
INTRODUCTION TO MARKOV CHAIN MONTE CARLO

1. Introduction: MCMC

In its simplest incarnation, the Monte Carlo method is nothing more than a computer-
based exploitation of the Law of Large Numbers to estimate a certain probability or ex-
pectation. It works like this: Suppose you wish to estimate EY , and that you have an
algorithm that will produce a stream of i.i.d. random variables Y1, Y2, . . . , each with the
same distribution as Y . Then the sample average

(1)
1

n

n
∑

j=1

Yj

will, at least for large sample sizes n, be a good estimator of the expectation EY . In
simple problems it is often easy to fashion simple and computationally efficient algorithms
for producing such streams of random variables from an input stream of i.i.d. uniform-[0, 1]
random variables; and most mathematical and statistical software libraries are equipped
with pseudo-random number generators that will provide a stream of uniforms. Often,
however, in more complex problems it is not so easy to produce i.i.d. copies of Y , and so
the naive approach fails.

Markov chain Monte Carlo is a more sophisticated technique based on a Law of Large
Numbers for Markov chains (which we will state and prove below). It works like this:
Suppose, once again, that you wish to approximate an expectation EY . Suppose that you
have an algorithm that will generate successive states X1, X2, . . . of a Markov chain on
a state space X with stationary distribution π, and that there is a real-valued function
f : X → R such that

(2)
∑

x∈X

f(x)π(x) = EY.

Then the sample averages

(3)
1

n

n
∑

j=1

f(Xj)

may be used as estimators of EY .
Markov chain Monte Carlo is useful because it is often much easier to construct a Markov

chain with a specified stationary distribution than it is to work directly with the distribution
itself. While this sounds paradoxical, it isn’t, as the example in section 2 below will show.
However, the use of estimators (1) based on Markov chains introduces certain complications
that do not arise for sample averages of i.i.d. random variables: In the i.i.d. case, the
variance of the estimator (1) is just the product of the sample size and the variance of Y .
If, on the other hand, the random variables are functions of the successive states of a Markov
chain, as in (3), then there is no longer any such simple rule governing the variances of the
sample averages; in fact, the variability in the distribution of the sample average (1) depends
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in a rather complicated way on the rate of convergence to equilibrium of the underlying
Markov chain.

2. Examples

2.1. Metropolis-Hastings Algorithm. It is often the case in simulation problems that
the distribution π one wants to simulate has a normalizing constant that is unknown and
prohibitively difficult to calculate: thus, one can write π(x) = Cw(x) where w is computable
but C is not. Fortunately, it is often possible to build Markov chains with stationary
distribution π without knowing C. If, for example, one can find transition probabilities
p(x, y) such that the detailed balance equations

(4) w(x)p(x, y) = w(y)p(y, x)

hold, then they must also hold when w is replaced by π, and so π will be stationary.
There is an easy and flexible way to find solutions to the detailed balance equations (4) due

to Metropolis. This is the basis for what is now called the Metropolis-Hastings algorithm,
perhaps the most common method of simulation now used. The idea is this: Suppose that
π(x) = Cw(x) is a probability distribution on a finite set X such that π(x) > 0 for every
x, and suppose that X is the vertex set of a connected graph G with edge set E . Choose d
large enough that no vertex is an endpoint of more than d edges. For each pair x, y ∈ X of
distinct vertices, define

p(x, y) =

(

w(y)

w(x)
∧ 1

)

/

d if x, y share an edge;(5)

p(x, y) = 0 if x, y do not share an edge; and

p(x, x) = 1−
∑

y 6=x

p(x, y).

Note that p(x, x) ≥ 0, because p(x, y) ≤ 1/d for each pair x, y of neighboring vertices, and
no vertex x has more than d neighbors. Thus, equations (5) defines a system of transition
probabilities on X . It is easy to check (Exercise: Do it!) that the detailed balance
equations hold for this set of transition probabilities. Since the graph G is connected, the
transition probability matrix is irreducible; but it may be periodic (Exercise: Find an
example!). However, by choosing d strictly larger than the degree (:= number of incident
edges) of some vertex, one may obtain an aperiodic, irreducible transition probability matrix
by (5).

Note: You might wonder why we don’t just use the complete graph on the vertex set X .
(The complete graph on a set X is the graph that has an edge between every pair x, y ∈ X .)
The reason is this: In many problems, the weight function w(x) is computable, but not
easily so. In such problems it is often advantageous to restrict possible transitions x → y
to those pairs for which the ratio w(y)/w(x) is easy to compute.

2.2. Uniform Distribution on Contingency Tables. Here is an example which is both
important and typical of complex simulation problems. Suppose one has an n×m contin-
gency table (that is, an n×m array [matrix] {xij}i∈[n];j∈[m] of nonnegative integers). The
index pairs (i, j) will be referred to as cells. Define the marginals of the table to be the row



and column totals; these are denoted by

(6) xi+ =

m
∑

j=1

xij and x+j =

n
∑

i=1

xij .

Given a particular set ri and cj of row and column totals, denote by T the set of all possible
tables with marginals {ri} and {cj}, and let π be the uniform distribution π on T . We wish
to simulate the distribution π. (See Diaconis and Efron, Annals of Statistics, vol. 13, pp.
845 – 913 for an explanation of why this might be of interest to statisticians.)

Even for tables of moderate size (e.g., n = m = 10) it may be quite difficult just to list
the tables t with given marginals, much less enumerate them. Hence, for large tables, it is
virtually impossible to compute the normalizing constant for the uniform distribution on
T . (When the row and column totals are all the same, the allowable tables are known as
magic squares. In this case it is possible [but not easy] to give an explicit representation of
the cardinality of T — see Spencer, American Math. Monthly vol. 87, pp. 397-399.)

We will use the Metropolis-Hastings method to find a reversible Markov chain on the
set T whose stationary distribution is uniform. Observe that, since the target stationary
distribution π is uniform, the ratio w(y)/w(x) = 1 for all pairs x, y of allowable tables,
and so its computation is not an issue here. The difficulty in this problem is in finding
a suitable graph structure (that is, building a set of edges connecting allowable tables)
without actually having to list the vertices.

Neighboring Tables: Given a table x = {xij} ∈ T , one may obtain another table y =
{yij} as follows: choose two rows I, I ′ and two columns J, J ′, and set

yIJ = xIJ + 1 yIJ ′ = xIJ ′ − 1(7)

yI′J = xI′J − 1 yI′J ′ = xI′J ′ + 1;

set yij = xij for all other cells. Observe that if xIJ ′ = 0 or xI′J = 0 then the corresponding
cells of y will have negative entries, and so y 6∈ T ; but otherwise y ∈ T , because y has
the same marginal totals as x. If table y may be obtained from table x in the manner just
described, then tables x and y will be called neighbors. Note that if this is the case, then x
can be obtained from y in the same manner, by reversing the roles of I and I ′. Write x ∼ y
to denote that tables x, y are neighbors.

The Transition Probability Kernel: A simple Markov chain on the set T may be run
as follows: given that the current state is x, choose a pair (I, I ′) of rows and a pair (J, J ′)
of columns at random; if the neighboring table y defined by (7) is an element of T (that is,
if it has no negative entries) then move from x to y; otherwise, stay at x. The transition
probabilities of this Markov chain may be described as follows:

p(x, y) = 0 unless x = y or x ∼ y;(8)

p(x, y) = 1/mn(m− 1)(n− 1) if x ∼ y;

p(x, x) = 1−
∑

y∈T :y∼x

p(x, y) for all x ∈ T .

Note that the transition rule does not require an explicit description or enumeration of
the set T . If these were available, then the uniform distribution on T would, in effect, also
be known, and so the use of MCMC would be unnecessary. Note also that the transition



rule is computationally simple: it involves only random selection of four integers in the
ranges [m] and [n], and access and modification of the entries in only four cells of the table.

Proposition 1. The transition probability matrix P is aperiodic and irreducible on T , and
its unique stationary distribution is the uniform distribution on T .

Proof: The transition probabilities clearly satisfy the detailed balance equations p(x, y) =
p(y, x), and so the uniform distribution is stationary. That it is the unique stationary
distribution will follow from the aperiodicity and irreducibility of the transition probability
matrix P.

To prove that the transition probability matrix is aperiodic it suffices to show that there
is a state x such that p(x, x) > 0. Suppose that x ∈ T is a table wth at least one vacant
cell, that is, a cell (i, j) such that xij = 0. If the random selection of I, I ′, J, J ′ results in
I = i and J ′ = j then the attempted move to the neighboring table y defined by (7) fails,
because yij = −1. Thus, p(x, x) > 0. Consequently, to show that P is aperiodic it suffices
to show that there is a table x ∈ T with a vacant cell.

Is there a table x ∈ T with a vacant cell? To see that there is, start with any table x,
and set I = J = 1 and I ′ = J ′ = 2. Apply the rule (7) to obtain a neighboring table y.
Then apply (7) again to obtain a table y∗ neighboring y. Continue this process indefinitely
until a table with a vacant cell is reached: this must occur in finitely many steps, because
at each step the (2, 1) cell is decreased by one.

Finally, to prove that the transition probability matrix is irreducible, it is enough to show
that for any two tables x, y ∈ T there is a finite chain of neighboring tables starting at x
and ending at y. That this is always possible is left as a homework problem. �

Problem 1. Prove that for any two tables x, y ∈ T there is a finite chain of neighboring
tables starting at x and ending at y. Hint: Use induction on the number n of rows.

Improved Simulation: The Markov chain described above is easy to run, but because the
transitions are restricted to neighboring pairs of tables its rate of convergence to equilibrium
may be rather slow. There is a simple modification that will, in some circumstances, greatly
speed the Markov chain on its way to equilibrium. The modified chain runs according to
the following rules: Given that the current state is x ∈ T , choose a pair (I, I ′) of rows and
a pair (J, J ′) of columns at random. Consider the 2 × 2 (sub)table whose entries are the
contents of x in the four cells determined by the choices I, I ′, J, J ′: for instance, if I < I ′

and J < J ′, the table

xIJ xIJ ′

xI′J xI′J ′

From the set of all 2×2 tables with the same row and column totals, choose one at random
(uniformly), and replace the four entries of x in the selected cells by those of the new random
2× 2 table. This is computationally simple, because it is easy to enumerate all 2× 2 tables
with given row and column totals.

3. SLLN for an Ergodic Markov Chain

Theorem 2. Let {Xn}n≥0 be an aperiodic, irreducible, positive recurrent Markov Chain on
a finite or countable state space X with stationary distribution π, and let f : X → R be a



real-valued function such that

(9)
∑

x∈X

|f(x)|π(x) < ∞.

Then for every initial state x, with P x−probability one,

(10) lim
n→∞

n−1
n

∑

j=0

f(Xj) = µ :=
∑

x∈X

f(x)π(x).

This is a special case of another — and more important — generalization of the Law of
Large Numbers called the Ergodic Theorem. To prove the Ergodic Theorem would take us
too far afield, so instead I will deduce Theorem 2 from the SLLN for sums of independent,
identically distributed random variables. This requires the notion of an excursion. Fix a
starting state x, and let 0 = τ(0) < τ(1) < τ(2) < · · · be the times of successive visits to
state x. Since the Markov chain is recurrent, these random times are all finite, and since
the Markov chain is positive recurrent, Exτ(1) < ∞. The excursions from state x are the
random finite sequences

W1 := (X0, X1, X2, . . . , Xτ(1)−1),(11)

W2 := (Xτ(1), Xτ(1)+1, Xτ(1)+2, . . . , Xτ(2)−1),

etc.

Each excursion is a finite sequence of states beginning with state x.

Lemma 3. Under P x, the excursions W1,W2, . . . are independent and identically dis-
tributed.

Proof: For any finite sequence w1, w2, . . . , wk of possible excursions, with

wj = (xj,1, xj,2, . . . , xj,m(j)),

we have

P x{Wj = wj ∀ j = 1, 2, . . . , k} =
k

∏

j=1



p(xj,m(j)−1, x)

m(j)
∏

l=1

p(xj,l, xj,l+1)



 .

Since this is a product of factors identical in form, it follows that the excursions W1,W2, . . .
are i.i.d. �

Corollary 4. For any nonnegative function f : X → [0,∞) and any excursion w =
(x1, x2, . . . , xm), define f(w) =

∑m
i=1 f(xi). Then with P x−probability one,

(12) lim
k→∞

k−1
k

∑

i=1

f(Wi) = Exf(W1) = Ex

τ(1)−1
∑

j=0

f(Xj).

Therefore (with f ≡ 1),

(13) lim
k→∞

τ(k)/k = Exτ(1).



Proof of Theorem 2. It suffices to consider only nonnegative functions f , because an
arbitrary function f may be decomposed into its positive and negative parts f = f+ − f−,
to each of which the SLLN for nonnegative functions will apply. So assume that f ≥ 0. For
each integer n ≥ 0, let Nn = N(n) be the number of returns to state x by time n, that is,

Nn := max{k : τ(k) ≤ n}.

Since f ≥ 0,

(14)

τ(Nn)
∑

j=0

f(Xj) ≤
n

∑

j=0

f(Xj) ≤

τ(Nn+1)
∑

j=0

f(Xj).

Now each of the bracketing sums in (14) is a sum over excursions, over the first Nn and
first Nn + 1 excursions, respectively: In fact, for any k,

τ(k)
∑

j=0

f(Xj) =
k

∑

i=1

f(Wi)

where f(Wi) is defined as in Corollary 4. But Corollary 4 implies that the SLLN applies to
each of these sums:

lim
n→∞

N−1
n

τ(Nn)
∑

j=0

f(Xj) = lim
n→∞

N−1
n

τ(Nn+1)
∑

j=0

f(Xj) = Ex

τ(1)−1
∑

j=0

f(Xj).

Corollary 4 also implies that τ(k)/k → Exτ(1), which in turn implies (why?) that

lim
n→∞

Nn/n = 1/Exτ(1).

Therefore, it follows that with P x−probability one,

lim
n→∞

n−1
n

∑

j=0

f(Xj) =
Ex

∑τ(1)−1
j=0 f(Xj)

Exτ(1)
.

We have now proved that the sample averages of f at the successive states visited by
the Markov chain converges to a limit. It remains to prove that this limit is µ. The easiest
way to do this is to use the fact that the n−step transition probabilities converge to the
stationary distribution. This implies, if f is bounded, that,

lim
n→∞

n−1Ex

n
∑

j=0

f(Xj) = lim
n→∞

n−1
n

∑

j=0

∑

y∈X

pj(x, y)f(y)

=
∑

y∈X

π(y)f(y) = µ.

Now if f is bounded, then the almost sure convergence of the sample averages (10) implies
the convergence of their expectations to the same limit. Therefore, if f is bounded then the
limit of the sample averages must be µ. Finally, to deduce that this is also the case when
f is unbounded (and nonnegative), truncate and use the Monotone Convergence theorem.

�



4. Exercises

In the problems below, assume that {Xn}n≥0 is an aperiodic, irreducible, positive recur-
rent Markov chain on a finite or countable state space X with stationary distribution π.
For any state x, let Tx = min{n ≥ 1 : Xn = x}.

Problem 2. For distinct states x, y, define Ux,y to be the number of visits of the Markov
chain to state y before the first return to x, that is,

Ux,y =

Tx−1
∑

j=0

δy(Xj)

where δy is the Kronecker delta function. Calculate ExUx,y.

Problem 3. Show that, for any integer k ≥ 1 and any two states x, y,

ExT k
x < ∞ if and only if EyT k

y < ∞.

Problem 4. Let F : X ×X → [0,∞) be a nonnegative function of pairs of states such that
∑

x∈X

∑

y∈X

F (x, y)π(x)p(x, y) := µ < ∞.

Show that with P x−probability one,

lim
n→∞

n−1
n

∑

j=0

F (Xn, Xn+1) = µ.

Hint: Try defining a new Markov chain.

5. Coupling from the Past

One of the more obvious problems facing the user of Markov Chain Monte Carlo methods
is in deciding how long the Markov chain must be run. This is because the number of
steps required by the Markov chain to “reach equilibrium” is usually difficult to gauge.
There is a large and growing literature concerning rates of convergence for finite-state
Markov chains, especially for those that arise in typical simulation problems; in addition,
statisticians have developed nonrigorous “diagnostics” for use in determining how long an
MCMC simulation must be run. Unfortunately, the rigorous bounds are often difficult to
use, or badly overconservative; and nonrigorous diagnostics are just that — nonrigorous.

In 1996 J. Propp and D. Wilson published an influential paper describing an algorithm
that outputs a random variable whose exact distribution is the stationary distribution of
a given Markov chain. Thus, in principle, the problem of deciding when to stop a Markov
Chain Monte Carlo simulation is now solved. In practice, there are still some difficulties:
(1) In many applications, the memory requirements of the Propp-Wilson algorithms are
prohibitively large; (2) The running time of the algorithm is random, and often difficult to
estimate in advance; and (3) The efficiency of the procedure, as measured by the ratio of
output bits to CPU cycles, can be quite small. Nevertheless, the Propp-Wilson algorithm
is an important development.

The Propp-Wilson algorithm is based on a device called coupling from the past. We
have already encountered the notion of coupling in connection with the convergence of
Markov chains to their equilibria; coupling from the past involves a new element, to wit,
the extension of a Markov chain backwards in time.



5.1. Random mappings and Markov chains. When simulating a Markov chain with
given transition probabilities, one would ordinarily keep track only of the current state of
the Markov chain. In the Propp-Wilson scheme, all possible states of the chain must be
tracked. Thus, it is useful to think of the randomness driving the Markov chain trajectories
as a set of random instructions, one for each time n and each possible state x, that indicates
the state visited next when the state at time n is x. These sets of instructions are mappings
(functions) from the state space to itself. (Think of each such random mapping as a set
of random arrows pointing from states x to states y, with each state x having exactly one
arrow pointing out.)

Let P = (p(x, y))x,y∈X be an aperiodic, irreducible transition probability matrix on a
finite set X , and let π = (π(x))x∈X be its unique stationary distribution. Say that a
random mapping F : X → X is compatible with the transition probability matrix P if for
any two states x, y ∈ X ,

(15) P{F (x) = y} = p(x, y).

It is always possible to construct P−compatible random mappings: For instance, if {Ux}x∈X

are independent, identically distributed random variables uniformly distributed on the unit
interval [0, 1], and if the state space X is relabelled so that X = [M ], then the random
mapping F defined by

(16) F (x) = y if and only if

y−1
∑

j=1

p(x, j) < Ux ≤

y
∑

j=1

p(x, j)

is P−compatible, because for each pair x, y of states the event F (x) = y occurs if and only
if the uniform random variable Ux falls in an interval of length p(x, y). Observe that the
random mapping so constructed requires, along with the transition probabilities p(x, y),
only a stream Ux of i.i.d. uniform-[0, 1] random variables; the random number generators
in most standard software libraries will provide such a stream.

Proposition 5. Let {Fn}n=1,2,... be a sequence of independent random mappings compatible
with the transition probability matrix P. For any initial state x ∈ X , define a sequence of
X−vaued random variables inductively as follows:

(17) X0 = Xx
0 = x and Xn+1 = Xx

n+1 = Fn+1(Xn).

Then the sequence {Xn}n≥0 constitutes a Markov chain with transition probability matrix
P and initial state x.

Thus, the sequence of random mappings determine trajectories of Markov chains with
transition probability matrix P for all initial states.

The proof of Proposition 5 is routine: the Markov property follows from the indepen-
dence of the random mappings Fn, and the hypothesis that these random mappings are
P−compatible assures that the transition probability matrix of the Markov chain is P. Ob-
serve that it is not necessary that the random mappings Fn be identically distributed; but
in almost any application to a simulation problem, they will be. Finally, note that the cost
of storing in computer memory the random mappings F1, F2, . . . , Fn is considerably greater
than that for storing X1, X2, . . . , Xn, and that the ratio of these storage costs increases
(dramatically!) with the size of the state space X . This is the primary obstacle in applying
the Propp-Wilson algorithm.



5.2. Coalescence in random mappings. A random mapping compatible with the transi-
tion probability matrix P need not be one-to-one or onto; for instance, the random mapping
defined by (16) will not in general be one-to-one. In fact, the success of the Propp-Wilson
algorithm requires that the random mappings used should eventually collapse the state
space to a single point.

Let F1, F2, . . . be a sequence of independent, identically distributed random mappings
compatible with the transition probability matrix P. Say that the sequence F1, F2, . . . has
the coalescence property if for some n ≥ 1 there is positive probability that the functional
composition Fn ◦ Fn−1 ◦ · · · ◦ F1 maps the state space X to a single point. Not every
P−compatible sequence of i.i.d. random mappings has the coalescence property, even if P

is aperiodic and irreducible; however, compatible sequences with the coalescence property
exist if the transition probability matrix P is aperiodic and irreducible.

Problem 5. Give an example of a P−compatible sequence of i.i.d. random mappings that
do not have the coalescence property. Hint: You should be able to do this with a two-state
transition probability matrix in which all of the transition probabilities are 1/2.

Problem 6. Show that if P is aperiodic and irreducible then an i.i.d. sequence of random
mappings each distributed as (16) must have the coalescence property.

Proposition 6. Let F1, F2, . . . be a P−compatible sequence of independent, identically dis-
tributed random mappings with the coalescence property. Define the coalescence time T to
be the smallest positive integer n such that Fn ◦ Fn−1 ◦ · · · ◦ F1 maps the state space X to a
single point. Then

(18) P{T < ∞} = 1.

Proof: Since the sequence F1, F2, . . . has the coalescence property, there exists a positive
integer m such that with positive probability ε, the m−fold composition Fm ◦Fm−1 ◦· · · ◦F1

maps the state space X to a single point. For each k = 0, 1, 2 . . . , denote by Ak the event
that the image of the mapping Fkm+m ◦ Fkm+m−1 ◦ · · · ◦ Fkm+1 is a single point. Because
the random mappings Fj are i.i.d., the events Ak are independent, and all have probability
ε > 0; hence, with probability one, at least one of these events must occur. But on Ak, the
composition Fmk+m ◦Fmk+m−1 ◦ · · · ◦F1 maps X to a single point (Exercise: Why?), and
so T < ∞. �

5.3. The Propp-Wilson Theorem. The Propp-Wilson algorithm relies on a device called
coupling from the past, which entails running the Markov chain backwards in time. This is
easily accomplished using random mappings.Let {Fn}n≤0 be a doubly infinite sequence of
i.i.d. random mappings compatible with the transition probability matrix P. Assume that
these random mappings have the coalescence property, that is, that for some n ≥ 1 there is
positive probability that the functional composition

(19) Φn := F0 ◦ F−1 ◦ F−2 ◦ · · · ◦ F−n

maps the state space X to a single point. Define the backward coalescence time τ to be the
smallest integer n such that the image of the random mapping Φn is a single point. By the
same argument as in the proof of Proposition 6, if the sequence {Fn}n≤0 has the coalescence
property, then

(20) P{τ < ∞} = 1.



The random mapping Φτ maps the state space X to a single point in X . This point is,
of course, random, as the random mappings Fn used to produce it were random. Denote it
by Z, that is, define

(21) {Z} = Φτ (X ).

Theorem 7. (Propp-Wilson) Assume that the transition probability matrix P is aperiodic
and irreducible, and that the random mappings {Fn}n≤0 are i.i.d., compatible with P, and
have the coalescence property. Then the distribution of the random variable Z is the unique
stationary distribution of the transition probability matrix P.

Proof: It suffices to show that for any ε > 0 the total variation distance between the
distribution of Z and the stationary distribution π is less than ε. For this, it suffices to
show that there are X−valued random variables Yn, each with distribution π, such that

(22) lim
n→∞

P{Z 6= Yn} = 0.

Let W be a random variable with distribution π, and for each n ≥ 1 define

Yn = Φn(W ).

Observe that if n ≥ τ then Yn = Z. Consequently, because P{τ > n} → 0 as n → ∞,
by (20), the relation (22) must be true. Thus, it remains only to show that each Yn

has distribution π. But this follows from Proposition 5 and the definition of a stationary
distribution: by Proposition 5, the random variables

W,F−n(W ), F−n+1(F−n(W )), . . . ,Φn(W )

are the first n + 1 states of a Markov chain with transition probability matrix P and initial
state W . Since the distribution of W is, by hypothesis, the stationary distribution π, it
follows that the distribution of Φn(W ) is also π. �

The significance of Theorem 7 is that it specifies an algorithm for simulating a random
variable with distribution π from a sequence of random bits (equivalently, from a sequence
of i.i.d. uniform-[0, 1] random variables). The random bits are used together with the
transition probabilities of the Markov chain to construct random mappings compatible
with P (e.g., using the prescription (16)). These are generated one by one, and at each
step the algorithm tests for coalescence of the state space. The random point Z on which
coalescence occurs is the output.

In practice, the usefulness of the Propp-Wilson algorithm is somewhat limited, as the
algorithm requires repeated testing for coalescence, which can in general be extremely ex-
pensive computationally, both in memory use and in CPU cycles.


