a=Xx € A,... <A, = A With Q positive definite, it follows (from Proposition 5,
Section 7.4) that f is strictly convex.

The unique minimum point of f can be found directly, by setting the gradient
to zero, as the vector x* satisfying

Qx*=h. (27)
Moreover, introducing the function
E(x)= %(X—X*)TQ(X—X*), (28)

we have E(x) = f(x)+ (1/2)x*7Qx", which shows that the function E differs from
f only by a constant. For many purposes then, it will be convenient to consider
that we are minimizing E rather than f.

The gradient (of both f and E) is given explicitly by

g(x) = Qx—b, (29)
Thus the method of steepest descent can be expressed as
Xjp1 = X — 08y (30)

where g, = Qx, —b and where «, minimizes f(x, —ag,). We can, however, in this
special case, determine the value of «, explicitly. We have, by definition (26),

fx, —ag) = %(Xl\ - agk)TQ(Xk —ag)—(x, — agk)Tb’

which (as can be found by differentiating with respect to «) is minimized at

8
o, = . (31)
* glQg,
Hence the method of steepest descent (30) takes the explicit form
8 >
X, =X, — s 32
k+1 k < ¢’ Qg, 8 (32)

where g, = Qx, —b.
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Xo

Fig. 8.9 Steepest descent

The function f and the steepest descent process can be illustrated as in Fig. 8.9
by showing contours of constant values of f and a typical sequence developed
by the process. The contours of f are n-dimensional ellipsoids with axes in the
directions of the n-mutually orthogonal eigenvectors of Q. The axis corresponding
to the ith eigenvector has length proportional to 1/A;. We now analyze this process
and show that the rate of convergence depends on the ratio of the lengths of the
axes of the elliptical contours of f, that is, on the eccentricity of the ellipsoids.

Lemma 1. The iterative process (32) satisfies

N (g8’ .
E¢ "“)‘{1 (g{Qg»(gZngk)}E( 0 33)

Proof.  The proof is by direct computation. We have, setting y, = x, — X",

E(x) — E(Xi ) _ Q’akgI{QYk - afg[ng

E(x) YJ{ Qy,

Using g, = Qy, we have

2(gig)”  (gig)’
E(x)—E(n) _ (2Qg)  (2,Qg)

E(xy) g/Q'g,

_ (g2’
(2/Qg)(g{Q'g)’

In order to obtain a bound on the rate of convergence, we need a bound on
the right-hand side of (33). The best bound is due to Kantorovich and his lemma,
stated below, is a useful general tool in convergence analysis.



8.6 The Method of Steepest Descent 237

Kantorovich inequality: Let Q be a positive definite symmetric n X n matrix.
For any vector X there holds

(xTx)? S 4aA
(x7Qx)(x’Q"'x) = (a+A)?’

(34)
where a and A are, respectively, the smallest and largest eigenvalues of Q.
Proof.  Let the eigenvalues A;, A,,..., A, of Q satisfy
O<a=NA <N ... <A

By an appropriate change of coordinates the matrix Q becomes diagonal with
diagonal (A, A,,..., A,). In this coordinate system we have

(x'x)* _ i X’
(XTQX)(x"Q %) (XL M) (L (67 /N)

which can be written as

(x'x)? _ /Y €N _ 69

K'QO'QX) XL (E/N) (@)

where & = x7/Y." x7. We have converted the expression to the ratio of two
functions involving convex combinations; one a combination of A;’s; the other a
combination of 1/A;’s. The situation is shown pictorially in Fig. 8.10. The curve
in the figure represents the function 1/A. Since Y, &\, is a point between A,
and A, the value of ¢(§) is a point on the curve. On the other hand, the value of
Y(€) is a convex combination of points on the curve and its value corresponds to
a point in the shaded region. For the same vector £ both functions are represented
by points on the same vertical line. The minimum value of this ratio is achieved
for some A = & A, +&,A,, with € + &, = 1. Using the relation & /A, +§&,/A, =

¥

(A +A, =& A —€&,4,)/A A, an appropriate bound is

Oy O
P(E) 7 nan, (NN, =N/

The minimum is achieved at A = (A, + A, )/2, yielding

(b(f) > 4)\1)\11

TR ESWEL

Combining the above two lemmas, we obtain the central result on the conver-
gence of the method of steepest descent.
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R |

Fig. 8.10 Kantorovich inequality

Theorem. (Steepest descent—quadratic case). For any X, € E" the method
of steepest descent (32) converges to the unique minimum point X* of f.
Furthermore, with E(x) = 1(x —x*)"Q(x —x*), there holds at every step k

B < (450) B (35)

Proof. By Lemma 1 and the Kantorovich inequality

E(x,,) < {1— %}E(xk) = <§—;Z>2E(xk).

It follows immediately that E(x,) — 0 and hence, since Q is positive definite, that
x, — x*. 1

Roughly speaking, the above theorem says that the convergence rate of steepest
descent is slowed as the contours of f become more eccentric. If a = A, corre-
sponding to circular contours, convergence occurs in a single step. Note, however,
that even if n — 1 of the n eigenvalues are equal and the remaining one is a
great distance from these, convergence will be slow, and hence a single abnormal
eigenvalue can destroy the effectiveness of steepest descent.

In the terminology introduced in Section 7.8, the above theorem states that
with respect to the error function E (or equivalently f) the method of steepest
descent converges linearly with a ratio no greater than [(A —a)/(A + a)]*. The
actual rate depends on the initial point x,. However, for some initial points the
bound is actually achieved. Furthermore, it has been shown by Akaike that, if the
ratio is unfavorable, the process is very likely to converge at a rate close to the
bound. Thus, somewhat loosely but with reasonable justification, we say that the
convergence ratio of steepest descent is [(A—a)/(A+a)]>.
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It should be noted that the convergence rate actually depends only on the ratio
r = A/a of the largest to the smallest eigenvalue. Thus the convergence ratio is

A—a\’ (r—1Y’
A+a) \r+1)°
which clearly shows that convergence is slowed as r increases. The ratio r, which

is the single number associated with the matrix Q that characterizes convergence,
is often called the condition number of the matrix.

Example. Let us take

0.78 —-0.02 —-0.12 —-0.14
_1—0.02 086 —0.04 0.06
Q= -0.12 -0.04 0.72 —-0.08
—-0.14 0.06 —-0.08 0.74

b = (0.76, 0.08, 1.12, 0.68).

For this matrix it can be calculated that a = 0.52, A =0.94 and hence r = 1.8.
This is a very favorable condition number and leads to the convergence ratio
[(A—a)/(A+a)]* =0.081. Thus each iteration will reduce the error in the objective
by more than a factor of ten; or, equivalently, each iteration will add about one
more digit of accuracy. Indeed, starting from the origin the sequence of values
obtained by steepest descent as shown in Table 8.1 is consistent with this estimate.

The Nonquadratic Case

For nonquadratic functions, we expect that steepest descent will also do reasonably
well if the condition number is modest. Fortunately, we are able to establish
estimates of the progress of the method when the Hessian matrix is always positive
definite. Specifically, we assume that the Hessian matrix is bounded above and
below as al < F(x) < AL (Thus f is strongly convex.) We present three analyses:

Table 8.1 Solution to Example

Step £ F(x0)

0 0

1 —2.1563625
2 —2.1744062
3 —2.1746440
4 —2.1746585
5 —2.1746595
6 —2.1746595

Solution point x* = (1.534965, 0.1220097,
1.975156, 1.412954)
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1. Exact line search. Given a point x,, we have for any «

Jx —ag(x) < f(x)) —ag(x,) g(x,) + ATag(Xk)Tg(Xk)- (36)

Minimizing both sides separately with respect to « the inequality will hold for the
two minima. The minimum of the left hand side is f(x,,). The minimum of the
right hand side occurs at @ = 1/A, yielding the result

fO5) < 1050) — 55 eGP

where |g(x,)|> = g(x, )" g(x,). Subtracting the optimal value f* = f(x*) from both
sides produces

fn) ~ <00~ = 5[50 (7

In a similar way, for any x there holds

F) > £06) + 80" (x—x) + 3 1x—x, "

Again we can minimize both sides separately. The minimum of the left hand side is
f* the optimal solution value. Minimizing the right hand side leads to the quadratic
optimization problem. The solution is X = x, — g(x;)/a. Substituting this X in the
right hand side of the inequality gives

£ 2 )~ 5 80P (38)
From (38) we have
—lg(x)I” < 2alf* = f(x)]. (39)

Substituting this in (37) gives

&) =7 < (U =a/A)f(x) = 7. (40)

This shows that the method of steepest descent makes progress even when it is not
close to the solution.

2. Other stopping criteria. As an example of how other stopping criteria can
be treated, we examine the rate of convergence when using Amijo’s rule with € < .5
and 7 > 1. Note first that the inequality 7 > 1> for 0 < ¢ < 1 implies by a change of
variable that

a’A
—a+7 < —a/2
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for 0 < @ < 1/A. Then using (36) we have that for « < 1/A

S —ag(x) < f(x,) —alg(x)|* +.5a’Alg(x) [
< f(x) = Selg(x)l
< f(x) — ealg(x)l?

since & < .5. This means that the first part of the stopping criterion is satisfied
for @ < 1/A.

The second part of the stopping criterion states that e does not satisfy the first
criterion and thus the final & must satisfy « > 1/(nA). Therefore the inequality of
the first part of the criterion implies

g
&) = S0 — n_A|g(Xk)|2'
Subtracting f* from both sides,
* * &
o) — 1< fx) — = —lgx)”.
nA
Finally, using (39) we obtain

J&e) = f7 < [1=Q2ea/nM]((x) = 7).

Clearly 2ea/nA < 1 and hence there is linear convergence. Notice if that in fact € is
chosen very close to .5 and 7 is chosen very close to 1, then the stopping condition
demands that the « be restricted to a very small range, and the estimated rate of
convergence is very close to the estimate obtained above for exact line search.

3. Asymptotic convergence. We expect that as the points generated by steepest
descent approach the solution point, the convergence characteristics will be close
to those inherent for quadratic functions. This is indeed the case.

The general procedure for proving such a result, which is applicable to most
methods having unity order of convergence, is to use the Hessian of the objective at
the solution point as if it were the Q matrix of a quadratic problem. The particular
theorem stated below is a special case of a theorem in Section 12.5 so we do
not prove it here; but it illustrates the generalizability of an analysis of quadratic
problems.

Theorem. Suppose f is defined on E", has continuous second partial deriva-
tives, and has a relative minimum at X*. Suppose further that the Hessian matrix
of f, F(x*), has smallest eigenvalue a > 0 and largest eigenvalue A > 0. If
{x,} is a sequence generated by the method of steepest descent that converges
to x*, then the sequence of objective values { f(x,)} converges to f(x*) linearly
with a convergence ratio no greater than [(A—a)/(A+ a)]*.
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8.9 COORDINATE DESCENT METHODS

The algorithms discussed in this section are sometimes attractive because of their
easy implementation. Generally, however, their convergence properties are poorer
than steepest descent.

Let f be a function on E” having continuous first partial derivatives. Given
a point X = (x,, Xx,,..., Xx,), descent with respect to the coordinate x; (i fixed)
means that one solves

minimize f(x,, X,, ..., X,).
Xi

Thus only changes in the single component x; are allowed in seeking a new and
better vector x. In our general terminology, each such descent can be regarded as a
descent in the direction e; (or —e;) where e; is the ith unit vector. By sequentially
minimizing with respect to different components, a relative minimum of f might
ultimately be determined.

There are a number of ways that this concept can be developed into a full
algorithm. The cyclic coordinate descent algorithm minimizes f cyclically with
respect to the coordinate variables. Thus x, is changed first, then x, and so forth
through x,. The process is then repeated starting with x, again. A variation of this is
the Aitken double sweep method. In this procedure one searches over x;, x,,..., X,,
in that order, and then comes back in the order x,_,, x,_,,..., Xx,. These cyclic
methods have the advantage of not requiring any information about V f to determine
the descent directions.

If the gradient of f is available, then it is possible to select the order of descent
coordinates on the basis of the gradient. A popular technique is the Gauss—Southwell
Method where at each stage the coordinate corresponding to the largest (in absolute
value) component of the gradient vector is selected for descent.

Global Convergence

It is simple to prove global convergence for cyclic coordinate descent. The
algorithmic map A is the composition of 2n maps

A=SC"'SC""...SC',

where C'(x) = (x, ¢;) with e; equal to the ith unit vector, and S is the usual line
search algorithm but over the doubly infinite line rather than the semi-infinite line.
The map C' is obviously continuous and S is closed. If we assume that points are
restricted to a compact set, then A is closed by Corollary 1, Section 7.7. We define
the solution set T' = {x : Vf(x) = 0}. If we impose the mild assumption on f that
a search along any coordinate direction yields a unique minimum point, then the
function Z(x) = f(x) serves as a continuous descent function for A with respect
to I'. This is because a search along any coordinate direction either must yield a
decrease or, by the uniqueness assumption, it cannot change position. Therefore,
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if at a point x we have Vf(x) # 0, then at least one component of Vf(x) does
not vanish and a search along the corresponding coordinate direction must yield a
decrease.

Local Convergence Rate

It is difficult to compare the rates of convergence of these algorithms with the rates
of others that we analyze. This is partly because coordinate descent algorithms are
from an entirely different general class of algorithms than, for example, steepest
descent and Newton’s method, since coordinate descent algorithms are unaffected
by (diagonal) scale factor changes but are affected by rotation of coordinates—the
opposite being true for steepest descent. Nevertheless, some comparison is possible.

It can be shown (see Exercise 20) that for the same quadratic problem as treated
in Section 8.6, there holds for the Gauss—Southwell method

a

) < (1 - m) E(x), (57)

where a, A are as in Section 8.6 and 7 is the dimension of the problem. Since

A-a\’ a a "
<(1——)<<1——> : (58)
<A + a> A A(n—1)

we see that the bound we have for steepest descent is better than the bound we have
for n — 1 applications of the Gauss—Southwell scheme. Hence we might argue that
it takes essentially n — 1 coordinate searches to be as effective as a single gradient
search. This is admittedly a crude guess, since (47) is generally not a tight bound,
but the overall conclusion is consistent with the results of many experiments. Indeed,
unless the variables of a problem are essentially uncoupled from each other (corre-
sponding to a nearly diagonal Hessian matrix) coordinate descent methods seem
to require about n line searches to equal the effect of one step of steepest descent.

The above discussion again illustrates the general objective that we seek in
convergence analysis. By comparing the formula giving the rate of convergence
for steepest descent with a bound for coordinate descent, we are able to draw
some general conclusions on the relative performance of the two methods that are
not dependent on specific values of a and A. Our analyses of local convergence
properties, which usually involve specific formulae, are always guided by this
objective of obtaining general qualitative comparisons.

Example. The quadratic problem considered in Section 8.6 with

0.78 —-0.02 —-0.12 —-0.14
—-0.02 086 —0.04 0.06
-0.12 -0.04 0.72 —-0.08
—-0.14 0.06 —0.08 0.74

b = (0.76, 0.08, 1.12, 0.68)

Q:
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Table 8.3 Solutions to Example

Value of f for various methods

Iteration no. Gauss-Southwell Cyclic Double sweep
0 0.0 0.0 0.0
1 —0.871111 —0.370256 —0.370256
2 —1.445584 —0.376011 —0.376011
3 —2.087054 —1.446460 —1.446460
4 —2.130796 —2.052949 —2.052949
5 —2.163586 —2.149690 —2.060234
6 —2.170272 —2.149693 —2.060237
7 —2.172786 —2.167983 —2.165641
8 —2.174279 —2.173169 —2.165704
9 —2.174583 —2.174392 —2.168440
10 —2.174638 —2.174397 —2.173981
11 —2.174651 —2.174582 —2.174048
12 —2.174655 —2.174643 —2.174054
13 —2.174658 —2.174656 —2.174608
14 —2.174659 —2.174656 —2.174608
15 —2.174659 —2.174658 —2.174622
16 —2.174659 —2.174655
17 —2.174659 —2.174656
18 —2.174656
19 —2.174659
20 —2.174659

was solved by the various coordinate search methods. The corresponding values of
the objective function are shown in Table 8.3. Observe that the convergence rates
of the three coordinate search methods are approximately equal but that they all
converge about three times slower than steepest descent. This is in accord with the
estimate given above for the Gauss-Southwell method, since in this case n —1 =3.

8.10 SPACER STEPS

In some of the more complex algorithms presented in later chapters, the rule used to
determine a succeeding point in an iteration may depend on several previous points
rather than just the current point, or it may depend on the iteration index k. Such
features are generally introduced in order to obtain a rapid rate of convergence but
they can grossly complicate the analysis of global convergence.

If in such a complex sequence of steps there is inserted, perhaps irregularly
but infinitely often, a step of an algorithm such as steepest descent that is known to
converge, then it is not difficult to insure that the entire complex process converges.
The step which is repeated infinitely often and guarantees convergence is called a
spacer step, since it separates disjoint portions of the complex sequence. Essentially
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Convergence

Global convergence of the line search methods is established by noting that a pure
steepest descent step is taken every n steps and serves as a spacer step. Since
the other steps do not increase the objective, and in fact hopefully they decrease
it, global convergence is assured. Thus the restarting aspect of the algorithm is
important for global convergence analysis, since in general one cannot guarantee
that the directions d, generated by the method are descent directions.

The local convergence properties of both of the above, and most other,
nonquadratic extensions of the conjugate gradient method can be inferred from the
quadratic analysis. Assuming that at the solution, x*, the matrix F(x*) is positive
definite, we expect the asymptotic convergence rate per step to be at least as good
as steepest descent, since this is true in the quadratic case. In addition to this bound
on the single step rate we expect that the method is of order two with respect to
each complete cycle of n steps. In other words, since one complete cycle solves
a quadratic problem exactly just as Newton’s method does in one step, we expect
that for general nonquadratic problems there will hold |x,,, —x*| < ¢|x, —x*|* for
some ¢ and k =0, n, 2n, 3n, . ... This can indeed be proved, and of course underlies
the original motivation for the method. For problems with large n, however, a
result of this type is in itself of little comfort, since we probably hope to terminate
in fewer than n steps. Further discussion on this general topic is contained in
Section 10.4.

Scaling and Partial Methods

Convergence of the partial conjugate gradient method, restarted every m + 1 steps,
will in general be linear. The rate will be determined by the eigenvalue structure
of the Hessian matrix F(x*), and it may be possible to obtain fast convergence
by changing the eigenvalue structure through scaling procedures. If, for example,
the eigenvalues can be arranged to occur in m -+ 1 bunches, the rate of the partial
method will be relatively fast. Other structures can be analyzed by use of Theorem 2,
Section 9.4, by using F(x*) rather than Q.

9.7 PARALLEL TANGENTS

In early experiments with the method of steepest descent the path of descent was
noticed to be highly zig-zag in character, making slow indirect progress toward the
solution. (This phenomenon is now quite well understood and is predicted by the
convergence analysis of Section 8.6.) It was also noticed that in two dimensions
the solution point often lies close to the line that connects the zig-zag points, as
illustrated in Fig. 9.5. This observation motivated the accelerated gradient method
in which a complete cycle consists of taking two steepest descent steps and then
searching along the line connecting the initial point and the point obtained after
the two gradient steps. The method of parallel tangents (PARTAN) was developed
through an attempt to extend this idea to an acceleration scheme involving all
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Fig. 9.5 Path of gradient method

previous steps. The original development was based largely on a special geometric
property of the tangents to the contours of a quadratic function, but the method is
now recognized as a particular implementation of the method of conjugate gradients,
and this is the context in which it is treated here.

The algorithm is defined by reference to Fig. 9.6. Starting at an arbitrary point
X, the point x, is found by a standard steepest descent step. After that, from a point
X, the corresponding y, is first found by a standard steepest descent step from x,,
and then x;_, is taken to be the minimum point on the line connecting x;_; and
¥, The process is continued for 7 steps and then restarted with a standard steepest
descent step.

Notice that except for the first step, x, , , is determined from x,, not by searching
along a single line, but by searching along two lines. The direction d, connecting
two successive points (indicated as dotted lines in the figure) is thus determined
only indirectly. We shall see, however, that, in the case where the objective function
is quadratic, the d;’s are the same directions, and the x,’s are the same points, as
would be generated by the method of conjugate gradients.

PARTAN Theorem. For a quadratic function, PARTAN is equivalent to the
method of conjugate gradients.

Fig. 9.6 PARTAN
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Xi+1

X} diy X

Fig. 9.7 One step of PARTAN

Proof.  The proof is by induction. It is certainly true of the first step, since it
is a steepest descent step. Suppose that X,, X, ..., X, have been generated by the
conjugate gradient method and x,, is determined according to PARTAN. This
single step is shown in Fig. 9.7. We want to show that x,,, is the same point as
would be generated by another step of the conjugate gradient method. For this to be
true X, ; must be that point which minimizes f over the plane defined by d,_, and
g, = V/f(x,)T. From the theory of conjugate gradients, this point will also minimize
f over the subspace determined by g, and all previous d;’s. Equivalently, we must
find the point x where V f(x) is orthogonal to both g, and d,_,. Since y, minimizes
f along g,, we see that Vf(y,) is orthogonal to g,. Since Vf(x,_,) is contained in
the subspace [d,, d,, ...,d,_,] and because g, is orthogonal to this subspace by the
Expanding Subspace Theorem, we see that V f(x,_, ) is also orthogonal to g,. Since
V f(x) is linear in x, it follows that at every point x on the line through x,_, and
¥, we have V f(x) orthogonal to g,. By minimizing f along this line, a point x,_,
is obtained where in addition Vf(x,_,) is orthogonal to the line. Thus V f(x, ) is
orthogonal to both g, and the line joining x,_, and y,. It follows that Vf(x, ) is
orthogonal to the plane. |

There are advantages and disadvantages of PARTAN relative to other methods
when applied to nonquadratic problems. One attractive feature of the algorithm is
its simplicity and ease of implementation. Probably its most desirable property,
however, is its strong global convergence characteristics. Each step of the process
is at least as good as steepest descent; since going from X, to y, is exactly steepest
descent, and the additional move to x, ., provides further decrease of the objective
function. Thus global convergence is not tied to the fact that the process is restarted
every n steps. It is suggested, however, that PARTAN should be restarted every n
steps (or n+ 1 steps) so that it will behave like the conjugate gradient method near
the solution.

An undesirable feature of the algorithm is that two line searches are required at
each step, except the first, rather than one as is required by, say, the Fletcher—Reeves
method. This is at least partially compensated by the fact that searches need not
be as accurate for PARTAN, for while inaccurate searches in the Fletcher—Reeves
method may yield nonsensical successive search directions, PARTAN will at least
do as well as steepest descent.



