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Abstract

The use of L1 regularisation for sparse learn-
ing has generated immense research inter-
est, with many successful applications in di-
verse areas such as signal acquisition, im-
age coding, genomics and collaborative fil-
tering. While existing work highlights the
many advantages of L1 methods, in this pa-
per we find that L1 regularisation often dra-
matically under-performs in terms of predic-
tive performance when compared to other
methods for inferring sparsity. We focus on
unsupervised latent variable models, and de-
velop L1 minimising factor models, Bayesian
variants of “L1”, and Bayesian models with
a stronger L0-like sparsity induced through
spike-and-slab distributions. These spike-
and-slab Bayesian factor models encourage
sparsity while accounting for uncertainty in
a principled manner, and avoid unnecessary
shrinkage of non-zero values. We demon-
strate on a number of data sets that in prac-
tice spike-and-slab Bayesian methods out-
perform L1 minimisation, even on a com-
putational budget. We thus highlight the
need to re-assess the wide use of L1 meth-
ods in sparsity-reliant applications, particu-
larly when we care about generalising to pre-
viously unseen data, and provide an alterna-
tive that, over many varying conditions, pro-
vides improved generalisation performance.
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1. Introduction

Over the last decade, there has been tremendous
excitement in learning parsimonious models using
sparsity. Sparse learning is now a significant research
topic – this significance being tied to the theoretical
and practical advancement of sparse learning methods
using the L1 norm. The use of the L1 norm in
penalised regression problems such as the Lasso
(Tibshirani, 1996), in natural scene understanding
and image coding problems (Olshausen and Field,
1996), and more recently in compressed sensing
(Candes, 2006), has served to cement the importance
and efficacy of the L1 norm as a means of inducing
sparsity. Among its important properties, the L1

norm is the closest convex norm to the L0 norm,
has a number of provable properties relating to the
optimality of solutions and oracle properties (van de
Geer and Bühlmann, 2009), and allows for the wide
array of tools from convex optimisation to be used in
computing sparse solutions. With the use of sparse
methods in increasingly diverse application domains,
it is timely to now contextualise the use of the L1

norm and critically evaluate its behaviour in relation
to other competing methods.

To achieve sparsity, the idealised but intractable
sparsity criterion uses the L0 norm to penalise the
number of non-zero parameters. To more closely
match the L0 objective function, we develop here the
use of discrete mixture priors for sparse learning, com-
monly referred to as spike-and-slab priors (Mitchell
and Beauchamp, 1988; Ishwaran and Rao, 2005).
A spike-and-slab is a discrete mixture of a point
mass at zero (the spike) and any other continuous
distribution (the slab). It is is similar to the L0

norm in that it imposes a penalty on the number
of non-zero parameters in a model. We show that
spike-and-slab distributions provide improvements in
learning, and that both Bayesian methods and the
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use of the spike-and-slab distribution deserve more
prominent attention in the vast literature for sparse
modelling.

Our analysis focuses on unsupervised linear latent
variable models (also known as matrix completion
models), a class of models that are amongst the core
tools in the machine learning practitioner’s toolbox.
Factor analysis, the inspiration for this class of mod-
els, describes real-valued data by a set of underlying
factors that are linearly combined to explain the
observed data. This base model allows for many
adaptations, such as generalisations to non-Gaussian
data (Collins et al., 2002; Mohamed et al., 2008),
or in learning sparse underlying factors (Dueck and
Frey, 2004; Lee et al., 2009; Carvalho et al., 2008).
In unsupervised learning, a sparse representation
is desirable in situations where: 1) there are many
underlying factors that could explain the data, 2)
only a subset of which explain the data, and 3) the
subset is different for each observation.

After introducing our framework for unsuper-
vised models (section 2), we develop approaches for
sparse Bayesian learning, culminating in a thorough
comparative analysis. Our contributions include:

• We introduce new generalised latent variable models
with strong sparsity, providing an important new
class of sparse models that can readily handle non-
Gaussian and heterogeneous data sets (sect. 4).

• We develop a spike-and-slab model for sparse unsu-
pervised learning and derive a full MCMC algorithm
for it. This MCMC method is applicable to other
models based on discrete-continuous mixtures and
is more efficient than naive samplers (sect. 3).

• We present the first comparison of approaches for
sparse unsupervised learning based on optimisa-
tion methods, Bayesian methods using continuous
sparsity-favouring priors, and Bayesian methods us-
ing the spike-and-slab. We bring these methods
together and compare their performance in a con-
trolled manner on both benchmark and real world
data sets across a breadth of model types (sect. 6).

• Interestingly, our results show that strong sparsity
in the from of spike-and-slab models can outper-
form the commonly used L1 methods in unsuper-
vised modelling tasks.

2. Unsupervised Latent Variable
Models and Sparsity

We are concerned with models of the form:

X = VΘ + E, en ∼ N (0,Σ), (1)

which is the matrix factorisation problem in which
we search for a set of underlying factors V and

vn xn

N

θk

K
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Figure 1. Graphical representation for generalised latent
variable models.

weights Θ that are combined to explain the observed
data X. We often consider Gaussian latent vari-
ables and Gaussian noise with diagonal or isotropic
covariances, in which case this model recovers the
familiar factor analysis and principal components
analysis models, respectively. If V is sparse then
subsets of the underlying factors explain the data
and different subsets explain each observed data point.

Increasingly we do not deal with real-data, which is
well described by a Gaussian distribution, but data
that may be binary, categorical, non-negative or a
heterogeneous set of these. It is interesting to then
consider generalisations of the basic model (1) in
which the conditional probability of the observed
data is defined using the exponential family of
distributions, as:

xn|vn,Θ ∼ Expon

(∑
k

vnkθk

)
; θk ∼ Conj (λ, ν) (2)

We use the shorthand xn ∼ Expon (ψ) to repre-
sent the exponential family of distributions with
natural parameters ψ = vnΘ. For this model,
the natural parameters are a sum of the parame-
ters θk, weighted by vnk, the points in the latent
subspace corresponding to data point xn. For the
exponential family of distributions, the conditional
probability of xn given parameter vector ψ takes
the form: p(xn|ψ) = h(xn) exp

(
s(xn)>ψ −A(ψ)

)
,

where s(xn) are the sufficient statistics, ψ is a vector
of natural parameters and A(ψ) is the log-partition
function. Probability distributions that belong to the
exponential family also have natural conjugate prior
distributions, which we use to model the distribution
of the parameters Θ. We use the notation: Conj (λ, ν)
as shorthand for the conjugate distribution, which
has the form: p(θk) ∝ exp(λ>θk − νA(θk)), with
hyperparameters λ and ν, and A(θk) is the same
log-partition function from the likelihood function.

Figure 1 is a graphical representation of general
unsupervised models; the shaded node xn represents
the observed data item n. The plate notation rep-
resents replication of variables and the dashed node
ϕ represents any appropriate prior distribution for
the latent variables vn. The observed data forms an
N × D matrix X, with rows xn. N is the number
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of data points and D is the number of observed
dimensions. Θ is a K × D matrix with rows θk.
V is an N × K matrix with rows vn, which are
K-dimensional vectors, where K is the number of
latent factors.

The K latent variables for each data point are
generally assumed to be independent a priori:

vn ∼
∏K

k=1 S(vnk|ϕ), where S is the prior on each
variable with hyperparameters ϕ (figure 1). The
prior distribution S(vnk) can be of any type. If
the exponential family is Gaussian and we use
Gaussian latent variables, we recover factor analysis;
general exponential families corresponds to the well
known exponential family PCA models (EPCA)
(Collins et al., 2002; Mohamed et al., 2008). Con-
sidering non-Gaussian latent variables instantiates
models such as ICA or the relevance vector machine
(RVM) (Levin et al., 2009; Wipf and Nagarajan, 2008)

Unsupervised models with sparsity are obtained
by employing sparsity-favouring distributions. A
sparsity-favouring distribution can be any distribu-
tion with high excess kurtosis, indicating that it is
highly peaked with heavy tails, or a distribution with
a delta-mass at zero. The set of sparsity-favouring
distributions includes the Normal-Gamma, Normal
Inverse-Gaussian, Laplace (or double Exponential),
Exponential, or generally the class of scale-mixtures
of Gaussian distributions (Polson and Scott, 2010).
Distributions that encourage sparsity fall into two
classes: continuous sparsity-favouring or spike-and-
slab distributions, which give rise to notions of weak
and strong sparsity, respectively:

Weak sparsity. A parameter vector ω is consid-
ered to be ‘weakly sparse’ if none of its elements are
exactly zero, but has most elements close to zero
with a few large entries. This implies that a weakly
sparse vector ω has a small Lp norm for small p, or
has entries that decay in absolute value according to
some power law (Johnstone and Silverman, 2004).
Strong sparsity. A parameter vector ω is con-
sidered to be ‘strongly sparse’ if elements of ω are
exactly zero. The spike-and-slab prior places mass
explicitly on zero and is thus a prior suited to achiev-
ing this notion of sparsity in learning.

3. Strongly Sparse Bayesian Models

A Bayesian approach to learning averages model
parameters and variables according to their posterior
probability distribution given the data, rather than
searching for a single best parameter setting as in an
optimisation approach. To obtain Bayesian models
with strong sparsity, we use a spike-and-slab prior

(Mitchell and Beauchamp, 1988; Ishwaran and Rao,
2005): a discrete-continuous mixture of a point mass
at zero referred to as the ‘spike’ and any other distri-
bution known as the ‘slab’. This slab distribution is
most often a uniform or Gaussian distribution, but
may be any appropriate distribution. Since we have
positive mass on zero, any samples produced include
exact zeroes, thereby enforcing strong sparsity. The
spike-and-slab can also be seen as placing a penalty
on the number of non-zero parameters, and thus
enforces sparsity in a manner similar to an L0 norm
penalisation. MCMC allows us to stochastically find
suitable solutions in this setting, where this is not
possible otherwise due to the combinatorial nature of
the optimisation.

We construct a spike-and-slab prior using a bi-
nary indicator matrix Z to indicate whether a latent
dimension contributes to explaining the observed data
or not. Each observed data point xn has a corre-
sponding vector of Bernoulli indicator variables zn.
The spike components are combined with a Gaussian
distribution, which forms the slab component:

p(zn|π)=
∏
k

B(znk|πk)=
∏
k

πk
znk(1−πk)1−znk ; (3)

p(vn|zn,µ,Σ) =
∏

k
N (vnk|znkµk, znkσ

2
k), (4)

where N represents the Gaussian density with mean
µk and variance σ2

k. We place a Beta prior β(πk|e, f)
on the Bernoulli parameters πk. When znk = 0 ,
p(vnk) in equation 4 becomes a δ-function at zero,
indicating the spike being chosen instead of the slab.
We complete the model specification by using a
Gaussian-Gamma prior for the unknown mean µk and
variance σ2

k . We denote the set of unknown variables
to be inferred as Ω = {Z,V,Θ,π,µ,Σ} and the set
of hyperparameters Ψ = {e, f,λ, ν}.

MCMC Sampling Scheme
Since the spike-and-slab is not differentiable, many
popular MCMC techniques, such as Hybrid Monte
Carlo, are not applicable. We proceed in the context
of Metropolis-within-Gibbs sampling, where we
sequentially sample each of the unknown variables
using Metropolis-Hastings. Our sampling procedure
iterates through the following steps : 1) Sample Z
and V jointly; 2) Sample Θ by slice sampling (Neal,
2003); 3) Sample µ, Σ and π by Gibbs sampling.

In sampling the latent factors znk and vnk in
step 1, we first decide whether a latent factor
contributes to the data or not by sampling znk
having integrated out vnk: p(znk = 0|X,π,V¬nk) and
p(znk =1|X,π,V¬nk), where V¬nk are current values
of V, with vnk excluded. Based on this decision, the
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latent variable is sampled from the spike or the slab
component. All variables vnk associated with the
slab components are sampled using slice sampling.
Evaluating these probabilities involves computing the
following integrals:

p(znk=0|X,π,V¬nk)=

∫
p(znk=0, vnk=0|X,V¬nk,π)dvnk

=(1−πk)p(X|V¬nk,vnk=0,Θ) (5)

p(znk=1|X,V¬nk)=

∫
p(znk=1,vnk|X,V¬nk,π)dvnk

= πk

∫
p(X|V,Θ)N (vnk|µk, σ

2
k)dvnk (6)

While computing equation 5 is easy, the integral in
equation 6 is not tractable in general. In the case of
the Gaussian family, vnk can be marginalised and we
do exactly this. For other families the integral must be
approximated. A number of approximation methods
exist such as Monte Carlo integration, importance
sampling and pseudo-marginal approaches, and the
Laplace approximation, which we use here. The use of
Laplace’s method introduces a bias due to the approx-
imation of the target distribution. This problem has
been studied by Guihenneuc-Jouyaux and Rousseau
(2005) where the Laplace approximation is used in
MCMC schemes with latent variables such as in our
case, and show that such an approach can behave
well. Guihenneuc-Jouyaux and Rousseau (2005) show
that as the number of observations increases, the
approximate distribution becomes close to the true
distribution, and describe a number of assumptions
for this to hold, such as requiring differentiability, a
positive definite information matrix and conditions
on the behaviour of the prior at boundaries of the
parameter space.

At least three other approaches for sampling the
latent variables can be considered: 1) A more naive
sampling of alternating between V and Z without
integrating out the slab. 2) Sampling V after inte-
grating Z. We found the collapsed scheme we describe
in eq (5)–(6) quickly informs us of the state of the slab
overall and resulted in faster mixing. 3) Reversible
jump MCMC is also feasible and requires a different
prior specification, also using a binary indicator vector
but with a prior on the number of non-zero latent
variables (e.g., using a Poisson).

We sample V and Θ in steps 1 and 2 by slice
sampling (Neal, 2003), which can be thought of as
a general version of the Gibbs sampler. Sampling
proceeds by alternately sampling an auxiliary variable
u, the slice level, and then randomly drawing a

value for the parameter from an interval along the
slice. The variables {µ, Σ} and π in step 3 have
conjugate relationships with the latent variables V
and Z respectively. Gibbs sampling is used since the
full conditional distributions are easily derived1.

4. Models with L1 norms and
Sparsity-Favouring Priors

The L1 norm has become the established mechanism
with which to encode sparsity into many problems,
and has a strong connection to continuous densities
that promote sparsity. The L1 norm has a number
of appealing properties: it gives the closest convex
optimisation problem to the L0 problem; there is
an broad theoretical basis with provable properties
(L0−L1 equivalence and exact recovery based on
RIP); and can be implemented efficiently based on the
tools of convex optimisation (linear and semi-definite
programming).

Sparsity Inducing Loss Functions
This leads us naturally to consider sparse latent
variable models based on the L1 norm. If we
assume that the latent distribution is a Laplace,
S(vn) ∝ exp(−α‖vn‖1), the maximum a posteriori
solution for V is equivalent to L1 norm regularisation
in this model. We define the following objective for
sparse generalised latent variable modelling:

min
V,Θ

∑
n
` (xn,vnΘ) + α‖V‖1 + βR(Θ), (7)

where the loss function ` (xn,vnΘ)=− ln p(xn|vnΘ),
is the negative log likelihood obtained using equation
2. Equation 7 provides a unifying framework for sparse
models with L1 regularisation. The regularisation
parameters α and β, control the sparsity of the latent
variables and the degree to which parameters will be
penalised during learning. The function R(Θ) is the
regulariser for the model parameters Θ. This model
is specified generally and applicable for a wide choice
of regularisation functions R(·), including the L1

norm. Such a loss function was described previously
by Lee et al. (2009) – here we focus on unsupervised
settings and specify the loss more generally, allowing
for both sparse activations as well as basis functions.
One configuration we consider is the use of the
modified loss (7) with R(Θ) =− ln p(Θ|λ, ν). This
loss allows sparsity in the latent variables and corre-
sponds to finding the maximum a posteriori (MAP)
solution. We shall refer to this model as the L1 model.

Optimisation is performed by alternating min-
imisation. Each step then reduces to established

1Implementation notes online at: cs.ubc.ca/~shakirm
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problems for which, we can then rely on the extensive
literature regarding L1 norm minimisation. A number
of methods exist to solve these problems: they can
be recast as equivalent inequality constrained optimi-
sation problems and solved using a modified LARS
algorithm (Lee et al., 2006), recast as a second order
cone program, or solved using a number of smooth
approximations to the regularisation term (Schmidt
et al., 2007), amongst others.

Sparse Bayesian Learning
Continuous densities with high excess kurtosis such
as the zero-mean Laplace distribution or Student’s-t
distribution are often used in Bayesian models where
sparsity is desired. For a model with priors that
prefer sparsity, the Bayesian averaging process often
results in non-sparse posteriors and give solutions that
are nearly zero, resulting in weakly sparse models.
We consider two models with sparsity in the latent
variables vn:

Laplace Model. Using the Laplace distribution:

vn ∼
∏K

k=1
1
2bk exp (−bk|vnk|), a Bayesian version of

the L1 model described by equation 7 can be spec-
ified. The equivalence between this model and the
L1 model can be seen by comparing the log-joint
probability using the Laplace distribution, to the L1

loss of equation 7. We refer to Bayesian inference in
this Laplace model as LXPCA, in contrast to the L1

model, which is an optimisation-based method.
Exponential Model. If parameters or latent vari-
ables are to be positively constrained, the natural
choice would be an exponential distribution peaked

at zero: vn ∼
∏K

k=1 bk exp (−bkvnk), which has sim-
ilar shrinkage properties to the Laplace. We refer to
this model as NXPCA.

These distributions are popular in sparse regression
problems (Seeger. et al., 2007; Wipf and Nagarajan,
2008) and are natural candidates in the unsupervised
models explored here. The hierarchical model spec-
ification is completed by placing a Gamma prior on
the unknown rate parameters b, with shared shape
and scale parameters α and β respectively. We de-
note the set of unknown variables to be inferred as
Ω = {V,Θ,b} and the set of hyperparameters Ψ =
{α, β,λ, ν}. The joint probability of the model is:

p(X,Ω|Ψ)=p(X|V,Θ)p(Θ|λ, ν)p(V|b)p(b|α, β) (8)

Inference in this model is accomplished using Markov
Chain Monte Carlo (MCMC) methods, and the log of
the joint probability (8) is central to this sampling.
We use a sampling approach based on Hybrid Monte
Carlo (HMC). This can be implemented easily, and we
defer the algorithmic details to MacKay (2003).

5. Related Work

The body of related work is broad and the work
described here is far from exhaustive, but attempts to
capture many papers of relevance in contextualising
approaches to, and applications of sparse learning.
There is a wide body of literature for sparse learning
in problems of feature selection, compressed sensing
and regression using the L1 norm, such as those by
Tibshirani (1996); d’Aspremont et al. (2005); Candes
(2006); Lee et al. (2006). Bayesian methods for sparse
regression problems using continuous distributions
have also been discussed by Seeger. et al. (2007);
Carvalho et al. (2010); O’Hara and Sillanpäa (2009).
Wipf and Nagarajan (2008) derive a relationship
between automatic relevance determination (ARD),
maximum likelihood and iterative L1 optimization.
Archambeau and Bach (2009) provide a nice explo-
ration of ARD-related priors and variational EM for
sparse PCA and sparse CCA.

Of relevance to unsupervised learning of real-
valued data is sparse PCA and its variants (Zou et al.,
2004; d’Aspremont et al., 2005; Rattray et al., 2009).
The wide body of literature on matrix factorisation
is also indirectly related (Airoldi et al., 2008). These
methods do not deal with the exponential family
generalisation and may yield sparse factors as a
by-product, rather than by construction. There are
also many other papers of relevance in bioinformatics,
computer vision, ICA and blind deconvolution (Levin
et al., 2009). The methods we develop here also have
a strong bearing on the basis pursuit problem widely
used in geophysics and other engineering fields and
can allow not only for the solution of basis pursuit,
but also in obtaining useful estimates of uncertainty.

The use of ‘spike-and-slab’ sparsity for variable
selection was established in statistics by Mitchell
and Beauchamp (1988) and more recently by Ish-
waran and Rao (2005). Yen (2011) describes a
majorisation–minimisation algorithm for MAP esti-
mation, and Lücke and Sheikh (2012) describe EM
for Gaussian sparse coding. Carvalho et al. (2008)
use spike-and-slab-type priors to introduce sparsity
in Bayesian factor regression models. They consider
a hierarchical sparsity prior to reduce uncertainty
as to whether a parameter is non-zero. This comes
with increased computation and may not necessarily
improve performance. Courville et al. (2010) describe
spike-and-slab for deep belief networks.

6. Experimental Results

We consider the generalisation performance of unsu-
pervised methods to unseen data, which appear as
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Table 1. Summary of real data used.
# Data N D Type

1 Natural scenes 10,000 144 Real
2 Animal attributes 33 102 Binary
3 Newsgroups 100 200 Counts
4 Hapmap 100 200 Binary

missing data. To handle missing data, we divide
the data into a set of observed and missing data,
X = {Xobs,Xmissing} and condition on the set Xobs

in the inference. We create test sets by randomly se-
lecting 10% of the elements of the data matrix. Test
elements are set as missing values in the training data,
and our learning algorithms have been designed in all
cases to handle missing data. We calculate the predic-
tive probability (negative log probability, NLP) and
the root mean squared error (RMSE) using the test-
ing data. We created 20 such data sets, each with a
different set of missing data, and provide mean and one
standard deviation error bars for each of our evaluation
metrics. For fairness, the regularisation parameters α
and β in section 4 are chosen by cross-validation using
a validation data set, which is chosen as 5% of the data
elements. This set is independent of the data that has
been set aside as training or testing data.

6.1. Benchmark Data

We use the block images data (Griffiths and Ghahra-
mani, 2006) as a synthetic benchmark data set. The
data consists of binary images, with each image xn

represented as a 36-dimensional vector. The images
were generated with four latent features, each being a
type of block. The observed data is a combination of
a number of these latent features. Noise is added by
flipping bits in the images with probability 0.1. This
data set consists of a number of latent factors, only a
subset of which contributes to explaining any single
data point. This data is synthetic, but not generated
from any of the models tested.

Figure 2(a) shows the NLP and RMSE on this
benchmark data set. The methods developed are
compared to EPCA (Collins et al., 2002), BXPCA
(Mohamed et al., 2008) and to binary ICA (Kaban
and Bingham, 2006). A random predictor would have
an NLP = 100× 36× 10% = 360 bits. The models
tested here have performance significantly better than
this. Both optimisation-based and Bayesian learning
approaches do well, but the spike-and-slab model
shows the best performance with smaller error bars.

6.2. Real Data

We summarise the real data sets we use in table
1 (which includes data in the D > N regime).
Natural images are the topic of much research
based on L1 regularisation. For the Olshausen and
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Figure 3. RMSE and NLP for the aimal attributes data.

Field (1996) image data set, we use 12 × 12 image
patches extracted from a set of larger images. We use
the Gaussian instantiation of the sparse generalised
model (equation 2) and evaluate the performance of:
L1 optimisation; a Laplace-prior factor model; and
the Bayesian spike-and-slab model. Our results are
shown for both underdetermined and overcomplete
bases (K = 192 as in Olshausen and Field (1996))
in figure 2(b). All methods perform similarly in
the low-rank approximation cases, but as the model
becomes overcomplete, Bayesian methods perform
better with the spike-and-slab method much better
than other methods, particularly in reconstructing
held-out/missing data. The animal attributes data
set of Kemp and Tenenbaum (2008) consists of animal
species with ecological and biological properties as
features. We use the binary unsupervised model and
show results for various latent dimensions for NLP
and RMSE in figure 3. For this data, the NLP of a
random classifier is 336 bits and the models have NLP
values much lower than this.

We also use a subset of the popular 20 news-
groups data set, consisting of documents and counts
of the words used in each document, with data
sparsity of 93%. Figure 4(b) shows the performance
of the Poisson unsupervised model using L1 and
spike-and-slab. Apart from the application of the
model to count data, the results show that the
spike-and-slab model is able to deal effectively with
the sparse data and provides effective reconstructions
and good predictive performance on held out data.
We are also able to show the improved behaviour of
the spike-and-slab model using the Hapmap data
set2. The comparative performance is shown in figure
4(c) showing the spike-and-slab has performance
similar to L1 in terms of RMSE at low K, but much
better performance for large K.

7. Discussion and Conclusion

The common lore when using MCMC is that it is
dramatically slower than optimisation methods. For

2Obtained from: https://mathgen.stats.ox.ac.uk/impute/
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Figure 2. (a) RMSE and NLP for various latent dimensions on the block images data set (binary). (b) Performance in
terms of RMSE on natural scenes (real-valued).
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(b) Newsgroups
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(c) Hapmap Data

K L1 Spike-Slab
5 475 ±36 1446 ±24
6 483±57 1418± 29
8 592±207 1400±18
10 934±440 1367±32

(d) Newsgroups sparsity
Figure 4. (a) - (c) Comparison of predictive probabilities (NLP). ‘S&S fixed’ is the time-matched spike-and-slab perfor-
mance (elaborated upon in sect. 7). (d) Num. of non-zeros in newsgroups reconstruction - the true number is 1436.

optimisation methods, the cross-validation procedure
needed to set regularisation parameters α and β, is
computationally demanding due to the need to exe-
cute the optimisation for many combinations of pa-
rameters. This approach is also wasteful of data, since
a separate validation data set is needed to make sen-
sible choices of these values and to avoid model over-
fitting. While individual optimisations may be quick,
the overall procedure can take an extended time, which
depends on the granularity of the grid over which reg-
ularisation values are searched for. These parameters
can be learnt in the Bayesian setting and have the ad-
vantage that we obtain information about the distribu-
tion of our latent variables, rather than point estimates
and can have significantly better performance.

Figure 4 demonstrates this tradeoff between running
time and performance of the optimisation and the
Bayesian approaches. L1 was allowed to run to conver-
gence and the spike-and-slab for 200 iterations. In this
instance, the Bayesian method is seemingly slower, but
produced significantly better reconstructions in both
the human judgements and newsgroups data. We con-
sidered the setting where we have a fixed time budget
and fixed the running time for the spike-and-slab to
that used by the L1 model (including time to search
for hyperparameters). The result is shown (as S&S
fixed) in figure 4, which shows that even with a fixed
time budget, MCMC performs better in this setting.
The table of figure 4(d) shows that the number of
non-zeroes in the reconstructions for various K for the

newsgroups data, with the true number of non-zeroes
being 1436. L1 is poor in learning the structure of this
sparse data set, whereas the spike-and-slab is robust
to the data sparsity.

All our results showed the spike-and-slab approach
to have better performance than other methods com-
pared in the same model class. The models based on
the L1 norm or Bayesian models with continuous spar-
sity favouring priors enforce global shrinkage on pa-
rameters of the model. It is this property that induces
the sparsity property, but which also results in the
shrinkage of parameters of relevance to the data. This
can be problematic in certain cases, such as the news-
groups data set which resulted in overly sparse data
reconstructions. The spike-and-slab has the ability
to give both global and local shrinkage, thus allowing
sparsity in the model parameters while not restricting
parameters that contribute to explaining the data.

Current approaches for sparse learning will have dif-
ficulty scaling to large data sets in this regime. We
might think of EP as a potential solution, such as
used by Hernández Lobato et al. (2010), but this is
restricted to regression problems. For the standard
Gaussian model, Rattray et al. (2009) discuss this is-
sue and propose a hybrid VB-EP approach as one way
of achieving fast inference, but such an approach is not
ideal, leaving scope for future work.

We have demonstrated that improved performance
can be obtained by considering sparse Bayesian ap-



Bayesian and L1 Approaches for Sparse Unsupervised Learning

proaches. In particular, Bayesian learning with spike-
and-slab priors consistently showed the best perfor-
mance on held out data and produced accurate re-
constructions, even in the ‘large p’ paradigm or with
restricted running times. By considering the broad
family of unsupervised latent variable models, we de-
veloped a sparse generalised model and provided new
sampling methods for sparse Bayesian learning using
the spike-and-slab distribution. Importantly, we have
provided the first comparison of sparse unsupervised
learning using three approaches: optimisation using
the L1 norm, Bayesian learning using continuous spar-
sity favouring priors, and Bayesian learning using the
spike-and-slab prior. We have also demonstrated our
methods in diverse applications including text mod-
elling, image coding and psychology showing the flex-
ibility of the sparse models developed. These results
show that Bayesian sparsity and spike-and-slab meth-
ods warrant a more prominent role and wider use in
sparse modelling applications.
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