
HYPERSOLVER: A Graphical Tool forCommonsense Set TheoryM�U_JDAT PAKKAN� VAROL AKMANyzJanuary 24, 1996AbstractThis paper investigates an alternative set theory (due to Peter Aczel)called Hyperset Theory. Aczel uses a graphical representation for sets andthereby allows the representation of non-well-founded sets. A program, calledHYPERSOLVER, which can solve systems of equations de�ned in terms of setsin the universe of this new theory is presented. This may be a useful tool forcommonsense reasoning.1 INTRODUCTIONSet theory has long occupied a unique place in mathematics since it allows variousother branches of mathematics to be formally de�ned within it. The theory hasignited many debates on its nature and a number of di�erent axiomatizations weredeveloped to formalize its underlying `philosophical' principles. Collecting entitiesinto an abstraction for further thought (i.e., set construction) is an important processin mathematics, and this brings in assorted problems [5]. The theory had manyground-shaking crises (like the discovery of the Russell's Paradox [6]) throughoutits history, which were nevertheless overcome by new axiomatizations.The most popular of these is the Zermelo-Fraenkel axiomatization with `Choice'(ZFC). ZFC is an elegant theory which inhabits a stable place among other axioma-tizations as the mainstream set theory. It provides a `hierarchical' framework. Thishierarchy starts with only one abstract entity, the empty set (;), forms sets out of�Computer Engineering Department, Bo�gazi�ci University, Bebek, 80815 _Istanbul, TurkeyzDepartment of Computer Engineering and Information Science, Bilkent University, Bilkent,06533 Ankara, Turkey 1



previously formed entities cumulatively, and is therefore called the cumulative hier-archy. The coherence of this hierarchy is secured by the Axiom of Foundation (FA)which forbids in�nite descending sequences of sets under the membership relation 2,such as : : : 2 a2 2 a1 2 a0 2 a (thereby not allowing sets which can be constituentsof themselves), and which has sometimes been regarded as a somewhat super�ciallimitation [6]. Sets which obey the FA are called well-founded sets.The cumulative hierarchy has provided a precise framework for the formalization ofmany mathematical concepts [7]. However, it may be asked whether the hierarchyis limiting, in the sense that it might be omitting some sets one would like to havearound. Cyclic sets, i.e., sets which can be members of themselves, are examples ofsuch interesting sets which are excluded in ZFC. A set like a = fag is strictly bannedin ZFC by the FA since a has no member disjoint from itself. Such sets have in�nitedescending membership sequences and are called non-well-founded sets. Non-well-founded sets have generally been neglected by the practicing mathematician sincethe classical well-founded universe was a satisfying domain for his practical con-cerns. However, non-well-founded sets are useful in modeling various phenomena incomputer science, viz. concurrency, databases, arti�cial intelligence (AI), etc. [8].McCarthy stressed the feasibility of using set theory in AI and invited researchersto concentrate on the subject in a 1985 speech [9]. Circularity is an often exploitedproperty in various �elds of AI, e.g., commonsense reasoning. Rehearsing an ex-ample of Perlis [10], if non-pro�t organizations are considered as individuals, thenthe organization of all non-pro�t organizations is a set. It is conceivable that thisumbrella organization (called NPO) might want to be a member of itself in orderto bene�t from having the status of a non-pro�t organization (e.g., tax exemption).But this implies that NPO must be non-well-founded, i.e., NPO 2 NPO.This paper (also see [11]) investigates an alternative set theory, due to Peter Aczel[12], which uses a graphical representation for sets and thereby allows the represen-tation of non-well-founded sets. A program, called HYPERSOLVER, which can solvesystems of equations de�ned in terms of sets in the universe of this new theory ispresented.2 HYPERSET THEORYIn this section we o�er, using [8] and [13], a brief review of Hyperset Theory whichis an enrichment of the classical ZFC set theory. It is the collection of all the con-ventional axioms of ZFC modi�ed to be consistent with the new universe involvingatoms, except that the FA is now replaced by the AFA (to be explained in the se-quel). The sets in this theory are collections of atoms (urelements) or other sets,whose hereditary membership relation can be depicted by graphs. These sets may be2
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Figure 1: The graph representation of a = fb; fc; dggwell-founded or non-well-founded, i.e., may have an in�nite descending membershipsequence, in which case they are also called hypersets.Sets can be pictured by means of directed graphs in an unambiguous manner. Forexample, a = fb; fc; dgg can be pictured by the graph in Figure 1. In this graph,each nonterminal node represents the set which contains the entities represented bythe nodes below it. The edges of the graph stand for the hereditary membershiprelation such that an edge from a node n to a node m, denoted by n �! m, meansthat m is a member of n. Since b, c, and d are assumed to contain no other entitiesas elements (i.e., they are urelements), there are no nodes below them.In Aczel's terminology [12], a pointed graph is a directed graph with a speci�c nodecalled its point. A pointed graph is said to be accessible if for every node n, thereexists a path n0 �! n1 �! � � � �! n from the point n0 to n. If this path is alwaysunique, then the pointed graph is a tree and the point is its root. Accessible pointedgraphs (apg's) will be used to `picture' sets.A decoration D for a graph is an assignment of a set to each node of the graph insuch a way thatD(n) = ( an atom or ;; if n has no children,fD(m) : n �! mg; otherwise.An apg G with point n is a picture of a if there exists a decoration D(n) = a, i.e.,if a is the set that decorates the top node.An apg is called well-founded if is has no in�nite paths or cycles. Mostowski'sCollapsing Lemma states that every well-founded graph has a unique decoration.As a corollary every well-founded apg is a picture of a unique well-founded set. A3



ΩFigure 2: The picture of the non-well-founded set 
 = f
gnon-well-founded apg can never picture a well-founded set because if a is the setwhich contains all the sets pictured by the nodes occurring in a cycle of the non-well-founded apg, then it can be seen that no member of a is disjoint from a itself,violating the FA.Aczel's Anti-Foundation Axiom (AFA) states that every apg, well-founded or not,pictures a unique set, or stated in other words, every apg has a unique decora-tion [12, 14]. AFA has two implications: existence and uniqueness. The formerassures that every apg has a decoration (which leads to the existence of non-well-founded sets besides well-founded ones) and the latter asserts that no apg has morethan one decoration. By throwing away the FA from the ZFC (and naming theresulting system ZFC�) and adding the AFA we obtain the Hyperset Theory (a.k.a.ZFC�/AFA).One of the important advantages of the new theory is that by allowing arbitrarygraphs, non-well-founded sets are included. For example, the non-well-founded set
 = f
g is pictured by the apg in Figure 2, and by the uniqueness property of theAFA, this is the only set pictured by that graph. Therefore, there is a unique setwhich is equal to its own singleton in the universe of hypersets.The picture of a set can be unfolded into a tree picture of the same set. The treewhose nodes are the �nite paths of the apg which start from the point of the apg,whose edges are pairs of paths hn0 �! � � � �! n ; n0 �! � � � �! n �! n0i, andwhose root is the path n0 of length one is called the unfolding of that apg. Theunfolding of an apg always pictures any set pictured by that apg. Unfolding the apgin Figure 2 results in the in�nite tree in Figure 3, analogous to unfolding 
 = f
gto 
 = fff� � �ggg.The uniqueness property of AFA leads to an intriguing concept of extensionality forhypersets. The classical extensionality paradigm, that sets are equal if and only ifthey have the same members, works �ne with well-founded sets. However, this isnot of use in deciding the equality of say, a = f1; ag and b = f1; bg because it justasserts a = b if and only if a = b [8]. However, in the universe of hypersets, a is4
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ΩFigure 3: Unfolding 
 to obtain an in�nite treeindeed equal to b since they are depicted by the same graph.1Aczel develops his own extensionality concept by introducing the notion of bisimu-lation. A bisimulation between two apg's, G1 with point p1 and G2 with point p2,is a relation R � G1 �G2 satisfying the conditions1. p1Rp22. if nRm then� for every edge n �! n0 of G1, there exists an edge m �! m0 of G2 suchthat n0Rm0� for every edge m �! m0 of G2, there exists an edge n �! n0 of G1 suchthat n0Rm0Two apg's G1 and G2 are said to be bisimilar if a bisimulation exists betweenthem; this means that they picture the same set. It can be concluded that a setis completely determined by any graph which pictures it. Therefore, for two setsto be di�erent, there should be a genuine structural di�erence between them. Forinstance, the graphs in Figure 4 all depict the non-well-founded set 
 because theirnodes can be decorated with 
.AFA has interesting applications. In [8], a modeling scheme for propositions (ofnatural language [15, 16]) is o�ered. In this scheme, the triple hP; p; ii denotes that1To see this [8], consider a graph G and a decoration D assigning a to a node x of G, i.e.,D(x) = a. Now consider the decoration D0 exactly the same as D except that D0(x) = b. D0 mustalso be a decoration for G. But by the uniqueness property of AFA, D = D0, so D(x) = D0(x),and therefore a = b. 5
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0Figure 5: The picture of \This proposition is not expressible in eight words"proposition p has property P if i = 1, and it does not have it if i = 0.2 If p is takento be say, \This proposition is not expressible using eight words,"then it can be modeled by the triple hE; p; 0i where E (an atom) denotes the propertyof being expressible (in English) using eight words. In Aczel's conception, p can bedepicted as in Figure 5 where the longest arc shows that p refers to itself.2Remember that in set theory, triples like hx; y; zi are de�ned as pairs of pairs, i.e., hx; hy; zii,and hy; zi is de�ned as ffyg; fy; zgg. 6
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w=0Figure 6: The solution of the system x = fy; zg, y = fwg, z = fw; xg, w = 03 SOLVING SYSTEMS OF HYPERSETEQUATIONSAFA has an important consequence which has useful applications allowing us toassert that some sets exist without having to picture them with graphs. This willbe motivated by the following example [12].An equation of the form x = h0; xi in one variable x can be rewritten as x =ff0g; f0; xgg. This is equivalent to the following system of four equations in fourunknowns: x = fy; zg;y = fwg;z = fw; xg;w = 0:By AFA, this system of equations has a unique solution pictured by the graph inFigure 6. Unfolding the original equation, one obtains x = h0; h0; h0; : : :iii.This result can be generalized. For any set a, the equation x = ha; xi has a uniquesolution x = ha; ha; ha; : : :iii. More generally, an in�nite system of equationsx0 = ha0; x1i;x1 = ha1; x2i;x2 = ha2; x3i;...has a unique solution 7



x0 = ha0; ha1; ha2; : : :iii;x1 = ha1; ha2; ha3; : : :iii;x2 = ha2; ha3; ha4; : : :iii;...Motivated by such examples, a technique to assert that every system of equationshas a unique solution has been developed by Aczel [12]. Named the Solution Lemmaby Barwise and Etchemendy [8], this is formulated below.Let VA be the universe of hypersets with atoms from a given set A. Let VA0 be theuniverse of hypersets with atoms from another given set A0 such that A � A0. Let Xbe de�ned as A0�A. The elements of X can be considered as indeterminates rangingover the universe VA. Sets which can contain atoms from X in their constructionare called X-sets. A system of equations is a set of equationsfx = ax : x 2 X ^ ax is an X-set gfor each x 2 X. For example, choosing X = fx; y; zg and A = fC;Mg (thusA0 = fx; y; z;C;Mg), we may consider the system of equationsx = fC; yg;y = fC; zg;z = fM; xg:(This system will be used in the sequel for illustrative purposes.)A solution to a system of equations is a family of pure sets bx (sets which can haveonly sets but no atoms as elements), one for each x 2 X, such that for each x 2 X,bx = �ax. Here, � is a substitution operation (de�ned below) and �a is the pureset obtained from a by substituting bx for each occurrence of an atom x in theconstruction of a.The Substitution Lemma states that for each family of pure sets bx (x 2 X), thereexists a unique operation � which assigns a pure set �a to each X-set a, viz.�a = f�b : b is an X-set such that b 2 ag [ f�x : x 2 a \Xg:The Solution Lemma can now be stated [12]. If ax is an X-set, then the system ofequations x = ax (x 2 X) has a unique solution, i.e., a unique family of pure sets bxsuch that for each x 2 X, bx = �ax. 8



This lemma can be stated somewhat di�erently [13]. Letting X again be the set ofindeterminates, g a function from X to 2X , and h a function from X to A, thereexists a unique function f for all x 2 X such thatf(x) = ff(y) : y 2 g(x)g [ h(x):Obviously, g(x) is the set of indeterminates and h(x) is the set of atoms in eachX-set ax of an equation x = ax. In the above example, g(x) = fyg, g(y) = fzg,g(z) = fxg, and h(x) = fCg, h(y) = fCg, h(z) = fMg, and one can compute thesolution f(x) = fC; fC; fM; xggg;f(y) = fC; fM; fC; yggg;f(z) = fM; fC; fC; zggg:easily.3This technique of solving equations in the universe of hypersets allows us to assertthe existence of some sets (the solutions of the equations) without having to depictthem with graphs. This feature can be of considerable help in modeling informationwhich can be cast in the form of equations. An example concerning Situation Theoryfollows.Situation Theory is a theory of meaning and information content developed by Bar-wise and Perry [17]. It tries to formalize a semantics for English in the way Englishspeakers handle information. A situation is a limited portion of the reality. An infonis an ordered list hR; a; ii where R is a relation, a is a proper sequence of argumentsof R, and i is the polarity (1 or 0). For a given R and a, only one of the two infons� = hR; a; 1i or �� = hR; a; 0i is a fact, namely the one which holds in some situations. (As a notational convention, a polarity of 1 is usually dropped.)It is generally hypothesized that situations are sets of facts and therefore can bemodeled by sets to make use of the existing set-theoretic techniques. Indeed, thiswas the approach Barwise and Perry adopted in [17]. However, using Barwise'sAdmissible Set Theory [7] as the principal mathematical tool in the beginning led toproblems in the handling of circular situations and they had to turn to the HypersetTheory [18, 19]. To demonstrate circular situations, an example concerning common3The Solution Lemma is an elegant result, but not every system of equations has a solution.First of all, the equations have to be in the form suitable for the Solution Lemma. For example, apair equations x = fy; zg, y = f1; xg, cannot be solved since this requires the solution to be statedin terms of the indeterminate z. (Notice the analogy to the Diophantine equations.) As anotherexample, the equation x = 2x cannot be solved because Cantor has proved in ZFC� that there isno set which contains its own power set (no matter what axioms are added to ZFC�) [6].9



knowledge will now be given, viz. the Conway paradox [20]. Two card players P1and P2 are given some cards such that each gets an ace. Thus, both P1 and P2 knowthat the following is a fact:� : Either P1 or P2 has an ace.When asked whether they knew if the other one had an ace or not, they both wouldanswer `no'. If they are told that at least one of them has an ace and asked the abovequestion again, �rst they both would answer `no'. But upon hearing P1 answer `no',P2 would know that P1 has an ace. Because, if P1 does not know P2 has an ace,having heard that at least one of them does, it can only be because P1 has an ace.Obviously, P1 would reason the same way, too. So, they would conclude that eachhas an ace. Therefore, being told that at least one of them has an ace must haveadded some information to the situation. How can being told a fact that each ofthem already knew increase their information? (This is the Conway paradox.) Thesolution relies on the observation that initially � was known by each of them, but itwas not common knowledge. Only after it became common knowledge, it gave moreinformation.Hence, common knowledge can be viewed as iterated knowledge of � of the followingform: P1 knows �, P2 knows �, P1 knows P2 knows �, P2 knows P1 knows �, andso on. This iteration can be represented by an in�nite sequence of facts (where �is the relation `knows' and s is the situation in which the above game takes place,hence � 2 s):h�; P1; si; h�; P2; si; h�; P1; h�; P2; sii; h�; P2; h�; P1; sii; : : :However, considering the system of equationsx = fh�; P1; yi; h�; P2; yig;y = s [ fh�; P1; yi; h�; P2; yig;the Solution Lemma asserts the existence of the unique sets s0 and s [ s0 satisfyingthese equations, respectively, wheres0 = fh�; P1; s [ s0i; h�; P2; s [ s0ig:Then, the fact that s is common knowledge can be represented by s0 which containsjust two infons and is circular. This is known as the �xed-point account of commonknowledge. 10



Figure 7: The Command Interface of HYPERSOLVER4 THE IMPLEMENTATIONHYPERSOLVER is a stand-alone program which can solve equations in the universe ofhypersets by making use of the Solution Lemma. It has built-in graphical capabilitiesfor displaying the graphs depicting the equations input by the user and the solutionsof these equations. HYPERSOLVER is implemented on a SPARCstation ELC in LucidCommon Lisp. To communicate with the user and to display graphs, it makes use ofthe XView Window Toolkit [21] built on the X Window System. The user interfaceof HYPERSOLVER, called the Command Interface, is shown in Figure 7.4.1 FUNCTIONALITYHYPERSOLVER solves a system of equations in the universe of hypersets. By a systemof equations, the de�nition in Section 3 is meant:fx = ax : x 2 X and ax is an X-set gfor each x 2 X, where X is a set of indeterminates,A is a set of atoms, and an X-setis a set which can contain elements from X. HYPERSOLVER does not solve systemswhich are not of this form.44Therefore, taking A = f0; 1g and X = fx; yg, a system like x = f0; 1; yg, y = fxg, is a valid11



Figure 8: An example output of HYPERSOLVERThe notational conventions in HYPERSOLVER are as follows. Letters A through L areused to represent atoms of A, while letters M through Z represent indeterminatesof X. The symbol @ will be used to represent the non-well-founded singleton 
.(One-letter variable naming may seem quite limiting but it is simple to adopt theparser to handle variables with longer names.) Therefore, the graphs of the solutiongiven in Section 3 are depicted as in Figure 8.HYPERSOLVER gets its input from a �le which is to be speci�ed by the user. The �lemust have one equation per line. For example, a �le consisting of the following linesis a valid input �le: X=fX,Yg,Y=fA,B,Y,Zg,Z=fX,Y,@g.The input read from the �le is sent to the parser of HYPERSOLVER. The parser isa character checking parser with a lookup table for the input characters. Afterconverting the input into Lisp form, a transformation is applied to map it to a listthat can be processed by the equation solver. Finally, the input is checked to seewhether it conforms the input requirements of HYPERSOLVER (e.g., if it contains oneequation for each indeterminate, if each equation is of the form x = ax, and so on).input for HYPERSOLVER, while the single equation 1 = fx; y; 0g, or the system x = f0; 1g, x = fxg,are not since 1 62 X, and there should be a single equation for each x 2 X. HYPERSOLVER includessome �ltering functions to detect invalid input.12



The equation solving step of the HYPERSOLVER applies the Solution Lemma to theinput system of equations. The alternative formulation mentioned in Section 3 isused for this purpose: f(x) = ff(y) : y 2 g(x)g [ h(x);for any set X of indeterminates where g is a function from X to 2X and h isfunction from X to a set A of atoms. For the input �le above, g(X) = fX;Yg,g(Y) = fY;Zg, g(Z) = fX;Yg and h(X) = ;, h(Y) = fA;Bg, h(Z) = f@g = @.This representation scheme is suitable for recursive substitution. The algorithm ofthe equation solver performs this substitution by applying the Substitution Lemmato each equation of the input system. So, the solution for an indeterminate X canbe found by �nding the solutions of the indeterminates in g(X) recursively. Foreach indeterminate, a decoration is found and the solutions are expressed in termsof these decorations. If the decoration for an indeterminate includes itself, then thisdenotes self-membership, and @ is used to signal that. For example, the decorationsof the graphs for the above system of equations are (p, q, and r are the decorationsfor the indeterminates X, Y, and Z, respectively):p=f@,fA,B,@,fp,q,@ggg,q=fA,B,@,ff@,qg,q,@gg,r=ff@,qg,fA,B,@,rg,@g.To prevent duplicate substitutions which arise when an indeterminate occurs twoor more times in an X-set, a list of already visited indeterminates is maintained.Nevertheless, because of the nature of recursion, duplication may occur in di�erentlevels of set nesting. Therefore, a kind of �ltering is applied on the output of thesolver to remove such duplicates.The next step is the invocation of the graph display part of the HYPERSOLVER. Thispart takes the solution of a system of equations produced by the equation solver asinput. As the general graph layout algorithm, a variant of the hierarchical layoutalgorithm proposed in [22] is exploited. The reason to use a hierarchical layoutalgorithm instead of a general-purpose algorithm is that most of the equations to besolved by the Solution Lemma will be hierarchical and that self-reference generallyoccurs for a single indeterminate. (Figure 5 is a good example of this.)The algorithm which has been adapted to the representation conventions and outputrequirements of HYPERSOLVER �rst forms the edge list of the solution system whichconsists of pairs of nodes. This list helps to get all children of each indeterminate.Then the nodes corresponding to these children are distributed to the levels takingcare of the relationships between pairs of nodes. A more complicated part of the13



Figure 9: The HYPERSOLVER graph of 
graph display unit is the one calculating the positions of the nodes on the screen. Thehierarchical nature of the solution graphs is again exploited to make this calculation.The positions of the descendants of a node are calculated with respect to its ownposition, which in turn has been calculated with respect to its antecedents.After the calculation of the positions, the actual graph drawing procedure is ac-tivated to display �rst the nodes and later the edges. This procedure pops up alarge window (called the Graph Display Window, GDW) on which all graphicalinformation is put. The output convention is such that the node labels which arethe decorations of the sets represented by those nodes are written inside the nodeboundaries. While the edges which de�ne hereditary membership are easily drawn,care has to be taken in case of a cycle. Cycles implying self-reference are not dis-played as circular edges, but are drawn in a di�erent form. (Therefore, 
 is depictedas in Figure 9.)Cycles of one level are not much of a problem. If there exists a cycle between twonodes a and b, then the directed edge (b; a) can be drawn over the directed edge (a; b)to give a double arrow. However references to higher levels, especially to the rootnode representing the indeterminate are problematic since a path with minimumedge-crossing has to be found for aesthetic reasons. In such a case, paths walkingaround the graph are preferred (cf. Figure 12). Edge crossings may be unavoidableif no such path can be found. The solution graphs of the above example are depictedin Figure 10.The displaying of the graphs depicting the input sets proceeds exactly the sameway as the displaying of the solution system. For example, the graphs of the inputequations of the example system above can be found in Figure 11.4.2 LIMITATIONS AND ONGOING WORKHYPERSOLVER can solve any system which is in the form required by the Solution14



Figure 10: Graphs depicting the solution to the example in Subsection 4.1

Figure 11: Graphs of the input equations for the example in Subsection 4.115



Lemma. This requires the equations to be in the form x = ax for each x 2 X. Thesystems which cannot be solved by HYPERSOLVER are those to which the SubstitutionLemma cannot be applied. Such systems have been exempli�ed in Section 3.HYPERSOLVER is generally weak in input/output operations. First of all it has lim-itations on the format of the input, such as one-letter variable naming, and oneequation per line in the input �le with no space between the characters of the inputequations. These limitations arise because of the brittleness of the parser. A morepowerful parser would let HYPERSOLVER be more 
exible with input but the extrafeatures would not add to the power of the program.The graph display unit is another weak part of HYPERSOLVER. Graph drawing isa hard problem when considered for general graphs with any number of nodes.Limiting the scope of the graph display problem as explained above reduces thedi�culties considerably, but classical problems like minimizing the number of edge-crossings remain. HYPERSOLVER's graph display unit does not claim to know muchabout the graph layout problem. The algorithm does not work well for arbitrarygraphs with no coherent node relationships. However, it works �ne for the examplespresented so far. Graph drawing problems are addressed in [23, 24, 25] which proposegeneric graph browsers or editors.Future work on HYPERSOLVER will concentrate on its applications to modeling ofvarious phenomena in AI. This may include, for example, integrating HYPERSOLVERinto a situation-theoretic framework [26] where the program may solve equationswhose indeterminates can be unknown elements of situations, or unknown situa-tions themselves. As a simple example, if a situation S is represented by the triplehR;P; S 0i, meaning object P is in relation R to another situation S 0, then S canbe found in terms of S 0 by solving the equation S = hR;P; S 0i. Then, if S is acircular situation, P could also be in relation R to S itself, i.e., S = hR;P; Si. Thiswould, for example, correspond to an actual situation S in which a person P uttersthe statement \This is a very exciting situation." By \this situation," P is surelyreferring to the situation which his utterance describes. Such a circular situation Swould be depicted (in a somewhat compressed format) as in Figure 12.HYPERSOLVER's capabilities can also be exploited to model partial information [27].For this purpose, the objects of the universe VA (cf. Section 3) of hypersets overa set A of atoms can be be used to model non-parametric objects, i.e., objectswith complete information. The set X of indeterminates can be used to representparametric objects, i.e., objects with partial information. The universe of hypersetson A [ X is denoted as VA[X], analogous to the adjunction of indeterminates inalgebra. For any object a 2 VA[X], the setpar (a) = fx 2 X : x 2 TC(a)g;16



Figure 12: The graph of a circular situation S = hR;P; Si. (N.B. Not all thestructure is shown.)where TC(a) denotes the transitive closure of a, is called the set of parameters ofa. If a 2 VA, then par (a) = ; since a does not have any parameters. An anchoris a function f with domain(f) � X and range(f) � VA � A which assigns sets toindeterminates. For any a 2 VA[X] and anchor f , a(f) is the object obtained byreplacing each indeterminate x 2 par (a)\ domain(f) by the set f(x) in a. This canbe accomplished by solving the resulting equations using HYPERSOLVER.5 CONCLUSIONThe Solution Lemma is a nice feature of the Hyperset Theory. Besides its mathe-matical importance and elegance, it provides an interesting way of modeling variouscircular phenomena [8, 28].The implementation presented in this paper, HYPERSOLVER, is a program based onthe Solution Lemma and can be a useful tool in areas of AI where informationcan be cast in the form of set equations. Its simplicity, clarity, and well-de�neduser interface make it a practical instrument accessible for such purposes. Whensupported by a more general parser and a better graphical interface, it can beone of the emerging tools in mathematical logic, along the lines of, e.g., Suppesand Sheehan's computerized set theory course [29], or Barwise and Etchemendy'sTarski's World [30]. 17



HYPERSOLVERmay be an important utility for basic research on the use of set theoryin AI, too [31]. Such research involving conceptual innovations is urgently neededin AI as pointed out by McCarthy [32].References[1] V. Akman. Set Theory from Zermelo to Aczel. Seminar, Department of Math-ematics, Bilkent University, Ankara, March 10, 1992.[2] V. Akman. Hypersets and Common Sense. Seminar, Department of ComputerEngineering, Middle East Technical University, Ankara, October 21, 1992.[3] M. Pakkan. Solving Equations in the Universe of Hypersets. Master's thesis,Department of Computer Engineering and Information Science, Bilkent Uni-versity, Ankara, Turkey, 1993.[4] M. Pakkan and V. Akman. HYPERSOLVER: A Graphical Tool for CommonsenseSet Theory. In L. G�un, R. �Onvural, and E. Gelenbe, editors, Proceedings of theEight International Symposium on Computer and Information Sciences (ISCISVIII), pages 436{443. _Istanbul, 1993.[5] J. R. Shoen�eld. Axioms of Set Theory. In J. Barwise, editor, Handbook ofMathematical Logic, pages 321{344. North-Holland, Amsterdam, 1977.[6] A. A. Fraenkel, Y. Bar-Hillel, and A. Levy. Foundations of Set Theory. North-Holland, Amsterdam, 1973.[7] J. Barwise. Admissible Sets and Structures. Springer-Verlag, Berlin, 1975.[8] J. Barwise and J. Etchemendy. The Liar: An Essay on Truth and Circularity.Oxford University Press, New York, 1987.[9] J. McCarthy. Acceptance Address of the International Joint Conference onArti�cial Intelligence (IJCAI{85) Award for Research Excellence, Los Angeles,CA, 1985.[10] D. Perlis. Commonsense Set Theory. In P. Maes and D. Nardi, editors, Meta-Level Architectures and Re
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