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The notion of a system is found in all organizations of the living world 
and of the world created by men. The analysis of complex systems with 
numerous elements, often interdependent, involves the use of methods that 
are not yet sufficiently general and that are often too theoretical and of 
rather academic interest. In spite of this, the analysis and synthesis of complex 
networks necessarily progresses as much in technological domains as in 
economical and presently also in biological areas. 

The reliability of a complex system, that is, one containing a rather large 
number of interactive elements, is a question that interests almost all engi- 
neers and technicians of all disciplines. One finds that in the past 15 years 
methods in this domain have been very obviously improved and that it is 
possible to present concretely a sufficiently global theory for approaching the 
most frequently encountered cases. When we must study large systems, it is 
evidently appropriate not to neglect to take into account the aspect of 
reliability. But if the theories available for the study of the technological or 
economical aspects of large systems are still insufficiently strong, it appears 
that in the domain of reliability this is not so. This permits us to present the 
first published work on a general theory of the reliability of systems. Indeed, 
this theory is susceptible to new developments; however, this is the case for 
all theories, which by definition are works in progress. This work may, mean- 
while, aid engineers in attacking more efficaciously a great number of difficult 
problems. 

There exist a number of works that treat reliability, but none treats systems 
completely; many are content to study the reliability of a component in some 
often deep aspect, with only a few pages devoted to combinations of elements. 
This book is intended to fill this gap. 

In Chapter I we review the now classical notions concerning the lifetime of 
an element; this is done so that the notation subsequently employed will have 

vii 



viii PREFACE 

been well explicated. Chapter I1 introduces the very important notion of a 
survival function with increasing failure rate. In Chapter 111 the general 
method for studying systems with n components is developed from the point 
of view of the logic of their functioning. The notions of structure function and 
reliability network are presented through applications. Noncomplementable 
bivalent variables and two dual operations are used. A reader who has an 
appropriate mathematical background will be pleased to note that the entire 
theory considered is in fact that of free distributive lattices with n generators. 
Chapter IV presents the application to the study of the reliability of systems. 
The Moore-Shannon theorem plays a central role. All this leads to the notion 
of redundance, which is most important for engineering applications; 
Chapter V is devoted to this topic. Finally, Chapter VI treats the case of dual 
failures. 

Much remains to be written on the subject, for example, on economic 
aspects, cannibalization, replacement, and maintenance of systems. However, 
it is hoped that this volume will be useful to those who have the responsibility 
of constructing and maintaining complex technological structures. 
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CHAPTER I 

LIFETIME OF A COMPONENT 

1 Introduction 

The simplest way of studying a component, from the point of view of its 
reliability and maintenance, is to consider at  a given instant whether it is in a 
good state-functioning or capable of functioning-or in fact has broken 
down and is not able to provide any service. 

This is applicable, for example, to an electric light bulb. In this same case, 
however, if one looks more closely, one notices that a bulb shows a reduction 
in its light output as it ages; this diminution generally manifests itself in a 
detectable fashion (at least with the aid of measuring apparatus) well before 
the filament rupture that produces the characteristic failure. One will agree, 
however, that in most applications this reduction in output may be neglected. 

This will not necessarily hold true for a piece of complex electronic 
equipment, a radio receiver for example. This may function in a more or less 
satisfactory fashion, particularly because of " drift " in the electrical charac- 
teristics of its components. Electrical engineers usually distinguish between a 
" catastrophic " breakdown (a broken circuit or a short circuit, for example), 
which occurs in an unexpected fashion and has grave consequences, and a 
failure " through drift," manifesting itself in a progressive manner through 
changes in the characteristics of the equipment. The wear of mechanical 
elements presents analogies with this drift of electronic components. 

In these cases where the characteristics of the equipment are slowly de- 
graded, whether this occurs in a continuous or erratic fashion, one may fix 
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2 I L I F E T I M E  O F  A COMPONENT 

“ tolerance limits ” that permit at each instant the unambiguous determina- 
tion of whether or not the equipment is to be considered as being in a good 
state. In spite of the arbitrary character of these tolerance limits, they may be 
used to reduce the question to the case of equipment having only two possible 
states. 

The problem is further complicated by the diversity of functions that 
may be performed by complex equipment. To take an extreme example, the 
failure of the cigarette lighter in an automobile in no way affects driving; its 
only consequence is to render the auto unable to serve one of its secondary 
functions, that of serving as a lighter. The decision to regard a component as 
being or not being in a good state will thus depend on the precise use to which 
it is to be put. 

We shall see later how, by decomposing complex equipment into more 
simple elements, one may in part surmount the difficulties just mentioned. 
For the present we shall hypothesize that a component has only two possible 
states: functioning well or broken down. The considerations that we shall 
develop in this chapter will be directly applicable to certain relatively simple 
equipment, and will provide a point of departure for the study of more complex 
systems. 

2 Age and Lifetime of a Component 

In addition to  the hypothesis discussed above, according to which a 
component has only two possible states, functioning or failure, we shall sup- 
pose that failure is irreversible. We thus discard the possibility of an intermit- 
tent failure, capable of disappearing without external intervention. Moreover, 
we shall not preoccupy ourselves here with the possibilities of repair of the 
component. The “life” of a component then follows a very simple scheme: 
the new component is put into service, functions for a certain time, then 
“ dies.” 

If one has been able to observe the life of a great number of components, 
the classical methods of descriptive statistics permit the presentation of the 
results of observations in a simple fashion. In order to fix the ideas, suppose 
that 1000 components have been put into service at the date t = 0.’ 

At each date t we shall determine the number of components that have 
become disfunctional in the interval It, t + 13, t = 0, 1,2,3,  ... . We suppose 

In fact, it is not necessary that the parts be. put into service simultaneously provided 
that for each of them service time is calculated with respect to its arrival in service. Diffi- 
culties may arise, however, if the conditions of functioning evolve over the course of time 
since then they may not be the same for all the components, but may vary as a function of 
the initial service date. 
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0.l4 
0.12 
0.10 
0.08 
0.06 

that a faulty component is never replaced. The result of the observations may 
be represented in a histogram on which the relative frequencies are shown (Fig. 
2.la). We may then trace a cumulative histogram (Fig. 2.lb) which indicates 
at each date t the proportion of components out of service in the interval 
10, tl .  

- - 
- - 
- - 
- 
- - -  

. 
- 

0.04 - 
0.02 - 

O A  - 1 

A complementary diagram may be easily obtained from that of Fig. 
2.lb by evaluating, from the cumulative relative frequencies cP(t), the func- 
tion v( t )  = 1 - @(t). Such a diagram (Fig. 2.2) permits evaluation, at date t ,  
of the number of components that are still in service. The diagram of Fig. 
2.1 b constitutes a “ mortality statistic ”; the complementary diagram (Fig. 2.2) 
is a “ survival statistic.” 

Presented in the form of a continuous curve (Fig. 2.3), the histogram of 
Fig. 2.2 then takes the name “ survival curve.” 

1 L r  - 1 . L  
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FIG. 2.2. 
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t 
FIG. 2.3. 

The survival curve of a set of eternal components will have the shape 
given in Fig. 2.4a; that of a set of rigorously identical components used under 
equally rigorously identical conditions will have the form given in Fig. 2.4b. 
Before some date 8 all of the components will have been in service, and after 
this date none of them will be. The curves given in Figs. 2 . 4 ~  and 2.4d corres- 
pond to more realistic hypotheses. 

'k 
0 

Ihl 0 ( C )  t 

FIG. 2.4. Various types of survival curves (see text). 

Choice of a Parameter Measuring Age. The type of statistical de- 
scription mentioned above raises no difficulty in principle when the equip- 
ment functions continually from the time it is put into service until its death. 
With the reservation that the conditions for functioning be sufficiently well 
defined, the number of hours (or any other convenient unit of time) of func- 
tioning indeed measures, at each instant, the " amount of use " that the equip- 
ment has provided until the instant being considered. 
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If equipment is used in an intermittent fashion, the simplest solution is 
evidently to measure the age of the component at  a given instant by the sum 
of the effective durations of use. This is valid, however, only if the component 
does not deteriorate when it is not used (as the advertisements of a brand of 
batteries claim) and if starting and stopping have no detrimental influence on 
lifetime. Consider again the example of an electric light bulb already used 
in Section 1. It is clear that the first of the two conditions above is satisfied 
in this case; but it is possible that the thermal shocks sustained by the filament 
during lighting and extinction have a nonnegligible influence. In order to 
determine this, it would be necessary to compare the lifetimes (computed as 
the total number of hours of functioning) for bulbs used continually and 
for bulbs sustaining a large number of illuminations and extinctions. If, in 
the second case, one obtains a shorter mean lifetime, one may propose 
measuring the age of a bulb with a quantity of the form h + kn, h being the 
number of hours of functioning and n the number of times the bulb was 
illuminated. The coefficient k will of course be chosen in such a fashion that 
the lifetime of a bulb will be statistically the same regardless of mode of use. 

In practice, the lack of statistical data very often leads to the use of a 
very simple solution. The age of a component is thus measured by the number 
of hours of functioning (the present case), by the number of kilometers 
traveled by a vehicle, or even by the number of uses : the number of openings 
(or of closures) for a relay, the number of landings for the tire of an airplane, 
etc. 

We are beginning, however, to measure (particularly in the case of 
electronic materials) and to characterize in less gross fashion the age of a 
component. For example, one generally estimates that the rate of deteriora- 
tion of an electronic component that is not under tension is of the order of 
& of the rate of deterioration while functioning. One may thus express the 
age of a component by t ,  + t,/30, where t ,  designates the number of hours 
of functioning and t ,  the number of hours at rest or in storage. Unfortunately, 
the influence of the number of times that the component is put into use is still 
not known. 

Influence of Environmental Conditions. We have just seen, in the case 
of the alternation of periods of functioning and rest for a component, a first 
example of the influence of conditions of use of a component on its lifetime. 
The environment in which the apparatus is placed likewise has considerable 
importance. 

It would readily be conceded that equipment used in a laboratory, thus 
in a calm atmosphere and by people accustomed to handling delicate appara- 
tus, is not at all subject to the same constraints as is equipment used in a 
work yard or put aboard a vehicle. In the second case mechanical vibrations, 
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thermal shocks, humidity, and shortcomings of the operators all may con- 
siderably shorten the lifetime of the equipment. For example, for evaluation 
of the reliability of electronic equipment mounted on airplanes, one is led to 
introduce a “ K factor” that multiplies the rate of deterioration established 
for the equipment on the ground, and whose value may range from about 
ten to a thousand. 

Similarly, for electronic components, it is necessary to be able to take 
into account, in addition to the general environmental factors of the equip- 
ment, particular conditions of use due to their places in the circuit. For 
example, a transistor used at &or& of its nominal power will clearly have 
a longer lifetime than if it were used at the limits of its possibilities. 

We refer the reader to the specialized literature2 for more details. It is 
necessary, however, to remember that the notion of the lifetime of a component 
only has sense when the conditions of use have been precisely defined. 

We shall suppose in the remainder of this work that the equipment con- 
sidered functions in well-defined conditions, and that one has chosen a param- 
eter that well represents the “amount of use” that was in question above. 
This parameter will be called the age of the equipment. The lifetime of equip- 
ment will then be the age that it has attained at its “death,” that is, when it 
has fallen in failure. 

3 Survival Function 

The discussion of Section 2 shows that the lifetime of equipment may not 
be described in a precise fashion without the language of the theory of 
probability. We thus suppose that the lifetime of a component may be repre- 
sented by a random variable T, for which the survival function ~ ( t )  is defined 
by 
(3 .1)  o(t)  = pr { T > t } . 

This fundamental hypothesis determines all the theory that will be de- 
veloped in this work. The practical application of this theory evidently runs 
into a sizeable problem-that of the estimation of the probability law of T. 
In this work we do not attack this statistical aspect of the study of the re- 
liability of equipment, for which we refer the reader to works on statistics. 
Our goal is only to propose abstract models, allowing the description in 
rigorous language of the principal phenomena related to the reliability of 

‘See, for example, for electronic components and for certain electric and electro- 
mechanical components, the collection of reliability data of the Centre National d’Etude 
des Telecommunications, or various American documents (“R.A.D.C. Notebook,” 
“Handbook MIL HDBK” 217 A or B, etc.). 
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equipment. We believe that even in cases where the given data are not suf- 
ficiently abundant to allow complete use of these models, this will permit at 
least some understanding of the phenomena being studied. On the other 
hand, grasping an awareness of the possibilities that follow from a quantita- 
tive analysis of problems solved by the management of equipment will lead, 
we hope, those responsible for this management to gather systematically the 
necessary information. 

If one accepts the hypothesis above, the probability that a component 
has a failure at a date T earlier than t is 

(3 - 2) pr { T < t } = 1 - u ( t )  = @ ( t ) .  

According to the usual terminology of the calculus of probability, @(t)  
is a distribution function and u(t)  the complementary distribution function. 
In problems of equipment failure, this last function in current usage is called 
a “ survival function,” as we have previously indicated. 

Following the choice of a parameter measuring the age of a component 
(Section 2), the random variable Twill take its values in an interval of the 
real numbers R, most often in the interval [0, a), or in a denumerable set, 
most often N = { 0, 1,2, ... }. The convenience of the analysis likewise plays 
an important role in the choice of the set of possible values for the random 
variable T. For example, the lifetime of an electric relay is expressed as an 
integer (the number of openings or closings of the contacts); but in such a 
case the numbers with which one will be concerned will always be very large, 
and it may be convenient to consider T as being able to vary continuously. 

Three types of probability laws will be used’ : 

TYPE I. The random variable T representing the lifetime of a component 
is a discrete variable. The survival function is a “ step function.” 

TYPE IIu. The random variable Ttakes its values in [0, a); its distribu- 
tion function @(r), and as a consequence its complementary distribution 
function u(t), are continuous for all t .  Also, @(t)  and u(t)  admit a derivative 
in the interval where they are defined. 

TYPE IIb. The random variable T takes its values in [0, a), where @(t) 
and u(t)  are continuous piecewise and make at least one jump. 

A distribution function of a random variable of type IIb may be con- 
sidered as formed by the superposition of two functions, one a step function 

In various works type IIa is called type 11, whereas type IIb is referred to as of mixed 
type. The indicated classification is not exhaustive, but it includes all functions that can be 
conveniently used in practice. 
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and the other continuous, these functions being mixed by a given convex 
weighting. Figure 3.1 gives examples of survival functions corresponding to 
each of these three types. 

f v * \ * T  ;h* ;c_. 
0 t t 

(0) (b)  (4 
FIG. 3.1. (a) Example of a law of type I; (b) example of a law of type IIa; (c) example 

of a law of type IIb. 

Concerning the interval of definition of the survival function, we may 
always take it to be equal to (- 00, 00) ;  the condition T 2 0 and (3.1) imply 
that u(t )  = 1 for t < 0 for types IIa or IIb. Concerning the case of a law of 
type I, we most often use the set N = { 0, 1 ,  2, 3, ... } where each value of 
t E N will be called a “ date.” 

Through abuse of language we shall often write “survival law” or 
“ mortality law ” for “ probability law of survival ” or “ probability law of 
mortality.” 

In order that a given function u(t )  be a complementary distribution func- 
tion of a random variable T 2 0, it is necessary that: 

(3.3) (2) u(00) = 0, and 
(1) t ( t )  = 1 for t < 0, 

(3) u(t)  is monotone nonincreasing on (- 00, 00). 

It follows from definitions (3.1) and (3.2), which we adopted for the 
distribution function and the complementary distribution function, that the 

1 

’i 
V, - - - - - - - - - - 

0 T 7 0 z 
(4 (b) 

FIG. 3.2. (a) Example of a function f ( t )  continuous on the left. One has f ( ~ )  = fi . 
(b) Example of a function u(t) continuous on the right. One has U ( T )  = u,. We have chosen 
the convention of part (b). 
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functions u(t)  being considered in the present work will always be continuous 
and differentiable on the right. Figure 3.2 shows the consequences of such a 
choice. 

The above details will take on importance when using functional trans- 
formations of Laplace type (operator, operational, or symbolic calculus), 
or for increasing and decreasing failure rate functions (Section 10). 

4 Failure Probability. Failure Rate 

Consider a survival function u(t)  of type IIa; we shall then define a 
" probability density of lifetime " i(t) such that 

(4.1) i(t).df = pr { t < T < t + df } 

= p r { T < t + d t } - p r { T < t } ,  
thus 

d@ dt. 
dt dt  

i(t) = - = - - or u ( t )  = (4.2) 

Quantity (4.1) represents the probability that a component has a failure 
in the interval It, t + dt]. Figure 4.1 shows two characteristic aspects of the 
curve i(t) : exponential type and bell shaped, corresponding to the survival 
curves of Figs. 2 . 4 ~  and 2.4d. 

FIG. 4.  I .  

When we have a law of type I, t takes its values in N = { 0, 1, 2, 3, ... }, 
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and the probability that the component has a failure at date n + 1 is 
(4.3) pr { T = n + 1 } = pr { T < n + 1 } - pr { T < n } 

with 
= @(n + 1) - @ ( n ) ,  n = 0, 1,2, ... 

pr { T = 0 )  = @ ( O ) ;  

or what is the same 

(4.4) pr{ T =  n + 1 } = (1  - pr{ T >  n + 1 }) - ( 1  - pr{ T >  n})  
= pr { T >  n }  - pr{  T >  n + I } 

= v(n) - o(n + l ) ,  n = I ,  2, 3, ... 
with 

pr{ T =  0 )  = 1 - v ( 0 ) .  

We then have 

(4.5) 

and 

(4.6) 

@(n)=pr{ T=O}+pr{ T = l  }+. . .+pr{ T=n-1 } + p r {  T = n }  

= p r { T < n }  

v(n) = pr { T = n + 1 } + pr { T = n + 2 } + .-. 
= p r { T > n } .  

Returning to the case of a law of type IIa, we may write 

(4.7) pr { r c T <  t + d t }  = pr { T > t}.pr { T <  t + dt I T >  t } 

or, further, if o(t) = pr { T > t } > 0, 

p r { r <  T < t + d t }  
(4.8) pr { T < r + dr I T > t } = 

Pr{ T >  

d v  
44 dt 

- - -- ”(‘).dt where c ’ ( r )  = - . 

We designate expression (4.8) by A(t):  

(4.9) 

This function is called the “ instantaneous failure rate ” or more simply the 
“failure rate.” The quantity A(t) dt represents the probability that the com- 
ponent fails in the interval It, t + dt], knowing that it is in a good state at the 
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instant t .  This is thus a conditional probability, whereas i( t)  dt is the a priori 
probability that the component fails in It ,  t + dt]. Statistically, A(t )  A t  may 
be estimated by the ratio of the number of components that have failed 
between t and t + A t  to the number of components in a good state at the 
instant t .  

If we consider a law of type I instead of type 11, we will have 

(4.10) pr { T = n + 1 } = pr { T > n } p c ( n )  

where p,(n) = pr { T = n + 1 I T > n }. From (4.10) we may deduce 

(4.11) 

r ( n )  - I . (”  + 1 )  - - 
4“) 

The quantity p,(n) will be called the “ conditional failure probability.” 
Note that 

(4.11‘) P A  - 
1 - r (0 )  

I = p r { T = O }  1 )  = 

We often use other names for the failure rate: “hazard rate,” “mortality 
rate,” or “strength of mortality” (an actuarial usage); “Mills index” is 
used if one is considering the normal law. 

Survival Law Defined by a Rate of Deterioration. For a law of type Ila, 
Eq. (4.9) may be written as 

(4.12) dc - + A ( f ) .  r(1) = 0 
dr 

We also have 

c(0) = 1 

since v( t )  is by hypothesis a law of type IIa. 

v(t). Its solution is 
If we suppose that A(t )  is given, Eq. (4.12) is a differential equation in 

(4.13) 

We now consider two particularly interesting cases : 

(4.14) 1) A( r )  = A o ,  t 2 0, Lo > 0 .  
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We then have 
(4.15) v ( t )  = e-Aof . 

(4.16) 2) A ( t )  = k , t ,  f 0 ,  k ,  > 0 .  

We then have 
(4.17) v ( t )  = e-kdz12 . 

Thus if A(t) is constant, the survival law is an exponential law; and it is 
easy to see that the converse is equally true. If A(t )  is a linearly increasing 
function, the curve v( t )  is a bell curve truncated at the origin. 

We take note of several mathematical properties: 

(a) The function A(t )  is always nonnegative (evident). 
(b) The function A(t )  is not necessarily monotone. 
(c) One may have A(0) > 0. 
In practice, one typically finds the case where the failure rate A(t )  is 

increasing. There are cases, however, where A(t )  initially decreases; one may 
also show practically that A(0) is generally nonzero. 

In Sections 10 and 11 we shall study in particular two general types of 
survival curves : 

(1) 
(2) 

survival curves for increasing failure rates (IFR), and 
survival curves for decreasing failure rates (DFR) 

without excluding the case where the rate is constant (exponential survival 
curve). Of course, one may be interested from a theoretical point of view in 
other cases less important in practice. 

Cumulative Failure Rate. Logarithmic Survival Function. In certain 
applications, we will be interested in the function 

(4.18) A ( t )  = A(u) d u ,  s: 
which is called the “ cumulative failure rate ” or “ logarithmic survival 
function.” 

According to (4.13) we have 

(4.19) p ( t )  = e-”(‘) 

or 

(4.20) 

the notation “ In ” signifying the natural logarithm. 

A ( t )  = - In L ; ( f ) ,  
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The condition v(00) = 0 implies that the function A(t) tends toward 
+ co when t tends toward + co; the condition v ( t )  < 1 implies that A(t) 2 0. 

Relation (4.20) permits the extension of the definition of cumulative 
failure rate to laws of type IIb, and thus to laws of type I. In the latter case, 
the cumulative failure rate presents, however, less interest than that for laws 
of type 11. 

5 Moments of a Survival Law. Mean Failure Age 

Let @(t)  be the distribution function of the lifetime T. The moments of 
this law are 

( 5 . 1 1  

By considering the survival function 

( 5 . 2 )  

Eq. (5.1) may also be written as 

(5.3) 

E [ T k ]  = lox tk d@(t) . 

u ( t )  = 1 - @ ( t ) ,  

E [ T k ]  = - tk do(t) . lo’ 
In the case of a law of type IIa we may write 

(5.4) E [ T k ]  = tk.i(t)dt I: 
where i(t) is the probability density of the lifetime defined by (4.2). 

. . . }, relation (5.1) becomes 
In the case of a law of type I where t takes its values in N = { 0, 1, 2, 3, 

E [ P ]  = c nk.y(n) 
n = O  

( 5 . 5 )  

where p(n)  = pr { T = n }. 
Calculation of the moments may be carried out using characteristic func- 

tions (or generators, for (5 .5 ) ) ,  or also by using convenient functional trans- 
formations (Laplace or Carson-Laplace, z transform, etc.). On the subject of 
general methods for the calculation of moments, the reader is referred to a 
course on the theory of pr~babi l i ty .~  We proceed, for now, to concern our- 
selves with the calculation of the mean and variance of T. 

See, for example, A. Kaufmann, Cows Moderne de CaIcuI des Probabilitis. Albin- 
Michel, Paris, 1965. 
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Descamps [15] has given a convenient method for calculating 
r= E [ U  and oT - - E[(T - F)'] , 

in the case, which interests us here, of a nonnegative random variable T. 
Suppose that there exists an a =- 0 such that 

( 5 . 6 )  lim [ed ~ ( r ) ]  = 0 ; 
1 - ' x ,  

in other words, u(t)  tends exponentially toward 0. Then the function 

(5.7) 

is defined' for all t 2 0; in addition we have6 

( 5 . 8 )  

( 5 . 9 )  

lirn [t" u(t)] = 0 ,  k = 0, I ,  2, ... , 
1 - 2 1  

lim [ tw( t ) ]  = 0 
1 - 2 1  

An interpretation of this function w(t) will be given in Section 8. 
We now may write 

'x, 

- 
(5.10) 

= - [ tu ( t ) ] ;  +I ~ ( t )  dt . 
0 

In fact, (5.6) shows that, for any given E > 0, there exists r^ such that 

r > i =r e".u(r) < E .  

If one takes E = 1, one thus has 

One then has 
r > r =. u(r)  < e-a' . 

w(r) < w(0) = jOm t@) dr = I,' Vcr )  dr + j im u(r)  dr . 

The second term of this last equation is bounded by 
e - " I  lim e-" dr = < co . 

According to the preceding footnote, u(f )  and w(t) are majorized for t sufficiently 
large, by a function of the form ke-"I; relations (5.8) and (5.9) then follow from a classical 
theorem. 
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10 - 
T =f u ( t )  dt = ~ ( 0 )  

0 

15 

. 

Thus, according to (5.8), 

(5.1 1) 

On the other hand, 

(5.12) 

thus from (5.8) 

(5.13) 

By noting that 

(5.14) 

E [ T 2 ]  = 2 t u ( t )  dt fox' 
and by carrying out another integration by parts, we develop 

(5.15) 
II 

E[ T 2 ]  = 2J0 tu( t )  dt 

10 

= - 2[tw(t)]; + 2 fo w(t )  dr . 

Taking (5.9) into account, 

(5.16) 11 E [ T 2 ]  = 2 w(t) dt . 

Thus E[T2] is twice the shaded area below the curve w(t) in Fig. 5.1. 
Putting 

(5.17) k ,  = JOm u(t) dr = w(0) 
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we have finally 

( 5 . 1 9 )  T = k ,  
and 

- 

(5 .20)  of = E [ P ]  - ( T ) 2  

= 2 k 2  - k : ,  

1 

0 I t 

FIG. 5.1 .  FIG. 6.1. 

6 Principal Survival Laws Used in the Management 
of Equipment' 

Laws of Type I1 

(1) EXPONENTIAL LAW (Fig. 6.1) 

(6.1) i(t) = A. e - ' O r ,  t 2 0 ,  A .  > 0 ,  
(6.2) u(t) = e - A o r ,  t 3 0 ,  
(6.3) 

(6.5) 0; = l/A; . 

4 t )  = L o ,  t 2 0 ,  - 
(6.4) T = l / A o ,  

(2) GAMMA LAW (Fig. 6.2) 

'See also the article by Morice [41]. 
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where T(k)  is the Eulerian function of the second kind 

(6.7) T ( k )  = Jon xk- e-x dx . 

We have 

FIG. 6 . 2 .  

(C 1 

FIG. 6 .3 .  
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Figures 6.2a-c give the shapes of the curves i(t), u(t), and A(t), respectively, for 
various values of k. 

On the other hand, 

(6.10) 

(6.11) 

- k  T = -  
10 ' 
k 

0; = - 
A; . 

When k is an integer greater than or equal to 1, we know that 
(6.12) T(k) = (k - 1) !; 
the gamma law then also often bears the name " Erlang-k law." This is the 
probability law of the variable T defined by 
(6.13) T = T ,  + T,  + ... + T , ,  

where the k independent random variables Ti all have the same exponential 
probability law 

(6.14) i ( t )  = Lo e-Aot, 
The survival function then may be written as 

t 2 0, A. > 0 .  

(6.15) 

and the failure rate becomes 

(6.16) A ( t )  = 
1; t ( k -  1 )  

( k - l ) !  C - Ir-l (A,?)' 
r = O  r !  

(3) WEIBULL LAW* (Fig. 6.3) 

(6.17) i ( t )  = 0 0  (A ?)(a- 1) e-(bOS , t 2 0 ,  P , A o E R O + ,  
(6.18) u( t )  = e-(Aor)s , 
(6.19) A(?) = pAo(A0 t ) ( D - ' ) ,  

(6.20) A ( t )  = (Ao t ) P .  

The interest of this law derives from the fact that the failure rate may be, 
depending on the value of /3, increasing, decreasing, or constant (Fig. 6.3~). 
For P = 1, we recover the exponential law. For /3 > 1, the probability 
density is represented by a bell curve (Fig. 6.3a). The survival curve is repre- 
sented in Fig. 6.3b; for /3 < 1, the shape approaches that of the exponential, 
and for /3 > 1, the result is a truncated bell curve. 

* The reader is referred to the works of Weibull [55,56]. 
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The moment of order r of the Weibull law may be put in the form 

(6.21) 

where T(x)  is as before the Eulerian function (6.7). The moments of orders 
1 and 2 have a particularly simple expression for p = 1 (where we recover 
the exponential law), for p = 2, and for j3 = co (constant lifetime). Table 6.1 
indicates the values of m,, m2, and CT; = m2 - m:. 

TABLE 6.1 

We may transform the survival curve to a straight line by using the 
relation 

(6.22) 

The Weibull distribution is the third asymptotic distribution of extreme 
values, in the terminology of Gumbel[26]. If we consider the random variable 
(6.23) Y = min ( X , ,  X 2 ,  ..., X,,) , 

where A’, , . . . , X,, are independent random variables all following the same 
Weibull law, the survival function of Y is 

(6.24) u,,(t) = Pr { Y = min ( X , ,  ..., X,,) > t } = [ ~ ( t ) ] ”  , 

and relation (6.18) permits us to show easily that 

In [- In u ( t )  ] = p In t + In ;Io, 

(6.25) t )  = - ( n ” P ~ o l  P 
3 

that is, that Y likewise follows a Weibull law in which the initial parameter 
1, is replaced by n“BAo. 

We note also that one may also use the Weibull law with a supple- 
mentary parameter to  > 0, introducing a shift in the zero of the survival 
curve 

(6.25’ ) u( t )  = 1,  t 6 t o ,  

t 2 to  . - - ,-rlo(t-to)P, 
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(4) LOG-NORMAL LAW OR THE LAW OF GALTON 

The log-normal law is the law of a random variable T whose natural 
logarithm’ 
(6.29) X = I n T  
follows a normal law (Laplace-Gauss law) with mean p and variance o2 ; the 
variable 

(6.30) I n T - p  
Y =  

0 

then follows a reduced centered normal law with probability density 

(6.31) 

and with complementary distribution function 

(6.32) 

The functions g and G allow a simpler representation of expressions 
(6.26)-(6.28) 

(6.33) 

(6.34) 

(6.35) A ( t )  = ole(+) . 
One sometimes defines the log-normal law using base-ten logarithms. 
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Figure 6.4a-c indicates the form of the probability density, the survival curve, 
and the failure rate, respectively. 

The mean and the variance are 
- 

(6.36) T = eP+U2/2 

t i(t’ 

FIG. 6 .4 .  

I 

b=-0.5 C=l 

0.5 

0 

I 

0.5 

0 1 2 

0-= 1 

=1.5 

O K 1  I I I I 1 I I I I I I I 
0 1 2 3 7  

(C) 

FIG. 6 . 5 .  
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More generally, the noncentered moment of order r is given by 
(6.38) ,,, = e ~ r + r z a 2 / 2  

It is interesting to note that the value of the median is e”; thus all the 
curves v( t )  corresponding to the same parameter p pass through the point 
(e”; 0,5) whatever the value of a (Fig. 6.4b). On the other hand, the value of 
the mode is e”--“’; this decreases markedly as a increases, and inversely, if 
a --* 0, the mode tends toward e” (see Fig. 6.4a). The probability density 

r 

attained at the mode is l/(a& ep-a2/2 1. 

( 5 )  TRUNCATED NORMAL LAW (Fig. 6.5) 

(6.39) i ( t )  = -(I - h ) z / 2 u z  , b ~ R , a ~ R + , t > 0 ;  
1 

ka f i  
where 

1 
dr, (6 .40) k - Jam e - ( f -h )2 /2n2  

a f i  

(6.41) u(t )  = Im e - (u -h )2 /2az  du 9 

s, 
ka f i  

- (1 - h)’/Zn2 

(6.42) 2 0 )  = 00 

du - (u - h)2/2n2 

If X follows a normal law with mean b and variance a, the conditional 
law of X, knowing that X 2 0, is the law above. The normal law is often used 
to represent the lifetime T of a component; but this law has the disadvantage, 
from the theoretical point of view, of giving a nonzero probability to the 
event T < 0, and use of the normal law truncated at the origin is more 
correct. 

Using functions (6.31) and (6.32), we may rewrite the expressions above 
in the form 

(6.43) 

(6 .44) 

(6.45) 
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where 

(6.46) k = I?(- :). 
The mean and the variance are 

- 
(6.47) T = b + Cg(1> k o ’  

2 o2 o2 (6.48) bT=--- 

2 k  k &  

where 

is the incomplete gamma function. 

(6) GUMBEL’S LAW OR THE LAW OF EXTREME VALUES, TYPE I (Fig. 6.6) 

(6.49) 
(6.50) v(t )  = e-p(eAor- l )  

(6.51) 
The probability density i(t) presents a mode for t = ( l /Ao)  In 1/p, when 

fi < 1 ; for /3 =- 1, it decreases constantly. The failure rate is increasing. The 
median is equal to 

, 10, P E R ’ ,  i ( t )  = fm0 elof - /NeAot- 1 ) 

A ( t )  = PA, e’o‘ . 

(6.52) 

The moments of this law are not expressible in a simple fashion. 

variable 
If the random variable X follows an exponential law with parameter p, the 

1 
T =  - ln(X + 1) 

follows the law of Gumbel (note that X 2 0 implies T 2 0). One may, more- 
over, generalize the law (6.50) by starting with a variable X that follows a 
Weibull law (of which the exponential law is a particular case). 

The law of Gumbel is the first asymptotic distribution of extremal values 
(modified for convenience to a nonnegative random variable) in the classifica- 
tion of Gumbel [26]. One may easily verify that it possesses the same property 
as does Weibull’s law (see (6.23)-(6.25)): the minimum of n independent 

A0 
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1 I l I 1  I I l l 0  I 
0' 0.5 1 7 

1 I l I 1  I I l l 0  I 
0' 0.5 1 7 

(C 1 

FIG. 6 . 6 .  

variables all following the same law of Gumbel with parameter p follows a 
law of Gumbel with parameter np. 

Laws of Type I. We now suppose that the lifetime of a component is a 
discrete quantity; more precisely we suppose that the n values that may be 
taken by T belong to N = { 0, 1, 2, 3, ... }. 

The principal laws of type I used as survival laws are: 

binomial law, 
Poisson law, 
geometric law, 
negative binomial law. 

The probability that T = n will be designated by&), the complementary 
distribution function by u(n), and the failure rate by p,(n) : 

(6.53) 

(6.54) 

(6.55) 
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We shall rapidly review the formulas concerning the first three of these 
laws, since these are very well known, and dwell a little more on the fourth 
since it is less so. 

BINOMIAL LAW 

(6.57) u(n) = 

- - 

(6.58) pC(n) = 

- 
(6.59) T =  

(6.60) u$ = 

LAW OF POISSON 

(6.61) 

(6.62) 

(6.63) 

(6.64) 
(6.65) 

0 ,  n > m ,  

m , 

n ~ { O , 1 , 2  ,..., m } ,  

0 < p < l ,  

9 = 1 - P ,  
m E N , .  

n ~ { O , 1 , 2  ,..., m -  I } ,  

n a m .  

n E {  - 1,0, 1 , 2  ,..., m - 1 )  

- 
T = E [ T ]  = A,, 

u: = 1,. 

GEOMETRIC LAW (OR PASCAL'S LAW) 

(6.66) p(n) = p q " ,  n E N , O  < p  < l , q  = 1 - p ,  

(6.67) u(n) = q"+' , 

(6.68) P C ( 4  = P . 
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Thus the failure rate for this law is constant. This law plays the same 
role for survival laws defined in N as does the exponential law defined in 
R+.  

We also have 

(6.69) 

(6.70) 

4 
P 

- 
T = E [ T ]  = -, 

The geometric law is generalized by the " hypergeometric law " 

n E { O , 1 , 2  ,..., r } ,  
r E { O , 1 , 2  ,..., m } ,  

q =  1 - p .  

NEGATIVE BINOMIAL LAW We dwell a little more on this law that is less 
well known and which plays an important role in various applications. This 
law is defined by 

n E N ,  

r + n - 1  r E R l ,  

O < p < l ,  
(6.72) 

q = l  - P ,  

where ('+:-I) is defined, even for r not an integer, by the usual relation 

x(x - 1) ...( x - n + 1) (6.73) 
x ~ R 9  (;) = n !  ' n E N .  

By using the notation" 

(6.74) (;r) = ( -  1)" ( r+ ; -  1) 

lo  This notation follows from the following property. One has, by definition (6.731, (;) = V ( V  - 1) ... ( v  - k + I )  

Nothing prevents us from using this formula for negative v (with the reservation of no longer 
giving to (L) its combinatoric calculus meaning, where this quantity represents the number 
of Combinations of Y objects taken k at a time). By exchanging v for -v, one then has 
for v > 0 

k !  

(;) = ( -  V )  ( -  v - 1) ... ( -  v - k + 1) V ( V  + 1) ... ( V  + k - 1) 
= ( -  1)k 

k !  k !  
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we may also write 

(6.75) 

We shall then have 

(6.76) 4 n )  = P' i: (-'> (-  4 ) ' .  
i = n +  I 

We may also put u(n) in the following form,which has the appearance 
of a binomial law : 

(6.77) 

We also have 

(6.78) 

(6.79) 

(6.80) 

Recall that, for r an integer, the negative binomial law is the law of the 
number n of failures encountered before the rth success in a sequence of 
Bernoulli trials (that is, repeated, independent trials where the two possible 
results are success or failure), p being the probability of success in a trial. One 
may show [23] that the sum of r independent variables, each distributed 
according to the same geometric law, follows a negative binomial law. In  
other words, if 

(6.81) 
where the variables Ni , i = 1, 2, . . . , r, all follow the law 

N = N ,  + N ,  + ..' + N, 

(6.82) A n i )  = Pq"'? 

then N follows the law 

(6.83) r + n - 1  
P(n)  = ( ) P' 4 " .  

This property allows one to obtain moments (6.79) and (6.80) of the 
negative binomial law with respect to the corresponding moments (6.69) and 
(6.70) of the geometric law. Likewise, (6.77) may be obtained by noting that 
o(n) is the probability that the first n + r trials give at  least r successes. 
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7 Survival Law of Nonnew Equipment" 

Suppose that the equipment put into service has age a. The conditional 
survival law is then no longer u( t ) ,  but another law that will be designated 
u,(t). We now proceed to show how to determine this function. 

The a priori probability that a new component will attain the age Q + t 
without deterioration is u(a + z). This probability may be written as 

(7.1) u(u + z) = u(u). u,(z) , 

or 

(7.2) 

Thus the survival curve of a component having initial wear (already 
used until age a) is obtained by shifting the survival curve to the left through 
a and multiplying the ordinates of the curve obtained by l/u(a) (Fig. 7.1). 
One ought not to be surprised that for certain values of t, the probability 
v,(t) may be greater than the probability u ( t ) ;  it all depends on the nature of 
the survival law. 

F- 
0 a 

FIG. 7.1.  

In the case of a law of type 11, relation (4.13) immediately gives an 
expression for u,(z) as a function of the failure rate: 

(7.3) 

In other words, the cumulative failure rate A,(z) of nonnew equipment is 

c,(r) = exp (- jUu+' A(u) d u ) .  

(7.4) n,(T) = n ( U  + t) - / i ( U ) ,  

and its instantaneous failure rate is 

(7.5) &(T) = A(U + T )  . 

Use of the word used would be very ambiguous. 
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The failure rate curve therefore remains the same to within a translation. 
In particular, if the survival curve of the new equipment has an increasing 
failure rate (cf. Section lo), then so does the nonnew equipment. 

The exponential 

(7.6) 

A component whose 

law possesses an interesting property: 
- do(o + r) 

V A T )  = e -AM 

- - e - h r .  

survival law is the exponential law with a failure rate 
Lo obeys this law whatever its age when put into service. One may easily show 
that the exponential law is the only law that has this property. 

8 Survival Law with Guarantee. Survival Law with a Limit 
on Functioning 

Certain kinds of equipment have a guarantee. We suppose that, in the 
interval [0, a[, any equipment that fails will be repaired without cost and 
may be put back into service with the same degree of use; the equipment 
put into place thus has the same age as that which failed. In this case curves 
u(t) and i(t) are modified in the following fashion. 

From t = 0 to t = a, failures may be neglected since the equipment is 
repaired without cost” ; thus denoting the survival curve with guarantee by 
ue(t; a) we have 

(8.1) u,(t;a) = 1 ,  0 < t < u .  

At the date t = a - E all the pieces of equipment have age a - E ,  and 
their survival curve is then the curve u,-,(t) shifted to the right through the 
valueI3 t = a - E .  Finally (Fig. KI) ,  

where 

u(a-) = Jim u(u - E )  . 
E - 0  

l2 Note, however, that failures occurring during the guarantee period may entail some 
unavailability of the material, which may be extremely inconvenient. 

’’ The result of Section 7 supposes that the equipment is in a good state at age a. The 
guarantee excluding a failure that occurs exactly at age a, we need only use this result for 
a - E ,  where E + 0. 
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0 a -t 
FIG. 8 . 1 .  

Thus 

(8 .3 )  u , ( t ; u )  = 1 , 0 < t < u ,  

One may imagine a more general case where the guarantee extends to 
the interval [a ,  b [ .  The formulas below give the corresponding functions, 
which are associated with Figs. 8.2a-c. We are supposing as above that the 
repaired equipment conserves its age'4 : 

(8.4) u,( t )  = ~ ( t ) ,  0 < t < u , 
= U ( K ) ,  u < t < b ,  

In the case of a survival law of type IIa, we also have 

i&t) = i ( t )  , 0 d t < u, 

= 0 ,  ~ < t < b ,  

(8.6) &(t) = A ( t ) ,  0 < t < u,  and t 2 b ,  

= 0 ,  u < t < b .  

Another interesting case is that in which we consider a survival law with 
a limit onfunctioning (Fig. 8.3). We are given in this case a limit on function- 
ing 6 ;  and the equipment is put out of service at age 6, if it attains this age; 
the survival law is therefore modified. Call this new law u h ( t ;  6) .  We have 

(8 7) o h ( t ;  6 )  = o ( t ) ,  0 d t < 8, 

= 0 ,  t 2 6 ,  

U ( C )  = u(a - 1 ) .  
l4 In the case of a law of type I, we have 
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LL/ 
I '  

0 a b  t 
(C) 

FIG. 8 . 2 .  

i h ( f ;  e) = i ( t ) ,  o G , t  < 8 ,  
= 6(f - O).U(O), 

= o ,  t > o ,  
t = 0 ,  

where d ( t )  is the Dirac measure, or Dirac's delta function. The probability 
density at  t = 6 is thus infinite; it is the same evidently for the failure rate. 
According to (8.7) and (4.19), the cumulative failure rate is given by 

(8.9) nh(f) = n( l ) ,  0 6 f < 8,  

= m ,  1 2 0 .  

The limit on functioning 0 is often called the " removal age." 

(5.10): 
The mean lifetime may easily be obtained in the same fashion as in 

rh(e) = - f du,(t; 0) JOT' - 
(8.10) 

= - J: I du(t) + Ou(0)  

= - [ t u ( t ) ] ~  + u( t )  dt + Ou(0) J: 
= J: u ( t )  dt  = J: u ( t )  d t  - Jam u ( t )  dt  

= T - w ( e ) .  
- 
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FIG. 8 . 3 .  FIG. 8.4.  

By fixing a limit on functioning 0 we thus diminish the mean life of a 

The moment of second order is 
quantity w(O), where the function w(t) is defined by (5.7). 

(8.11) E[T,2(8)] = - t2  du(t) + O2 u(0)  l 
= - [ t2  ~ ( t ) ] :  + 2 tu(t)  dt + O2 u(O) 

e j: 
= - 2 1 0  tdw(t) 

= - 2 ew(e) + 2 Jb wv(t) d t  . 

&(I) = ~[7-h’(0>3 - ( T , ( O > ) ’ .  

(I 

Figure 8.4 gives a geometric interpretation of the various quantities above. 
The variance may be obtained classically from 

(8.12) 



CHAPTER I1 

EQUIPMENT WITH AN INCREASING 

FAILURE RATE 

9 Introduction 

In this chapter we shall study a particular class of survival functions, 
characterized by the property that the failure rate increases with the age of 
the equipment, or at least is nondecreasing. One may in fact expect that aging 
of equipment increases the probability that it will fail. It is, however, necessary 
to make two remarks: 

(1) One often observes, at  the beginning of the life of a piece of equip- 
ment, some failures " of youth"; equipment that has successfully passed this 
point then presents a reduced failure rate. This is why one often gives as a 
more general failure curve the " basin " of Fig. 9.1. 

I t 

t 
FIG. 9.1. 

33 
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(2) The effect of aging may be relevant only at a very late age, having a 
very low probability of being attained. It will thus not be observed in practice, 
the failures almost all being produced in the “flat ” part of the theoretical 
“ basin” curve. This seems to  be the case with the great majority of electronic 
components, for which one usually supposes an exponential survival law. 

It is, however, useful to  examine the particular properties of survival 
curves for nondecreasing failure rates, for which the exponential curve (con- 
stant failure rate) constitutes a limiting case. We shall see that certain of 
these properties persist for a slightly larger class of survival functions, having a 
failure rate that is nondecreasing “ in the mean.” 

10 Survival Functions with Increasing (Decreasing) 
Failure Rate 

We first review the very important notion of failure rate, which has been 
defined in Section 4: 

(10.1) 

We now define the failure rate in an interval It, t + XI, x > 0, by the 
expression 

(10.2) 

where u,(x) is the survival law of a piece of equipment with initial age t (see 
(7.2)). In the case of a law of type I we shall have the same definition: 

(10.3) 

The failure rate in an interval is related to  the cumulative failure rate 
and to the instantaneous failure rate by the following relation, obtained by 
expressing v(t) as a function of A(t )  through (4.19), 

(10.4) 

p(r ; x) = 1 - exp( - [A( t  + x) - A ( t ) ] )  = I - exp (- 1:” l(u) du) . 

One the other hand, for a law of type IIa we have 

P O .  x) (10.5) A ( t )  = lim - 

and, for a law of type I, 
x-0 x 

(10.6) P , W  = A n  ; 1) . 
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One should note that, in the case of a law of type Ira, the instantaneous 
failure rate has the dimensions of the reciprocal of age, and that the failure 
rate in an interval is without dimension. 

Definition Z (concerning survival laws of type IIa). Survival function with 
increasing failure rate (ZFR) (respectively, decreasing failure rate (DFR)).  
A survival function v(t) will be said to be ZFR (respectively, DFR) ifand only if 
(10.7) V t , ,  t ,  E R+ : ( 1 ,  > t , )  * ( k ( f 2 )  2 A ( t , ) )  (resp. < I ,  
that is, if A(t) is a nondecreasing ’ (respectively, nonincreasing) function. 

This definition is equivalent to the following if A(t) is differentiable: 

(10.8) Vt  E R+ : A’(?) 2 0 (resp. <) 

where 
d 
d t  

A’(t) = - A ( t )  . 

Definition ZZ (concerning survival laws of type I). Survival function with 
increasing failure rate (ZFR) (respectively, decreasing failure rate (DFR)). A 
survival function v(n) will be said to be ZFR (respectively, DFR) ifand only if 

(10.9) Vn,, n ,  E N : (n2 > n , )  * (ph,) 2 Phi)) 

that is, if p,(n) is a nondecreasing (respectively, nonincreasing) function f o r  
n 2 0. 

(resp. < I ,  

Another definition of ZFR or DFR functions. 
if and only if 
(10.10) V t  E R andsuch that v( t )  > 0 ,  and Vx E R+ : 

A survival function v(t) is ZFR 

is a nondecreasing function o f t  (respectively, DFR i f p ( t ;  x )  is nonincreasing in 
R’), f o r  t an integer in the case of a law of type Z. 

This definition with respect to failure rate by intervals has the advantage 

In order to avoid any ambiguity due to the terminology employed, we shall use the 
following definitions: Letf(x) be a function defined in [a, b] ,  b > a ;  then if Vxl, x2 E [a, b ] :  

(x, > xI)  =- (f(x,) 2 f ( x , ) )  : the function is nondecreasing, 
(x, > xI) =- ( f ( x , )  > f ( x , ) )  : the function is increasing (we also say, strictly increasing), 
(x, > x,) ==- ( f ( x , )  < f ( x , ) )  : the function is nonincreasing, 
(x, > xI) =- ( f ( x , )  < f ( x , ) )  : the function is decreasing (or strictly decreasing), 
(x, > xI) =- (f(x2) = f ( x , ) )  : the function is constant; it is also nondecreasing and 

nonincreasing according to the above definitions. 
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of being applicable to survival functions of type I as well as type I1 (including 
type IIb). 

We shall prove the equivalence of this definition with (10.7) for an IFR 
function of type I ;  one proceeds similarly for a DFR function. 

First we remark that if (10.10) is nondecreasing, then so is the conditional 
failure rate, according to (10.6). Conversely, suppose that p,(n) is non- 
decreasing. According to definition (4.1 l), we have 

or 

from which we easily obtain 
n-  I n -  I 

(10.13) 

which may be expressed, using (10.12), as 

(10.14) p ( n ; h )  = 1 - n [l - p , ( i ) ] .  
n + h -  1 

i = n  

The condition that p,(i)  is nondecreasing then implies that 1 -p , ( i )  is 
nonincreasing, and therefore that the product appearing in (10.14) is similarly 
nonincreasing; p(n ; h) is thus nondecreasing. 

We now pass to the case of a law of type IIa. Relation (10.5) shows 
immediately that (10.10) implies that A(t) is nondecreasing. We therefore 
prove the reverse implication. 

(10.15) 

Suppose that 

(12 > t l )  =. (at,) 2 W,)); 
then for t ,  > t ,  and for all z E R+, 

(10.16) A ( T  + t 2 )  2 A ( T  + t i ) ,  

from which 

(10.17) f A(O + 1,) do 2Ji A(O + 1 , )  d o .  
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Then, by changing variables, 

(10.18) 

from which 

(10.19) 1 - exp ( - s,:’” A(a) da) 2 1 - exp( - J”” A(a) d a )  

Thus we have, according to (10.4), 

A(a) da 2 A(a) da ; rr 
(10 * 20) P o 2 ;  5 )  2 POI ; 5 ) .  

This shows us that (u(t)  - u(t + x))/u(t) is nondecreasing in t .  

Case of Survival Laws of Type IIb. We have remarked above that defini- 
tion (10.10) is applicable to laws of type IIb, for which the failure rate A ( t )  
is not everywhere defined. We shall go on to see, however, that only a par- 
ticular kind of survival law of type IIb may be IFR. In fact, condition (10.10) 
signifies that the function u(t + x)/u(t) is nonincreasing; it is then the same 
for the function u(u)/v(u - x), obtained by setting u = t + x. Suppose that 
v(u) has a discontinuity at the point u = 8, that is, that 

(10.21) 

(recall that u(t )  is continuous on the right and nonincreasing). Then let u > 8, 
and put 

(10.22) 
24-0  

n 
x=-  

where n is arbitrarily large. We may write 

(10.23) U ( U )  = u(u) . u(u - x) ... do) . o(0 - x) 
u(u - x) u(u - 2 x) u(0 - x) 

by noting that 8 = u - nx. The condition that u(u)/u(u - x )  be nonincreasing 
shows that, applying (10.21), all the terms appearing in (10.23) are at least 
equal to a, and thus that 

(10.24) u(u) < a”+’ u(0 - x) .  

Since n is as large as one wishes and tl less than 1, this is possible only if 

(10.25) u(u) = 0 ,  vu > e ;  
u(t)  being continuous on the right, one also has u(8) = 0. We therefore see 
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that, if 6 is a point of discontinuity of v(u), we have v(0)  = 0. The only laws 
of type IIb that may be IFR are thus those that may be obtained from a law 
of type IIa by introducing a limit on functioning (see Section 8). 

Theorem 10.1. A survival law v ( t )  of type II  is IFR if and only if the 
cumulative failure rate dejined by (4.20) is convex’ in the interval where it is 
dejined, that is, for  v(t) > 0,  

(10.26) A ( [ )  = - In o ( r )  is convex. 

7 
Art) nonconvex noncave 

X(t)is nondecreasinq in [o,a[ 
and not def ined in 0,001 

; I 7  
0 a 
Amis convex in[o,o[ and 
notdefinedin[a,-] 

0 h ) i s  i /  nondecreasing in ]0,m] I 

but is not in [O,OO] 

0 7 
Ait) is convex in[O,w] but 
is not in r-~~,+oo]becauseA~tlmok 
a jump in possing from 0-€too 

FIG. 10.5. Case of a law of FIG. 10.6. Case of a type IIb FIG. 10.7. Case of a type IIb 
type IIb that is neither IFR 
nor DFR. 

law that is IFR. law that is not IFR. 

Recall that a functionf(x) is convex if, for 0 < a < 1, we havef[axl +(1-  a)x2] < 
af(xl) + (1 - a)f(xz). A convex function is necessary continuous and has at every point a 
left derivative and a right derivative, which are nondecreasing. The second derivative, if it 
existais nonnegative. A concave functionf(x) is a function such that - f ( x )  is convex. 
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In fact, we have seen that an IFR function has an instantaneous failure 
rate A(t) that is nondecreasing. The cumulative failure rate 

A( t )  = A(u)du s,' 
is thus convex. Conversely, if A(t) is convex, then A(t) is nondecreasing. 

Functions whose logarithm is concave (or whose inverse is convex, 
which amounts to the same thing) are used in various branches of mathe- 
matics (see Barlow and Proschan [ S ] )  under the name P6lya functions of 
order 2. In Appendix A one may find several facts about these functions, and 
also about totally positive functions of order 2 which they generalize. 

IFR survival functions are those whose cumulative failure rate is concave 
in [0, + co]. In Figs. 10.1-10.7 various examples of survival functions that 
are IFR, DFR, or neither IFR nor DFR are shown. 

11 Properties of IFR Functions 

IFR functions have some important properties which have been studied 
in detail by Barlow and Proschan (see, in particular, Ref. [5 ] ) .  DFR functions 
have analogous properties, but these functions are less useful in practice, and 
we shall content ourselves with mentioning their properties in passing. The 
proofs that we give are inspired by those of Barlow and Proschan, but are 
more simple in the majority of cases. 

The exponential survival law 
( I  1 .  I )  u(t )  = e-*nf, 
which has a constant failure rate, is at the same time IFR and DFR. It marks 
the boundary between these two families of survival laws. The theorems 
below exploit this property through bounding an IFR survival law and its 
moments by analogous quantities relative to the exponential law. 

Theorem 1l.Z. If the survival function v(t) is IFR: 

(a) either there exists a A, such that v(t) = e-"O for all t ,  or 
(b) for all A, > A(0) there exists a to > 0 such that 

(11.2) u(t )  > u,(t) , 0 < t < t o ,  

(11.3) 4 t o )  = oe(t0) 7 

(11.4) ~ ( t )  < v e ( t )  3 t > t o ,  
where 
(11.5) u,(t) = e-aOf , 
and where A(0) is the failure rate at the origin of the law u(t) .  
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The theorem becomes evident if one considers the cumulative failure 
rates rather than the survival laws; recall (4.18) and (4.19): 

(11.6) 

and 
(11.7) u( t )  = e-”(’) . 

A( t )  = I(u) du J: 
The equation 

(11.8) ~ ( t )  = u e ( t )  

may thus be written 

(11.9) A( t )  = Ae(2)  7 

where 

(11.10) A,(t) = I ,  t 

is the cumulative failure rate of the exponential law and A(t) is by hypothesis 
a convex function whose derivative at the origin is I(0). If A(t )  is not a 
straight line, that is, if A(t) is strictly convex at least in certain intervals, any 
line A,(?) of slope I, =- A(0) intersects once and only once (apart from the 
origin) the curve A(r) (Fig. 11.1). 

FIG. 1 1 . 1 .  FIG. 11.2. 

The respective positions of the curves A(t )  and Ae(t) then imply, by 
virtue of (1 1.7), an inverse arrangement of curves u(t )  and u,(t) (Fig. 11.2), 
which proves the theorem. 

In the case of a DFR function, inequalities (1 1.2) and (1 1.4) are reversed. 
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Theorem 1l.II. The moments of all orders of a nonnegative random 
variable T whose survival function (complementary distribution function) is IFR 
exist. 

This property follows because u(t) is bounded by an exponential for t 
sufficiently large (cf. (1 1.4)). We shall not present the details of the proof, the 
interest in this theorem being purely theoretical. Moreover, the existence of 
moments of all orders is assured under conditions considerably more general 
than the IFR condition. For example, it suffices that, for t sufficiently large, 
the failure rate A(t) be bounded below by a positive quantity [5, p. 431. For 
IFR functions, we shall give below superior limits for the moments of T 
(Eq. (11.21) and Theorem 12.V). 

Theorem 1l.III. r fu ( t )  is IFR and ifoneputs3 

(1  1 .11) 
one has 

u(tk) = 1 - k , where 0 < k < I , 

(11.12) u ( t )  z e-””‘ t d  t k ,  
(11.13) u( t )  Q e-”O‘ , t >  t k ,  

where 

(1 1.14) 
In (1  - k )  A, = - 

tk  

This theorem expresses the same property as Theorem 1 1 .I in a different 
form, and it follows immediately from it. Indeed, we have 

thus 
- In ( I  - k) = - In U(tk) = A(tk) , 

(11.15) L O  = A(tk)/tk 3 l (o)  9 

because of the convexity of the curve A(t).  In case (b) of Theorem 11.1 we 
are given A, > n(0). Here, we are given k and we deduce tk by (11.11). If 
A(t) is strictly convex for at  least one value of t less than tk , we have n(tk)/tk 
> A(O), and Theorem 11.1 is applicable in particular for the value I ,  given 
by (1 1.14), which is such that A(t) and A, t are equal for t = tk (Fig. 11.3); 
inequalities (1 1.12) and (1 1.13) are then strictly satisfied for t # tk (Fig. 1 1.4). 
On the contrary, if the failure rate is constant for t < tk , (1 1.12) is reduced 
to an equality. 

Thus tr is a certain fractile of the distribution of T. 
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F I G .  1 1 . 3 .  

1 -I 

1 

t k  

F I G .  1 I .4. 

Theorem II.ZV. 
an exponential, one has 

(1 1.16) v ( t )  > e-r /T for  o < t < 5;. 
This theorem is again a particular application of Theorem 11.1, but it is 

also connected with properties of IFR functions relative to the mean life- 
time T. 

If v ( t )  is IFR, has mean 7, and does not coincide with 

- 

We show first that 
- 

(1 1.17) T < 1/1(0) 
where I (0)  is as before the failure rate at the origin, corresponding to the 
survival function v(r).  We have seen in (5.11) that 

(1 1.18) 

or 

(1 1 .19) 

- 
T = Jox v(u) du 

However,A(t) 2 A(O)t, and the inequality is strict beyond a certain value o f t  
if v ( t )  is not an exponential law (see the proof of Theorem 11.1). It then 
follows that 

(11.20) ,-"(I) , - w ) . t  

Since the inequality is strict for certain values o f t ,  we may deduce 

du = l/I(O) 
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and thus 

( 1  1.21) 

We apply Theorem 11 .I for 1, = I/T, which is legitimate since, accord- 
ing to (11.21), I ,  > A(0). Inequality (11.16) then results from (11.2), for 
0 < t < t o ,  where to is the abscissa of the point of intersection of the curves 
A(t) and I o t  = t /T (Figs. 11.5 and 11.6). It thus suffices to prove that 

For this, we rely on Jensen's inequality, according to which, if g ( X )  is a 
T < t o .  

convex function of the random variable X ,  we have4 

(1  I .22) dE[XI) Q m w 1  . 
Taking the lifetime T as the random variable X ,  and the function A ( . )  as the 
convex function g( - ) ,  the inequality (1 1.22) may be written as 

(1  1.23) A m  Q E [ A ( T ) ] .  

It is easy to see, however, that the random variable A(T) follows an 
exponential law with mean 1. In fact, we have 

Pr { A ( T )  > t ) = Pr { - In v(T) > t } = Pr { r ( T )  < e-' ) = e - ' .  
The last inequality follows because the random variable u ( T )  is uniformly 

FIG. 11.5 .  FIG. 11.6. 

Inequality (1 1.22) represents, in the notations of the theory of probability, the con- 
tinuous form of the following inequality: if&) is a convex function in the interval (a, b), if 
x i  E (a, b), i = 1,2, .  .. , n, andfinallyifh, 2 0, i =  1, 2, . . ., n, withx;=, hi = I ,  we have 

g 1 li xi Q 1 l i  g(x i )  . 
(i:l 1 i : ,  

In (1 1.22), the role of the convex weightings h,, . . . , h. is played by the probability density 
of the random variable X .  
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distributed between 0 and 15: The probability that u ( T )  < e-' is the same 
as the probability that T > x,  where x is such that u(x) = e-'; but, according 
to the same definition of u(x), this probability is e-'. 

Thus we have 

E C m - ) ]  = 1 9 

which could be verified easily by direct calculation. 

(11.24) A ( T )  6 1 

Inequality (1 1.23) then gives 

which may also be written as 
- Inv(T) 6 1 

or again as 

(11.25) TI. 
Relations (1 1.21) and (1 1.25) represent for IFR functions some interesting 
properties which we emphasize in the proof of Theorem 11.IV. 

To return to this proof, relation (1 1.24), with the fact that for t = T the 
line t /T has an ordinate equal to 1 (Fig. 1 lS), shows that the point of inter- 
section of this line with the curve A(t )  has an abscissa at least equal to z 
which concludes the proof. 

Theorem 11. V. Zfu(t) is IFR and has mean one has 

(11.26) u(t)  < e-'"(') for t > 7;, 

where o(t) is the only positive solution of the equation 

(11.27) 1 - To( t )  = e-rw(r), 

We note that if the inferior limit given for u(t) in the interval (0, T )  by 
Theorem 1 1 .IV is an exponential, the superior limit given above in the interval 
(T, 03) is not an exponential function o f t  since the coefficient w(t) varies 
with t .  

The proof of this theorem will be given in Section 12 (Theorem 12.11). 
In Section 12 you will also find some other properties satisfied by IFR func- 
tions (Theorems 12.111-12.V). 

- 

This property, which is general, is used in simulation in order to obtain an artificial 
sample of an arbitrary random variable from a sample of a uniform random variable. 
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12 Survival Functions with Increasing Failure Rate Averages 

IFR survival functions have very interesting properties, but we shall 
see in Chapter IV that they are poorly suited to the study of complex equip- 
ment. Indeed, a system whose components have IFR survival functions does 
not necessarily itself have this same property. 

Birnbaum and co-workers [9] have defined a class of survival functions 
that includes the class of IFR functions and that is stable with respect to the 
composition of structures to be studied in Section 26. 

Definition. Survival function with increasing failure rate average (IFRA). 
A survival function will be said to have an increasing failure rate average (IFRA) 
if and only i f  

(12.1) 

is nondecreasing. 

Recall that the cumulative failure rate is defined by (4.20) as 

(12.2) A(t)  = - In v( t )  . 
We have seen (Theorem 10.1) that for IFR laws of survival, the cumula- 

tive failure rate is convex; it then follows that the function L(t )  is nondecreas- 
ing, that is, that IFR functions are IFRA. More precisely, if for an IFR 
survival function there exists a value to of t for which A(t) is strictly convex 
(which is necessarily the case if the survival function being considered is not 
exponential), then the function L(t) is strictly increasing for t > t o .  

Figure 12.1 represents the cumulative failure rate of an IFR function; 
for a point M with abscissa t arbitrarily placed on this curve, the slope of the 
line OM is L(t ) ,  and it is clear that the convexity of A(t )  implies that this 
slope is nondecreasing. Figures 12.2 and 12.3 give two examples of IFRA 
functions that are not IFR. 

Remark. In the case of a law of type 11, where the instantaneous failure rate 
A ( t )  is defined everywhere, we have seen in (4.18) that 

(12.3) 

Then 

A(t)  = A(u) du 1: 
(12.4) L(t) = - n(u) du , lo 
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FIG. 12.1. IFR and IFRA FIG. 12.2 Survival law that is FIG. 12.3. Survival law that 
IFRA but not IFR. survival laws. is IFRA but not IFR. 

that is, L(t) is the mean of the instantaneous failure rate between 0 and t .  
Note, however, that L(t)  is not the failure rate in the interval 10, t ]  as it was 
defined in (10.2); this last definition gives in fact 
(12.5) 

which may be written as 
(12.6) 

p ( 0 ;  t )  = 1 - v ( t )  

p ( 0 ;  t )  = 1 - e-”“) . 

Properties of IFRA Functions. Some properties of IFR functions may 
be extended to  IFRA functions in a slightly weakened form. We shall also 
indicate other properties that have not been mentioned in Section 11, but 
which are evidently valid for the more restricted class of IFR functions. 

Theorem 12.1. Let the survival function v ( t )  be IFRA, to > 0,  and 1, be 
dejined by  

(12.7) 

Then one has 

1 

t o  
I ,  = - -In v(t,) = L(t,) . 

(12.8) v ( t )  2 e-’or, 0 < t < t o ,  

(12.9) v(t,) = e-’o‘o, 
(12.10) v ( t )  < e-’o‘ , t > t , .  

This theorem is identical, within the notations used, to Theorem 11 .III, 
which used only the nondecreasing property of L(t) (cf. (1 1.15)). In order to 
prove it, we first remark that 1, is defined by (12.7) in such a fashion that 
(12.9) is satisfied: I ,  is the (constant) failure rate of the exponential function 
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that passes through the point ( t o ,  u(r,)). Similarly, we note that, according to 
(12.7), (12.2), and (12.1), 

For t < t o ,  one has, due to L(t) being nondecreasing, 

(12.12) L(t) G W O )  

(12.13) 4 0  < 10 t 
and, finally, 
(12.14) u(t )  3 e-”O‘ . 
For t > t o ,  the inequalities are reversed. 

The existence of moments of all orders of an IFRA survival function is 
assured for the same reasons as in the particular case of IFR functions (cf. 
Theorem 11 .II). 

On the contrary, Theorem 11 .IV does not apply to the class of IFRA 
functions, as may be seen from a counterexample. Before that, let us point 
out that inequality (1 1.21) remains valid, at least in the nonstrict form 

from which 

(12.15) 
- 
T < 1/40) 

where A(0) is the failure rate at the origin. In order to prove inequality (1 1.25), 
we have used Jensen’s inequality, and thus the convexity of the cumulative 
failure rate; we shall see that this inequality does not extend to IFRA func- 
tions. 

We take as an example the following survival function (Fig. 12.4): 

(12.16) u(t )  = 1 , O G t < a  

u ( t )  = e-ao‘, t 2 a .  

FIG. 12.4. FIG. 12.5. 
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The cumulative failure rate is given by 
(12.17) 
or 
(12.18) A(t)  = 0 ,  O < t < a  

A(t )  = - In u( t )  , 

A(t)  = I ,  t ,  t 2 a 

and the mean failure rate between 0 and t by 
(12.19) L(t) = 0 ,  0 < t < a 

L(t) = I , ,  t 2 c1 

It is indeed nondecreasing, and v(t )  is IFRA (but not IFR). 
The mean lifetime is 

(12.20) 7 = Iom u ( t )  dt = dt + Jam e-'O' dt = a + - 1 e - 2 o a  
I0 

Note that 

(12.21) T > a ,  
which shows that in order to obtain A(t )  or v(T) it is necessary to  use expres- 
sions valid for t > a. Thus 

(12.22) A(T) = ~ , 7 ;  = ,I, a + e-aoa. 

If a > 1/I,, which is the case in Figs. 12.4 and 12.5, we have A(T) > 1, 
from which u(T) -= l/e, contradicting what is indicated by relations (11.24) 
and (11.25), which we have already proved for IFR functions. On the other 
hand, we have 

( 1 2 .23) A( t )  > t/T for t 2 a 

from which 
(12.24) u( t )  < e-'/T for t 2 a .  

These relations are valid in particular for a < t < 
indicated by Theorem 11 .IV. 

- 

contrary to what is 

Theorem 12.11. I f u ( t )  is IFRA and has mean T, one has 

( 1 2 .25) u( t )  < e-tw(r) for t > T 
where o(t) is the only positive solution to the equation 

(1 2.26) 
- 

1 - Tw(t) = e-'m(') . 
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This theorem recaptures Theorem 11 .V for IFR functions, and the proof 

Let z > T, and find o(z) = I ,  > 0 such that relation (12.26) is satisfied: 
that we give here will a fortiori prove Theorem 1 l.V. 

- 
( 1 2.27) 1 - 2, T = e-lOr 
Thus 

(12.28) 

The first term may also be written as 

(1 2.29) 

Since e-Ao is a decreasing function of A,, uniformly for 0 < u < z, the 
integral in the second term is likewise a decreasing function of I ,  that varies 
from T (for I ,  = 0) to 0 (for A, = 00) ;  therefore there is a value of A, , and 
only one such value, for which the integral takes the value T < z. This value 
is the solution of the equation 

(12.30) 
- 

,-lo' du = T.  I: 
Then consider the survival function (Fig. 12.7) 

(12.31) u , ( t )  = e- l0 ' ,  0 < t < z ,  

= 0 ,  t a ? ,  
obtained from the exponential law with parameter 1, by introducing a limit 
of functioning z (cf. Section 8). According to (12.30), this has a mean equal 
to  T. On the other hand, it is IFR (Fig. 12.6); we shall see that this is, among 
all IFRA survival functions with mean T, the one that has the largest value 
for t = z - E .  

We show that there exists to < z such that 

(12.32) u ( r )  < e-'O' for t > to . 

Relation 

s, u ( t )  dt < JOm u ( t )  dr = T = eCdo' dt ( 1  2.33) 

shows that we may not have u(t)  > e-'O for all t such that 0 < t < z. There 
is thus a value to of t such that 0 < to  < z, and u(t,) < e-'OZo. Then, how- 
ever, A(t,)  2 l., t o ,  and since A(t)/ t  is nondecreasing, we have A(t) 2 A, t 
for all t > t o ,  from which (12.32) follows. In particular, for t = z, we have 

s,' 
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FIG. 12.6. FIG. 12.7. 

v(t) < e-'Or. We then see that, for all values of z greater than T, the solution 
w(z) = I ,  of Eq. (12.26) (or (12.30)) satisfies (12.25) for t = z. 

We have seen above that the function u l ( t )  defined by (12.31) is IFR and 
has mean T .  Since, according to the theorem, any function that is IFRA with 
mean T satisfies the relation u(z) < e-lor, and that, for t = z - E ,  one has 
v , ( t )  = e-'O', it then follows that the superior limit fixed by the theorem may 
not be improved: the curve e-'O(') is the superior envelope, for t > T, of 
IFRA survival functions with mean T. 

Theorem 12.III. If v(t)  is an IFRA suruiual function and has mean 

o < t < e , 
then there exists 9 > 0 such that 

(1 2.34) 

(12.35) v ( t )  < e-'/', t > 8 . 

u(t)  2 e-r/', 

We first remark that, if one has for a certain value to > 0 o f t ,  

(12.36) u(t,) > e-ro/F , 

it then follows that 
In u(t , )  > - t,/T 

and, according to (12.2), 

(12.37) no,) < t o / T  

or 

Since L(t) is nondecreasing, we shall then have 

1 
(12.38) 0 c t < to L(t) d L(t,) < = 0 u(t)  > e-'" 

T 
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In the same fashion, if 

(12.39) v( t , )  < e-'l/', 
we shall have 

(12.40) t > t ,  v ( r )  < e-ll'. 

However, we have 

JOm v( t )  dt = T = e-"T:dt. 
- JO7 (12.41) 

Since u(t )  2 0 and e-'IT 2 0, either u(t )  = #,-'IT for all t ,  and the 
theorem is verified trivially for all 8, or there exists a to satisfying (12.36) and 
a tl satisfying (12.39), evidently with to < tl .  In the second case, the limits 

( 1  2.42) 

(12.43) 
exist and satisfy the relation 

t, = inf { t/t > 0, o( t )  < e-f/' 

t ,  = sup { t / v ( t )  > e-f/T 1 

(1 2.44) 1 ,  d 

and the theorem is verified for all 8 belonging to the closed interval [t, , fM]. 
Note that if t, < t , ,  we obtain u(t )  = e-'IT for all t E It, , fM]. 

Theorem 12.ZV. If u(t)  is IFRA and has mean 

JOm (p(r) v( t )  dt d JOm q(t) e-'/T dr , (resp. 2) . 

and if q(t) is a non- 
decreasing function (respectively, nonincreasing), one has 

(12.45) 

As we have seen in Theorem 12.V, relation (12.45) permits us to compare 
the moments of a random variable whose survival function is IFRA to 
those of a random variable whose law is exponential. 

Let 0 be a positive number such that inequalities (12.34) and (12.35) of 
Theorem 12.111 are satisfied. According to (12.41) we may write 

(12.46) 

Put 

(12.47) I = q(t) v ( r )  dt - rp(t) e-'iT dr = Cp(t) [ c ( r )  - e-'/'] dt 

According to (12.46), we also have 

( 1  2.48) 

JOm Cp(0) v( t )  dt = (p(0) e-'/'dt = (p(O).T. sb 
JOm JOZ JOm - 

%, 

I = [ [q(t) - (p(O)] [v( t )  - e-'lT] dt . 
J o  

I .  
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If, however, cp(t) is nondecreasing, then 

(1 2.49) 0 < r < 8 = q( t )  - q(8) G 0 and v(t) - e-"' 2 0 
and 

(12.50) t > 8 = q( t )  - cp(8) 2 0 and u(t)  - ,-'IT < 0 .  

Thus 

(12.51) Z G O ,  

and the theorem is proved in the case of a function cp(t) that is nondecreasing. 
The proof is the same in the case of a nonincreasing function. 

Theorem 12.V. If v(t) is IFRA and has mean T, the moment of order r of 
the random variable T whose survival function is v(t) satisfies the condition 

(12.52) E [ T ~ G ~ ! F ,  r =  1 ,2 ,3  ,.... 

The proof is immediate from Theorem 12.IV. By definition we have 

E [ T q  = - t'dv(r). Iom 

JoW 

(12.53) 

In the same fashion as in Section 5, an integration by parts permits us to 
write 

E [ T q  = r (12.54) 

The function tr-' being nondecreasing, Theorem 12.IV gives 

(12.55) 

t r W 1  v ( r ) d r  . 

JoW rr-'  v(r) dt < lom r r - '  e-'"dr. 

The second term of (12.55) represents (to within the factor r )  the moment 
of order r of the exponential law, which we may easily calculate by making 
the change of variable u = t /T :  

(12.56) rJom rr-'  e-'IT dr = r 

where T(r )  is the Eulerian function of the second kind. We know that, for 
IoW - - 

T' d-' e-" du = r F  T ( r ) ,  

r E { 1 , 2 , 3  )... } ,  

we have T(r )  = (r - l)!. Relations (12.55) and (12.56) then give (12.52). 
Using Theorem 12.V and inequality (12.15) together we obtain a bound 

on the moment of order r as a function of,the failure rate at the origin A(0) 
of the survival law 

( 1 2.57) 
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Corollary. 
greater than or equal to 1. 

The coeficient of variation ( cT /T)  of an IFRA survival law is 

In fact, we have, according to (12.52), 

( I  2.58) 
from which 

E(T2)  d 2 T 2  

- 
(12.59) 0; = E ( T ~ )  - T 2  G T ~ .  

Note that the superior limit is attained by the exponential law, for which 
b T  = T. 



CHAPTER Ill 

STUDY OF THE STRUCTURE OF 

SYSTEMS: STRUCTURE FUNCTIONS 

AND RELIABILITY NETWORKS 

13 Introduction 

In the first two chapters of this work we have considered a piece of equip- 
ment as a " black box" for which one may observe only whether or not it 
functions, and we have described probabilistic methods that allow the study 
of the lifetime of this black box. We now proceed to penetrate the box; most 
equipment is in fact quite complex, and the detailed study of its reliability 
supposes that it is considered as a " system " formed of simpler elements. 

We shall proceed in two stages: In the present chapter, we shall see how 
the structure of a system may be described, that is, the way in which the state 
of a system depends on the state of its elements. This chapter does not use 
probabilistic concepts and may be considered independently of the first 
two. 

In the following chapter, we shall combine the concepts that we then 
have at our disposal. We shall know how to represent and to study the life- 
time of a system on one hand, and its elements on the other; and we shall 
know how to pass from the lifetimes of the elements to the lifetime of a system 
as a function of its structure. 

5 5  
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14 Hypotheses on the Structure and Functioning of Systems 

The theory developed in the sections that follow is applicable to  systems 
or complex equipment’” that satisfy the following hypotheses : 

(1) At any given instant, the equipment may be in only one of the 

(2) The equipment may be decomposed into r components, numbered 

each component is, at a given instant, either functioning or faulty; 
the state of the equipment (good or failed) depends only on the state 

We shall see that one may associate with such a piece of equipment a 
“ structure function,” or indeed, with certain reservations, a “ reliability 
network.” However, determining the algebraic expression of the structure 
function or constructing the reliability network associated with a given piece 
of equipment necessitates a deep understanding of these functions and net- 
works; we shall dwell first on these more general and more abstract aspects. 

In the following chapter, we shall pass by means of a very simple trans- 
formation from the structure function to the reliability function, and then to 
the survival function. 

following two statesIb: it is functioning, or it is faulty. 

as 1, . . . , r, in such a fashion that 

of its components. 

15 Structure Function 

Consider a system S composed of r components e , ,  i = 1 ,  2, ... , r. 
We first associate with each component e ,  a state variable x i  such that 

1 if the component e ,  is in a good state, 
0 if the component e ,  is faulty. 

If e = { e,, e2 ,  ... , e, } is the set of components, the r-tuple (xl, x 2 ,  
. . . , x,) will be called the “ state of the set of components ” ; this will also be 
denoted by (x) : 

(15.1) 

We know that there exist 2’ r-tuples such as (15.1); there are thus 2’ different 
states of the set of components. 

x. = ( 

(XI = (XI, x2, ..., x,). 

In One may speak of a system and the equipment that constitutes it, or of complex 

I b  In Chapter VI we shall consider the case of equipment that has two types of failure. 
equipment and its components. 
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Let y be the state variable of the system such that 

1 if the system is in a good state, 
0 if the system is faulty. 

Evidently, y depends on (x), and the hypotheses of Section 14 imply that 
there exists a function’ (x) c, y which we denote by 

(15.2) y = cp(x) or y = ~ ( x , ,  x2, ..., x,). 

This function will be called a “ structure function ” of the system. A structure 
function depending effectively (see Section 20) on r variables will be said to 
be of “ order r.” 

Example I (components in series). Let 

(15.3) y = d x , ,  X’, ..., x,) 
- - X1.X’ ..... x, 

= f j  x i .  
i =  1 

This structure function corresponds to a system that functions only under the 
condition that all its components are in a good state: 
(15.4) (Vi, xi = 1) =+- ( y  = I ) ,  

(3i : xi = 0) => ( y  = 0 ) .  

Such a structure is said to be a “series structure”; one also says that the 
components are in series. 

Example 2 (components in parallel). Let 

(15.5) y = d x , ,  X’, ..., x,) 
= 1 - ( 1  - X]).(l - X’) .....( 1 - x,) 

= 1 - fl (1 - x i ) .  
r 

i =  1 

This structure function corresponds to a system that functions only under the 
condition that at least one of its components is in a good state: 
(15.6) (3 : x i  = 1) => ( y  = I ) ,  

(V i ,  xi = 0) => ( y  = 0 ) .  
Such a structure is said to be a “parallel structure”; we also say that the 
components are in parallel. The use of two or more components in parallel 

This will signify that to any r-tuple (xi, x 2 ,  . . . , x,) corresponds one and only one 
value of y. 
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when only one would suffice introduces a redundance in the equipment. We 
shall return to this point later (Chapter V). 

Remark. The two examples given above indeed form a structure function 
since, for any state of the set of components (r-tuple formed of 0’s and I’s), 
the function y may take only the value 0 or 1. The operation defined by (1 5.3) 
and that defined by (1 5.5) may lead only to the realization of functions that 
are structure functions whatever the number of repetitions of these operations; 
we thus obtain the set of monotone structures (see Section 21). 

Example 1. Let 

(15.7) y = dx1, x2, x3) = x1[1 - (1 - x2) ( 1  - x , ) ]  . 

vPI(x2, x3) = 1 - ( 1  - x 2 ) ( 1  - x 3 ) ;  

This structure function is obtained by applying operation (15.5) to x2 and x 3 :  

(15.8) 

then by applying operation (15.3) to x1 and q l ( x 2 ,  x 3 ) :  

(15.9) y = Vl(x2 ,  X 3 )  = - ( 1  - ~ 2 )  (1 - . 

[ 1 I 0 
0 

1 
1 

FIG. 15.1.  

One may easily verify that q ( x , ,  x2  , x 3 )  takes only the values 0 and 1 ; in 
fact, one obtains the results given in Fig. 15.1. Indeed q ( x l ,  x 2 ,  x3) is a 
structure function. 

Example 2. 

(15.10) 

This very simple function cannot be obtained using only operations (15.3) or 
(15.5); it is, however, a structure function since it assumes only the value 0 or 
1. It is a nonmonotone structure function (see the remarks at  the end of 
Sections 16 and 2 1). The same holds for the following two examples. 

y = fp(x,) = 1 - XI 
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Example 3. 

(15.11) y = fp(x, ,  x2, x3) = (1 - XI) ( 1  - ~ 2 )  ( 1  - ~ 3 ) .  

One may easily verify that y assumes only the value 0 or 1. 

Example 4. 

(15.12) ~ = 1 - [ 1 - ( 1 - ~ , ) ( 1 - ~ , ) ~ 3 ]  [ l - - ~ , ( l - ~ ~ ) ( l - . ~ ~ ) ]  ; 

this function is also a structure function. 

Comparison of r-tuples. Suppose that the elements Ei  of set E = 

{ E, ,  E, , . . . , Ek } are ordered ; we shall use the notation Ei < Ej to indicate 
the existence of this order relation between the elements of the pair (Ei, Ej) .  

(15.13) (a) = (a,, u,, ..., a,) and (6)  = (b,, b,, ..., b,) . 

We shall then say that: 

Now consider two r-tuples 

(A) (a) equals (b), denoted (a) = (b), if and only if 
(15.14) Q i ,  i =  1 , 2  ,..., r : a i  = b i .  

(B) (a) exceeds (b), denoted (a) + (6)  (we may also say “dominates”), 
if and only if 
(15.15) Q i ,  i = l , 2  ,..., r : a i > b i .  

nated by”), if and only if 
(15.16) Vi, i = 1,2  ,..., r : a i  < b i .  

(C)  (a) is less than (b), denoted (a) < (b) (we may also say “is domi- 

(D) (a) strictly dominates (b),  denoted (a) > (b), if and only if 
(15.17) ai > bi and 3i : ai > b, . 

(E) (a) is strictly dominated by (b), denoted (a) < (b), if and only if 

(15.18) V i  : ai < bi and 3i : ai < bi . 

Examples. 

(15.19) ~ l , O , O , ~ , O ) < ~ l , l , O , l , O ~ ~ ~ l , l , O , ~ , l ~ .  

(15.20) (1,0,1,0,1)maynotbzcomparedwith(l,1,0,0,1). 

Boolean Lattice of States of the Set of Components. The order relation 
defined above introduces in the set of 2’ r-tuples, that is, in the set of states 
of the set of components, a Boolean lattice structure. Figure 15.2 gives a 
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representation (Hasse diagram) of the lattice corresponding to a system of 
three components. A 3-tuple (a) is dominated by (b) if and only if one may 
climb from (a) to (6) along the connections of the diagram. For example, 
(001) is dominated by (01 l), (101), and (1 1 l), but not by (000), (OlO), or (1 10). 

FIG. 15.2. 

In addition, one may, as we have done in Fig. 15.2, use this same repre- 
sentation to indicate the values taken by the structure function, that is, the 
state of the system for each of the states of the set of components. It suffices to 
use a different symbol according as the system functions (cp = 1) or fails to 
function (cp = 0). Figure 15.2 corresponds to the structure function (15.12); 
the states in which the system functions are represented by small circles, and 
those in which it does not function by crosses. 

Graphical Representation of a System. It is convenient to represent with 
a nonoriented graph3 a system of components being studied with a view 
toward examining its reliability. In Figs. 15.3 and 15.4 are presented some 
systems with components in series and in parallel. Figure 15.5 gives a more 
complex example. 

------- X 

FIG. 15 .3 .  I w 
FIG. 15.4. 

FIG. 15.5.  

See the review of the theory of graphs in Section 18. 
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The representation used is not in fact a physical reality, except in particu- 
lar cases (certain electrical, mechanical, or pneumatic assemblages, for 
example). It is used here only with a pedagogic goal; the introduction in 
Section 19 of reliability networks will give it a more precise sense. 

Subsets of Components. Let e = { e l ,  e , ,  ... , e, } be the set of com- 
ponents of a system; any part of e will constitute a subset of components. 

Example. Let 

(15.21) 

then 

(15.22) 

will be a subset of components, for example, as will 
(1 5.23) 

by 

(1 5.24) C. e l  = e - e ,  ; 

when there is no question of ambiguity in the nature of the reference set, this 
complement is denoted C, . 

e = I e l ,  e2, e3, e4, e5 I ; 

el = { e2, e4, e, 1 

e2 = { e l ,  e2 1 .  
For algebraic convenience, one defines an empty subset of e, designated 

as usual. One also defines the complement of a subset as 

Examples. Considering (1 5.22) : 
(15.25) 

Considering (1 5.23) : 

(15.26) 

- 
e l  = { e l ,  e3 I .  

e2 = { e3 ,  e4, e5 1 . - 

Cardinality of a Subset. The cardinality of a subset refers to the number 
of components constituting this subset. 

16 Links and Cuts 

Links of a Str~cture.~ Consider a structure defined by the function 
(16.1) y = ' P ( " I ,  x,, ..., .YJ 

The term path is also frequently used, but we prefer here to use link to avoid any 
confusion with the notion of path in graph theory, a notion that is close to that used here 
but not identical, as we shall see in Section 18. 
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and whose components are 

(16.2) 

Let 

(16.3) a = { e , , i E I ) c e  

be a subset of components defined by the subset I c { 1,2, . . . , r } of indices. 
If 

e = { e l ,  e2, ..., e, } . 

(16.4) * y = l ,  
xi  = 1 , i ~ 1  

xi = 0 ,  i $  I 

one says that a is a link. A link is thus a subset of components such that if all 
the components of this subset are in a good state, and if the other components 
have failed, then the system is in a good state. 

Example. Consider the structure function 

+ s1 x 2  .Y3 xq x g  . 
(16.5) ~ = x ~ + x , x ~ + x ,  X ~ X ~ - X ~ X ~ X ~ - - Y ,  . Y ~ - Y ~ . Y ~ - - Y ~  - Y ~ . Y ~ S ~  

One may verify that this is a structure function (in fact, it is that correspond- 
ing to the structure given in Fig. 15.5). 

The subset of components 

(16.6) 

is a link. In effect, put x1 = x2 = x3 = x 5  = 1 and x4 = 0 in (16.5); we 
have 
(16.7) 

a = { e , ,  e2 ,e3 ,  e5 } = { e,, i E I }  with I = { l , 2 ,  3, 5 )  

rp(1, 1 ,  l,O, I )  = 1 . 

Similarly, the subset a' = { e3 } is a link. 
On the contrary, 

(16.8) 

is not a link. We have 
(16.9) 

a" = I e l ,  e2, e4 1 

rp(1, 1, 0, 1, 0) = 0 .  

Cut of a Structure. Consider again the structure defined by (16.1) and 
(16.2). Let 
(16.10) 
be the subset of components whose indices belong to J .  If 

b =  { ej , jE J }  c e 

(16.11) * y = o ,  
x j  = 0 , j ~  J 

x j  = 1 , J $ J  
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one says that b is a cut: If the components of b have failed, and if the other 
components are in a good state, then the system does not function. 

Example. 
ponents 

(16.12) b = { e2 ,  e,, e5 I 
is a cut. In effect, put x2 = x3 = x5 = 0 and x, = x4 = 1 in (16.5); we 
have 

(16.13) 

(16.14) 

is not a cut. We have 

(16.15) 

Consider again the structure function (1 6.5). The subset of com- 

C p ( l , O , O ,  1 , O )  = 0 + 0 + 0 - 0 - 0 - 0 + 0 = 0 .  

On the other hand, 

b’ = { el,  e2, e4 I 

tp(0, 0, 1, 0, 1) = 1 . 

Minimal Link. If a link 
(16.16) a = { err,, e,,, ..., err, I 
is such that there does not exist a subset a’ c c a that is also a link, we say 
that a is a “ minimal link. ” 

Example. Once again take the structure function (1 6.5); considering the 
subset 

(16.17) a = { e4, e5 1 
we have 

(16.18) Cp(0, o,o, 1, 1) = 1 . 
Thus this subset is a link. 

One may verify that { e4 } and { e5 } are not links. It then follows that 
{ e4, e5 } is a minimal link. Moreover, this structure function possesses three 
minimal links, which are 

{ el,  e29 e5 I 9  { e4, e5 1 9 { e3 I . 

Minimal Cut. If a cut 

(16.19) b = { e j , j E J }  

is such that there does not exist a subset b’ c c b that is also a cut, we say 
that b is a “ minimal cut. ” 
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Example. Again looking at the structure function (16.5), we have that 

(16.20) 

is a cut since 
(16.21) 
One may verify that the three subsets { e l ,  e3 }, { el, e4 }, and { e3,  e4 } 
are not cuts, and neither are { el }, { e3 }, and { e4 }. 

Cp(O,l,O,O, I )  = 0 + 0 + 0 - 0 - 0 - 0 + 0 = 0 .  

The structure function has in fact three minimal cuts, which are 

{ el, e3, e4 1 9 { e27 e3, e4 1 Y { e3r es I . 

Complementary Subset of a Link or a Cut. It follows immediately from 
the definitions of links and cuts that one has the following properties: 

(1 6.22) a is a link c> L is not a cut; 

(16.23) b is a cut e 6 is not a link. 

To prove these logical identities, let us remark that “a is a link and L is 
a cut ” or, similarly, “ b is a cut and 6 is a link ” are contradictory statements. 
For example, “ a is a link” and “ L is a cut ” both imply the same state of the 
set of components, but different values of the state of the system. 

Examples. 
that 

Referring once again to the structure (16.5), one may easily verify 

{e , ,e ,} i sa l ink  and { e , , e , , e , ) i s n o t a c u t ;  

{ e,, e3,  es } is a cut and { el ,  e4 } is not a link. 

Remark. The definitions and properties that we have given may very easily be 
interpreted in Fig. 15.5, which visualizes the system whose structure function 
is given by (1 6.5). There are two other properties that are evident in this figure, 
or any other analogous figure: 

(1 6.24) a is a link, a c a’ * a‘ is a link; 

(1 6.25) b is a cut, b c b‘ 3 b‘ is a cut. 

We shall see that these properties are verified for the structures that are 
said to be monotone (Section 21), which are representable by a reliability 
network (Section 19), but structure functions exist for which properties 
(16.24) and (16.25) are not satisfied. 

Example. For the structure function (15.12), one may verify that { e3 } is a 
link, but that { e2 , e3 } is not one; { el } is a cut, but { e l ,  e, }is not (moreover, 
this is the complement of the link { e3 }). 
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17 Mathematical Properties of Links and Cuts. Duality 

Theorem 17.1. Any r-tuple ( x l ,  x2, . .. , x,) with x i  = 0 or 1 corresponds 
either to a link or to a cut. 

Indeed, let e, be the subset of components for which x i  = 1. If 
cp(x,, ... , x,) = 1, el is a link, and E l  is not a cut; if 'p(x,, ... , xr)  = 0, E l  is a 
cut, and el is not a link. 

On a lattice of states of a set of components, an example of which was 
given in Fig. 15.2, each vertex (or node) of the lattice represents an r-tuple, to  
which corresponds a link (vertex where the system functions, represented by 
a small circle), or to  a cut (vertex where the system does not function, repre- 
sented by a cross). 

In this same representation of a lattice, the properties indicated in 
Section 16 may be expressed in the following fashion: 

To the relation x ( ' )  < x ( ~ )  between r-tuples corresponds the inclusion 
relation e ,  c e2 between the subsets defined as above, that is, the subsets for 
which xi = 1 in the r-tuple considered. A minimal link then corresponds 
to a lattice vertex represented by a small circle and connected downward 
only with crosses (for example, (001) represents the minimal link { e3 } in 
Fig. 15.2). A minimal cut corresponds to a cross that is connected only 
to circles through upward connections (in Fig. 15.2 the only minimal cut 
is the empty set @, corresponding to the vertex 11 1). Properties (16.22) and 
(16.23) simply express the fact that at a given vertex of a lattice, the system 
may not both function and not function at the same time. Finally, the fact 
that properties (16.24) and (16.25) are not satisfied by the structure function 
(15.12), to which corresponds Fig. 15.2, is translated by the fact that not all 
the vertices to which one may climb up from a circle are circles (001 is a circle, 
01 1 is not), and not all the vertices to which one may climb down from a cross 
are crosses (take the same example, considered in the reverse sense). 

Theorem 17.11. Let A, be the number of links having k components and Bk 
the number of cuts having k components. Then 

(17.1) 

where (L) is the number of combinations of r objects taken k at a time. 

As a consequence, we associate with each of the ( i )  subsets of k com- 
ponents, the r-tuple obtained by taking the value 1 for the components 
belonging to the subset, and the value 0 for the others. According to the proof 
of Theorem 17.1, there then corresponds to each subset either a link having k 
components, or a cut having r - k components. 
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Length of a System. The length of a system S is the smallest integer A 
such that AA > 0. In other words, this is the number of components in the 
(minimal) link having the smallest cardinality. This length is denoted by 
4s). 
Example. 
since the link having the smallest number of components is { x3 }. 

The length of the system corresponding to (16.5) is equal to  1 

Width of a System. The width of a system S is the smallest integer p 
such that B, > 0. In other words, this is the number of components of the 
(minimal) cut having the smallest cardinality. This width is denoted by p(S). 

Example. The width of the system corresponding to (16.5) is equal to 2 (cut 
{ x3 9 xs 1). 

Theorem 17.111. 
satisfy the inequality 

(17.2) A(S) + p(S)  d r + 1 , 

where r is the number of components of the system. 

The length A(S) and the width p(S) of the same system S 

PROOF. A set containing A(S) - 1 components cannot be a link, and there- 
fore its complement, which has r - A(S) + 1 components, is necessarily a cut. 
By virtue of the definition of the width p(S) of a system, we obtain 

p(S)  d r - 4.9 + 1 , 

which proves (17.2). 

Degenerate Systems. One says that a system is degenerate if and only if 

(17.3) q(x) = I 

(17.4) q(x) = 0 .  
or 

In other words, whatever the state of its set of components, the system is always 
functioning or always broken down. From another point of view, one would 
have either a zero length or a zero width, if the notions of length and width 
were extended to  zero values. 

Duality. Let S be a system whose structure function is cp(x); the system 
S whose structure function is 

- 
(17.5) 

where (1  - x) = (1  - x I ,  1 - x2, ... , 1 - xr), is called the “dual of S .  ” 

q(x) = 1 - q(l - x) 



1 7  M A T H E M A T I C A L  P R O P E R T I E S  O F  L I N K S  A N D  C U T S .  D U A L I T Y  67 

Example. Consider the structure function 

(17.6) Y = cp(x1, x29 x3. x4) 
= x4 + X I  x3 + x2 x3 - X I  x 2  x3 - X I  x3 x 4  

- x2 x3 x4 + x1 x2 x3 x4 . 

This function may be rewritten in the form 

(17.7) y = 1 - (1  - [ l  - (1  - x , ) ( l  - x2)].u3)(l - x4) 
from which it more readily appears that the corresponding system has a 
representation as in Fig. 17.1. 

FIG. 17.1.  

Now compute 
- (17.8) 

Instead of replacing xi by 1 - x i  in (17.6), we do this in (17.7), which is 
easier : 

(17.9) 

cp(x) = 1 - cp(1 - x) . 

y = +(x) = 1 - cp(1 - x) 
= [ i  - ( I  - x1 x ~ )  ( I  - x,)] .y4 

= x3 xq + XI  x2 x4 - X I  x 2  x3 x4 .  

The representation corresponding to (17.9) is given in Fig. 17.2. 

FIG. 17.2. 

Properties of Duality. We give several properties which the reader may 
easily prove : 

(1) [cpol = cp(x), 0 = s. 
(2) A link of S is a cut of S and conversely. 
(3) A cut of S is a link of S and conversely. 
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(4) A minimal link of S is a minimal cut of S and conversely. 
( 5 )  A minimal cut of S is a minimal link of S and conversely. 

18 Review of the Theory of Graphs5 

Graphs. Consider a finite set S and the product set S x S. Let U be a 
subset of S x S; the ordered pair 

G = ( S ,  U) 

is called a graph. The elements of S are called “vertices of the graph”; the 
elements of U, which are pairs of vertices, are called “arcs of the graph.” 

Figure 18.la gives a graphical representation of a graph. The vertices 
are represented by points, and the arcs by continuous lines joining the 
vertices and bearing an arrowhead. The set of vertices is 

(18.1) 
and the set of arcs is 
(18.2) 

S = { A ,  B, C,  D }  

u = { (W, ( A D ) ,  (BB) ,  (BC),  ( B D ) ,  ( C a  ( D A ) ,  ( D B ) ,  ( D O ,  (DD) 1 . 
Given an arc such as ( A ,  B),  A is called “the initial end of the arc” and 

B is its “ terminal end.” An arc such as (B,  B )  is called a “ loop.” A vertex B 
is said to be a “successor” of A if ( A ,  B )  is an arc; for example, in the graph 
of Fig. 18.1 a, C is not a successor of A .  

A graph may also be described by its Boolean matrix, that is, by a square 
matrix whose rows and columns correspond to the vertices of the graph and 
whose elements are valued 0 or 1 according as the pair corresponding to the 
vertices does or does not belong to U (see Fig. 18.lb). 

In order to store a graph in the memory of a computer, one usually uses 
a “ dictionary of successors ” and/or a “ dictionary of precedents.” As the 
name indicates, the dictionary of successors gives for each vertex of the graph 
its list of successors, which amounts to describing the Boolean matrix row 
by row (Fig. 18.1~). The dictionary of precedents, on the other hand, gives 
for each vertex X the list of vertices that are initial points of an arc having the 
vertex X for a terminal point; it corresponds to the columns of the Boolean 
matrix. 

For more details, the reader should consult the following works: C. Berge, ThPorie 
des Graphes et ses Applications. Dunod, Paris, 1958; A. Kaufmann, Graphs, Dynamic 
Programming, and Finite Games. Academic Press, New York, 1967; A. Kaufmann, 
Introduction a la Combinatorique. Dunod, Paris, 1968; B. Roy, AIgLbre Moderne et ThPorie 
des Graphes, 2 Vols. Dunod, Paris, 1969-1970; R. G. Busacker and T. L. Saaty, Finite 
Graphs and Networks. McGraw-Hill, 1965. 
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‘i B B, C, D 

FIG. 18.1. (a) Graphical representation; (b) Boolean matrix; (c) dictionary of 
successors. 

r-Fold Graphs. In certain applications it is convenient to allow that 
there exists between certain vertices, not one arc (at most), but two or more 
(Fig. 18.2). 

The corresponding concept is no longer a graph in the sense of the defini- 
tion above; we shall call this an “r-fold graph,” where r is the maximal 
number of arcs having the same initial point and the same terminal point. 
Such arcs will have to be distinguished, for example, by an index, as we have 
done in Fig. 18.2. 

FIG. 18.2. 

In a more precise fashion, one may define an r-fold graph as formed of 

(a) a set S of vertices, and 
(b) a set U of arcs and a mapping Q of U into S x S that associates to 

each arc an initial point and a terminal point. 

The notation that we shall use to designate the arcs will in fact dispense 
with explicit mention of the mapping Q: for example, (DE)2  evidently desig- 
nates an arc with initial point D and terminal point E. Figure 18.2 thus 
represents a 3-fold graph 
(18.3) G = (S, U) 
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with 

(18.4) 

and 

S = { A ,  B, C, D, E } 

Other Definitions. We now proceed to define on r-fold graphs several 
concepts that we shall have use for in this work. These concepts are evidently 
applicable to graphs as we have initially defined them, which may be con- 
sidered as 1-fold graphs. In the following parts of this book we shall use the 
term “ graph ” to designate r-fold graphs, whatever the value of r. 

Given a graph G = (S, U), a partial graph of G is a graph G, = (S, U’) 
such that U‘ c U. Thus one may obtain a partial graph of G by suppressing 
certain arcs. Then the graph in Fig. 18.3 is a partial graph of the graph 
presented in Fig. 18.2. 

FIG. 18.3. 

A path is a sequence of arcs 

(18.6) p = (u , ,  u,, ..., u,)  with u i € U ,  i = 1 ,  ..., I ,  

such that the terminal point of each arc ui (i = 1,2, . . . , I - 1) coincides with 
the initial point of the following arc u i + , .  A path such that the terminal 
point of the arc u1 coincides with the initial point of the arc u, is called a 
“circuit.” Examples: In the graph of Fig. 18.2, ( (BD), ,  (DE) , ,  (EA) , ,  (AA),)  
is a path; ((BC), , (CB), ,  (BE), ,  (ED),, (D&, (EB),)  is a circuit. 

The length of a path is the number of arcs that it contains. 
A path is said to be “elementary” if it does not pass twice through the 

same vertex. The path and the circuit given as examples above are not 
elementary; on the other hand, ( (BD), ,  (DE) ,  , (EA),)  is elementary. 

Given two arbitrary vertices Si and S j  of a graph G, if there exists a path 
p from Si to S j ,  there exists then an elementary path from Si to  S j ;  in the 
preceding example, the path ( (BD) , ,  (DE),  , ( E A ) , ,  ( A A ) , )  passes through the 
vertex A twice; it thus contains a circuit, here reduced to the loop ( A A ) , ;  by 
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suppressing all the circuits contained in the path ,u whose existence is known, 
it is rendered elementary, which proves the existence of such an elementary 
path. We shall use this property in Section 23.  

Consider a subset of vertices S, c S. A cut of the graph G relative to 
the subset S, will be the set w - ( S , )  of arcs whose initial ends do not belong 
to S ,  and whose terminal ends belong to S, .  For example, if we put S, = 
{ A ,  E } in the graph of Fig. 18.2, the corresponding cut is 

(18.7) o-({ A ,  E 1) = { (BE) , ,  ( D E ) , ,  (DE) , ,  WE), } . 
The interest in this notion and the term used may be explained in the follow- 
ing fashion. In the example above, suppose that one is interested in the paths 
running from a vertex not in S , ,  such as C,  to a vertex of S , ,  such as A .  One 
may easily convince oneself that any path from C to A contains at least one 
arc of the cut (18.7). It follows that in the partial graph obtained by sup- 
pressing all the arcs of the cut, there is no path from C to A ,  moreover none 
from any vertex of S - S, whatever to any vertex of S,.  

Before ending, we introduce one last notion: A tree with root A will 
be a graph without circuits such that: 

(1) 
(2) 
Note that a tree is a I-fold graph. For this reason it is not necessary to 

A is a vertex that is not the terminal end of any arc, and 
each vertex other than A is the terminal end of one arc. 

provide indices for the arcs in the graph of Fig. 18.4. 

FIG. 18.4. 

The vertices of a tree may be divided into levels: If A represents level 0, 
any other vertex will have level equal to  the length of the (unique) path going 
from A to  this vertex. 

19 Reliability Networks 

A reliability network X defined on a set e = { el,  e,  , ... , e, } of com- 
ponents consists of: 
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(1) an r-fold graph G = (S, U) without loops and in which two vertices 
0 E S and Z E S are distinguished and called, respectively, the origin and end, 
and 

A 

(2) a mapping A :  U +w e such that 

W j )  = ( S ,  Sk) 3 Q(u,.) = (Si, S,) * & j )  # A h , . ) ,  

where 52 is the mapping that corresponds to each arc the pair of its ends 
(cf. Section 18). 

The mapping A corresponds a component to each arc of the graph. 
Several arcs may correspond to the same component,6 and it may happen 
that there is no arc corresponding to a given component. Figure 19.1 gives an 
example of a reliability network where 

(19.1) 
(19.2) 
(19.3) 

e = { e l 9  e2, e3, e4 I ,  
s = f 0, z, A ,  B, c > ,  
u = { (0, A 12, (0, A 13, (0, B ) ,  (4 B ) ,  

(4 Z ) ,  (B,  C ) ,  (B,  Z ) ,  ( C ,  B ) ,  ( Z ,  B )  I. . 
The mapping A is indicated by the e ,  attached to the arcs. 

To simplify the figures, if two symmetric arcs (Xi, X j )  and ( X i ,  Xi) 
concern the same component, it will be convenient to replace these two sym- 
metric arcs with a single arc with two opposing arrowheads (Fig. 19.2). To 
further simplify the presentation, the names of the vertices may be omitted 
when this will introduce no confusion. 

C 

FIG. 19.1. FIG. 19.2. 

Links of a Reliability Network. To any subset e, c e of components 
one may correspond the partial graph G,(e,) of the graph G, obtained by 

This is subject to the condition that they d o  not have the same end points. Arcs 
having the same end points, like the two arcs from 0 to  A in Fig. 19.1, will be marked with 
the index of the component to  which it corresponds through the mapping d. 
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retaining only the arcs of G to which correspond a component belonging to 
e, : 

(19.4) G,(eJ = ( S ,  U,(e,)) 

with 

(19.5) 

that there exists in the graph G,(a) a path from 0 to Z.  

U,(e,) = { u E U I d(u)  E el . 

A link of a network 32. will refer to a subset a c e of components such 

Example. { e l ,  e2 ,  e, } is a link of the network in Fig. 19.2, as may be seen 
in Fig. 19.3 which represents the corresponding partial graph. To each link 
there corresponds one or more paths of the graph. Inversely, to a path 
p = ( u , ,  u 2 ,  ... , u,) from 0 to Z there corresponds a link a formed by the 
images of the arcs u l ,  u 2 ,  ... , uI through the mapping A .  

FIG. 19.3. 

Example. To the path p = ( (OA), ,  AB, BZ) there corresponds the link 
a = { e3 9 e4 1. 

Cuts of a Reliability Network. A cut of a reliability network 32. will 
refer to a subset b c e of components such that the subset of arcs U,(b) 
defined by (19.5) contains a cut of the graph G relative to a subset of vertices 
including 0 but excluding Z. 

Example. 
the complementary subset { e4 } is neither a cut nor a link. 

{ e l ,  e 2 ,  e3 } is a cut of the network (and at the same time a link); 

To any cut b of a network there thus corresponds one or more cuts of the 
graph, included in U,(b). In the example above, the set of arcs { AZ, BZ } 
is a cut of the graph that does not include the arcs OB, (04, , and (OA),  . 

Note that the concepts of cut in a graph and of cut in a reliability net- 
work are not identical. It would no doubt be preferable to use two different 
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terms as we have done i n  the case of paths and links,7 but we have not found 
a satisfactory equivalent for the descriptive term “ cut.” 

System Defined by a Reliability Network. Given a reliability network 32, 
consider the system S having e for its set of components and such that for 
each state of the set of components in which the components of the subset 
el are in a good state and those of the complementary subset < have failed, 
the system functions if el is a link of the reliability network X, and it fails 
in the contrary case. This system S is defined without ambiguity from 
the network X. Its structure function* cp(x,, x 2 ,  ... , x,) takes the value 1 
for any state x = (xl, x2, .. . , x,) such that the subset of components for 
which xi = 1 is a link of the network; this then is also a link of the structure 
function. If the subset of components is not a link of the network, cp takes the 
value 0, and the subset is not a link of the structure function. It is easy to see, 
similarly, that the network and the structure function have the same cuts. 

Example. Figure 19.4 represents the table of values of the structure function 
cp of the system defined by the network of Fig. 19.2. For the state (1, 1, 1, 0) 
of the set of components, one has cp = 1 since { e , ,  e ,  , e3 } is a link; on the 
other hand, cp(0, 0, I ,  0) = 0 since { e3 } is not a link. One may equivalently 
reason in terms of cuts: q(0, 0, 0, 1) = 0 since { e l ,  e, , e3 } is a cut. (Note 
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’ Hansel [28] uses the termpath tc designate what we have called a link; then to a link 

* See Section 15. 

of the network corresponds a partial graph of the graph. 
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that it is the subset of components for which x i  = 0 that must be considered.) 
On the other hand, cp(0, 0, 1, 1) = 1 since { e l ,  e2 } is not a cut. 

The identity between the links and cuts of a reliability network and those 
of the structure function defined by this network permits one to apply to 
reliability networks the notions defined in Sections 16 and 17. We shall now 
briefly review these notions using the language of reliability networks. 

Minimal Cuts and Minimal Links. A link a is minimal if no subset 
a' c c a is a link of the network. A cut b is minimal if no subset b' c c b 
is a cut of the network. 

Examples. In the network of Fig. 19.2, { e l ,  e 2 ,  e3 } is not a minimal link; 
{e l ,  e3 } is one and is also a minimal cut. { e l ,  e4 } is another example of a 
minimal cut. 

Complementarity Relations. Recall properties (16.22) and (1 6.23) : 

(19.6) a is a link o zi is not a cut, 

(1 9.7) b is a cut o 6 is not a link. 

Degenerate Networks. A network is degenerate if: 

(1) it possesses no link (the system never functions), or 
(2) it possesses no cut (the system functions whatever the state of its 

components); the extremities 0 and Z are then identical. 

Example (Fig. 19.5) The networks XI (Fig. 19.5a) and X2 (Fig. 19.5b) are 
degenerate. 

B C 

FIG. 19.5. 

Fundamental Property of Reliability Networks. Adding one or more 
arci to a graph cannot suppress a path existing between the origin 0 and the 
end Z .  The repair of a broken component thus could not entail the failure of 
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a system representable by a reliability network (this hypothesis is reasonable 
but not absolute for real systems). 

This property may be written in the following form : 

(19.8) a‘ c a, (a’ is a link) (a is a link). 

One has the same property for cuts: 

(19.9) b’ c b, (b’ is a cut) =- (b is a cut). 

In effect, by adding arcs to a cut in a graph, one still obtains a cut. Properties 
(19.8) and (19.9) may be expressed in the following theorem. 

Theorem 19.1. In a reliability network, a subset of components including 
a link is also a link; a subset of components including a cut is also a cut. 

In more concrete terms, one may say that the systems defined by reli- 
ability networks are such that repair of a broken component cannot entail 
failure of the system, and that the failure of a component cannot entail the 
functioning of a failed system. We have already remarked at the end of Sec- 
tion 16 that properties (16.24) and (16.25) are not satisfied by all structure 
functions. We shall return to  this point in Section 21. 

Theorem 19.II. A cut contains at least one component from each link, 
and a link contains at least one component from each cut. In other words, any 
link and any cut have at least one component in common. 

In fact, let a be a link and b be a cut; suppose they have no component 
in common, that is, a c 6. Then, according to the preceding theorem, 6 is a 
link, and according to  the property of complementarity (19.6), b is not a cut, 
which is contradictory to  the hypotheses. 

Theorem 19.III. Any link includes at least one minimal link, and any cut 
includes at least one minimal cut. 

In fact, let a be a link; we seek a subset of a that is also a link. Two cases 
are possible: 

(1) No subset of a is a link; then a is a minimal link, and the theorem is 
verified. 

(2) A subset a, c a is a link; we then begin again and seek a subset of 
a, that is a link, a d  so on. With a having a finite number of components, we 
necessarily end with a minimal link, which may be empty if the network is 
degenerate. 

Similar reasoning shows that any cu: includes a minimal cut. 
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Theorem 19.ZV. In a nondegenerate network, a set b of components is a cut 
ifand only if it contains at least one component of each minimal link. 

Let b be a subset containing a component of each minimal link; 6 
includes no minimal link, and is thus not a link (Theorem 19.111), and thus b 
is a cut (property (19.7)). Conversely, if b is a cut, 6 is not a link, and can 
include no minimal link. 

Theorem 19. V. In a nondegenerate network, a set a of components is a 
link if and only if it contains a component from each minimal cut. 

(Same proof as for the preceding theorem.) 

Length and Width of a Network. We shall preserve for reliability net- 
works the terminology used in Section 17 for structure functions in Theorems 
17.11 and 17.111. Thus the numbers Ak, Bk, 1, and p signify 

Ak : number of links having k components 
Bk : number of cuts having k components, 
1 : length of a network: 

(19.10) ( k  < 1) =%- (Ak = o) ,  
p : width of a network: 

(19.11) (k < p )  * (Bk = 0 ) .  

Theorems 17.11 and 17.111 then stand valid for reliability networks. 
Furthermore, one may state the following theorem, proved in 1956 by Moore 
and Shannon [40]. 

Theorem 19.VZ. The number r of components of a network is at least 
equal to the product of the length and width of this network 

(19.12) r 2 1 . p .  

Moore and Shannon. 
We do not reproduce here the somewhat long proof proposed by 

Typical Networks’ 

“Series” Networks. Each component is a cut. The set of components 
is the only link. 

The notions series, parallel, and bridge are common in the theory of electrical net- 
works; a sketch of a reliability network is topologically analogous to that of an electrical 
network, but the meanings are very different. 
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Example (Fig. 19.6). 
of these arcs had not its symmetrical arc in the direction of 2 toward 0. 

One would still have a series network if one or more 

........ , ..... A 
0 2 

FIG. 19.6. 

“Parallel ’’ Networks. Each component is a link. The set of components 
is the only cut. 

Example (Fig. 19.7). One would still have a parallel network if one or 
more of these arcs had not its symmetrical arc in the direction of Z toward 
0. 

en 
FIG. 19.7. 

“ Bridge ” Networks. Such networks have the configuration presented 
in Figs. 19.8 and 19.9. 

A A 

u 

FIG. 19.8. FIG. 19.9. 

The network of Fig. 19.8 possesses four minimal links and four minimal 
cuts, which are, respectively, 

(19.13) I e l ,  ez } , I e l ,  e4, e5 1 , I e3, e4 1 ,  I e,, e3, e5 I ,  
and 

(19.14) { e l ,  e3 I { el ,  e4, e5 I t  { ez, e4 I ,  { e,, e3 ,  e5 I . 
A variant (Fig. 19.9) possesses three minimal links and four maximal cuts; 
these are, respectively, 

(19.15) I e l ,  ez I { e l ,  e4, e5 1 , { e3, e4 I 
and I el, e3 I , { e l ,  e4 1 , { e2, e4 1 , { ez, e3, e5 I . 
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Other variants are possible with fewer components than five. Thus the bridge 
of Fig. 19.10 has three minimal links and four minimal cuts. 

A 

a 
FIG. 19.10. 

“ Parallel-Series ” Networks. Such networks have the configuration 
presented in Fig. 19. I 1. The components joining two adjacent vertices in this 
network constitute a cut. One obtains a link by taking a component in each 
cut. 

FIG. 19.11. 

‘‘ Series-Parallel ” Networks. These are networks having a configuration 
like that indicated in Fig. 19.12. 

FIG. 19.12. 

Duality in Reliability Networks. A network X is dual to a network 
dt if it has the following property: Any link of X is a cut of 31 and vice versa. 
With the aid of Theorems 19.IV and 19.V one may easily prove that any cut 
of X is a link of dt. 
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Properties of duality in reliability networks. 

(1) @j = x. 
(2) A link of 3, is a cut of x and vice versa. 
(3) A cut of X is a link of x and vice versa. 
(4) A minimal link of 3l is a minimal cut of 
( 5 )  A minimal cut of 37- is a minimal link of 

and vice versa. 
and vice versa. 

20 Equivalence between Structure Functions and 
Re1 iabi I ity Networks 

Equivalent Structure Functions. To any system satisfying the hypotheses 
set forth in Section 14 one may associate a unique structure function, in the 
sense that for each state of the set of components, a unique value can indeed 
be defined. This structure function may however be expressed by various 
algebraic formulas. 

In a slightly more general fashion, we consider: 

(1) three disjoint sets of components e, e l ,  e, , containing, respectively, 
r ,  r l ,  and r2 components; we designate by x = (xl, x,, . . . , xr), u = (u l ,  u 2 ,  
... , u,,) ,  and u = (u l ,  u 2 ,  ... , ur2) the states of these sets of components; 

(2) two structure functions cpl(x, u)  and cp2(x, u) ,  defined, respectively, 
on the sets of components e u e l  and e v e2 . 

We shall say that the structure functions cpl(x, u)  and rp,(x, u )  are " equiva- 
lent" if 

It follows immediately from this definition that, whatever the state x of 
the set of components e, cpl(x, u) has a value independent of u, and cp2(x, v) 
has a value independent of u.  The components of e l  and of e, are called " use- 
less components"; their state, good or bad, has no influence on the function- 
ing of the systems represented by the equivalent structure functions cpl(x, u)  

It may not appear to  be very realistic to consider systems having useless 
components. In fact, this is necessary in certain cases because systems are 
often called upon to play various roles or to have various modes of use. A 
separate analysis of reliability must be made for each of various uses, and 
certain components may be useless for some of these. 

The possible existence of useless components necessitates several pre- 
cautions for comparison of structure functions. Thus it follows from Theorem 
17.1 that a system is completely defined by the list of its links (or by the list 

and cp2(x, 0). 
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of cuts): for any r-tuple a = ( a l ,  a,, ... , a,), if a is the subset of components 
for which ai = 1, one has cp(a,, a,, ... , a,) = 1 when a occurs in the list of 
links and cp = 0 in the contrary case. This is true only if there is no ambi- 
guity in the set of components over which one considers the system to be 
defined. In order to avoid any difficulties, one may use the following theorem. 

Theorem 20.1. Two structure functions, not necessarily dejined on identical 
sets of components, are equivalent if, after suppression of any possible useless 
components, every link of one is a link ofthe other (or indeed, any cut of one is a 
cut of the other). 

Example. The following four structure functions are equivalent : 

(20.1) 
(20.2) 
(20.3) 

(20.4) (P4(x1) = -y1 . 

cpl(X1, X J  = [ I  - ( 1  - X I )  ( 1  - .,>I -y;, 

cpZ(X1, x2) = [ I  - ( 1  - x1) ( 1  - .,>I -y1* 

cp3(Xl, x2) = 1 - (1 - X I )  ( 1  - x1 -y2)3 

One may verify that this is so either by expanding the expressions above and 
noting that x i  = x: = xi” = , since xi takes only the values 0 and 1, or 
by establishing the list of links (or of cuts). Figure 20.1 gives this list, in the 
first part before suppression of the useless component x2 for cpl, cpz, and c p 3 ,  
and in the second after suppression of the useless component. 

Links before suppression 
of useless component 

Links after suppression 
of useless component 

FIG. 20.1. 

Equivalent Reliability Networks. The preceding definition for equiva- 
lent structure functions may be extended to reliability networks. Two re- 
liability networks X1 and 32, are said to be “equivalent,” and we write 

(20.5) 3tl = 3, 

if, after suppression of possible useless components (see the definition below), 
any link of X1 is a link of X, and vice versa (respectively, any cut of X, is 
a cut of 32, and vice versa). 
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DeJnition. A component x i  of a reliability network is useless if every link con- 
taining x i  remains a link after suppression of x i  (respectively, ifevery cut con- 
taining x i  remains a cut after suppression of x i ) .  

Example (Fig. 20.2). { e l ,  e,, e3 } is the only link containing e,; { e l ,  e3 } 
is also a link; therefore e,  is useless. On the contrary, { e l ,  e, } is not a link, 
and therefore e3 is not useless. 

FIG. 20.2. 

Another Example (Fig. 20.3). 
contain el are 

We show that e ,  is useless. The links that 

(20.6) 
(20.7) 
(20.8) 

In (20.6) suppress e l ;  { e, } remains and it is a link. In (20.7) and (20.8) 
suppress el ; there remain { e, , e3 } and { e, , e4 } which are links. Further- 
more, e, is not useless, but e3 and e4 are. There is thus only one component 
that is not useless, and this network is equivalent to  one that contains only 
e,  . This result may be seen more easily by considering cuts. 

FIG. 20.3. 

Equivalence between a Structure Function q(x )  and a Reliability Net- 
work K. A reliability network %, and a structure function q(x )  are said to 
be “ equivalent,” and we write 

(20.9) x = q ,  

if, after suppressing any possible useless components, every link of %, is a 
link of q(x) and conversely (respectively, each cut of X is a cut of q(x )  and 
conversely). 

Two equivalent structure functions (or two reliability networks or  one 
reliability network and one structure function) correspond to  the same 
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system, taken to within useless components; they may be indifferently replaced 
with one another. 

Remarks. 
The complementarity existing between links and cuts (the com- 

plementary subset of a link is not a cut; the complementary subset of a cut 
is not a link) evidently entails that, in the definition of equivalence, we may 
replace the word link by the word cut and conversely. 

The equivalence relation between reliability networks X (respec- 
tively, between structure functions (~(x)) is evidently reflexive, transitive, and 
symmetric; it is indeed an equivalence relation in the sense of set theory. 

(1) 

(2) 

Examples. The four reliability networks in Figs. 20.4-20.7 are equivalent. 
For the first three, the component e2 is useless. The structure functions 
equivalent to these four networks are 

(Pl(X) = [1 - (1 - X I )  ( 1  - X2>3 .: 2 

( P 2 W  = [ I  - ( 1  - X1) (1 - .,>I X1 9 

(P3(X) = 1 - (1 - X I )  (1 - XI X 2 ) ,  

(P&) = X1 . 
These structure functions are equivalent to  one another, as we have seen (see 
Eqs. (20.1)-(20.4)). 

FIG. 20.4. FIG. 20.5. 

@ - 8 
0 el Z 

- 
FIG. 20.7. 

FIG. 20.6. 

21 Monotone (or Coherent) Structures 

A structure function P(X) is monotone" if it possesses the following 
property : 

(21. I )  (X'2') p (X'I') (P(X'2') 2 Cp(X'1') . 

lo  One also uses the term coherent to indicate that increasing monotone structures 
correspond to systems the design of which is normal, i.e., coherent. 
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Examples. 
(1) Let 

(21.2) Cp(x1, x2) = 1 - X I  x2. 

(X‘I’ )  = (xi]), x i ] ) )  = (0, O ) ,  

(x‘2’) = (x?, X y ’ )  = (1, 1) . 

(1, 1) > (0, 0 ) .  

This structure function is not monotone. In fact, let 

(21.3) 

(21.4) 

We have 

(21.5) 

On the other hand 

(21 . 6 )  d o ,  0) = 1 ,  V ( l ,  1) = 0 ,  

and 

(21.7) 

therefore (21.2) is not monotone. 
(2) Let 

(21.8) V(X1, x2) = 1 - (1  - X I )  (1  - x 2 ) .  

This structure function is monotone. In fact 

(21.9) cp(0,O) = 0 ,  ~ ( 0 ,  1) = I ,  c p ( l , O )  = 1 ,  ~ ( l ,  I )  = 1 . 

We therefore obtain 

(21.10) (1 ,  1) > (0, 1) > (090) d l ,  1) = d o ,  1) > cp(0,O) , 

(21.11) (17~)>(1,0)>(0,0)  * Cp(l,1)=cp(l,O)> Cp(O,O) ,  

* 

which satisfies (21.1). 
(3) Let 

(21.12) V ( X l , X , )  = X I  x2 ’ 

This function is monotone, as one may easily check. 

Theorem 21.1. A structure function is monotone i f  and only i f  any set of 
components including a link is also a link. 

This theorem may be deduced immediately from the correspondence 
between r-tuples and subsets of components. If a1 and a2 are two subsets of 
components and x ( l )  and x(’) are r-tuples defined in the following fashion: 

(21.13) e , E a ,  =- x!’) = 1 ,  e i E 8 ,  * 4’) = 0 ,  

(21.14) e ,  E a2 => xi’) = 1 , e ,  ~8~ - xi2) = 0 ,  
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then 

(21.15) a(2) 3 a(') o (x '~) )  3 (x'')) . 

In fact, if all the components of a1 belong to a2, all the variables equal to 1 in 
(x( ' ) )  are also equal to 1 in (x")) and conversely. 

Relation (21.1 5) shows that, if a structure is monotone, that is, satisfies 
(21. I), it also satisfies the relation 

(21.16) a2 3 a, - (p(x'*') 2 (p(x")) 

where a2 and x ( ~ )  on one hand, a1 and x ( ' )  on the other, are linked by rela- 
tions (21.14) and (21.13). In particular, if a1 is a link, one has cp(x(") = 1, 
therefore ~ p ( x ( ~ ) )  = 1, and a2 is also a link. Conversely, if " a1 is a link '' implies 
that "a2 is a link," then relation (21.1) is satisfied whenever cp(x('') = 1. If, 
however, cp(x(") = 0, it is satisfied automatically; it is thus true in all cases, 

We thus recover for monotone structure functions the fundamental 
property of reliability networks announced in Theorem 19.1. It then follows 
that monotone structure functions likewise satisfy Theorems 19.11-19.IV. 
Furthermore, this result leads to the idea that there is an isomorphism (taken 
to within equivalence) between the set of reliability networks and the set of 
monotone structure functions. We shall see in fact in the following para- 
graphs that one may always construct a network equivalent to a monotone 
structure function and conversely. For the moment we may state the following 
result. 

Theorem 21.11. A structure function equivalent to a reliability network is 
monotone. 

Theorem 2l.III. A component of a reliability network Jl or of amonotone 
structure function cp(x) is useless i f  and only if it does not belong to any minimal 
link (respectively, to any minimal cut). 

If e,  is a useless component belonging to a link a, the subset a' = a - 
{ e, } is again a link; e,  therefore does not belong to a minimal link. Conver- 
sely, if a component e,  belongs to no minimal link, let a be a link to which it 
belongs; this link contains a minimal link (Theorem 19.111), say a", which 
does not contain e,  . Any subset including a" is a link (Theorem 19.1 or 21.1); 
in particular the subset a' = a - { e,  }. This proves that any link contain- 
ing e,  remains a link after suppression of e,  . 

Theorem 21.IV. Let q, (x )  and (p2(x) be monotone structure functions and 
1, andJ12 reliability networks. There is  an equivalence among these four entities 
ifthey have the same set of minimal links (respectively, the same set of minimal 
cuts). 
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In fact, it follows from Theorem 21.111 that two “entities” having the 
same set of minimal links have the same set of nonuseless components. On 
the other hand, Theorems 19.111 and 19.1 or 21.1 show that the set of links of a 
monotone structure function defined on a set of components e is the set of 
subsets of e including a minimal link; the identity of sets of minimal links 
then entails the identity of the set of links, after suppression of useless 
components. 

Definition The order of a reliability network 32. or of a structure function q ( x )  
is the number of its nonuseless components. A degenerate structure is of order 0. 

Theorem 21. V [28]. Given a structure function cp(x) that possesses n 
components, let 

(21.17) A, be the number of links having k components; 

(21.18) Bk be the number of cuts having-k components; 

(21.19) A;  be the number of minimal links having k components; 

(21.20) 9; be the number defined in the following fashion: Let by-,, b;-k, ... , 

< Bn-,), the complementary subset by-, is then not a link; it has 
k components. Consider the n - k sets obtained by adding to b:-k a 
component that does not already appear there; 9; is the number of 
these sets that are nonminimal links. 

bfl-k B , - k  be the cuts having n - k components. For arbitrary i ( I  < i 
- 

- 

A necessary and sufficient condition for the structure q ( x )  to be monotone 
is that one have, for  all values of k such that 0 < k < n: 

B n - k  

(21.21) (n - k) A ,  4- 1 .‘D: = ( k  + 1 )  ( A k + l  - A ; + I )  
i= 1 

or the equivalent equality 
Bk 

(21.22) kB,  = (n - k -k 1)  ( A k - k +  1 + Bk- 1) -k % A _ , .  
i= I 

Equation (21.21) expresses the fact that by adding an arbitrary com- 
ponent to the links having k components and to complementaries of certain 
cuts having n - k components, one obtains all the nonminimal links having 
k + I components. 

Equation (21.22) states that by suppressing an arbitrary component of 
the cuts having k components, one obtains all the cuts having k - 1 com- 
ponents, all minimal links having n - k + 1 components, and the nonminimal 
links having n - k + 1 components obtained through (21.20). For proof of 
this theorem and of the two following, we refer the reader to the work of 
Hansel [28]. 



,?I M O N O T O N E  ( O R  C O H E R E N T )  S T R U C T U R E S  87 

Example. Consider a structure function of order 4: 

(2 1 .23) q ( x )  = 1 - (1 - x, x,)(1 - s 3 ) ( 1  - x,  s 4 ) .  

I , .Y 2 s , .Y4 

0 0 0 0 
0 0 0 1 
0 0 I 0 
0 0 I I 
0 1 0 0 
0 I 0 I 
0 1 1 0 
0 I I I 
I 0 0 0 
1 0 0 I 
I 0 1 0 
I 0 1 1 
I 1 0 0 
I 1 0 I 
1 1 1 0 
1 1 1 I 

FIG. 21 . I .  

- 
cp 

0 
0 
1 
I 
0 
0 
I 
I 
0 
I 
1 
I 
1 
1 
1 
I 

- 

- 

By constructing the table of values of this function (Fig. 21. I ) ,  one may verify 
that it is monotone. Moreover, all functions of the form 1 - n(l - x i  xi x l )  
are monotone since their derivatives, of the form 

are always positive. This table also permits the recording of the links and 
cuts, and the computation of their numbers of components (see Fig. 21.2). 

We calculate for this example the numbers 53; defined by (21.20) with 
the aid of Figs. 21.1 and 21.2, which represents the lattice of states of the set 
of components (cf. Section 15, Fig. 15.2): 

(a) k = 0. The only cut having n - k = 4 components is b: = 

{ el,  e2 , e ,  , e4 }. The complementary subset b;' is the empty set; by adding 
to it one component, one obtains the sets { e ,  }, { e,  }, { e3 }, and { e4 }, 
among which { e3 } is the only link, but it is a minimal link. Thus 33; = 0. 

Bn-k = B, = 3; b: = { el ,  e , ,  e3 }; b: = { e4 }. Among 
the sets { el,  e4 }, { e,  , e4 }, and { e , ,  e4 }, only { e , ,  e4 } is a nonminimal 
link. Thus 33; = 1. Then b: = { e , ,  e3 , e4 }, b: = { e,  }; among the vertices 
of the lattice joined to vertex (OlOO), only (0110) corresponds to a non- 
minimal link { e , ,  e ,  }. Thus 33; = 1. Finally, b: = { e , ,  e , ,  e4 }. Thus 

- 
(b) k = 1. 

- 

33; = 1. - 
(c) k = 2. 
(d) k = 1 and k = 0. B,  = B, = 0. 

B, = 1 ; b: = { el,  e,  }; b: = { e , ,  e4 }. Thus 33: = 2. 
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1 
4 
5 
1 
0 

Links 

0 
I 
2 
3 
4 

Number of Number of 
components links 

0 
0 
1 
3 
1 

cuts 

1111 

FIG. 21.2. - nonminimal link 

@ minimal link 

x nonminimal cut 

@ minimal cut 

From these results, it is easy to verify (21.21) and (21.22). For example, 
for (21.21) and k = 2, we have A 2  = 5, C 33; = 2, A, = 4, and A;  = 0, 
from which 

( 4 - 2 )  x 5 + 2 = 3  x (4-0) .  

From Theorem 21 .V we immediately deduce the following property. 

Theorem 21. VZ. A monotone structure satisjies the following inequalities: 

(21.24) (k + 1) A t + ,  2 (n - k )  A , ,  k = 0, 1, 2, ..., n - 1 , 
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and the equivalent inequalities 

(21.25) 

(2 1 .26) 

tonicity of a structure cp(x). 

kB, 2 (n - k + 1) B k - l  . 
We note that these inequalities are not sufficient to  assure the mono- 

Theorem 21. VZZ [30]. The number $(n) of monotone structures of order 
less than or equal to n satis3es the following inequalities: 

(21 .27) 2(<n;22) Q I l / ( n )  Q 3(.n722) 

where (n/2) is the largest integer less than or equal to 42.  

From (21.27) we deduce 

4 Q 4w) Q 9 ,  

8 d $(3) d 27, 
64 Q 1/44) Q 729, 

1024 d $(5) Q 59049, 

1 048 576 ,< $(6) < 3.481 x l o 9 .  

The combinatorial variety of structures thus becomes very large when the 
number of components exceeds 5. We shall examine in Section 26 how to 
enumerate these structures. 

The exact values of $(n) have been calculated by Gilbert [24] for n < 7. 
He obtains 

$(1) = 3 ,  1442) = 6 ,  1/43) = 20, $44) = 168, 

$(5) = 7 580, $46) = 7 828 354. 

Equivalence between Monotone Structures and the Free Distributive 
Lattice on n Generators". One may easily show the isomorphism existing 
between the set of monotone structure functions having n components pro- 
vided with the series composition'' and parallel composition operations and 

The reader who wishes to study lattice theory in more depth should see, for example, 
A. Kaufrnann and M. Precigout, Cours de Marhimariques Nouvelles pour le Recyclage des 
Inginieurs. Dunod, Paris, 1966; R. Faure, A. Kaufmann, and M. Denis-Papin, Cours de Calcul 
Booliien Appliquk, Albin-Michel, Paris, 1963. 

l 2  A complete study of the composition of structure function and reliability networks 
is given in Section 26. 



90 111 S T R U C T U R E  F U N C T I O N S  A N D  R E L I A B I L I T Y  N E T W O R K S  

a 
A 

FIG. 21.3. 

AU B 

FIG. 21.4. 

AUBUC 

AflBflC 

K = (A n B) u (B n C )  u (C n A) 
= (A u B) n (B u C )  n (C u A). 

FIG. 21.5. 

the free distributive lattice on n generators for the operations intersection and 
union (the ordered set of Boolean functions that may be written withoat 
using the operation of complementation). Figures 21.3-21.5 represent the free 
distributive lattices on n generators for n = 1, 2, 3;  these lattices are repre- 
sented by their Hasse diagrams. The isomorphism indicated above does not 
include the degenerate functions q ( x )  E 1 and q(x )  = 0, otherwise it would 
be necessary to enrich the free distributive lattice on n generators with the 
element c (the reference) and @ (the empty set). 

One may arbitrarily associate 

series composition e intersection 
parallel composition e union 

or 

series composition e union 
parallel composition e intersection. 

We give in Figs. 21.6-21.8 the reliability networks corresponding to  
monotone functions for n = 1, 2, and 3.13 The networks corresponding to 
the degenerate functions rp(x) = 1 and q(x )  = 0 have not been represented. 
The positions of the lattice elements correspond to those of Figs. 21.3-21.5. 
On the other hand, the networks have been represented by nonoriented graphs, 
the components being indicated with the aid of their respective state variables. 

l 3  We have used the first of these two conventions above. 
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-3c- 
y ( x ) = X  

FIG. 21.6. Lattice of monotone 
structure function with one compo- 
nent (trivial). 

(9(z,y)= 1 -  (l-3A(l-y) 

+ X 4  -Y- 

t-Z--y-@ 

cp [z,y)=z 'P(X,y)=Y 

;Fl=,y)= xy 

FIG. 21.7. Lattice of monotone structure 
functions with two components. 

rx-yi 

FIG. 21.8. Lattice of monotone structure functions with three components. 
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22 Construction and Simplification of Structure Functions 
and of Reliability Networks 

Construction of a Monotone Structure Function Equivalent to a Network 

A .  Method of Links. Suppose that we have determined all the minimal 
links a], a 2 ,  ... , ak of a network X, and let xi be the state variable of the 
component ei; the structure function 

(22.1) 

is equivalent to the network X. 
In fact, any minimal link of X is a link of q(x):  if x i  = 1 for any ei E aj, 

then f l i :e ,EP,~i  = 1 and therefore flr=l(l - niZeiEn, x i )  = 0, and then 

Similarly, a minimal link of q(x) necessarily cancels at  least one factor 
1 - ni:e,sa, xi, that is, it includes at least one minimal link aj of X.; this 
is therefore also a link of X. It follows that cp and X have the same set of 
minimal links and are equivalent according to  Theorem 21 .IV. 

Formula (22.1) remains valid if { a,, a2, . . . , ak } designates a set of links 
including all minimal links of 31, and perhaps certain nonminimal links. This 
remark will allow us to use a convenient method called “the method of 
routes.” In  Section 23 we shall give a general exposition of this method. 

q(x) = 1. 

Example (Fig. 22.1). 
0 to z:  
(22.2) 

To these paths correspond the following links, whch are minimal : 
(22.3) 

The network of this figure possesses three paths from 

.( (0, C, B, D,  Z ) ,  (0, C,  B, A ,  Z ) ,  (0, A ,  Z )  3 . 

c { el ,  e2, e3 1 9  { el9 e2, e4 1 9  { e3, e4 1 1 - 
We therefore have 
(22.4) (P(x~, ~ 2 ,  x,,x,) = 1 - (1 - XI X Z  ~ 3 )  (1 - XI ~2 x4) (1 - ~3 x 4 ) .  

0 oz e3 A e4 

FIG. 22.1 
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B. Method of Cuts. Suppose that we have determined a set of cuts 
{ b,, b, , . . . , b, } including all minimal cuts and perhaps some nonminimal cuts 
of a reliability network %. Then the structure function 

(22.5) 1 j =  1 
ei E b, 

is equivalent to  %. This is proved using reasoning similar to that used for 
(22.1). 

Example (Fig. 22.1). 
are five minimal cuts : 

By examining this network we easily see that there 

(22.6) 

We therefore have 
(22.7) rP(x1, x2, x3, x4. x5) = [l - ( 1  - XI )  (1 - x,)] 

.[I - ( 1  - XI) (1 - x4)].[1 - ( 1  - x,) ( 1  - x,)] 

. [ I  - ( 1  - x,) (1 - x4)].[1 - ( 1  - x3)(1 - x,)] . 

{ { el, e3 1, { el, e4 1, { e,, e3 1 9  { e29 e4 1, { e3. e4 1 1 . 

By carrying out the products we may verify that the two functions (22.4) and 
(22.7) are equivalent to 

XlX, x3 + XlX, x4 + x3 x4 - 2x,x, x3 x4. 

Construction of a Network Equivalent to a Monotone Structure Function. 
The methods described above are still valid in principle. Knowing a set of 
links { al, a,, . . . , a, } including all the minimal links of a monotone structure 
function, we obtain an equivalent network by placing in parallel k subnet- 
works, each formed of the components of a link placed in series (Fig. 22.2).14 

.... ....... . . ... -Bf3 .......... ........................................ ... . .. . . . ... . . . . . . . . . . f 
e' .. . . .. . -. e p  eb , ek2 ekt 

FIG. 22.2. FIG. 22.3. 

Similarly, knowing a set of cuts { b,, b, , . . . , bl } including all minimal 
cuts of a monotone structure function, we obtain an equivalent network by 
placing these cuts in series (Fig. 22.3)14 each having its components in 
parallel. 

l4 In Figs. 22.2 and 22.3 we have placed arrowheads only in the direction from entry 
to exit; given the nature of these networks, one would obtain equivalent networks by freely 
adding arrowheads in the opposite sense. 



94 1 1 1  S T R U C T U R E  F U N C T I O N S  A N D  R E L I A B I L I T Y  N E T W O R K S  

Example. Consider the structure function 

(22.8) (p (X1 ,  x2, x3) = X I  x 3  + x 2  x 3  - .Y2 s 3  

The table of values of ~ ( x , ,  x 2 ,  x3) is shown in Fig. 22.4. 

0 

0 0 0 0 

0 1 0 1 

0 0 0 0 

I 0 0 I 

0 0 0 0 

I I I 1 

- 

.~ 

FIG. 22.4. 

We should verify first that this function is indeed monotone, which is 
easy by examining the pairs of rows i a n d j  for the dominance order relation. 
This function is indeed monotone. Now, by examining rows 3, 5 ,  and 7, we 
see that there are three links: 

I e2, e3 1 7  { el, e3 1 7  { el, e29 e3 1 . 
Thus, an equivalent network is given in Fig. 22.5. Similarly, by examining 
rows 0, 1, 2, 4, and 6, we see that there are five cuts 

{ el,  e2 1 3  I el, e3 1 9  { e23 e3 1 9  { e3 1 3  { el,  e2, e3 1 . 
Thus, an equivalent network is given in Figure 22.6. 

In Figs. 22.5 and 22.6 we have purposefully not used the notions of 
minimal links and cuts: we shall see a little later how to simplify such networks. 

el e2 el 
e 3  e 

e3 

e2 e3 e3 
FIG. 22.6. 

FIG. 22.5. 

Remark. The construction procedures developed above show that it is 
always possible to  determine a monotone structure function equivalent to a 
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network, or a network equivalent to a monotone structure function, a result 
that we have announced in the comments on Theorem 21.1. 

Simplification of a Monotone Structure Function. Simple Form. Let 
q ( x )  be a monotone structure function for which we suppose known a set of 
links { a, ,  a 2 ,  ... , ak } including all minimal links. Formula (22.1) then gives 

(22.9) 

Here cp(x) is a polynomial with respect to the Boolean variables x i ;  since xi 
may take only the values 0 or I ,  one therefore has 

(22.10) 

One concludes that q(x) may always be written in the form of a polynomial 
of first degree with respect to each variable xi. We shall call "simple form," 
denoted cp,(x), the function that is equivalent to cp(x) and that is a sum of 
distinct monomials, each of first degree with respect to each x i .  It is easy to 
prove that any simple form is unique. 

(xi)' = x i  , r = 1, 2, 3, ... . 

We therefore have 

(22.12) qs(x) = x1 x2 + x1 x 3  + x2 x 3  - 2 X I  x2 x 3 .  

Construction and Simplification of Nonmonotone Structure Functions. 
Let q(x) be a nonmonotone structure function and (x")), ( x ' ~ ) ) ,  . . . , (dk)) the 
states of the set of components such that cp(x'") = 1, i = 1, 2, ... , k, that is, 
the states to which correspond links (cf. Theorem 17.1). Define: 

mi as the set of components in a good state (state variables equal to 1 in 
(x"))), which constitute the link associated with x(~) ;  
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iiii as the set of failed components (state variables equal to 0 in (x(,))); 
iiii as the complementary set of mi , that is, iii, = e - m i .  

One may then easily show that' 

(22.13) rp(x) = 1 - 1 - n xi. n (1  - x i ) ] .  
i = l  e j e m i  e j e i i i i  

Similarly, if (x(~+')), (x(~+')), ... , (x(')) are states such that rp(x(,)) = 0, 

ni as the set of failed components of (x(,)) (state variables equal to 0 of 

n,  as the complementary set T i ,  = e - n, . 
One may similarly show, with the same convention of notation as for 

i = k + 1, k + 2, ... , I ,  where I = 2' is the total number of states, define: 

(x'")), which constitute the cut associated with x ( ~ ) ;  and - 

(22.13), that 

q ( x )  = fi [ 1 - n (1 - X j ) .  n x j  . 1 (22.14) 
i = k + l  e j  E II~ e J e  ai 

Expressions (22.13) and (22.14) are similar, respectively, to (22.1) and 
(22.5), but two important differences are to be noted: 

(a) In (22.13), the product must be taken extended to all r-tuples for 
which rp = 1 , that is, to all links, whereas in (22.1) it was sufficient to consider 
minimal links; similarly, in (22.14) it is necessary to consider all r-tuples for 
which rp = 0. 

(b) Each variable appears once, either in the form xi or in the form 
1 - xi in each of the factors of the products of (22.13) and (22.14). 

Expressions (22.1) and (22.5) are simpler since they use the fundamental 
property (cf. Theorem 21.1) of monotone structures, that is, that any set of 
components including a link (respectively, a cut) is likewise a link (respec- 
tively, a cut). 

There exist, however, in the general case of not necessarily monotone 
structures, some more convenient formulas than (22.13) and (22.14); we shall 
see in Section 26 that these are related to the notion of linear composition 
of structures, but one may also obtain them from the relation 

(22.15) [ n x j .  n ( I  - x j ) ]  = 1 
i = l  e j e n i  e j ~ i i i i  

where mi designates,as in (22.13),the set of state variables xi equal to 1 for a 

l 5  If one of the subsets ml or ml is empty, the corresponding product Hx,  or n(l - x,) 
will be taken equal to  1. 
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given r-tuple i. (Note that in the notations of (22.14) one has n, = Eii .) This 
relation is very easy to prove: if one considers an r-tuple 
(22.16) 
with 
(22.17) ( y )  = 1 if e j E  mi 

5'" = ((?I, (y, ..., (y) , 

= 0 if e j E i i i i ,  

the ith term of the first member of (22.15) will be equal to 1 when one puts 
xi = ( y ) ,  and all the other terms will be zero. 

It follows from (22.15) that one may write 

(22.18) V(x) = 5 [ n xj. (1 - x j ) ]  
i = l  e j e m ,  e , e l ,  

and also 
1 

(22.19) cpw = 1 - c 
i r  1 

= 1 - c n (1 - X i ) .  n x j  . 
i = k + 1  1 e,En,  e, E n, 1 

These two relations indeed give cp = 1 for (x) = ( ( i ) ,  i = 1, ... , k, and 
rp = 0 for (x) = ((i), i = k + 1, . . . , 1. These have the advantage over (22.13) 
and (22.14) of being of first degree with respect to each of the variables; 
passage to the simple form is therefore more rapid. 

Example 1. Let 

(22.20) cps(Xl, x2, x3) = 1 + X I  x 2  x 3  - x1 . 
We construct a table allowing us to obtain cp(x,, x2, x3) for the eight possible 
states (Fig. 22.7). We may verify that this function is not monotone by com- 
paring, for example, row 5 with row 1. 

We see that cp(xl, x2, x3) = 1 for rows 0, I ,  2, 3, and 7, for which we 
have 

mo = 0, m, = { e l ,  e2, e3 1 , ml = { e3 1,  m, = { e l ,  e2 1 ,  
m2 = { e 2 1 ,  m2 = { e l , e 3 } ,  m3 = { e 2 , e 3 } ,  m3 = { e l  1 .  
m7 = { e l ,  e2 ,  e3 1,  m7 = 0. 

- - 
- - 

- 

Formula (22.18) gives 
(22.21) 

dx,,  x2, x3) = ( 1  - x1) (1  - x2) (1 - x3) + (1 - X I )  ( 1  - x2) x 3 

+ ( I  - x1) x,(l - x3) + (1  - X I )  x2 x 3  + x1 x2 x3. 
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I 

FIG. 22 .7  

Formula (22.19) gives 

(22.22) 

The reader should be able to verify easily that the two functions (22.21) and 
(22.22) are equivalent to (22.20). 

By way of comparison, formula (22.14) would give a clearly more 
complicated expression : 

(22.23) 

Cp(x1, x2, x3) = 1 - Xl(l - x2) ( I  - x3) - X1(l - x2)x3 - X I  x2(l - x 3 ) .  

dx1, x2, x d  = [l - ( 1  - x2) ( 1  - x3) . I ]  

. [ I  - ( 1  - xl) ( I  - x3)x2].[1 - ( 1  - XI) (1 - x2)x3 ] .  

0 

1 
~ 

0 

1 

0 
__ 

1 

0 
__ 

1 

0 0 

0 0 

0 0 

1 0 

0 0 

0 0 

0 0 

I 1 E 
I 

I 
~ 

1 

I 

1 

1 

1 
__ 

0 

0 0 

FIG. 22.8.  
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In Fig. 22.8 we show a table allowing one to  obtain cp(x,, x 2 ,  x,) for the 
eight distinct states. 

We may verify that this function is not monotone (see rows 7 and 5). 
We see that cp(xl, x 2 ,  x,) = 1 only for row 5. We have 

- 
(22.25) m 5  = 1 9  m 5  = 1 9  

from which 
(22.26) (p(xi9 x2, X3) = xi x,(l - Xz) 

= x1 x j  - x, xz x3. 

We may check this by comparing Figs. 22.8 and 22.9. 

I I 

1 I 0 0 

1 1 1 1 

0 

0 t-P 

FIG. 22.9. 

Remark. We do not know of a general method to obtain directly the simple 
form of a structure function, be it monotone or not, or a reliability network 
with minimum numbers of arcs or vertices. However, interesting results have 
been obtained in some particular cases, notably for “k of TI’’ structures (see 
Section 35). 

23 Finding Links and Cuts 

Purpose of This Search. As we have seen in the preceding sections, the 
determination of a structure equivalent to a network is simple if one knows a 
set of links including all the minimal links, or a set of cuts including all the 
minimal cuts of the network being considered. 

Conversely, knowledge of a set of links (or cuts) including all the minimal 
links (or cuts) of a monotone structure function permits one to determine 
easily an equivalent network. We shall now describe several simple algorithms 
allowing one to determine such sets including all minimal links or all minimal 
cuts. 



100 I l l  S T R U C T U R E  F U N C T I O N S  A N D  R E L I A B I L I T Y  N E T W O R K S  

Search for a Set of Links Including All Minimal Links of a Network. 
Recall that a reliability network %. has been defined in Section 19 as an r-fold 
graph G = (S, U) and a mapping A of the set U of arcs of the graph into the 
set e of components of the system. To a link a is associated a partial graph 
G,(a), in which occur only the arcs uj such that A(uj) E a, and such that there 
exists in G,(a) a path from 0 to Z. Then, however, there exists in G,(a) an 
elementary path p from 0 to Z (cf. Section 18). Conversely, to such an 
elementary path p = (u l ,  ... , uI) one may associate a link a’ = { d(u,)  } 
u ... u { A(u,) } 1 6 ;  it is clear that a’ c a. It follows that, if one considers the 
set C of elementary paths of the graph connecting 0 to Z, one may associate 
with it a set C of links such that each link of the network includes a link of the 
set C. A minimal link including no links other than itself then necessarily 
belongs to C. This result, which is at the foundation of the search methods 
for links of a network, is expressed in the following theorem. 

Theorem 23.1. Let C be the set of elementary paths with initial end 0 
and terminal end Z of the graph G of a reliability network. To each path 
p = (ul, ... , uI)  E C associate the link a(p) formed of the components corre- 
sponding to the arcs of the path 

(23.1) 

Let C be the set of links thus obtained from C1’ ; 

a(p) = { A @ , )  } u * * -  u { A(uj )  } u ... u { A(u , )  ) . 

(23.2) 

Then the set C includes all the minimal links of the network. 

Example. The elementary paths of the network in Fig. 23.1 are 
(23.3) (OB, BC, CZ) , (OB, BC, CA, A Z )  , (OA, A Z )  , 

(OA, AC, C Z ) ,  (OA, A B ,  BC, C Z ) .  

The set C of links obtained from these paths is 

(23.4) 
This set includes the minimal links, which are 

(23.5) { 1 , 4 5 1 ,  ( 2 . 6 1 ,  and { 2 , 5 1 .  

f = { { 1, 4, 5 1, { 1, 4, 5 ,  6 1, { 2, 6 1, { 2, 5 1, { 2, 3, 4, 5 1 } 

l6 We do not write a’ = { d(u,) ,  . . . , d(u,) ] since to two different edges of the path 
may correspond the same component el ,  which must be counted only once in a’ so that 
this will be a set. 

’’ Just as, in (23.1), the same component may be obtained from distinct arcs of the 
path p, so in (23.2), the same link may be obtained from distinct paths of e ;  obviously it 
must be counted only once. 
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FIG. 23. I .  

Note that the component { e3 } is useless. 

Theorem 23.1 reduces the problem to the search for the elementary paths 
from 0 to Z in the graph G. For this, it is useful to consider the set C’ com- 
posed of: 

(1) the elements of C (elementary paths from 0 to Z), 
(2) and the elementary paths with initial end 0, with terminal end 

other than Z, and not passing through the vertex Z. 

The elements of the set (3‘ form a tree, that is, a 1-fold graph of a certain 
type18 for which the set of vertices is the set C‘ and whose arcs connect the 
pairs of elementary paths such that 

PI  = ..., 4 and P Z  = (ul, ..., uI,  u I + J .  

In other words, an elementary path is formed by adding one arc to a shorter 
elementary path. In this representation the vertex 0 of the graph G is con- 
sidered as an elementary path; it constitutes the “ root” of the tree. 

Example. Figure 23.2 represents the tree of elementary paths (of the type 

0 

OBCZ 

FIG. 23.2. The components e are indicated by their index i. 

Is A tree G = (S, U) with root So E S is a I-fold connected graph such that: There 
exists no edge in U with terminal end So. For any S, E S, S, # So, there exists exactly 
one edge terminating at S,. 
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defined above, that is, with initial end 0 and not passing through 2, the 
only vertex at  which they may terminate) of the graph of Fig. 23.1. 

In the case of a network having a small number of vertices, the tree of 
elementary paths may easily be constructed by hand, following a few simple 
precautions. 

We go on to consider the example of Fig. 23.3,which is a little more 
complicated than that of Fig. 23.1. 

Z 

D 
FIG. 23.3.  

Examp (Fig. 23 . We arbitrarily choose an order among the arcs with 
given initial end. For example, we rank the terminal ends in the order 
A ,  B, C,  D ,  2; and in the case where there are several arcs with the same 
terminus, we rank in the order of increasing indices of components. 

Starting at 0, we construct a list of arcs with initial point 0 in the order 
above OA, OB. To each of these arcs will correspond a vertex of level 1 of the 
tree (Fig. 23.4), the level 0 being constituted by the vertex 0. Beginning again 
at each of the vertices already constructed at the preceding level, we con- 
tinue in the same manner, taking care at each stage to be sure that one does 
not return to a vertex already used. Whenever one reaches 2, one has ob- 
tained an elementary path from 0 to 2. One thus obtains in our example six 
elementary paths, to which correspond the following links (the indices of the 
components have been labeled on the arcs of the tree of Fig. 23.4 in order to 
facilitate locating the links): 

Among these links, three are minimal: 

(23.7) { eZr e5 1 { e2, e6 1, and { e l ,  e4, e5 1 . 
The method described above is not convenient for use on a computer. 
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FIG. 23.4. 

We take up below another method better suited for machine calculation 
which permits one to study complex networks. 

Method of “ Latin Composition ” or “ Concatenation. ”19 We first show 
how to apply this method to enumerate, with neither redundance nor omis- 
sion, all the elementary paths of a I-fold graph; the case of a p-fold graph 
(p > 1) follows easily from this first case. After a first example concerning the 
search for all the elementary paths, a second example will show the applica- 
tion of the method in the case of a search for elementary paths between two 
given vertices, the case that interests us here. 

With the aid of a particular type of matrix multiplication, it will be 
possible to enumerate successively, with neither redundance nor omission, all 
the elementary paths of length 1, 2, 3, ... , n - 1, where n is the number of 
vertices of the graph. The method will be introduced with two examples; as 
we shall see, it is very easy to understand. 

Example 1. Consider the graph of Fig. 23.5 and construct a “latin matrix” 
in the following fashion: if a vertex Xi is joined to a vertex Xi by an arc 
(Xi, Xi), put Xi Xi in square ( X i ,  Xi) of the matrix; if the pair is not an arc, 
indicate 0 in that position of the matrix. Further, place 0 in all squares 
where X i  = Xi (the principal diagonal). 

l9 See: A. Kaufmann, Introduction d la Combinatorique. Dunod, Paris, 1968; 
Graphs. Dynamic Programming, and Finite Games. Academic Press, New York, 1967; and 
A. Kaufmann and Y. Malgrange, Rev. Fr. R .  0. 26, 1963. 
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A 

E& FIG. 23.5. 

Thus the latin matrix relative to the graph of Fig. 23.5 is 

(23.8) 

the 
Now deduce 

first letter has 

(23.9) 

A 

B 

[-I]"' = c 

D 

E 

from 
been 

A B C D E  

in which 

Hereafter, for clarity, any square containing @ will be left blank. 
We now proceed to multiply [A]'" by [k](l) in a certain manner to form 

[A]'2). Denote the elements of these matrices by mi,';, fi;,';, mi:). For 
example, the element mlV1j will be found in square ( i , j ) ,  that is, in row i and 
column j of the matrix [JL]"). 

We obtain m;,2; by the relation 
m!Z? = C mi,? x 

k 
L J  
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EEA 

DEA 

where the symbols 
but rather have the following sense : 

and x do not have their ordinary algebraic meaning, 

m(!d = 0 or = 0 j m!l) x m(1) = 0 ;  (a) k.j 1.J k,j 

(b) if there is a letter common to mi,'; and mi!;, then their product 
is /25; 

(c) in any other case, the product mi,'; x liiif) is obtained by combining 
the letters of the two terms; 

(d) the symbol 1 simply indicates the union of all the products 
mi,'; x liii,'] . 

We illustrate these rules with a small example: let m!,'i = { AB, AC } 
and mi:: = { D,  C }; it then follows that 

and we obtain 
mi,:) x m(') k.j = { AB x D, AB x C ,  AC x D, AC x C } 

1111,;) x fii;,' = { ABC, ABD, A C D }  . 
Now carrying out the product of the matrices, (23.10) results: 

ABC ACD ABE 
A ED 

ECD 
BED 

CDE 

_ _  
EAE EAC 

EDC 

A B C D E  A E C D E  

(23.10) 

A 

B 

* C  

D 

E 

[.,Ic]'" [XI"' 

A 

B 

= c  

D 

E 

The latin matrix [A]") gave all the elementary paths of length 1 ; the 
matrix [&](2) gives all the paths of length 2. We continue: 



A 

B 

(23.1 1) C 

D 

E 

BEA 

DEA 

(23.12) 

ABC ACD ABE 
AED 

BCD 
BED 

CDE 

EAB EAC 
EDC 

A B C D E  

I I 1 I I 
A 

B 

.C 

D 

E 

A B C D E  

[i,'') 
A B C D E  

A 

.r 
C CDEA iE 

[.m1(3' 

B C D E  A B C D E  

A B C D E  

4 

B 

= c  

D 

E 

[. Ill'*' 
106 
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Z 

A Z  

cz 

[.K]"' 

O A  B C 

D Z  

D Z  
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(23.14) 

O A  B C D Z  0 A B C D 

0 

A 

B 

0 

C 

D 

Z 

[i]"' 

0 A c D 

Z 1 
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(23.15) 

O A  B C D Z  O A  B C D  z 

0 A B C D Z  

0 

A 

D 

Z 
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The latin matrix [A](3' gives all the elementary paths of length 3; the 
matrix [A](4) gives all the elementary paths of length 4. It is unnecessary to 
go further; there are no elementary paths of length greater than 4 since the 
graph has five vertices. 

The matrices [A]"', i = I ,  2, 3,4,  give, in order, the elementary paths of 
length 1 = 1, 2, 3, 4. 

Note that this method of enumeration may be extended to all kinds of 
combinatoric concepts (see the first reference mentioned in footnote 19). 

Example 2 (Fig. 23.6). This time we shall consider the enumeration of all 
elementary paths between two given vertices 0 and Z of ap-fold graph (p = 2 
in this example). One reduces this to a I-fold graph by not taking into account 
the two edges (A ,  B)(3! and ( A ,  B),,,  , but only a single edge ( A ,  B). Once we 
have enumerated the links of the reliability network, we reintroduce the two 
arcs (thus two components) joining A and B." 

0 Z 

FIG. 23 .6 .  

0 Z 

FIG. 23 .6 .  

We give the matrices [A]") and [A]"' in which, evidently, one may leave 
column 0 blank and row 2 blank, since the paths ending at 0 or beginning 
at 2 are not of interest in a reliability network. 

The latin matrix [A]'2' calculated in (23.13) already gives us an elemen- 
tary path of length 2, namely (0, A, Z ) .  

In the matrix there are two new elementary paths (0, A ,  C, Z )  and 

The matrix [A](4) gives two paths of length 4:  (0, B, C, A ,  Z )  and 

It is useless to go further to calculate it is clear that there do not 
exist elementary paths of length 5 from 0 to 2. 

Finally, from (23.13), (23.14), and (23.15) we have: 

(0, B, c, Z ) .  

(0, A ,  B, c, Z ) .  

one elementary path of length 2: (0, A, Z); 

two elementary paths of length 3: (OA, C, Z) and (0, B, C, Z ) ;  

two elementary paths of length 4: 

(23.16) 

(0, B, C,  A ,  Z )  and (0, A,  B, C,  2). 

*O One may also take account of multiple edges in latin multiplication. 
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To these elementary paths of the graph correspond the following links of the 
reliability network, following Fig. 23.6: 

(0, A ,  Z )  : { 2 , 6  I ,  
(0, A ,  c, Z )  : { 2 ,  5 I 9 

(0, B, C,  Z )  : { 1,4, 5 I , 
(0, B, C,  A ,  Z )  : { 1 ,4 ,5 ,6  1 , 
( O , A , B , C , Z ) : { 2 , 3 , 4 , 5 }  and { 2 , 7 , 4 , 5 } .  

(23.17) 

From this. the three minimal links of the network are 

(23.18) { 2 , 6 } ,  { 2 , 5 } ,  and { 1 , 4 , 5 } .  

In fact, we have recovered (23.6) and (23.7), the chosen example being the 
same as that of Fig. 23.3. 

A number of simplifications may be introduced in order to shorten the 
calculations. 

Search for a Set of Cuts Including All Minimal Cuts of a Network. 
Having determined all minimal links, we establish the cuts by taking a com- 
ponent in each of the minimal links. The set of cuts thus obtained includes all 
minimal cuts (cf. Section 19, Theorem 19.IV). 

ExumpZe. Consider again the example of Fig. 23.6. The minimal links are 
given by (23.18). The set of cuts may be obtained by proceeding as follows. 
We have noted previously that this set will include at  most 2 x 2 x 3 = 12 
cqts. Let A, = { 2, 6 }, A, = { 2, 5 }, A, = { 1 ,  4, 5 }. Take 2 in A,, 2 in 
A,, 1 in A,; we thus form { 2, 1 }. Take 2 in A,, 2 in A,,  4 in A,; we thus 
form { 2, 4 }; and so on. We obtain 

The minimal cuts can then be extracted; 

Remark. The components e ,  , e7 , and e ,  , not belonging to any minimal link, 
are useless. The same conclusion may be obtained through considering the 
set of minimal cuts. 
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Search for Minimal Links and Minimal Cuts of a Monotone Structure 
Function.” We have seen, for Eq. (22.8) among others, how to determine 
the links and cuts of a structure function by enumerating all possible states 
of the components. We shall see here with an example how some simple 
“intuitions ” permit one to avoid this enumeration, which is tedious when 
there is a large number of components. 

Let the structure function be 
(23.21) 

(p(xl, x2, x3, x4, x S ) = x l  x4+x2 x 5 + x 1  x3 x 5 + x 2  x3 x4-x1 x2 x3 xS 

-XI ~2 ~4 x S - X ~  ~3 ~4 x S - X I  ~2 ~3 ~ 4 - ~ 2  ~3 ~4 ~ 5 + 2  XI ~2 ~3 ~4 X S  

where x5 occurs in most of these monomials. Put x5 = 0. Then we obtain 
(23.22) 
cpl(x1, x2, x3, x4)=cp(x1, x29 x39 x47 o)=xl  x 4 + x 2  x3 x4-x1 x2 x3 x4 * 

With this simplified function, it is clear that 

(23.23) 

and it is clear that no other link of cpl(x) will be minimal; in fact, any link 
must give the value 1 to the first or second term of cpl(x), and therefore con- 
tains either a1 or a 2 .  

Another component, x2,  also appears in a number of terms of cp(x); 
now putting x2 = 0 and xs = 1, we have 

x1 = x4 = 1 =. cpl(x) = 1 , giving the link a1 = { I ,  4 } 
or x2 = x3 = x4 = 1 =. cpl(x) = 1 , giving the link a2 = { 2, 3 ,4  } 

(23.24) (P2(Xl, x3. x4) = cp(X1, 0, x39 X4r 1) = XI x 4  + XI x3 - x1 x3 x4 ; 

it is clear that 

xI = x, = 1 

x1 = x3 = 1 

cp2(x) = 1 , link a, = { 1,4, 5 } ; 

cp2(x) = 1 , link a, = { 1, 3, 5 } . 
(23.25) 

=- 
Finally, putting x2 = xs = 1, we obtain 

(23.26) (p3(x1, x3, x4) = d x l ,  x3, x4, 

and 
(23.27) x2 = xs = I +- cp(x) = 1 , link a5 = { 2,5 } . 

We have examined all possible cases since we have successively put 
x5 = 0, then xs = 1, x2 = 0, and x 5  = x2 = 1 .  We have found five links of 
which one, a3,  is not minimal since it contains the link al. 

21 If a structure function is not monotone, the notion of a minimal link presents little 
interest. 
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There remain four minimal links : 
a, = { 1 - 4 1 ,  

(23.28) 
a2 = { 2 , 3 , 4  1, 
a, = [ I .  3 ,  5 I ,  
a, = { 2 , 5 } .  

We obtain the minimal cuts (and some nonminimal cuts) by taking a 
component in each minimal link : 

(a) Take component 1 in a1 ; this component also occurs in a4. Take 
component 2 in a,; it also occurs in a, and { 1 , 2  } is a cut. Take component 
3 in a2 and 5 in a,; we obtain the cut { 1,3, 5 }; it is evidently useless to take 
component 2 again in a, since the minimal cut { 1, 2 } has already been 
identified. Take 4 in a2 and 5 in a,; we obtain the cut { 1, 4, 5 }. 

(b) Take component 4 in a1 ; this component also occurs in a2 . Take 
5 in a4 and in a,; we obtain the cut { 4, 5 }. Take 1 in a4 and 2 in a,; we 
obtain { 1, 2, 4 }. Take 3 in a4 and 2 in a,; we obtain { 2, 3, 4 }. 

Note that the cuts { 1, 4, 5 } and { 1, 2, 4 } are not minimal since they 
contain, respectively, the cuts { 4, 5 } and { 1, 2 }. 

There are thus four minimal cuts: 

(23.29) 

b 4 = { 2 , 3 , 4 } .  

The reader may check that the network of Fig. 23.7 is equivalent to this 
structure function. 

FIG. 23.7.  

The method for searching for links and cuts of a structure function 
sketched above in fact uses the notion of linear composition of structures; 
this will be discussed in Section 26. 



CHAPTER I V  

STUDY OF THE RELIABILITY 

OF SYSTEMS 

24 Introduction. Definitions and Hypotheses 

We now begin the study of the reliability of complex systems with respect 
to that of their components; this study will be carried out with the tools 
developed in Chapter I11 (structure functions and reliability networks), and 
particular attention will be given to monotone structures. 

The term reliability of a system may be extended, in a very general sense, 
to include the set of system characteristics that occur in its functioning more 
or less satisfactorily during a more or less lengthy time. More precisely, the 
reliability of a system is generally defined as the probability that it performs 
specified tasks, under specified use conditions, and during a specified time. 
This definition is, however, still too general to allow a mathematical study; 
to render it operative, it is necessary to indicate what the services that one 
expects from the system are, and what the conditions of use will be, which is 
evidently not easy in the framework of a theoretical study. Fortunately, the 
problem may be simplified by taking into account the hypotheses of Chapter I 
(Sections 1 and 2) and of Chapter 111 (Section 14), which we readopt in the 
present chapter and which are reviewed below: 

(1) The system has only two possible states: either functioning well or 
failed. 

(2) The system may be decomposed into r components in such a way 
that: 

I14 
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each component, at a given instant, either is in a good state or has failed; 
the state of the system depends only on the state of the set of its com- 
ponents. 
(3) Each of the components e ,  ( i  = 1, 2,  ... , r )  of the system has a 

random lifetime Ti;  it is in a good state in the interval (0, Ti) and has failed 
after the instant Ti. We designate the survival function’ of the component as 

To these three hypotheses we add a fourth, which is unfortunately not 
always satisfied in practice, but which is difficult to do without in a general 
theory : 

(4) The random variables Ti ( i  = 1, 2, ... , r )  are independent. 
In the definition given above for reliability, we supposed that the system 

performs the services that one expects of it if and only if it is in a good state 
(it is functioning). The conditions of use of the system do not appear ex- 
plicitly, but only through the survival functions v i ( t )  of the components; for 
example, the components of a system subject to vibrations (as those mounted 
on any airplane or vehicle) will, in general, have a shorter lifetime than they 
would were the system stationary (cf. Section 2). 

Formally, the reliability of a system may be defined in the following 
fashion : 

ui(t>. 

Definition. The reliability of a system satisfying hypotheses (1)-(4) is the prob- 
ability that it is continually in a good state in the interval (0, t ) ,  where t is ajixed 
time. 

The notion of reliability thus defined reduces easily to that of survival 
function as defined in Section 3. In fact, let T be the (random) instant at  
which the system falls in failure for the first time2; we shall call T the “life- 
time” of the system. The survival function of the system is then 
(24.1) v ( t )  = pr { T > t } , 

and the reliability of the system for the interval (0, t )  is no other than v(t), 
the probability that the lifetime T of the system is greater than t .  

In the case of a monotone structure, the irreversibility of the failure of the 
components entails the irreversibility of failure of the system. Then the event 
“the system is in a good state at  time t ”  is the same as the event “the life- 
time of the system is greater than t,” and the reliability of the system is the 
probability that it will be in a good state at  the instant t .  It is so for the 

I See Chapter I, Section 3. If the component is not new at time 0, one would obviously 

We specify “for the first time” since, in the case of a nonmonotone structure, failure 

use the corresponding survival function (see Section 7). 

of a new component after the instant Tmight return the system to a good state. 
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components, according to hypothesis (3); we shall call “reliability” of a 
component e ,  at time t the probability that it is in a good state at  that 
instant, which is also the probability that it remains in a good state through- 
out the interval (0, t ) .  

In the case of a nonmonotone structure, the system may be in a good 
state at  the instant t after having failed between 0 and t ;  the reliability of the 
system thus may be different from the probability that it is in a good state at 
time t .  

In the present chapter we first establish the relation that exists between 
the probability that the system is in a good state at the instant t and the 
reliability of its components, a relation that we shall call the reliability func- 
tion ; and we shall study certain mathematical properties of reliability func- 
tions for monotone structures (Section 25). We then describe a very useful 
tool for the determination of the structure function or the reliability function 
of a system: composition; and we shall see how linear composition permits 
one to construct the set of monotone structures (Section 26); we then present 
a theorem of Moore and Shannon permitting the classification into three 
groups of the curves representative of reliability functions of monotone 
structures (Section 27). We end the study of the reliability of systems from a 
static point of view by presenting the notion of a system “monotone in 
probability ” (Section 28). Finally, we examine the variation of the reliability 
as a function of time, that is, we pass to the study of the survival function 
of the system. We shall see that the failure rate of a system is not in general 
constant or monotone, even if that of its components is constant or mono- 
tone (Sections 29 and 30). 

25 The Reliability Function 

At a given instant t ,  a component ei has a probability 

(25.1) Pi = vi( t )  

of being in a good state, and the complementary probability 1 - p i  of having 
failed. Let Xi be the random variable representing the state of the com- 
ponent e,  at the instant t ,  with the convention 

(25.2) 

One therefore has 

Xi = 1 if the component is in a good state 
= 0 if the component has failed. 

(25.3) 
p r { X i =  l }  = p i ,  

pr { Xi = 0 } = 1 - p i  
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Note that the independence of the lifetimes Ti of the components 
( i  = 1, 2, ... , r )  entails the independence of the random variables Xi  
(i = 1, 2, ... , r). 

Let (x) = (xl, x2 ,  ... , x,) be a possible value of the random r-tuple 

( X )  = (XI, X2, ..., Xr) ; 

(x) is a “ state of the set of components” (cf. Section 15) to which corresponds 
the state q(x) of the system. The function 
(25.5) @ = Cp(X1, X, ,  -.., Xr) = CpW) 
is a certain function of the random variables XI, X2 , . . . , Xr . Therefore, this 
is also a random variable, which takes the value 1 if the system functions, 
and the value 0 when it has failed. The probability that @ = 1 is the prob- 
ability that the system is in a good state at  the instant considered. We shall 
call the random variable (25.5) the “random structure function” of the system. 

(25.6) 
The mathematical expectation of this random variable is 

E(@) = aq(X)] = 1 x pr { @ = 1 } + 0 x pr { @ = 0 )  = pr { @ = 1 } .  

We shall call the function 
(25.7) N P I ,  ~ 2 9  - .* ,  P r )  = @ d X ) ]  
the “reliability function” of the system. It is indeed clear that E [ q ( X ) ]  is a 
function of the reliabilities p l ,  p 2  , . . . , pr of the components, which define the 
probability laws of the random variables XI, X2 , . . . , Xr . We proceed more- 
over immediately to obtain this reliability function. Indeed, suppose that the 
structure function of a system is in the simple form (Section 22), that is, in 
the form of a polynomial ~p,(x) of first degree with respect to each of the 
variables xl ,  x 2 ,  ... , x,. Then q(x) is a sum of terms of the form 

k . X i , .  X i , .  ... . X i ,  (I < r) . 
Since the random variables X i ,  , . . . , X i ,  are independent, we have 

(25.8) E ( k . X i I . .  . . . X i , )  = k . E ( X i , ) .  E(Xi ,). . . . . E(Xi , )  

= k . p i l  . p i ,  .... .pi ,  . 
It then follows that 

(25.9) N P )  = MpI, P Z ,  Pr) ( P ~ ( P I *  P z ,  ...) Pr)  = C O ~ ( P )  

where 

( P I  = ( P I ,  ~ 2 9  P r )  . 
In other words, the reliability function is obtained simply by replacing the 
the variables xlr x 2 ,  .. . , xr by p l ,  p 2 ,  ... , pr in the structure function of the 
system expressed in simple form. 
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Examples. Consider again the example of Fig. 23.1, which is reproduced 
as Fig. 25.1 for convenience. We have seen in (23.5) that the system represen- 
ted by this network has minimal links 

(25.10) { 2 , 5 ) ,  { 2 , 6 ) ,  { 1 , 4 , 5 ) .  
According to the general formula (22.1), the survival function is then 

(1) 

(25.11) c~(x)  = 1 - (1 - ~2 x5) (1  - ~2 -y6) ( 1  - . ~ 1  -yq ~ 5 )  . 

Developing and simplifying this expression we obtain 

(25. 12) qs(x) = xz x5 + x 2  x6 + X I  x4 -y5 - x2 -ys .y6 - -yI - y2  -y4 xg . 
In order to obtain the reliability function it suffices to replace, purely and 
simply, x i  b y p i ,  i = 1, 2, 3, 4, 5; we thus have 

(25. 13) h(p )  = p 2  P5 + P 2  P6 + PI P4 P5 - P 2  P5 P6 - PI PZ P4 P5 
where pi is the reliability of component ei, i = 1, 2, 3, 4, 5. 

A 
FIG. 25.1. 

Note that the reliability of the useless component e3 does not occur in 

(2) The nonmonotone structure function (22.17), which we rewrite here 
the reliability function h(p) of the system, as one would expect. 

as 
(25.14) (P(x,, xZ,  ~ 3 )  = (1 - XI ~2 ~ 3 )  (1 - ~2 ~ 3 )  XI  ~3 

has the simple form (22.19): 

(25.15) (ps(xl, x 2 ,  x 3 )  = x1 x 3  - XI -yz -y3 . 
Its reliability function is therefore 

(25.16) h ( P 1 , P Z , P 3 )  = PI P 3  - PI P 2 P 3  = PI P 3 ( '  - PZ). 

The properties that allow one to pass from (25.14) to (25.15), that is, having 
x: = x i  for all k,  is evidently not valid for the reliabilitiespi; hence, replacing 
the x i  by the pi in (25.14) would result in a function that would be different 
from (25.16) and that would not be the reliability function. 

Other Expressions of the Reliability Function. The states of the set of 
components being disjoint events in the sense of probability theory, we obtain 
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the reliability function by adding the probabilities of all the links. An arbitrary 
r-tuple ( x )  = ( x , ,  x 2 ,  ... , x,) has probability equal to a I ( x )  ... ai (x)  ... ar(x) 
where 

(25.17) Lxi(Xi)  = pi  if x i  = 1 , 

= l - p i  if x i = O .  

We may then write 

(25.18) h ( p )  = 1 cp(X1, ...) x, )  al(sl) ... b i ( . Y i )  ... g r ( x r )  , 
X S e  

where (2 is the set of 2’r-tuples. The r-tuples for which cp = 0 gives a zero 
term; those for which cp = 1, corresponding to a link (cf. Section 17), give 
a term equal to the probability of the r-tuple being considered. This expres- 
sion may also be obtained from (22.18). 

Example. The table of values of the structure function (25.14), which is 
given in Fig. 22.8, shows that the only state of the set of components giving 
cp the value 1 is the state (1, 0, l), to which corresponds the unique link 
{ e l ,  e3 } of the structure function. Formula (25.18) then carries only one 
nonzero term 

Indeed we have recovered (25.16). 

Case Where All Components Have the Same Reliability. If all the com- 
ponents have the same reliability p ,  the probability of observing a fixed state 
corresponding to k components in good states with r - k defective is given 
by a binomial law: 

(25.19) n(k) = p k ( 1  - py-” k = 0, 1,2, ...) I ’ .  

Let A ,  be the number of links having k components; we then obtain a 
simple expression for the reliability function 

r 

(25.20) k(p) = 1 A,pk( l  - p y - k  . 
k = O  

Similarly, let Bk be the number of cuts having r - k components; we thus 
obtain 
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Example. Consider again the network of Fig. 25.1. This network has three 
minimal links, listed in (25.10); we obtain all links by considering the subsets 
of components including a minimal link. We thus have: 

0 
0 
2 

8 

11 

6 

1 

links having 0 components: 
links having 1 component: 
links having 2 components 
(these are { 2, 5 } and { 2, 6 }): 
links having 3 components 
(these are { 2, 5 ,  1 }, { 2, 5,  3 }, 

{ 2, 3, 6 1, (2 ,  4, 6 I, { 1, 4, 5 I): 
links having 4 components 
(there are (s) = 15 possible states, but 
the complements of the four cuts 

A0 = 0; 
A ,  = 0; 

A2 = 2; 

{ 2, 5,  4 1, { 2, 5, 6 I, { 2, 1, 6 1 
A 3  = 8;  

{ 2, 1 1, { 2, 4 1, { 2, 5 1, { 6 ,  5 1 are 
not links): A4 = 11; 
links having 5 components 
(there are (2) = 6 possible states, 
and no cut with 1 component): 
link having 6 components 

A ,  = 6 ;  

(this is { 1, 2, 3, 4, 5 ,  6 }): A6 = 1. 

We finally obtain the reliability function 

(25.22) 

h(P) = 2 p2( l  - p)4  + 8 p3(  1 - p ) j  + 1 1 p4( 1 - P ) ~  + 6 p5(  1 - p )  + p6  

By expanding this expression we obtain 

(25.23) h(p)  = 2 p 2  - p4  

= p2(2 - p 2 ) .  

The same result may indeed be obtained by putting p 1  = p 2  = p 3  = 
p4  = p s  = p 6  = p into expression (25.13). 

Properties of the Reliability Function of a Monotone Structure. We now 
present a sequence of theorems stating various important properties of the 
reliability function of a monotone structure. 

Theorem 25.1. 
monotone, that is( 

The reliability function h(p) of a monotone structure is 

(25.24) (4) 3 (PI - N q )  3 h ( P ) .  
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To prove this theorem we show that, for any vector p = (pl, p 2  , ... , p,) 
such that 0 < p i  < 1, i = 1, ... , r, the various partials ah(p)/ap, are non- 
negative. Consider expression (25.18) of the reliability function, and let Ci 
be the set of 2r-1 (r - 1)-tuples 

We obtain the 2' r-tuples (x) by completing each of the x' either by xi = 1 
or by x i  = 0. We thus have 
(25.26) 

(25.25) (x') = (xl, ... ) xi- I, X i + l ,  ..., XI). 

h(p)= C cp(xl, ..., x i -  1, 1, x i +  l ,  ..., x,) ul(xl)  ... ui-  l ( ~ ~ i -  l).pi ... x,(x,) 
X' E ei 

+ c d X 1 ,  .-., xi-1, 0, xi+ 1, ..., X,) IYl(X1) ... ui- I ( X i -  1).(1 -p i )  ... ur(-Yr), 
X'  E er 

from which 
(25.27) 

-- ah(p) -  c "p(x,,..., Xikl, l ,Xi+l, . . . ,  X,)-Cp(X, ,..., Xi-1,0,xi+l,**., X')] 

aPi x ' E e ;  

x ! X l ( S l )  ... a i -  I C Y i -  1) ' x i+  1 ( S i +  1)  ... 'xr(xr) . 
Since the structure function cp is monotone, all the terms between square 

brackets are nonnegative (they are equal to 0 or to I) ,  and the partial deriva- 
tive is nonnegative. 

Theorem 25.11 [19]. Let cp(x) be a monotone structure function: h(p) 
its reliability function; b,, b, , . . . , b, the minimal cuts of this structure; and 
al, a,, . . . , a, the minimal links. Then 

Note that the first member of the inequality above will be equal to the 
reliability function h(p) if all the minimal cuts are pairwise disjoint. Similarly, 
h(p) will be equal to the third member if no two of the minimal links have a 
component in common. 

Example. Consider the monotone structure function 

(25.29) Cp(X) = X I  X2 + x1 x3 - X I  .Y, .Y3 

whose minimal links are a1 = { 1, 2 } and a, = { 1, 3 } and whose minimal 
cuts are b, = { 1 } and b, = { 2, 3 }. The inequality above becomes 

(25.30) 

c1  -(I -P1)1 Cl -(I -P2) ( 1  - P d l  d h(P) d 1 - ( I  -P1 P2) ( 1  -PI P 3 )  
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and we have 

(25.3 1)  

since (25.29) is in simple form. Since the cuts are disjoint, the first member is 
equal to h(p), but the third member is equal to h(p) + (1 - pl )p1p2p3.  

h(P) = P I  P ,  + P1 P3 - PI P 2  P3 

The two inequalities that follow involve the partial derivatives of the 
function h(p). The first may be deduced [5] from the Schwarz inequality; the 
second is a generalized form of a result of Moore and Shannon (see Birnbaum 
et al. [S]). 

Theorem 25.111. The reliability function h(p) of a monotone structure 
satisfies the following inequalities: 

(25.33) 

An abbreviated form of the Moore-Shannon inequality (25.33) is given 
by the expression 

(25.34) Cov [ S ( X ) ,  d X ) ]  2 Var cp(X) 

where 

(25.35) S ( X )  = XI + x, + ... + Xr 

and Cov means '' covariance of," Var means " variance of." 

Theorem 25.1V. Put 

(25.36) 

(25.37) b = Err - S ( X )  I q ( x )  = 0 1 ,  

where S ( X )  is defined by (25.35), ii is the mean number of components in links, 
and 6 the mean number of components in cuts. One then has 

cl = E [ S ( X )  I q ( X )  = I ] ,  
- 

(25.38) i + 6 3 n + 1 ,  

where n is the order of the monotone structure function ( P ( x ) . ~  

See Section 21, p. 86 
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Theorem 25.V. Let 1 be the length4 of a monotone structure and p its 
width; if the structure is made up of r components each having the same relia- 
bility p ,  then one has 

(25.39) p’ d h(p)  < 1 - (1 - p ) ” .  

Indeed, the good functioning of the 1 components of the smallest link 
suffices to assure that the system will function, and the failure of the smallest 
cut suffices to bring the system to failure. 

26 Composition of Structures 

Definition. Composition operation for structure functions. Let y(x) be a 
structure function where (x) = (xl, x2, ... , x,), xl, x2, ... , x, constituting a 
family of structure functions 

7 .  x1 = X,(U1, u2, ... ) Uk,), 9 2  = x 2 ( u , ,  u2, ..., l ‘ k l ) ,  ..., x, = .Y,ll(zl, -2 ,  ... ) - k m ) ,  

(26.1) cp(u, L’, ..., z )  = Y ( X l ( U ) ,  x,(L’), ..-, X,(4) 

then 

is called the composition of xl, x2, ... , x, in y,  and xl(u), x2(u), ... , x,(z) are 
called “substructures” of q(u, v, ... , z). 

If (u), (v), . . . , (z) are independent r-tuples (that is, if no two of these 
r-tuples have a component in common), then xl (u) ,  x2(v),  . . . , x,(z) are called 
“modules” of cp; in this case, i f  y does not have useless components (if it is of 
order m), the order of cp is the sum of the orders of xl, x2, ... , x, . 

Example. Let 

(26.2) 

(26.3) x1 = 1 - ( 1  - U l )  ( I  - u 2 ) ,  x2 = I - ( I  - u l )  ( 1  - u 2 )  

and 
(26.4) 
Then 
(26.5) 

Y ( X , ,  x2) = X I  ‘ -Y2 .  

V ( U ,  U) = [ I  - ( I  - ~ 1 ) ( 1  - u,)] [ I  - ( I  - c l ) ( I  - c2)] 

= (u ,  + u2 - u ,  u2) (ul + L’2 - c 1  r 2 ) .  

Definition. Let (2 be a reli- 
ability network of order m (with m useful components) and r,, r 2 ,  ... , r, be 

Composition operation for reliability networks. 

The length and width of a structure have been defined in Section 17, p. 66. 
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a family of reliability networks with respective orders k,, k ,  , k,  . If each arc 
corresponding to component x i  in the network (2 is replaced by the network r i ,  
we obtain a network X called the ‘‘ composition of r,, r ,  , ... , r, in (2,” and we 
write 

(26.6) 3 = cfl(r,, r 2 ,  ..., r,). 

We shall call r l ,  r,, ... , rm “subnetworks” of X. I f r , ,  r,, ... , r, are 
independent, they are also called “modules” of X. 

Example (Figs. 26.1 and 26.2). In Fig. 26.1 we have represented a network 
(2 that contains three subnetworks r l ,  rz , and r3 which are not independent. 
For example, r ,  and r,  contain a common component el .  

In Fig. 26.2 we have represented a network (2 that contains four indepen- 
dent subnetworks or modules. None of these modules contains a component 
existing in another module. 

@-- 
0 

‘. - -___--- 
FIG. 26. I .  

-@ 
Z 

@- 
0 

-0 
Z 

FIG. 26.2. 

Theorem 26.1. If the network (2 is equivalent to the structure function X, 
and the networks r l ,  r ,  , , . . , rm are, respectively, equivalent to structure functions 
p,, p 2 ,  . . . , p,, then the network X = O(rl, r ,  , . . . , r,) is equivalent to the func- 
tion 

(26.7) d u ,  0, ..., z )  = Cp[p,(u), Pz(L’), ..*, P,(Z)]  . 

This theorem may easily be checked by enumerating the links of X and (2. 

Composition of Reliability Functions. Let 

d u ,  u, ..., z )  = Y [ X , ( U ) ,  X , ( V ) ,  ..., .Y.(Z)] 

be a structure function having x,(u), x,(v), ... , x,(z) for modules (that is, 
u, u, . .. , z are independent r-tuples), and let g(p),  fl(ql), f2(q2) ,  .. . , f.(q”) be 



26 COMPOSIT ION O F  STRUCTURES 125 

the reliability functions corresponding, respectively, to the structures y ,  
x i ,  x 2 ,  . . . , x, . We then have the following theorem. 

This theorem may easily be deduced from relations (25.6) and (25.7); 
f i ( q i )  is by definition the mathematical expectation of X i ,  but it is also the 
probability pi that X i  = 1. 

The examples that follow show the simplifications brought about by 
composition for the calculation of reliability functions. 

Use of Composition for the Calculation of Structure Functions and 
Reliability Functions. 

Example 1. Consider the network X given in Fig. 26.3. This network may 
be decomposed into three subnetworks of which two are identical (Fig. 26.4). 
The subnetworks are arranged as indicated in Fig. 26.5. 

FIG. 26.3. rl r2 

FIG. 26.4. 

The structure function corresponding to the network (2 of Fig. 26.5 is 

(26.9) 

with 

(26.10) 

Y = Pl . ( P 2 I 2  = Pi . P 2  7 

= 1 - (1 - X 1 ) ( I  - x2) 

and 
(26.11) ~2 = 1 - ( 1  - x1 ~ 2 )  ( I  - ,y1 .v3) ( I  - s1 .v4) ( I  - ~2 -y3 x4) 

since the minimal links of rl are { 1 } and { 2 }, those of r2 are { 1 ,2  }, { 1 , 3 }, 
{ L 4  1, and { 2, 3, 4 1. 
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Putting (26.10) and (26.1 1)  into (26.9), we obtain after reduction 

(26.12) 

Cp(X,, X2, X3,  X4) = X I  X2 + X1 X3 + -Y1 .Y4 - -Y1 .Y2 -YI) - SI -Y2 .Yq 

- X I  .Y3 .Y4 + x 2  x 3  X 4  . 

If we further calculate the expanded form of p 2 ,  we find that 

P 2 ( X , ,  X2, X3, x4) = d X 1 ,  -Y2r 1 3 ,  -Y4) . 

The fact that finally the network 3. reduced to r2 might have been re- 
vealed a priori. In fact, each minimal link of r2 includes a minimal link of rl 
and therefore constitutes a link of 32. 

The reliability function corresponding to (26.12) is 

(26.13) 

h(pl, p2,  p3, p4) =z PI p2 + PI p 3  + PI p4 - PI p2 p3 - p1 p2 p4 

- P l P 3 P 4 + P 2 P 3 P 4 .  

Suppose that all the components have the same reliability p ,  then we 
have 

(26.14) h(p)  = 3p2 - 2 p 3 .  

Remark. In the example of Fig. 26.3, the subnetworks are not independent 
and thus do not form modules; therefore we may not calculate the reliability 
function by passing directly from y = p1 p 2  to this function; it is necessary to 
take into account the common components. 

Example 2 (Figs. 26.6-26.8). 
subnetworks that are modules. In this case the structure function is 

This time the network 3.' is formed of three 

(26.15) y'  = p l * p 2 . p 3 .  

Suppose that all the components have the same reliability p.  For the network 
r ; ,  we have 

(26.16) 

(26.17) 

For the network r 3 ,  

h l ( p )  = 3 p 2  - 2 p 3 .  

h2(P)  = 2 P  - P 2 .  

h 3 ( p )  = 3 p 2  - 2 p 3 .  

For the network r 2 ,  

(26.18) 
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Finally, for the network X', 

(26.19) h(p )  == 1 (p).h2(p).h3(p) 

= (2 p - p 2 )  (3 p2 - 2 p 3 ) 2  . 

FIG. 26.6. 

FIG. 26.7. 

Remark. Of course, the decomposition of a network into subnetworks may 
be carried out in a number of ways; in general one seeks to give a series or 
parallel structure to the network (2. 

Linear Composition of Structure Functions. The linear composition of 
two structure functions of order at  most n, cpl(xl, x 2 ,  ... , x,) and (p2(xI, x 2 ,  
... , x,), is defined as the structure of order at  most n + 1, cp(x,, x 2 ,  ... , x, ,  
x,+ defined by the relation 

(26.20) v ( x ~ .  ~ 2 ,  ..., xnr x n + l )  = xn+i Cp1("1~ , y ~ ,  ...) .'A 
+ ( 1  - -yn+ 1) ~ 2 ( - ~ 1 >  -y2, ..., xn) 

Thus cp is obtained by composition of the structures 
(26.21) = ~ , + 1  9 ~2 = ~ i ( x i ,  x.2, . - - )  x,) 9 ~3 = ~ 2 ( x 1 ,  - ~ 2 9  ...) -yn) 9 

in the structure 

(26.22) Y = Pl P 2  + (1 - P d P 3  
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Important Remark. The structure y given by (26.22) is not, in general, mono- 
tone; one may convince oneself of this through the table in Fig. 26.9 by com- 
paring rows 6 and 2. Thus linear composition does not have a simple geo- 
metric correspondence in the domain of reliability networks. We shall see, 
however, that linear composition preserves the monotonicity of structures 
'pl and 'p2 if 'pl 2 'p2 since then y is monotone. 

FIG. 26.9 

Theorem 26.ZZZ. Any structure function of order n is a linear composition 

Indeed, one may write 
of two structure functions of order at most equal to n - 1. 

(26.23) ~ ( x 1 ,  ~ 2 ,  -..) xn-1, x,) = x n  ~ ( x , ,  ~ 2 3  ..*) Xn-1 ,  1) 

+ ( I  - x,) Cp(x1, x2, ..., x,- 1, 0) . 

Theorem 26.ZV. Any structure function cp(xl, x 2 ,  ... , x,) may be written 
in the form 

n 

(26.24) fp(X1, x2, ... ) X") = c q(() n Xf'(1 - x j ) ' - c J ,  
< E C  j = l  

where (2 designates the set of 2" states ( = (tl, t2,  ... , 5,) of the set of 
components. 

This expression may be obtained by repeating the decomposition pre- 
sented in (26.23). It may be reduced to the following sum: 

(26.25) Cp(x,, x2, ..., x,) = c n xgi(1 - xj)- 
a e . 4  " j=1 
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where the sum is extended to the set A of n-tuples (a)  such that q(x) = 1 ; this 
relation is identical, to within notation, to relation (22.1 8). 

Example. Consider the case of a monotone structure function, but formulas 
(26.24) and (26.25) remain valid for monotone functions; let 

(26.26) (P(xl, x2, x3) = X I  x3 + x 2  x 3  - x 1  .Y2 x 3  . 

In Fig. 26.10 we have given the values of 9; this function takes the value 
1 for the following 3-tuples: 

(26.27) (0, 1,  I ) ,  (1 ,  0, I ) ,  and ( 1 ,  1, 1 ) .  

FIG. 26.10.  

Using (26.25), we have 

(26.28) (P(x~, ~ 2 ,  ~ 3 )  = ( 1  - xi) ~2 x3 + ~ 1 ( l  - ~ 2 )  - ~ 3  + XI . ~ 2  x3 

= x1 x1 + x2 x3 - X I  .Y2 x 3  . 

Monotone Linear Composition 

Theorem 26. V. A necessary and suficient condition for  a structure 
function q ( x , ,  x2, . . . , x,) to be monotone is that it be formed by a linear com- 
position of two monotone structure functions ql(xl, x2,  . . . , x,,-~) and 
cp2(x,, x 2 ,  ... , x , , - ~ )  of order at most equal t o n  - 1 : 
(26.29) 

( ~ ( ~ 1 3  x2 r  * * . )  xn)=xn (~I(x1, x27 ..., xn- 1)+(1  - -Yn)  ( ~ 2 ( - ~ 1 7  ~ 2 3  ...* . ~ n -  1) 

where the functions ql and q2 satisfy 

(26.30) V(X1, ~ 2 ,  ..., x,- 1) : (~i (x1,  ~ 2 .  ..., x,- 1) 2 ( ~ 2 ( . ~ 1 ,  - ~ 2 ,  ..., -Y,- 1 ) .  
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cpl and cpz are monotone 
cpl 2 cp2 for all ( x l ,  x2, ... , xn-& 

(26.35) cp is monotone e 

Linear Composition of Networks. Let XI and X2 be reliability networks 
equivalent, respectively, to cpl and c p 2 .  Then the network of Fig. 26.1 1 is 
equivalent to the structure function cp given by (26.29): If en is in a good 
state (x, = l) ,  the system functions if and only if the substructure Xl func- 
tions (ql = 1). If en has failed, the system functions if and only if the two 
substructures XI and X2 are in good states; but cpl 2 cpz implies that if X2 
functions, Xl also functions; the only condition therefore is that cp2 = 1. 

We may also show the equivalence by writing the structure function of 
the network X by the method of links (Section 22, Eq. (22.1)): 

from which 
Vr = 1 - ( 1  - xn C P ~ )  (1  - C P ~  CP~) 3 

Cpr = x n  ~1 + ( 1  - xn) C P ~  ( ~ 2  . 

Since cpl 2 cp2, we have q1q2 = cp2 ,  and (26.29) is recovered. 
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Remarks. (1) Monotone linear composition may be interpreted in the fol- 
lowing fashion: As long as the component en functions, the system behaves as 
the substructure 'pl. The failure of en degrades the reliability of the system, 
which becomes that of the substructure 'pz (with 'p2 < cpl): if 'pl = 1 and 
'p2 = 0 at the moment of the failure of e n ,  this will entail the failure of the 
system; if 'pl = 1 and 'p2 = 1, then failure of 'pz will entail that of the 
system. 

(2) The substructures cpl and 'p2 in principle have the same components 
(el, e 2 ,  .. . , but certain of these may be useless in one or the other of the 
substructures 'pl and cp2 with the reservation that (26.30) be satisfied, that is, 
that any link of X 2  is a link of Xl,  and any cut of X1 is a cut of Xz. In 
the limit, XI,  Xz (and en) may be modules of 32. (Examples 1 and 2 below). 

Examples. 
(1) If 'p2 = 0 (degenerate structure of order 0) ,  inequality (26.30) is 

satisfied for any cpl, and cp(x,, .. . , x,,) = x,, cpl(xl, .. . , x,,-~). The component 
en is in series with the module cpl (or X ,  ; in Fig. 26.1 1, X2 has no links). 

(2) Similarly, if 'pl = 1 (another degenerate structure of order 0), 
(26.30) is satisfied for any 'pz, and cp(xl, ... , x,,) = x,, + (1 - x,,)'p2(x1, ... , 
x,,-~). The component en is in parallel with the module 'p2; in Fig. 26.1 1, X1 
has no cuts. 

(3) Consider again the example (Fig. 26.12) given in (26.26): 

(26.36) cp(x1, xz, x3) = x1 x3 + x2 x 3  - x 1  l - 2  x 3  . 

FIG. 26.12. 

This structure function may be written as 

cp(x,, x2, x3) = x1 XJ + ( 1  - x,) x 2  x 3  . 

Cpl(X2, X d  = x3 9 ' p 2 ( x 2 ,  x3) = -y2 -y3 . 

Put 
(26.37) 

Then cpl is evidently monotone, and likewise c p 2 ;  on the other hand, cpl 2 cp2, 
as one may see in the table of values: 

(Pl(0, 0) = 0 7 

( P , ( O ,  1) = 1 , 
cpl (1 ,  0) = 0 9 

Cpl(1, 1) = 1 ,  

'pZ(0,O) = 0 ,  
(P2(0, 1) = 0 ,  
Cp2(1,0) = 0 3 

cpZ(1 ,  1 )  = 1 . 

(26.38) 
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The two conditions on the member on the right of (26.35) are indeed 
satisfied. One may confirm that (26.36) is a monotone structure function. 

Determination of the Set of Monotone Functions through Recurrence. 
Theorem 26.V shows that linear composition allows us to determine, using 
recursion, the set of monotone structure functions of order at most equal to n. 

By way of an example, we determine the monotone structures of orders 
0, 1, 2, and 3. The monotone structures of order 0 are the two degenerate 
structures 

(26.39) cp\O) = 1 and cp‘jo) = 0. 

Since cp‘p) > cpi’), we obtain the monotone structure of order 1 : 

(26.40) cp(ll’(xl) = x1 cp‘p’ + (1 - XI) cp‘z”’ = x, . 

We now have at our disposal three monotone functions: q‘p), cp‘p), and qil), 
for which we may write 

(26.41) V(xl) : Cp‘p’ 2 cp\l’ 2 cpy . 

From property (26.41), considering the two pairs (pio), cpi’)) and (cpil), cplo)) 
(the third has already been used to form (26.40)), we obtain 

(26.42) (p\2’(x1, x2) = x2.Cp(p’ + (1 - X2).cp\1’  

= x2 + ( I  - x2)x1 

= x1 + x2 - x1 x2, 

(26.43) cp:2’(x,, x2) = x2.cp\” + (1 - x,).cp‘jO’ 

= x2x1 + (1 - x2).0 

= X l  x2.  

We order the functions already obtained : 

There are (:) - (i) = 10 - 3 = 7 pairs of structure functions not already 
taken into account, namely: 
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from which 

(26.46) cpi3)(x1, x2, x3) = x3 cpi0) + (1 - x3) cp12) 

= x3 + (1  - x3)(x1 + x2 - x, X z )  

= x1 + x2 + x3 - x1 x2 - X I  XI) - x2 x 3  + X I  x 2  XJ , 

= x3 + (1 - x3)x1 x2 

= x3 + X I  x2 - X I  x2 x3, 

= x~(xI + ~2 - XI ~ 2 )  + (I - x~)x I  

= X I  + x2 x3 - x1 x2 x3, 

= ~ 3 ( ~ 1  + ~2 - XI ~ 2 )  + (1 - ~ 3 )  XI ~2 

= x1 x2 + x1 x3 + x2 x3 - 2 x1 x2 x3, 

= x~(xI + X~ - x1 x ~ )  + (1 - x3).0 

= x1 x 3  + x2 XJ - x1 x2 x3, 

(26.51) cpk3)(x1, x2, x3) = x3 cp\l) + (1 - x3) cp:’) 

= x3 X I  + (1 - x3) x1 x2 

= x1 x2 + x1 x3 - x1 x2 x,, 

(26.52) cp$3)(x1, x2, x3) = x3 cpi2) + (1 - x,).q$O) 

= x3 x1 x2 + (1 - x,).O 

= x1 x2 x3. 

(26.47) qi3)(x1, x2, x3) = x3 cpp‘p) + (1 - x3) (pi2) 

(26.48) cpi3)(xl, x2, x3) = x3 cpi’) + (1 - x3) cp\l) 

(26.49) cpL3)(x1, x2, x3) = x3 cp‘:) + (1 - x3) cp”) 

(26.50) &)(x,, x2, x3) = x3 cp\*) + (1 - x3) cp(p) 

Notice moreover that cpi3) and qS3) may be obtained from one another 
by a circular permutation of xl, x 2 ,  x 3 ;  similarly, (pi3) and (pi3). Finally, 
there remain five distinct types of structure. 

The table presented in Fig. 26.13 gives the corresponding reliability net- 
works for the results obtained above. The reader should compare these results 
with those obtained in Section 21, Figs. 21.6-21.8, by the method of enumera- 
tion with the aid of free distributive lattices on n generators. 

Linear Composition of Reliability Functions. The reliability function 
&I), being identical to the simple form of the structure function cp(x) (see the 
presentations of Sections 22 and 25), that is, 

(26.53) h(p) = cp,(p) where cp,(x) is the simple form, 
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Order 
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e. 

C 

-el- 

l 

FIG. 26.13. 
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the properties that arose in their study remain valid for reliability functions 
since the polynomials obtained by linear composition are of first degree with 
respect to each of the variables. 

In particular, we may obtain by recurrence the set of reliability functions 
for monotone structures. In the particular case where 
(26.54) p = p 2  =... = p  = p 

we have 

(26.55) 

(26.56) 

(26.57) 

(26.58) 
(26.59) 

(26.60) 

(26.61) 

(26.62) 

(26.63) 

(26.64) 

Order 0 : h\O’(p) = I , 
h\”(p) = 0 (h(,O’ > hio’) . 

Order 1 : 

Order 2 : 
h‘,’)(p) = ph‘,’’ + ( 1  - p )  hio’ = p 

h\’)(p) = ph\’’ + ( 1  - p) A(,’’ = 2 p - p2 , 

Order 3 : h\3’(p) = 3 p  - 3 p 2  + p 3 ,  

(h‘,’) 3 h‘”’ 3 h:”) 

h\2’(p) = ph:“ + ( 1  - p )  hiO’ = p2 . 

h\3’(p) = h\3’(p) = p + p2 - p3 , 

hi3’(p) = 3 p z  - 2 p 3 ,  

hi3’(p) = hk3’(p) = 2 p 2  - p3 , 

h\3’(p) = p3 . 

27 Representative Curves of Reliability Functions for Monotone 
Structures. Theorem of Moore and Shannon 

We suppose in the remainder of this section that the components e l ,  
e 2 ,  ... , e, have the same reliability: p 1  = p z  = = pn = p .  

Theorem 27.1 (Theorem of Moore and Shannon). The reliability func- 
tion of a monotone structure of order n all of whose components have the same 
reliability p satisfies the following inequalities: 

(27.1) 

(27.2) 

The relations result directly froin (25.32) and (25.33), taking into account 
the relation 

(27.3) 
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These inequalities were obtained by Moore and Shannon’ in 1956. We 
review briefly the proof that they have for inequality (27.2), now called the 
“ Moore-Shannon theorem.” 

We shall reason by recurrence. For any reliability function h(p) of a 
monotone structure of order n, one may write (cf. Section 26, linear com- 
position) 

(27.4) h(P) = Pf(P) + ( 1  - P) g(P) With6 f(P)  2 d P )  9 

(27.5) h = p f + ( l  - P ) 9 .  

(27.6) 

(27.7) (1-f)Pf+(1-P)Pf+(l-P)s(l-s)-(I-P)Ps 2 h 0 - h ) .  

or more briefly 

Using the evident inequality 

(1  - P).P.(f- 9)(1 - f +  9) 2 0 ,  0 d p  d I ,  

we may write, after several transformations, 

Iff and g have the property 

(27.8) 

we obtain 

(27.9) 
df dg h(l  - h) 

g - p ) ’  p - + f + ( l  - p ) - -  dP dP 
and therefore 

dh df dg h(1 - h) - = p - + f + (1  - p) - - 
dP dP dP p(l - p) ’ (27.10) 

However h\O)(p) = 1, h$”(p) = 0, hi1)@) = p possess property (27.8); the 
theorem is therefore proved by recurrence. 

Representative Curves for Reliability Functions of Monotone Structures 
with Components of Equal Reliabilities. The Moore-Shannon theorem (27.2) 
shows that the derivative of h(p) is bounded below by solutions of the dif- 
ferential equation 

(27.11) PO - 

In an article published in 1956, Moore and Shannon [40] studied redundance for 
relays (cf. Chapter VI). This theorem was thus discovered within the framework of the 
solution of a concrete problem. 

This condition applies according to relation (26.30) of Theorem 26.V. 
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The family of solutions to this equation is 

(27.12) 

where c is an arbitrary constant. In fact, we shall consider only those values 
o f c 2 O  forwhichu,(p)>OforO<p< l .Foranyc#O,we haveu,(O) = O  
and u,(l) = 1; Fig. 27.1 represents the shape of the curves u,(p), which 
are branches of hyperbolas. 

The three reliability functions of order 0 or 1 coinciding, respectively, 
with u,(p) for c = + 00, c = 0, and c = 1 are 

(27.13) h'P'(p) = 1, u, (p )  = 1 ,  
(27.14) h'PYp) = 0 ,  uo(p) = 0, 
(27.15) h i l W  = P, Ul(P)  = P .  

Now consider a reliability function of order a t  least 2. For a given value 
p 1  ofp, we have 

(27.16) h(p1) = uc,(Pl) 

for a value c1 given by 

(27.17) 

At this point ( p l ,  h(p,)), the Moore-Shannon theorem shows that dh/dp 2 
du,,/dp: the curve h(p) traverses the curve u,, from below. Moreover, we have 
h(p) > u,,(p) for p > p l ;  that is, h(p) does not cut again u,,(p). If it did 
we would have either h(p) = uc,(p) in a nonempty interval, which is impossible 
since h(p) is a polynomial of degree at  least 2 and u,,(p) is a hyperbola or a 
straight line, or else dhldp < du,,/dp at  a new point of contact. As a 
consequence, a reliability function of order a t  least equal to 2 meets at most 

FIG. 27.  I .  FIG. 21.2. 
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one time any given u,(p) curve. This is applicable in particular to u,(p), that 
is, to the first bisector. 

To stress this property we classify the reliability functions of monotone 
structures with components of equal reliability into three types (excluding 
functions of order less than 2): 

TYPE I : h(p)  < p for 0 < p < 1 . 

TYPE I1 : h(p) < p for 0 < p < p o ,  

> p  for p o < p < l .  

= P o  for p = P o ,  

TYPE 111 : h(p)  > p for 0 < p < 1 . 

These three types of curves are presented in Fig. 27.2; type I1 is called an S 
curve. 

Identification of the Type of a Reliability Curve. To determine the type 
of a function, we find the slope at  the origin and the slope at  point p = 1. 
Let h’(0) be the slope at the origin and h’(1) that at  point p = 1. The three 
possible cases are: 

(27.18) 0 < h’(0) < 1 , 1 < h’(l), type I , 
(27.19) type I1 , 
(27.20) 1 < h’(0) , 0 < h’( l )  < I , type 111 . 

0 < h’(0) < I , 0 < h’(1) -= 1 , 

Examples. 

(27.21) h(p) = p 3  ; h’(p)  = 3 p 2 ,  h’(0) = 0, h’(1) = 3 .  

(1) Let 

According to (27.18), the function is of type I. 

(27.22) h(p)  = 3 p 2  - 2 p 3  ; h’(p) = 6 p  - 6 p 2 ,  h’(0) = 0, h ’ ( l )  = 0 .  
From (27.19), the function is of type 11. 

(2) Let 

(3) Let 

(27.23) h(p)  = 2 p  - p 2 ,  h’(p) = 2 - 2 p ,  h’(0) = 2 ,  h ’ ( l )  = 0 .  

From (27.20), the function is of type 111. 

We may also obtain important information from the links and cuts of 
the structure function cp(x,, x z  , .. . , x,) corresponding to h(p). Let cp(xl, xq , 
... , x,) be the structure function of a system with n independent components; 
tb- corresponding reliability function is 

(27.24) A h ,  p 2 9  *..,P.) = E[dX,,  X , ,  .... X.>I . 
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Number of cuts having 
a single component reliability function 

Type of 

0 II ( s  curve) 

0 111 

2 1  I 

1 bisector : h ( p )  = p  

The recurrence relation 
(27.25) 

~p(x1, x29 . * . I  xn)=xn*q(x1, ~ 2 7  ..., xn-1, I ) + ( ]  - x n )  (P(x~, - ~ 2 r  ..., x n - 1 ,  0) 

follows by taking the mathematical expectation: 

(27.26) h ( p , , p , ,  . . . ,pn) = Pn.ECV(X1, XZ, * . * )  xn-1, ')I 
+ ( 1  - p n ) . q d X 1 ,  x,, ...) xn- 1 ,  O ) ]  . 

Differentiating with respect to p n  , there follows 

a 
(27.27) - M P ~ , P ~ ,  ...,pn) = E[v(X, ,  x 2 7  ...) Xn-1, ')I 

aPn 
- E C d X , ,  xz, .'., X n -  1, 013 . 

This relation is valid for all components e , ,  i = 1, 2, ... , n, and if p 1  = 

p 2  = ... = p n  = p ,  we obtain 

(27.28) 

d h ( p l ,  ~ 2 9  ...) P n )  . api dh(p1, ~ 2 ,  ...* P n )  -= 2 
aP i ap i = l  aP i 

d 
h(p)=  c 

i =  1 

n 

= 1 { qq(x,, . . . , xi = 1, . . .) X,)] - E[(P(X,,  . . .) xi =o, . . . , Xn)] } . 
i =  1 

Puttingp = 0, relation (27.28) becomes 
n 

(27.29) h'(0) = 1 [rp(O, ..., x i  = 1, ..., 0) - ~ ( 0 ,  ..., xi = 0, ..., 0)]  . 
i =  1 

The derivative at  the origin is thus equal to the number of links having 
a single component (this result and the next may also be deduced from the 
simple form of the reliability function-see (25.18) or (26.25)). 

Likewise, if we put p = 1 in relation (27.28), we see that the derivative 
at  the point p = I is equal to the number of cuts having a single component. 

Finally, we obtain Table 27.1. 
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a t  least one of the two values p = 0 and p = 1 (with the exception of the 
function h(p) = p). 

Examples. 
(1) A series structure gives a reliability function of type I. 
(2) A parallel structure gives a reliability function of type 111. 
(3) A bridge for which the edges correspond to different components 

gives a reliability function of type 11. 

28 Systems Monotone in Probability 

Definition. Let S be a system of order n for  which the random structure function 
is q ( X ) .  W e  shall say that q(X) is monotone in probability if 

(28.1) p r{  q ( X )  = 1 I S ( X )  = k }  < pr(cp(X) = 1 I S ( X )  = k + 1 } ,  

k = 0 , 1 , 2  ,..., n -  1 ,  
where 

(28.2) 
the indices 1, 2, . . . , n representing the active components of the system, and 
where 

S ( X )  = X ,  + x, + ... + X " ,  

pr ( cp(X) = 1,  S ( X )  = k } 
pr { S ( X )  = k } (28.3) pr{cp(X)= I I S ( X ) = k } =  9 

following the usual dejinition of conditionalprobability. 

Remarks. 
(1) The above property involves both the structure function q ( x )  and 

the reliabilities of the components through the random function of structure 
(25.5). 

(2) Useless components do not figure in the count of the components 
in good state. 

(3) The reliability of a structure monotone in probability is increasing 
in the mean with the number of components in good state; it is, however, 
not excluded, in particular cases, that the return to functioning of a com- 
ponent could degrade the functioning of the system, that is, that the structure 
function of the system might be nonmonotone. 

Example. Consider the structure function 

The table of values of this function (central column of Fig. 28.1) shows that 
cp is not monotone; we have q(1, 0, 1) = 0, but q(1, 0, 0) = 1. 

(28.4) cp(x) = x, + x* x3 - X I  x 3 .  

The conditional probabilities occurring in (28.1) are easily calculated 
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PI P2 P 3  

FIG. 28.1. 

using (28.3) on one hand, and on the other the probabilities of state of the 
set of components, which appear in the right-hand part of Fig. 28.1. In con- 
formity with the notation of Section 25, we have called the probabilities of 
good functioning of the three components pl, p 2 ,  and p 3 .  

Setting 
(28.5) 
and 
(28.6) 

hl(P) = pr { W )  = 1 I S ( X )  = 1 ) 

h,(P)  = Pr { V ( X )  = 1 I S ( X )  = 2 I. , 
we obtain 
(28.7) 

Pl(1 - P 2 )  (1 -P3) 

(1 - P1)P2 P3 + P1 P2(l - P 3 )  

h l ( p ) = ( l  -p2)p3 -Pl)P2(l -p3)+pl( l  - P 2 ) ( '  -P3) 

(1 -pl)p2p3 +Pl( '  - p 2 ) p 3  +plp2(l - P 3 ) .  
(28.8) h,(p)  = 

The system is monotone in probability if and only if 

(28.9) h 1 W  s h 2 ( P )  9 

which represents an equation of degree 6 with respect to the set of parameters 
pl, p 2 ,  and p3 . We shall content ourselves, by studying certain particular 
cases, with showing that the system may or may not be monotone in prob- 
ability, according to the value of the vector p = ( p l ,  p 2 ,  p3). 

Suppose first that p 1  = p 2  = p 3  = a, with 0 < a < 1. Then we have 

(28.10) 

(28.11) 
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We see that for any such u, one has hl < h,  . In the space ( p i ,  p ,  , p 3 )  where 
the set of possible values is the unit cube (Fig. 28.2), the system is monotone 
in probability on the principal diagonal joining the origin (0, 0, 0) to the 
vertex (1, 1, 1). 

FIG. 28.2. 

We now go on to see what happens on the faces of the cube, but it is 
necessary first to point out that h,(p)  and h,(p) are not defined everywhere. 
For example, at  the origin vertex ( p l  = p ,  = p 3  = 0), we have 

pr { S ( X )  = 0 } = 1, and pr { S ( X )  = 1 } = pr { S ( X )  = 2 } = 0; 

it follows that the conditional probabilities (28.7) and (28.8) are not defined 
at  this point (it is the same at the point p 1  = p ,  = p 3  = 1). Rigorously then 
the result that we obtained above is valid only on those points of the prin- 
cipal diagonal interior to the cube. The same difficulty is found on the edges 
of the cube, but h,(p)  and h,(p) are defined on the faces of the cube, at  least 
at  those points interior to these faces; in fact, a face corresponds to a case 
where one of the components has probability 0 or 1 of functioning. The 
number of components able to function may then take either the values 
0, 1, or 2 or the values 1, 2, or 3; in all cases we have pr { S ( X )  = 1 } > 0 
and pr { S ( X )  = 2 } > 0 for points interior to the face. For example, if we 
set p z  = 0 in (28.7) and (28.8) there results 

(28.13) h, (p , ,  0 , p 3 )  = 0 for p I  # 0 and p 3  # 0 

One sees that on this face the system is not monotone in probability. For 
reasons of continuity it is then necessarily the same at  certain points interior 
to the cube. 
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Properties of Systems Monotone in Probability 

Theorem 28.1. Let S, and S2 be two systems of order n - I having the 
same components el ,  e, , . . . , en- , with respective reliabilities pl ,  . . . , pn- ,. r f  
these systems are monotone in probability, the system S having for structure 
function 

(28.14)  XI, * - - ,  x,) = xn (P, (X~,  -.-) X n -  I )  + ( 1  - Xn)  C P ~ ( - ~ I ,  ...) -‘n- I )  , 

where cpl and cp2 are the structure functions of S,  and S , ,  is monotone in 
probability whatever the reliability pn of the supplementary component en . 
(Relation (28.14) corresponds to what in Section 26 we referred to as “linear 
composition of structures.”) 

Theorem 28.1 is obvious if the system S is of order n - 1 ,  which occurs 
if the structure functions ‘p, and ‘p, are equivalent; the three systems S, ,  S,  , 
and S are then in fact identical. We therefore suppose that S is of order n. 
Putting 

(28.15) 

(28.16) 

x = (XI, x,, ..., X , ) ,  

Y = (XI, x,, ..., xn- 1 ) .  

then, according to (28.14), we have 

(28.17) k = O ,  

(28.18) k = l ,  ..., n - I ,  
pr { cp(X)=I I S(X)=O}=pr { cp2(Y)=1 I S(Y)=O}, 

pr { cp(x)= 1 1 s ( x ) = ~  } =  pn.pr {cp(x)= 1 I S ( X ) = k ,  Xn= 1 } 
+ ( I  -p.).pr { cp(X)= 1 I S ( X ) = k ,  X,=O } . 

Relation (28.18) may also be written as 

(28.19) pr { cp(X)=l I S(X)=k}=p,.pr { cp,(Y)=l I S(Y)=k-l  } 

+(I-pn).pr { cp,(Y)=l 1 S ( Y ) = k } .  

Condition (28.1) then may be written as: 

(a) f o r k  = 0, 

(28.20) pr{cp,(Y)= I I S ( Y ) = O } , < p , . p r { c p , ( Y ) =  I I S ( Y ) = O }  

+ (1 - Pn)*pr { ~ 2 ( y )  = 1 I s(Y) = 1 } 
or 

(28.21) 

(l-p,,).pr{ q2(Y)=1 IS(Y)=O} < (l-pn).pr{ cp2(Y)=1 IS(Y)=I } ;  
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Relations (28.21) and (28.22) follow directly from the property of monotoni- 
city in probability of S, and S, . 

Theorem 28.11. Any system having a monotone structure function is 
monotone in probability whatever the reliability of its components. 

The theorem is proved by recurrence: The systems of order 0 are systems 
that have one of the two degenerate structure functions: 
(28.23) cpp'p' = 1 , 

(28.24) q y  = 0 . 
These are considered monotone in probability by definition. The only mono- 
tone structure of order 1 is (see Section 2) 

(28.25) cpp = x1 . 
A system having this structure function is monotone in probability, 

whatever the reliability p l ,  since 

(28.26) 

and 

(28.27) pr { cp\')(X) = 1 I S ( X )  = 1 } = 1 . 
We have seen in Section 26 that any monotone structure of order n may be 
put in the form (28.14) where cpl and (p, are monotone structure functions 
with order at  most equal to n - 1 ; Theorem 28.1 then proves Theorem 28.11 
by recurrence. 

pr { q\')(X) = 1 I S ( X )  = 0 } = 0 

Theorem 28.111. A system of order n all of whose components have the 
same reliability p is monotone in probability if and only if 
(28.28) (n - k)Ak < (k + l ) A k + l ,  k = 0, 1 ,..., n - 1 ,  

where Ak is the number of links having k components. 

Indeed, for a system all of whose components have the same reliability, 
one has, using the same reasoning as in obtaining (25.18), 

(28.29) 
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and 
(28.30) 

from which, according to (28.3), 
pr { q ( X )  = 1, S ( X )  = k 3 = Akpk(l - p y k ,  

(28.31) pr { q ( X )  = 1 I s(x) = k } = Ak/ 

Condition (28.1) ensuring that a system be monotone in probability may 
therefore be written 

(28.32) k = O , I  ,..., n - I .  A k + l  - < -  
(3 ( k T 1 )  ’ 

By replacing ( i )  with its valuation 

(28.33) n !  (2) = k ! (n - k) ! ’  

one obtains (28.28). 

Theorem 28.11 in the particular case of components with equal reliabilities. 
Note that by combining Theorems 28.111 and 21.VI one may recover 

Theorem 28.ZV. A system that is monotone in probability and whose 
components all have the same reliability p has a reliability function h(p) such 
that 

(28.34) 

Indeed, the reliability function may be expressed (see (25.20)) 
n 

(28.35) h(p) = Akpk(l - PY-‘ 
k = O  

and its derivative may be written in the form 

(28.36) - dh(p) - - f: [(k 4- 1) A,+, - (n - k) A,] p k ( l  - P)” -~  . dP k = O  

This expression is nonnegative according to (28.28). 
One may compare this theorem with Theorem 25.1, which thus appears 

valid for systems with nonmonotone structure functions, if there exist some 
values of p for which the system is monotone in probability, and only for 
these values of p. Recall that, for monotone structures, Theorem 27.1 gives a 
better inferior limit. 
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29 Survival Function of a System 

As we announced in Section 24, we now return to time considerations 
which were the essence of our discussions in Chapters 1 and 2, but here we 
shall be concerned with complex systems. 

The reliability function h(p) defined in Section 25 represents the prob- 
ability that the system will be in a good state at the instant t as a function of 
the reliabilities pi of its components, but the reliabilitypi of the component e i  
in the interval (0, t )  is nothing but the value u i ( t )  of its survival function at the 
instant t .  The probability of functioning for the system at the instant t is 
therefore 

We have already remarked, however, in Section 24 that, in the case of a 
system with nonmonotone structure function, this quantity is not equal to the 
survival function u( t )  of the system. In order to obtain the latter it is necessary 
to calculate the probability that the system fails for the first time at the 
instant t ;  now this is the probability that is interesting since one generally 
requires from a system that it be capable of functioning without interruption 
during the interval (0, t ) .  Moreover, we remark that although the expression 
given by the reliability function for the probability of functioning at  the 
instant t is theoretically valid for a nonmonotone system, it is debatable 
whether it is so in practice for such systems; indeed, this would assume 
implicitly that after a first failure of the system, the components still in a 
good state continue to age in the same fashion since their survival function 
v i ( t )  is given a priori. This is a particular expression of the general hypo- 
thesis of independence of the lifetimes of components (Section 24), which we 
have already indicated as very constraining, but whose validity must be 
viewed still more cautiously whenever the system is no longer in a func- 
tioning state. 

We now go on to see through an example that the determination of the 
survival function of a nonmonotone system is complicated; we do not know 
a general method that allows one to obtain it simply. We shall then pass to 
the fortunately more manageable case of monotone structures. 

Example (nonmonotone structure). Consider the structure function 

(29.1) 
Figure 29.1 represents the lattice of states of the set of components (cf. Section 
15, p. 59); the vertices for which cp = 1 are represented by a dot, and those 
for which cp = 0 by a cross. The structure is not monotone since cp(1, 1,0) = 
0, whereas cp(0, 1, 0) = 1. 

cp(x) = x2 - x, x2 + x1 x2 x3. 
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111 

147 

110 

001 100 

FIG.  29.1. 

We examine the various ways that the system may fail for the first time. 
For example, if the component e ,  is the first to fail, the system continues to 
function (vertex 01 1); if e ,  then fails, the system no longer functions (vertex 
001). With each path going from vertex (1 11) to vertex (000) in Fig. 29.1, 
that is, with each permutation of the three components defining an order in 
which they fail, one may associate the index of the component that brings 
about the failure of the system. Designating by T I ,  T, , and T ,  the lifetimes of 
the components, and by T the lifetime of the system, we may thus obtain the 
following implications : 

T ,  < T2 < T3 * T = T ,  

TI  < T3 < T, * T = T, 

T2 < T ,  < T3 * T = T2 

T ,  < T3 < T ,  * T = T ,  

T3 < T I  < T ,  * T = T3 
T 3 < T 2 < T 1  * T = T 3 .  

(29.2) 

Let E be the event 
(29.3) E = { T3 = min ( T I ,  T,, T,) } 

and E the complementary event. We see that, if E occurs, we have T = T,; 
if E is the case, then T = T 2 .  The probability density i( t)  of T is therefore 
given by 
(29.4) 
i( t)dt=pr { E}.pr { t d T, < t+dtI  E } + p r  {E}.pr  { r d T, d r + d r ( E } ,  
or 
(29.5) i(t)dt=pr { t Q T, d t+dt ,  E } + p r  { t d T2 Q t+dt,  E }  

=pr  { t d T, d t +dt  } .pr { E I T3 = t  } 

+ p r { t <  T , Q r + d r } . p r { E ) T 2 = t } .  
Writing i k ( t )  for the probability density and U k ( t )  for the survival function 

of component k,  we thus obtain 

(29.6) i ( t )  = i 3 ( f ) . u l ( f ) . u 2 ( t )  + i 2 ( t )  
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The survival function u(t)  of the system may be obtained by integrating i(t) 
between t and infinity. 

Suppose, in order to carry out the calculations somewhat further, that 
the components each follow an exponential law (Section 6 ,  p. 16): 

(29.7) 

(29.8) 

uk( t )  = e-lk‘,  

ik( f )  = Ak e-”‘ . 

After some calculation, one then finds 

from which 

A1 A3 e - ( A , + i 2 + i , ) f  (29.10) c(f) = ~ e-”‘ + - 
)q + A 3  i L  1 + 2 3  

This probability law is called the “ hyperexponential law ”; it may be 
interpreted in the following fashion: There is a probability A,/(A, + As) that 
the lifetime T of the system follows an exponential law with parameter A, (law 
of T,), and the complementary probability A3/(A, + A,) that T follows an 
exponential law with parameter A, + A, + A,; this second law is that of the 
random variable min (T,, T2 , T3). This interpretation suggests another way 
to calculate the survival function of the system. 

Returning to the case where the components follow arbitrary laws, one 
may indeed write, by regrouping the first three cases of (29.2) and then the 
last three, 

(29.11) v ( f ) = p r { T 3 > T , } . p r { T , > f ~ T 3 > T , }  

+ pr { T3 < T ,  }.pr { min ( T , ,  T -  T,) > t 1 T3 < T ,  ) . 
Designate by A and B the two terms to the right-hand side of the equation. 
The first term A may be calculated easily since T2 is independent in prob- 
ability of 7‘, and T, : 

(29.12) 

The second term is a little more complicated to calculate. We first rewrite it 
in the form 

(29.13) 

A = pr { T,  > T ,  }.pr { T, > f } = u 2 ( t )  il(u) u3(u) d u .  sb 

B = pr f T3 < T,, min ( T l ,  T,, T3)  > t 1 
= pr f min ( T I ,  T,, T,) > f ).pr { T3 < T I  I min ( T l ,  T,, T,) > t } 
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The event that figures in the first factor is equivalent to 

(29.14) T , > f ,  T , > t ,  T , > f ;  

the first factor is therefore 

B ,  = U,(f).U,(f).U,(f). 

The second factor B, is a conditional probability, given that (29.14) 
occurs; but in this case, the conditional laws of the Ti may be written (see 
Section 7, survival law of nonnew equipment) as 

(29.15) wk(u) pr{  Tk > Ul Tk > f }  = 1 ,  < 1 ,  

uk(u) =-  
U k ( f )  ' I 

It then follows that 
(29.16) 

from which 

B = B,  .B, = u l ( f )  v 2 ( f )  v 3 ( f )  - u 2 ( f )  i l ( u )  v3(u) du , I' 
and finally 

(29.17) 4 r )  = U t ( 0  U 2 ( 4  U,(t) + u,(O i l ( U )  v 3 ( @  du . Jo' 
By differentiating this expression and performing an integration by parts 

in order to transform the integral that appears in the derivative, one may 
easily verify that the probability density (29.6) is indeed recovered. On the 
other hand, in the particular case of exponential laws ((29.7) and (29.8)), 
(29.10) can be developed after a few simple transformations. 

To finish, we indicate the mean lifetime of the system in the particular 
case of exponential laws: 

- I , ,  1 I,, 1 
T = -  -+-  

R ,  + 1, 2 ,  R ,  + 2, 2 ,  + I., + 2 ,  . 
(29.18) 

Case of Monotone Structures. We have seen at the beginning of this 
section that, if a system has a monotone structure, since the probability that 
it fails for the first time at the instant t is the probability that it is in a good 
state at time f ,  we have 
(29.19) do = h[o , (Q,  U A O ,  ..., v"(0-j 
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where u(t) ,  u l ( t ) ,  ... , v,(t) are, respectively, the survival functions for the 
system and for its components, and where h(p , ,  p 2 ,  ... , p,) is the reliability 
function (25.7), which itself may be obtained from the structure function 
q(x) (see Eq. (25.9)). In order to obtain the survival function of a monotone 
system, it therefore suffices to substitute in the simple form of the structure 
function for the variables xi, the survival functions u,( t )  of its components. 

Example 1. 
the structure function, we have, according to (25.1 1) and (25.12), 

Consider again the structure defined in Fig. 25.1. First, for 

(29.20) V(X) = I - ( 1  - ~2 xS)  ( 1  - X Z  ~ 6 )  (1 - XI x4 xg) 

= x2 x5 + x2 xf, + x1 x4 x5 - x2 xg x6 - X I  x2 x4 x5 . 

From this, the reliability function 

(29.21)  h ( p )  =PZP5 + p 2 p 6  +plp4P5  - p 2 p 5 P 6  -P lPZP4P5r  

and the survival function 

(29.22) u ( t )  = u z ( t ) . u 5 ( t )  + U 2 ( t ) . U g ( f )  + ul(i).04(f).Ug(t) 
- u 2 ( t ) .  u 5(z).  u&) - C’ I ( t )  . u2( 2 ) .  u4( t )  . u5  ( 2 )  . 

In the particular case where 

(29.23) ~ ~ ( 2 )  = u g ( t )  = u4( t )  = u 3 ( t )  = u 2 ( t )  = u l ( t ) ,  

we have 

(29.24) u ( t )  = 2 u:(t )  - u:(t) . 

Example 2. Consider the bridge network of Fig. 19.10, p. 79. This network 
has three minimal links, which are 

(29.25) { e l ,  e 2  1 9  1 9  { e 1 , e 4 1 .  

Formula (22.1) gives 

(29.26) V(X) = 1 - ( 1  - XI x ~ ) ( I  - XI x3)(1 - x1 x4), 

from which 
(29.27) 

Vs(X)=xl X , + X ~  x ~ + x ,  xq-x1 ~2 x J - x ~  XI x4-xI x j  x ~ + x ,  X Z  x3 x4 

and 
(29.28) 

4 2 )  = v l w  [ v 2 ( t )  + U 3 0 )  + U 4 ( t )  - U Z ( Q  u 3 ( 0  - U z W  040) - u 3 W  u4(t)  

+ U z ( f )  U 3 ( t )  U4(t)] - 
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Duality. In Section 17, we have defined for any structure function 
cp(x), a dual structure function Cp(x): 

(29.29) - 
cp(x) = 1 - cp(1 - x) 

or, in a more detailed fashion: 

(29.30) j5(x1, x2, ..., x,) = 1 - cp[(l - x~), (1 - xZ), ..., ( 1  - x,)] . 
To (29.30) corresponds a duality relation for the corresponding reli- 

ability functions 
- 

(29.3 1) h ( p )  = 1 - h(1 - p )  

or, in a more detailed fashion, 
- 

(29.32) h(Pl,P,, ..., P.1 = 1 - “1 - Pl), ( 1  - P 2 ) ,  ..., ( 1  - P,)] 

From this we have a duality relation for the survival functions 
- 

(29.33) v(t)  = S;[ul(t) ,  u2( t ) ,  ..., u,(t)] 

= 1 - h[(l - Ul(t)), (1 - U 2 ( t ) ) ,  ..., (1 - u,(t))] 

= 1 - h[@,(t), @ 2 ( t ) ,  *.a, @.(t)] , 

where 
(29.34) Q i ( t )  = 1 - u,( t )  , i = 1, 2, ..., n . 

Example. 
ture function 

Consider two components e, and e2 for which we have the struc- 

(29.35) cp(x) = X1.XZ. 

From this 

(29.36) - 
cp(X) = 1 - ( 1  - x1) (1 - x2), 

h(p)  = 1 - ( 1  - P1) (1 - P 2 )  7 

u(r)  = 1 - (1  - U , ( t ) ) ( l  - U 2 ( t ) )  

- 
(29.37) 

and 
- (29.38) 

= 1 - @ l ( t ) . @ 2 ( t ) .  

Suppose that 

(29.39) 

we have 

(29.40) 

u l ( t )  = u2( t )  = e-Af ; 

u(t )  = u l ( t ) . u 2 ( t )  = e-2A‘ 
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and 

(29.41) 

Monotone Linear Composition of Survival Functions. We have seen in 
Section 26 (Theorem 26.V, p. 129) that a monotone structure function 
rp(x,, x 2 ,  ... , x,) may always be put in the form 
(29.42) 

~p(x1, ~ 2 9  ...) x n )  = xn ( P A ( x ~ ,  -..) x n - 1 )  + (1 - x n )  ( P , ( x ~ ,  ...) x n - 1 )  9 

where 

(29.43) ( p A ( x I ?  '.., x n -  1 )  2 (PB(x19 ...? xn- 1 )  

for any ( x i ,  ... , X,,-*), x i  = 0 or 1. 
If rpPA and rp, are in simple form, expression (29.42) is linear with respect 

to each of the variables, and, if one designates byp,, pz , . . . , pn the reliabilities 
of the components at  an arbitrary instant, the reliability functions of the 
system S and its substructures A and B are related in the same way, according 
to (26.53): 
(29.44) 

( ~ ( ~ 1 9  ~ 2 ,  ...) P n )  = P n  ( P A ( P I ,  ..., P n -  1) + (1 - P n )  ( P , ( P ~ ,  ...) P n -  1)  

with 
(29.45) 

(29.46) ( P l ,  . . . , P n - l ) ,  0 d Pi d 1 1 

( P A ( P ~ ,  ..., P n -  1 )  B ( ~ d ~ l r  ...) P n -  1) 

for all 

and 

(29.47) r p - h ,  ( P A - h A ,  rp, EE h , .  

Note that (29.43), which is valid for x i  = 0 or 1, implies (29.45) because of 
the linearity of the functions rp, rpA , and rp,. 

Relation (29.19) then shows that the survival function of the system S, 
and those of its substructures, may be obtained simply by replacing in (29.44) 
the reliabilities pi of the components by their values u i ( t ) :  

(29.48) u ( t )  = U n ( t ) . U A ( f )  + [ I  - u n ( t ) ]  'B( ' )  
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where 

Relation (29.48) permits us to study the lifetime T of a system S con- 
sidered as formed through monotone linear composition of two subsystems 
A and B, as a function of the respective lifetimes T A  , TB , and T,, of these sub- 
systems and of a supplementary component e n .  

Thus the mean lifetime T, given from the survival function u( t )  by (5.1 l), 

(29.52) 

may be written, according to (29.48), as 

(29.53) 

or 

(29.54) 

by noting that 

(29.55) 

Inequality (29.51) shows that 

(29.56) T 2  T,. 
As one might expect, the mean lifetime of a system is at least equal to that of 
the weakest subsystem (evidently, TB < TA). 

(29.57) 

we may also write 

(29.58) 

T = lom u,,(f) u A ( t )  dt + [ l  - u,,(t)] u B ( t )  dt loX 
T = TB -I- u,,(t) [ u ~ ( t )  - U B ( ~ ) ]  dt 9 

- - JOrn 
loW uB(t )  dt = FB . 

- 

Setting 

@,,(t) = 1 - a,,(r) = pr { T,, < t } , 

T = FA - joz @,,(t)  [ c A ( t )  - v B ( t ) ]  dr , 

from which 
'(29.59) 
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Therefore T is included between TB and TA.  
The cumulative failure rate of the system, defined by Eq. (4.18), 

(29.60) A(f)  = A(u) du , sd 
where A(?) is the instantaneous failure rate (4.8) 

and is obtained from u(t )  through relation (4.20): 

(29.61) A(t)  = - In u( r )  . 
From (29.48), we have 

(29.62) A(f)  = - I n  [ u n ( f ) . u A ( f )  + o B ( f )  - un( f ) .uB( f ) ]  . 
The instantaneous failure rate is 

or, by suppressing to simplify the notation all arguments of the functions, all 
being t, 

(29.64) A =  
A n  L’n(L‘A - ug) + 1, u n  u A  + )LB uB(1  - 0,) 

UA + ug - u n  

Example. Weibull functions with the same form coefficient. The above 
expressions generally require turning to a computer for numerical computa- 
tion. We shall go on to see, however, by way of an example, a case where the 
mean lifetime may be expressed in a very simple fashion. We suppose that the 
lifetimes of the subsystems A and B and of the component en each follow a 
Weibull law (6.18): 

(29.65) uk(t )  = e-(ukf)’ , k = A, B, n ,  

the form coefficient p being the same in all three cases. 

(29.66) 

Relation (29.53) then gives 

e - ( U d ) ’ . e - ( U ~ f ) ’  dt + e - ( U e f ) p  dr - e-(ud)p.e-(W31)’ dt s: T = JOW 

Set 
(29.67) 

(29 .68) 

u = (a: + C C ~ ) ’ ’ P ,  

b = (a{ + aB,)’’P . 
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(29.70) 

from which 

(29.71) 

In the particular case where p = 1, that is, when the three survival laws 
of A, B, and en are exponential laws, we obtain 

- 1  1 1 (29.72) T = - + - - -  
A B  1, + 1 A  1" + A B '  

where 1, = a,,, A A  = a A ,  and A B  = g B  are the respective failure rates of 
e n ,  A, and B. Note that in this case 
(29.73) v ( t )  = e - b r  + e - ( & + d A r  - e-(L+A~N. 

IFRA Survival Functions. We shall see in Section 30 that a system with 
monotone structure function having components with IFR survival functions 
(increasing failure rate, see Sections 10 and 11) does not necessarily have an 
IFR function itself. On the contrary, the survival function of the system is 
IFRA (increasing failure rate average, see Section 12); it even suffices that 
the components have an IFRA survival function, as the following theorem 
shows [9]. 

Theorem 29.1. A system with monotone structure function having com- 
ponents with IFRA survival functions similarly has an IFRA survival function. 

We prove this theorem by recurrence using monotone linear composition 
(see Section 26). Recall that a survival function v ( t )  is IFRA if the function 
(29.74) L(t)  = A ( t ) / t  

is nondecreasing for all t 2 0. We then have 

(29.75) t1( t )  - A(r) 
t2  

L'(t )  = 2 0 ,  
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Let el, e,  , . .., e, be the components of the system; decompose the system 
into two substructures A and B by isolating the component e, (see (29.42)); 
and suppose that the survival functions uA(t),  uB(t) ,  and v,(t) of A ,  B, and en 
are IFRA. We then have 

(29.77) t&(t)  2 / I k ( f ) ,  k = A ,  B, f l  , 

Using expression (29.64) for the failure rate A(t )  of the system and the 
relation 
(29.78) 

we may see that relations (29.77) imply that 

(29.79) tA(t) 2 

or 

Ak(t) = - In u k ( t ) ,  

An un(’A - u B )  + A A  0, U A  + A ,  v B ( l  - 0,) 

v, V A  + vg ug 
9 

To show that u(t)  is IFRA, that is, to verify (29.76), it suffices to show 
that 

(29.8 1) 
u,(uA - uB) In u,  + u, uA In uA + uB( 1 - u,) In uB 

u, U A  + u,  - u, u ,  

2 A(r) = -In ( u ,  v A  + u s -  u, 0,) , 

for all values of u, , u A ,  and uB satisfying the conditions 

(29.82) 0 < u, < 1 and 0 < vB < uA < 1 ,  

which express that we have survival functions and that the system is obtained 
through monotone linear composition (see (29.51)). 

(29.83) a = u A ,  b = v , ,  c = u , ,  

with 

(29.84) O < c < l  a n d O < b < u < I .  

written as 
(29.85) 

To simplify the notation, set 

The inequality to be shown under the conditions in (29.84) may then be 

c(a-b)  In c+ca  In a + ( l  -c)  b In b<[ca+(l  -c) b] In [cu+(l -c) b] , 

or, by setting 

(29.86) 
as 

f ( x )  = x In x , 

(29.87) (a - b)f(c) + c ~ ( u )  + (1 - ~ ) f ( b )  < ~ [ C U  + ( I  - C) b] 
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The functionf(x) is convex and negative for 0 < x < 1 (see Fig. 29.2); 
the difference 

cf (a)  + (1 - c )  f ( b )  - f [ c a  + (1 - c )  b] 

represents the length of the segment M N ,  the distance along the ordinates 
between the chord RS and the curvef(x) at  the point ca + (1 - c)b on the 
abscissa; it is then a matter of showing that the segment is at  most equal to 
the product of the segments A B  and PQ, where Q divides the segment (0, 1) 
as T divides the segment A B .  

FIG. 29.2. 

For b = 0, relation (29.87) becomes 

(29.88) 

thus 
(29.89) ac In c + ac In a G uc In (ac) , 

a relation that is evidently satisfied (with equality and not with strict inequal- 
ity). For a and c fixed, put 
(29.90) 

afW + c f ( 4  G f ( c 4 ,  

g(b) = f [ c a  + (1 - c )  b] - cf(.) - ( I  - c)  f ( b )  - (a - 6) f ( c )  . 

We just saw that g(0) = 0, and it is to be shown that g(b) 
and this is to hold for any a and c in the segment (0, 1). We have, however, 

(29.91) g(b)=[ca+(l - c )  b] In [ca+(1 - c )  b l - c u  In a-(I - c )  b In b 

(29.92) g’(b)=cln c-(1 - c )  In b+(1 - c )  In [uc+(l - c )  b] , 

0 for 0 < b < a, 

- c ( u - b )  In c ,  

ac( 1 - c) 
b[ca+(l -c) b] (29.93) g”(b) = - < O  

From (29.93) the function g(b) is concave; it thus attains its minimum in 
the interval (0, a) either for b = 0 or b = a;  we have seen that g(0) = 0, and 
similarly 

(29.94) g(a) = u l n a  - c a l n a  - (1 - c ) a l n a  = 0 .  
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It then follows that g(b) 2 0 for 0 < b < a, which is what we set out to 
prove. 

We have thus seen that if a system is formed through linear composition 
of two subsystems A and B with a component e, such that the survival func- 
tions u, , u s ,  and u, are IFRA, the survival function u of the system is also 
IFRA. 

Given a system satisfying the hypotheses of the theorem, we may de- 
compose it into two subsystems by isolating one component, chosen arbitrarily, 
for example, e n .  If the subsystems obtained are of order greater than 1, we 
may in turn decompose these by the same process, and continue thusly until 
subsystems of order 0 or 1 are obtained, that is, components (with structure 
function cp\"(xi) = x i ;  see Fig. 26.13, p. 134) or degenerate structures 
(cp\") = 1 or qi0) = 0). However, a degenerate system has survival function 
u( t )  = 0 or v ( t )  = 1, both of which are trivially IFRA, and a system of order 
1 evidently satisfies the theorem. We have therefore proved the theorem. 

Thus for monotone systems with IFRA components we may use the 
properties proved in Section 12. In particular, according to the corollary to 
Theorem 12.V, p. 53, the coefficient of variation a,/Tof the lifetime of such 
a system is greater than or equal to 1, that is, T may not have a variance 
greater than that corresponding to an exponential law. 

On the other hand, if we have calculated for a certain value of t ,  the value 
of the survival function u(t)  of the system using relation (29.19), we may then 
deduce the cumulative failure rate 

(29.95) A( t )  = - In u( t )  

and the mean instantaneous failure rate between 0 and t (see (12.4)) 

(29.96) 

If we have to evaluate the reliability of a system for a period of use z near 
to t ,  we may use the approximation 

(29.97) u(7 )  = u,(T)  = e-Ar for T 2 t 

where X = L(t). We are here reasoning as if the system had a constant failure 
rate, equal to X. Theorem 12.1 (p. 47) shows that by so reasoning, the system 
reliability is underestimated if z < t, and is overestimated if z > t ,  since 

- 

(29.98) 

The " mean " failure rate 1 = L(t) will, of course, depend on the period 
of use t taken as a reference. More precisely, it is a nondecreasing function of 
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t ,  by the very definition of the IFRA property for a system. It is therefore 
between L(0) and L(co), but 

(29.99) 

is the failure rate of the system at the origin. One may show by using expres- 
sion (22.5) for the structure function and the notion of random structure 
function (Section 25) that: 

(1) the failure rate at the origin is zero if the width of the structure is 
greater than 1 (see Section 17, p. 66);  that is, there does not exist a cut of 
just one component. Indeed, in this case failure of the system involves failure 
of at  least two components, an event whose probability is of second order for 
t + 0, by virtue of the independence of the lifetimes of the components (hy- 
pothesis (4) of Section 24, p. 11 5) ; 

(2) if there exist cuts of just one component, the failure rate of the 
system at the origin is the sum of the failure rates at the origin of the com- 
ponents that occur in these cuts. 

Calculation of the superior limit L(co) of the " mean " failure rate is more 
delicate. Esary and co-workers [20] have shown that, in the particular case of 
all components having an exponential lifetime, and therefore a constant 
failure rate, the limit for t + 00 of the mean failure rate L(t) is equal to the 
minimum, calculated on the set of links of the structure, of the sum of the 
failure rates of all the components occurring in a link. 

To conclude, we note that it is the " mean " failure rate L(t) of the system 
that is in the interval [L(O), L(co)]; the instantaneous failure rate of the 
system may, for some values of t ,  exceed the value L(m) since the system is 
IFRA and not, in general, IFR. 

30 Survival Functions for Series and Parallel Structures. 
Asymptotic Results for a Large Number of Components 

Series Structure. Consider a series structure of n components; its struc- 
ture function is 
(30.1) 
the reliability function is 
(30.2) 

and the survival function is 

cp(.Y) = .Y1 .Y2 ... .Y" , 

M P )  = cp(P) = PI P2 ... P n  7 
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where vl(t), v2(t) ,  ... , v,(t) are the survival functions of its components. This 
relation may also be written as 

(30.4) Log r ( t )  = Log r , ( f )  + Log ~ . ~ ( f )  + ... + Log r n ( f )  . 
It follows that the cumulative failure rate A(?) of the system (cf. Section 4, or 
(29.60) and (29.61)) is 

(30.5) 

from which it follows by differentiation that 

(30.6) 

The failure rate (instantaneous or cumulative) of the system is therefore the 
sum of the failure rates of its components. As a consequence, if all the com- 
ponents have an IFR survival function (respectively, DFR; see Sections 10 
and l l ) ,  the system similarly has an IFR (respectively, DFR) survival 
function. 

In particular, if all the components have an exponential survival function 
(30.7) ui(t) = e-"' 
with a constant failure rate Ai( t )  = A i ,  then it is the same for the system: 

(30.8) o( t )  = e-'' 
where A is given by (30.6). The series structure thus presents particularly 
simple properties. It is at  the same time the most common; it corresponds 
to the case where the failure of any single component entails failure of the 
system. 

Parallel Structure. Consider a parallel structure of n components; the 
structure function is 

(30.9) 
n 

cp(.u) = I - n ( I  - Xi) , 
i =  1 

and the survival function is 

(30.10) 
n 

r ( f )  = 1 - n ( 1  - V i ( f ) )  
i =  I 

Let @(t) = 1 - u( t )  be the distribution law of the lifetime of the structure, 
and Qi( t )  = 1 - ui( t )  be the distribution of the lifetime of component i. We 
obtain 

(30.1 I )  
n 

a t )  = n Q i ( f )  . 
i =  1 
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We now calculate the failure rate A(t )  of the structure 

By noting that 

(30.13) 

we obtain 

(30.14) 

If the components have exponential survival laws, Ai( t )  = l i ,  

(30.15) 

with 

(30.16) 
n 

o( t )  = 1 - n (1 - e-"") . 
i =  1 

Remark. If the components of a system S have an exponential survival law 
and S does not have a series structure, then the survival function of S is not 
exponential. Indeed, we shall see in Example 1 below that the failure rate 
given by (30.15) is not monotone, which shows that a system with monotone 
structure having components with IFR survival functions (which is the case 
with the exponential law) does not necessarily have an IFR survival function 
(we have seen however in Theorem 29.1 that it is IFRA). 

Examples. 

the survival laws are exponential : 
(1) Consider a system composed of two components in parallel, for which 

Set A, + I, = 1 and take different values for ,Il/&; we obtain the graph of 
Fig. 30.1. 

The failure rate tends, for very large t ,  toward a limit that is equal to the 
failure rate of the best of the components. 

(2) In  order to increase reliability, one places in parallel with a piece of 
equipment A a second piece of identical equipment B. A switch C automati- 
cally assures exchange of the equipment to be used in case of failure. 
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0.51 

= 0.3 &= 0.7 

o.2 hl=0.2 h2=0.8 

0.1 

FIG. 30. I .  

We suppose that the fact of being used or not does not in..Jence the rate 
of failure for the equipment7 and that any failure of the switch interrupts 
functioning of the system. We shall examine whether this " redundance" in 
fact increases the reliability, as we would hope. 

Equipment 'R" 

Switch "C" 

Equipment "6" 

FIG. 30.2. 

The reliability network is shown in Fig. 30.2; it is a series-parallel struc- 
ture, C being in series with the two pieces of equipment A and B in parallel. 
The links are { C, A } and { C, B }; the structure function is therefore 
(cf. Eq. (22.1)) 

(30.19) 

' If this hypothesis is not made, then the probability of failure of one piece of equip- 
ment would depend on the state of the other. This would contradict hypothesis (4) of Section 
24, p. 115, and the theory developed here would not be applicable; see also Chapter V, 
Section 32. 
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(since x i  = xc) and the reliability function is 

(30.20) h(p )  = PC(2 P E  - Pi)  

where h(p) is the reliability of the system; p c  is the reliability of the switch; 
and p E  is the reliability of the equipment (A or B). 

Redundance is therefore useful if 

(30.21) h ( P )  > P E  

or 

(30.22) P d 2  - P E )  > . 
In Fig. 30.3 we have traced the curvepc(2 - p E )  = 1 ; this defines two zones: 

upper zone: redundance is useful, 
lower zone: redundance is detrimental. 

If we can vary the time of functioning f, the point with coordinates 
{ pE(t) ,  p J t )  } will describe a curve like the dashed curve in the figure. If t is 
small ( t  -+ 0), p c  and p E  are near to 1 and the redundance will be useful if 
p c  > p E  (the reliability of the switch is greater than the reliability of the 
equipment). If t is large ( t  -, a), p c  and p E  are small, and the redundance 
will always be detrimental. 

Useful 

0.5 
/ Detrimental 

c 
FIG. 30.3.  

P E  

Study of Systems Composed of a Large Number of Identical Components. 
Consider a system composed of n components and let TI, T2,  ... , T. be the 
lifetimes of these components. If all the components are in series, the first 
failure of a component will entail failure of the system, and the lifetime of the 
system is 

(30.23) T, = min ( T , ,  T,, ..., T.) . 
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If, on the other hand, all the components are in parallel, the system 
lifetime will be 

(30.24) T, = max (TI, T,, ..., Tn) . 

If the number n of components is very large, the distribution law of Ts and 
Tp is studied by the theory of extreme values (cf. Gumbel [26]). 

We present here, in a simplified way, certain results of this theory allow- 
ing applications to the study of reliability. 

The survival function us(t) of a system of n series components is 

(30.25) u,(t) = u(t)” 

where u(t)  is the survival function of each component. If n tends toward 
infinity and if u(t) -= 1, then u,(t) tends toward 0. 

We shall concern ourselves only with the case where u( t )  is near to 1, 
that is, t sufficiently small (t + 0) in order that the components have excellent 
reliabilities. Then 
(30.26) v,(t)  = en Log ~ ( 0  ‘v 1 - u ( f ) l  

The survival function up( t )  of a system of IZ parallel components is 

(30.27) u,( t )  = 1 - ( 1  - u ( r ) ) ” .  

If n tends toward infinity and if v(t )  > 0, then vp(t)  tends toward 1. We 
restrict ourselves to the case where v( t )  is near 0 (t sufficiently large so that 
the components have very weak reliabilities). Then 

(30.28) op( t )  = 1 - , nLog[ I  -u( t ) l  ~ 1 - , -nu(?) . 

Examples. 
(1) Let 

1 if t Q t , ,  

0 if t > t , ,  

(30.29) u ( t )  = 1 - / l( t  - to>” [l + E ( t  - to)] if to Q t Q t ,  , 

where t ,  is defined by 

(30.30) 1 - P(t1 - to)” [ l  + E ( t l  - to) ]  = 0 ,  

and where E ( t  - t o )  is a function that tends toward 0 when t tends toward 
t o .  This survival law has the form given in Fig. 30.4. 

(30.31) 

We have for t -, to ( t  > to), 

Log o( t )  ‘v - / l ( t  - to ) ” .  
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f'"' 

FIG. 30.4. 

The survival law of a system of n components in series is thus 

(30.32) 

Therefore v,(t) is near a Weibull law ((Eq. 6.25')) for t + t , .  If to = 0 and 
cc = 1, we obtain the exponential law (cf. Eq. (30.8)) 

(30.33) u,(t) - ,-"Or . 

(2) If 
(30.34) u ( t )  - e-"' as t + c o  

we obtain for n components in parallel, 

(30.35) u p ( t )  ,., 1 - e-ne-"" 

and, in the particular case where k = 1, we have 

(30.36) u ( t )  - e -a r ,  u p ( t )  - 1 - e-ne-" ' .  

(3) If 
U (30.37) u ( t )  - - as t + 0 0 ,  u, rn positive, 

we obtain for n components in parallel, 

t" 

(30.38) 

We give two particular cases of this formula: 
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(4) Let 

0 if t 2 t ,  

p(t l  - t)" [ I  + &(t,  - t ) ]  if 0 < t ,< t ,  
(30.41) v ( t )  = 

where &(ti - t )  tends toward 0 if t ,  - t tends toward 0, and where a and B 
are positive. 

We obtain for n components in parallel 

This is, afresh, a Weibull law. 



CHAPTER v 

REDUNDANCE 

31 Introduction. Definitions 

The term “redundance” is a general one which is used whenever one 
piece of equipment or a component may replace other equipment or another 
component that has failed. Any structure other than a series structure may be 
considered as redundant in the sense that there may be some failed compo- 
nents without having the system cease to be useful. On the contrary, a series 
structure has no redundance. 

In a more particular fashion, redundance is a technique for increasing 
reliability, consisting of arranging in parallel two or more components, sub- 
structures (cf. Section 26), or complete devices. The theory of reliability 
of systems, developed in Chapters I11 and IV, permits the evaluation in each 
case of the reliability that is obtained by proceeding thus when designing a 
system. 

Two reasons have, however, led us to devote a separate chapter to re- 
dundance. The first is that it poses some optimization problems for which 
general results or algorithms are available. The second derives from the fact 
that two types of redundance can be distinguished : 

(a) Active Redundance. In the case of active redundance, all com- 
ponents of the system function permanently even if they are not strictly 
necessary, in the current state of the set of components. The hypotheses of 
Chapter IV (see Section 24) may then be admitted, in particular hypothesis 

167 
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(4), according to which the lifetimes of the components are mutually indepen- 
dent in probability. This supposes, however, that each component has the 
same reliability, whether it alone assumes a given role, or when others share a 
part of its burden. 

Examples. 
(1) On certain trucks, two wheels are placed on each side of the rear 

axle; thus, in case of a flat, the other can assure support until assistance can 
be had. However, it will then be subject to greater stress, and its potential 
lifetime becomes considerably shorter. The hypothesis reviewed above is thus 
hardly realistic in this case. 

(2) In an airplane engine, the ignition system is doubled; this increases 
the quality of ignition, and therefore the efficiency of the engine, but above 
all, in case of failure of one ignition system, the other alone can assure the 
functioning of the engine in an acceptable manner. One may reasonably 
admit in this case, if only because of the lack of precise data preventing one 
from making a better hypothesis, that the failure rate of the ignition system 
still in a good state is not modified by the failure of the other system. 

We shall admit, in order to treat active redundance, that the hypotheses 
of Section 24 are satisfied. As we have indicated above, this will then make it 
possible for us to depend on the results of Chapters I11 and IV to study the 
optimization problems that arise. We shall see first (Section 32) that active 
redundance at the component level is more effective than that at the level of 
complex substructures; then we describe (Section 33) a method permitting, 
for a series structure, distribution of redundance in an optimal way by taking 
into account criteria of cost or size of the system. This method rests on a 
theoretical result, presented in Section 34, according to which the reliability 
of a monotone structure is a concave function of the number of redundant 
components. Finally, Section 35 will be dedicated to a particular kind of 
redundant structure, that said to be “k of n.” 

(b) Passive Redundance. Passive redundance consists in arranging 
some components or substructures as “in reserve,” not to be used as long as 
no need is perceived. If an interruption in functioning of the system is toler- 
able, these elements will be manually put into service, by switching circuits or 
by replacing the failed elements; in the opposite case, automatic switching 
may be provided for. 

Examples. 
(1) The spare tire of an automobile constitutes a passive redundant 

element. 
(2) The emergency generating equipment of a hospital is automatically 

activated in case of a power outage. 



3 2  A C T I V E  R E D U N D A N C E  169 

One generally supposes that unused elements are not subject to deteriora- 
tion; the theory of Chapter IV is then not applicable since the failure rate of 
a redundant component depends on whether or not it has been placed in 
service (and, in the first case, on its age, which is different from that of the 
system), and as a consequence on the state of the other components of the 
system. 

The study of passive redundance is very closely related to that of the 
maintenance of equipment, which was outside the framework of this book. 
In particular, if redundant elements are not placed in service by simple switch- 
ing, but by physical replacement of the failed components, the problem of 
anticipating the number of redundant elements is nothing but that of assign- 
ing the number of replacement parts to be stocked for maintenance of the 
system. Thus we shall not begin here a study of passive redundance. 

32 Active Redundance at the Level of Substructures or at the 
Level of Components 

Consider a substructure with n components; two simple methods of re- 
dundance may be considered in order to form a system that is more reliable 
than the substructure: 

(1) arrange k identical substructures in parallel; 
(2) arrange k components in parallel instead of each component of the 

substructure. 

63- 
0 

FIG. 32.1. 

@- 
0 

F I G .  32.2. 

F I G .  32.3. 
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Example. Consider the substructure whose reliability network is given in 
Fig. 32.1. In Fig. 32.2 we show the network obtained by putting an identical 
network in parallel with the given network. On the other hand, in Fig. 32.3 
each component e i ,  i = 1 ,  2, 3, is duplicated by an identical component 
ei, i = 1 ,  2, 3, in parallel. 

We now show that redundance is more effective at  the component level 
than at  the substructure level if the base substructure is monotone. 

Theorem 32.1. Let cp(x,, x 2 ,  ... , x,) be a structure function with relia- 

S be the system obtained by placing in parallel k identical modules’ q(x?, 
... , x y ) ) ,  j = 1 ,  ... , k ,  with the reliabilities of the homologous components 
eil ), . . . , elk) being equal, 

(32.1) PI’) = pi,  j = 1, ..., k ; 

C be the system obtained by replacing each component ei of the structure q 
by k distinct components in parallel e:‘), ... , eIk’, with the same reliability 

Then, if the structure cp is monotone, the systems S and C have monotone 

bility function h(p,, p 2 ,  .. . , p,) associated with it. Let: 

Pi (CS. (32.11). 

structures and the reliability of C is greater than or equal to that of S. 

The system S is obtained by composition (see Section 26) of k modules 
identical to cp in a parallel structure: 

k 

(32.2) y(x“’, ...) Xfk)) = 1 - n ( I  - x ( j ) )  . 
j =  1 

Its structure function is therefore 

(32.3) 

cpS(X\1 ), . . . , xb‘ ), x p ,  . . . , x a ) )  = y [  cp(x‘,’ ), . . . , Xb‘ )), . . . , q(.v\k’, . . . , x : k ’ ) ]  . 

The system C is obtained by composing n modules identical to y in the 
structure cp. Its structure function is therefore 
(32.4) 

q,(x“’, ...) x p ,  x i [ ) ,  . ..( Xik ’ )  = cp[y(x\”, ..., X y ) ,  .. . )  y ( x Y ) ,  . ..) xp’]  . 

If the structure q is monotone, it is representable by a reliability network; 
it is then the same for cps and cpc according to Theorem 26.1. On the other 

Recall (see Section 26) that in the composition of structures we use the term 
‘‘moc. ile” whenever the composed substructures do not have any common component. 
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hand, let h(p,, ... , p,) be the reliability function associated with the structure 
cp, and 
(32.5) 

the reliability function associated with the structure y. Whenever all the ho- 
mologous components have the same reliability pi, the reliability functions 
of the systems S and C are, respectively, I[h(p, ,  ... , p,)]  and h[l(p,) ,  ... , 
l(p,)], and the theorem implies that 

/ ( p i )  = 1 - ( 1  - pi)k 

(32.6) 

For the proof, we show that 

(32.7) cps cpc 

Since the inequality is obvious for any state of the set of components such 
that cps = 0, we shall consider a link of cps. The structure y being parallel, 
this link includes a link of at least one of the modules cp(j), say { el!), e!:), 
... , e:) }. Then, however, the modules y i , ,  y i , ,  ... , yi, of the structure cpc 
function since they have a parallel structure and each of them has at least one 
component in a good state; since they constitute by hypothesis a link of cp, 
one has cpc = 1. In other words, any link of cps is a link of c p c ,  which proves 
(32.7). One also sees that the advantage of redundance at the component level 
arises from the fact that it introduces not only all the “homogeneous” mini- 
mal links (that is, those formed of components having the same superior 
index j )  that occur in the structure ‘ps, but also “ heterogeneous” links 
obtained by choosing arbitrarily the superior index of the components. 

Remarks. 
(1) One may also prove Theorem 32.1 by recurrence on the number of 

components using linear composition (Section 26, p. 129). 
(2) If cp is not degenerate, if k 2 2, and if 

(32.8) 

and 

(32.9) 

inequality (32.6) holds strictly. 
(3) One may interpret Theorem 32.1 in terms of “cannibalization” of 

systems. If one has at  one’s disposal k identical pieces of equipment, of 
which two have failed because of failure of different components, repairs 
may be made using some good components from one in the other. More 
generally, cannibalization consists in transferring some components of one 
system into another in such a way as to maintain in a functioning state the 

( P I ,  ..., p.)  f (0, ... I 0) 

(Pl,  ..., p , )  # ( 1 ,  ..., 1 )  1 
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largest possible number of pieces of equipment (see references [31, 51, 521). 
The interest in cannibalization derives from the property expressed in Theorem 
32.1, this operation amounting to carrying out a redundance at the level of 
components on an ad hoc basis. 

Example. We seek to determine the reliability of a radar indicator I,  the 
probability p that it functions 100 hr without failure. The indicator Z may be 
subdivided into five components (drawers and chassis), all necessary for 
functioning (a structure having a reliability network formed of five elements in 
series). The reliability of each of these components is given in Table 32.1. 

Component 
number 

1 

Indicator I 

Reliability 
(probability of functioning 
100 hr without failure) 

p ,  = 0.96 
p 2  = 0.93 
p 3  = 0.85 
p 4  = 0.80 
p s  = 0.75 

n = 0.455 

TABLE 32.1 

If we duplicate the indicator (two identical indicators placed side by 
side), the reliability of the set is 

(32.10) h,(p) = 1 - ( 1  - 7 ~ ) ~  = 1 - ( 1  - 0.455)2 = 0.703. 

If we duplicate each component independently, we obtain 

(32.11) 
5 

h,(p)= n [ l  - ( I  -pi)’] 
i =  I 

=(1 -0.04’) (1 -0.07’) (1  -0.15’) ( 1  -0.202) (1 -0.25’) 
=0.874. 

Redundance of the components is clearly more effective than redundance of 
the indicator Z. 

33 Optimal Redundance 

When designing a system with a view toward a given use, one may con- 
sider the problem of optimal redundance, that is, of the choice of the number 
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of redundant components to be put in place to render maximal or minimal 
a certain function that corresponds to a particular criterion. Such criteria might 
be : 

(1) the reliability of the system itself, this for a given total number of 
components ; 

(2) the total cost for a fixed reliability, with a constraint on the number 
of components. 

Or some other criteria on weight, size, etc., might apply. 
Ever since Pareto we know that the optimization of several economic 

functions at  the same time, from a mathematical point of view, may not have 
sense. Generally, one is given one and only one economic function and a set 
of constraints, and the problem consists of determining the optimum (maxi- 
mum or minimum, depending on the case) of the economic function with 
respect to the constraints. The optimal solution may or may not be unique 
depending on the nature of the problem. In certain cases one can extend these 
optimization problems to those called “ optimation with parameters,” that is, 
to the study of the evolution of the optimum by varying a parameter, or 
several. A great diversity of optimization problems may be posed using the 
notion of redundant systems, and we shall limit ourselves here to a few of 
them. In particular, in that which follows we shall consider as functions to be 
optimized the reliability of systems, or the number of components and some 
constraints or specifications on the costs; but instead of costs one can also 
consider the weight or size, or any other physical or technical aspect. 

The search for the optimal redundance will be guided by the result of 
Theorem 32.1, where it was shown that one should always seek an improve- 
ment at  the component level and not at the levels of the complete structure or 
of substructures. 

Search for the Minimal Number of Redundant Components Starting from 
a Series Structure. We intend to determine this minimal number for a re- 
dundant structure having a reliability greater than or equal to a given relia- 
bility, obtained from a series structure. 

We proceed using a sequential method proposed by Barlow and Proschan 
[5 ] .  This method may be applied to a basic structure (40, in the notation of 
Theorem 32.1) other than a series structure, but then it does not necessarily 
lead to an optimum. 

Let S be the initial series structure, and denote by S ,  the new structure 
obtained by doubling (that is, by placing an identical component in parallel) 
component e,  . 

We shall choose the component ei that maximizes the reliability of Si , 
then we shall denote by S i j  the structure obtained by doubling component 
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ej after having doubled component e i ,  and we shall choose ej so that the 
reliability of Si j  is maximal and continue with this until the desired reliability 
has been attained. For a series structure, this procedure leads to the optimum 
in a rigorous fashion (a proof will be given later in the study of redundance 
with minimal cost). 

Suppose that the system S is composed of n components el, e,  , ... , e, 
in series and that the respective reliabilities are pl,  p ,  , . . . , p ,  . The reliability 
of the system S is then 

(33.1) 

then 

h ( p , , p , ,  ..., P,) = Pl.P2.....P”. 

If we double the component e i ,  the reliability of the new system Si is 

(33.2) h i ( p 1 , p 2 ,  . . . , p i ,  ..., p , )  = p1 .p2 ..... [ I  - ( 1  - pi),] ..... p ,  
= p 1 . p ,  ..... p i ( 2  - p i )  ..... p ,  

= (2 - pi).p,.p2 ..... pi ..... p ,  

= (2 - p J . h ( p , , p , ,  . . a ,  pi, ..., p , ) .  

Thus hi (p l ,  p ,  , ... , p , )  is greater the smaller p i  is. Therefore we want to 
double the weakest component. Repeating this reasoning, we see that at 
the second stage, we should either add another component ei  or double the 
least reliable component other than e ,  , and so on. 

Examples. 
( I )  Consider the network of Fig. 33.1, for which the total reliability 

has the value 0.34. We intend to add components el, e2,  e3 in minimal 
number so that the reliability becomes at least 0.70. The components will be 
added only in parallel to the components already existing and will be identical 
to them. 

FIG. 33 .  I 
0.75 

FIG. 33.2. 

According to the rule given above, we double element el whose reliability 
is the weakest. We then obtain the network of Fig. 33.2, for which we have 
a total reliability of 0.51. 

To continue, it is necessary to compare the two results: triple el (Fig. 
33.3) or double e2 (Fig. 33.4). I t  is useless to examine the result of doubling 
e3 since the reliability of e2 is less than that of e3 . For Fig. 33.3 we have 0.595, 
and for Fig. 33.4 we have 0.61. We continue therefore from the latter. 
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e. 

, 0.50 , 
0.8 75 

FIG. 33.3.  

e. e, 

FIG. 33.4.  

We now examine which is better: 

(a) triple el (Fig. 33 .9 ,  or 
(b) double e3 (Fig. 33.6). 

The corresponding results are 0.713 and 0.703. The results of Figs. 33.5 and 
33.6 both suffice since the reliabilities obtained exceed 0.70; but, to choose, 
the network of Fig. 33.5 is better since there we have the greater reliability 
with three redundant elements. 

0.875 0.96 

el e2 e3 

0 

0.85 
0.75 0.96 0.3775 

FIG. 33.6. FIG. 33.5.  

(2) Next we consider an example of Section 32 (radar indicator). We 
intend to exceed a reliability of 0.98. In Table 33.1 we present the optimal 
number of redundant components and the reliabilities obtained. The com- 
ponents are arranged from left to right in the order of decreasing reliabilities; 
the number of redundant components is therefore nondecreasing from left to 
right. 

One sees that the best solution is given by lo’, that is, by the following 
redundances. 

the nth I Note. If a 

e l :  doubled, 
e,:  doubled, 
e3 : tripled, 
e4 : quadrupled, 
e5 : quadrupled. 

age of the calculations we h ve ob ined an optimal 
state with ki redundant components ei and kj  with ki < k j ,  and if the 
reliability of ki  components e,  in parallel is less than the reliability of kj  
components ej , then at state n + 1 we would prefer to add an ei component 
rather than an ej component. 

This remark lets us economize significantly on the number of stages in 
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TABLE 33.1. NUMBER OF REDUNDANT COMPONENTS AND RELIABILITY OF THE MODULE 

c 4  
Reliability 

of the svstem e5 

0 0 0 I 0.96 I 0.93 I 0.85 3'a 

0 

I 

2 

2' 
(optimal) 

3 

0 0 0 
0.96 0.93 0.85 

0 0 0 
0.96 0.93 0.85 

0 0 0 
0.96 0.93 0.85 

0 0 0 
0.96 0.93 0.85 

0 0 0 
0.96 0.93 0.85 

0 0 I I 0.96 I 0.93 I 0.977 

2 
0.992 

1 
0.96 

1 
0.96 

1 
0.96 

4' 0 1 I 
(optimal) I 0.96 I 0.995 I 0.977 

I 

I 

2 

1 

0.937 0.705 

0.937 0.785 

0.984 0.825 

0.937 0.840 

10' 1 1 2 
(optimal) 1 0.998 I 0.995 I 0.998 

3" 
(optimal) 

I 2 2 
0.998 0.999 0.998 lo" 

0 0 1 
0.96 0.93 0.977 

0 
0.80 1 0.75 I 0.455 

0.937 0.569 

0.80 0.984 0.598 
1 

1 

0.937 0.683 

0.96 0.984 0.717 

0.992 0.996 0.978 

0.992 0.984 0.971 

0.992 0.999 0.98 I 

0.998 0.996 0.985 

0.992 0.996 0.983 

This stage is useless since p 5  < p4; it is certain that 3' will be at least as good as 3. 
We have presented this stage in the interest of pedagogy. 
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the calculation. In the example above, one may go directly from stage 1 to 4', 
then from 5 to 8', and finally from 9' to 10'. We thus suppress 12 of the 21 
stages of the calculation. 

Redundance at Minimal Cost. We now propose to determine the total 
minimal cost of redundant components, requiring that the reliability of the 
system be greater than or equal to a given reliability. Note that in the case 
where the unit cost of all the components is equal to 1, we return to the pre- 
ceding problem, which is thus a particular case. 

We shall represent by the n-tuple 

(33.3) k = ( k l .  k,. .... k,) 

the system obtained by placing k ,  components in parallel with the component 
ei  of the initial structure (i = 1, . . . , n), and designate by r(k) the reliability 
of this system. 

As before, the algorithm will consist of progressively adding components 
until the desired reliability has been obtained. If, at  an arbitrary stage, k 
represents the number of components of each type that have already been 
added, the index i of the supplementary component will be chosen in such a 
way as to maximize the quantity 

(33.4) 

where ci is the unit cost of component e ,  . 
We go on to see that this algorithm leads to the optimal redundance in 

the case where the basic structure one starts with is a series structure with 
reliability 

(33.5) 

where p i  is the reliability of component e,  . In this case the reliability of the 
system obtained by redundance k is 

I 
Ci 

pi = - [log / - (A , ,  ..., k i  + I ,  ..., k,) - log d k ) ]  

r(0, ..., 0) = h ( p , ,  . .., p")  = 1'1 ./'I. ... .p, 

(33.6) 

with 

(33.7) 

We may easily show, however, expression (33.7) is a concave function of ki  
(the proof will be given in a more general framework in Section 34); this then 
holds also for log ri(ki) ,  that is, 

r i (k i )  = 1 - ( I  - p i ) k a +  I . 

(33.8) log Yi(ki + 1 )  - log r i (k i )  < log r i (k i )  - log r i (k i  - 1 )  . 
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It  then follows that the algorithm described above, which consists of adding 
at each stage a component e, such that 

(33.9) 

I I 
Ci Ci 

pi  =- [log r ( k , ,  . . ., k i  + 1, . . . , k,) - log r (k ) ]  =- [log ri(ki + I ) - log r i (k i ) ]  

is maximal, amounts to classifying in decreasing order the set of quantities 
1 

“ i  
(33.10) 

for all values of i (i = 1, ... , n) and all values of k i  (k ,  = 0, 1, 2, ...), and 
adding at each stage the component that has furnished the following term in 
the list (see the example given later). If e, is the last component added, whose 
addition has for the first time caused the reliability to exceed the given one, 
and if the redundance thus obtained is 

(33.11) 
then we have 

(33.12) 
that is, 

(33.13) 

p i ( k i )  = - [log r i (k i  + 1) - log r i (k i ) ]  

k* = (kf, ..., k : ) ,  

ps(kf - 1 )  2 pick:) ,  i = 1, ..., n , 

1 1 - [log r,s(k:)  - log r,(k: - I ) ]  3 - [log r i (k:  + 1) - log ri(k?)] . 
CS C i  

Consider now a redundance k different than k*; we proceed to show that 
one cannot have simultaneously 

Let I ,  be the set of indices i such that k i  > k:, and I ,  the set of indices i 
such that k i  < k?.  We then have, using the properties of concavity of ri(ki) ,  

(33.15)  

log r ( k )  - log r (k*)  = 1 [log 

c ( A i  - k : )  [log ri(k* + 1) - log r i ( k * ) ]  

- log r , (k*) ]  
i o l l  

- 1 [log rick:) - log r i ( k i ) ]  
i e l z  

6 
i o l l  

- 1 (k* - k i )  [log rick*) - log r i (k*  - I)] 
i o  I ?  

n 

6 1 ( k i  - k ; )  [log r i (k:  + 1) - log ri(k:)] 
i =  I 
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e4 

0.8 
500 

15.8; 
I 
0.96 

2.85 
1 
0.96 

2.85 
1 
0.96 

2.85 
I 
0.96 

179 

Reliability 
of the systen e5 

0.75 0.455 
I000 

~~ 

9.67 
0 
0.75 0.546 

9.67' 
I 
0.937 0.683 

2.13 
1 
0.937 0.785 

2.13 
I 
0.937 0.816 

__ 

~~ 

or  

(33.16) 

and finally, using (33.12), 

(33.17) 

It  then follows that 

n 

log r (k)  - log r ( / i * )  6 1 (ki - k * )  ci / / ; (k?)  
i =  I 

n 

log r ( k )  - log r ( k * )  6 (ki - kr) ci p,(/<: - 1 ) .  
i =  I 

0.96 
300 

5.62 
0 
0.96 

5.62 
0 
0.96 

5.62 
0 

0.96 

5.62; 
I 
0.998 

~ 

n n 

0.93 0.85 
1200 800 

2.45 7.56 
0 0 
0.93 0.85 

2.45 7.56 
0 0 
0.93 0.85 

2.45 7.56; 
0 1 
0.93 0.977 

2.45 1.2 
0 I 
0.93 0.977 

- 

. 

(33.18) r(k) > r(k*) * 2 k i  ci > 1 k: ci, 

which proves the impossibility of (33.14). 
It is therefore not possible to obtain a reliability greater than with the re- 

dundance k* without additional expense. Note, however, that there may exist 
a redundance k such that r(k) is less than r(k*), but greater than the expected 
reliability, and for which the cost is less than that of k* (see [22] for more on 
this subject). 

i =  I i =  I 

Example. We consider again Example 2 on p. 175, now taking into account 
the costs ci of the redundant elements. Table 33.11 indicates the stages of the 
calculation when one applies the algorithm as originally described and sup- 
posing that the required reliability is 0.80. For each stage, we have indicated 
the value of the quantities p i (k i )  where ki  is the number of redundant com- 
ponents e ,  added in the preceding stages; then the new redundance k is 

Component : 

Reliability 
cos t  ci 

Second pi. 105 
stage k:  

ri(k,?) 

Third p i .  105 
stage k :  

rick:) 

Fourth pi. lo5 
stage k:  

r i ( k i . )  

Cost of the 
redundance 

0 

500 

1 500 

~~- ~~ 

2 300 

2 600 

TABLE 33.11 
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Cost 

given, obtained by adding the component for which p i  is maximal, and then 
the reliability is obtained. 

As we have remarked above, since at  each stage one chooses the com- 
ponent i to add according to the largest p i (k i )  not yet used, it is more con- 
venient to set up for each component i a table of values pi(ki), then collect 
these tables in a unique list in decreasing order, as in Table 33.111. The order 
in which one should add components is then simply that indicated in the first 
column. Figure 33.7 gives the curve of the maximal reliability as a function 
of price (or of minimal cost as a function of reliability), traced from the 
successively obtained solutions. 

Reliability 

1 

500 
1500 
2 300 
2 600 
3 loo 
4 300 
5 300 

15.84 
9.67 
7.56 
5.62 
2.85 
2.45 
2.13 

0.546 
0.683 
0.785 
0.8 16 
0.843 
0.903 
0.948 

t Reliability 

TABLE 33.111 I I I I I I I  - 
0 1000 5000 

cost 

FIG. 33.7. 

34 Concavity of Monotone Structures with Respect to Redundance 

Let h(p , ,  p 2  , . . . , p , )  be the reliability function of a monotone structure 
~ ( x ,  , x 2 ,  ... , x,) and r ( k , ,  k, , ... , k,; pl,  p 2 ,  ... , p, )  the reliability function 
of the structure 
(34.1) 

cpk(.u\’’, ..., -k!kl) 1 , x 2  (O) , . . .) . u p )  = cp[y(.v\”, . . ., .v(kl)  I ), ..., y(.v;o), ..., . v y ) ]  

where y is the parallel structure (32.2). The structure (Pk , where 

(34.2) 

is derived from cp by addingk, identical components in parallel with e ,  (k i  2 0). 

k = ( k , ,  ...) A,), 

Theorem 34.1. The function r ( k l ,  ..., k,; pl, ..., p, )  is concave with 
respect to each of the variables k , ,  that is, 

(34.3) 
r ( k , ,  ..., k,, ..., k , ; p , ,  ..., p , , ) - r ( k , ,  ..., k i - l ,  ..., k,;p,, ..., Y,) 

2 r ( k , ,  ..., k i + l ,  ..., k , ; p , ,  ..., p , ) - r ( k l ,  ..., ki, ..., k , ; p l ,  ..., Y ,  ) .  
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PROOF. Note first that, as in the particular case of Theorem 32.1 (where 
we had k ,  = k ,  = ... = kn), the fact that cp is monotone, therefore represent- 
able by a reliability network, implies that (Pk is likewise representable by a 
network, thus monotone. Moreover, we have seen in Section 26 (p. 129), 
discussing monotone linear composition, that one may single out an arbitrary 
component ey) of c p k ;  in fact, to recover relation (34.3) we shall consider the 
structure (Pk' with 

(34.4) k '  = ( k l ,  ...) k i  - I ,  ..., k n )  . 

We obviously suppose that ki 2 1. Let e!" be one of the ki components 
identical to e ,  of the structure ( P A ;  the reliability network of this structure may 
then be put in the form indicated in Fig. 34.1, analogous to Fig. 26.1 1. This 
corresponds, for the reliability functions, to the relation 

(34.5) I ' k ,  - 1 = pi .I' + ( 1  - /);) (/ 

where 

(34.6) r k , - l  = r ( k ,  ,..., k i -  I ,..., k , ; p l  ,..., p,) 

and wherefand g are reliability functions of the structures represented by the 
networks XI and X, . These functions, according to Theorem 26.V, satisfy the 
inequality 

(34.7) ./' 3 9 ' 

FIG. 34. I .  FIG. 34 .2  

The structure (Pk is obtained by adding in parallel to the components 
eIo), e!'), . . . , elki-')  a supplementary component efi (Fig. 34.2); its reliability 
function is therefore 

(34.8) rk,  = [ 1 - ( I  - /';)2] ./' + ( I  - / ) , I2  .4 . 

By adding still another component identical to ei , we obtain 
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Since 0 < pi < 1 andf - g > 0, we see that: 

(a) rk, - rk,-l  > 0: active redundance always improves the reliability 
of a monotone structure; 

(b) rk, - rk , - l  2 rk l+ l  - rkr:  the reliability function is concave; that is, 
the increase in reliability is smaller and smaller as one adds components. 
Redundance thus has decreasing “ yield.” 

Example. As an example we take one of the monotone structures with three 
components presented in Fig. 26.13 (p. 134); specifically that one denoted 
‘p‘23’: 

(34.12) cp(x,, x 2 ,  s3) = x 3  + .Y1 x2 - X I  .Y2 .Y3 . 

The reliability network is represented in Fig. 34.3. The proof of Theorem 34.1 
leads to putting the structure function in the form 

(34.13) ~p(-ui,  ~ 2 ,  ~ 3 )  = . ~ 1  q(l, ~ 2 ,  ~ 3 )  + (1 - X I )  ~ ( 0 ,  ~ 2 ,  x3 )  

= S 1 ( X 2  + x 3  - x 2  x3) + ( 1  - X l )  x 3  , 

if x1  is the component that one singles out. The expression x2 + x 3  - x 2 x 3  
corresponds to placing components e2 and e3 in parallel; the reliability net- 
work corresponding to (34.13) is that of Fig. 34.4, where we see the appearance 
of the subnetworks 3tl and X 2  of Fig. 34.1. One may easily verify that the 
networks of Figs. 34.3 and 34.4 are equivalent. 

FIG. 34.3.  FIG. 34.4. 

We return now to expression (34.12). The reliability function of the 
system is 
(34.14) h ( p , ,  P27 P3 )  = P3 -t P1 P2 - / ) I  / ) 2  Y 3  

= P3 + / ) I  /)2(1 - / ) 3 )  . 

Suppose, for example, that we have 

(34.15) p1 = 0.4, p 2  = 0.7,  173 = 0.5 

It then follows that 

(34.16) h = 0.5 + 0 .35p1 ,  
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that is, 

(34.17) h = 0.64. 

If component el is doubled, the reliability obtained is 

r(1, 0, 0) = 0.5 + 0.35[1 - ( I  - = 0.724, 

an increment of 0.724 - 0.640 = 0.084. 
Adding another component el in parallel with the first two gives 

4 2 ,  0, 0) = 0.5 + 0.35[1 - ( 1  - pl)3] = 0.7744, 

which is a new increment of 0.7744 - 0.7240 = 0.0504, less than the preceding 
one. The reader may verify these results using (34.10) and (34.11) where 

j’ = p2 + p3  - ,v, /)3 = 0.85, 
= p 3  = 0.5, 

p i  = p ,  = 0.4.  

35 Type k of n Structures 

Definition. 
“ k  of n” and denote this as q:(x) if 

We shall say that a structure function q ( x l ,  x2 , . . . , x,) is of type 

( 3 5 . 1 )  

(35.2) 

where 

(35 .3)  

and 

l d k d n  

(35.4) S(X) = .Y, + .Y2 + ... + .Y, , .  

Example. We show that the structure function 

( 3 5 . 5 )  q(x, ,  s 2 ,  .Y3) = XI  .Y2 + .Y2 .Y3 + .Y3 .Y, - 2 . V l  .Vz .\-3 

is a function of type 2 of 3. For this, we establish its table of values (Fig. 
35.1). Note that for S(x) 2 2 we have q(x) = 1, and that for S(x) < 2 we 
have q(x)  = 0. 

Now we consider a few obvious properties of type k of n structures. 
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0 

0 

0 

0 

1 

0 0 0 0 0 0 0 0 

0 I 0 0 0 0 i 0 

I 0 0 0 0 0 1 0 

I I 0 I 0 0 2 1 

0 0 0 0 0 0 1 0 

1 0 I 0 0 I 0 2 1 

FIG. 35.1. 

1 

(1) A system whose structure function is &x) functions if the number 

if k = 1, one has a parallel structure; 
if k = n, one has a series structure. 

(2) &x) is monotone (the structure function of the example above is 
included among the structure functions of order 3 enumerated in Fig. 26.13, 
p. 134).' 

(3) Any subset of at  least k components is a link of &x). Any subset 
of k components is a minimal link. 

(4) There are (7) links with k components (i  2 k). 
( 5 )  There are (t) minimal links having k components. 
(6) The reliability network corresponding to a structure function 

&x) is obtained by arranging in parallel the (3 minimal links al, a2,  ... , 
a(;) each made up of k components (Fig. 35.2). 

of components in good states is at  least equal to k. In particular 

I I 1 1 1 2 1 3 1 1  

* Z 

3 4  
0 

3 4  

FIG. 35.3. 

FIG. 35.2. 
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(7) The structure function cpk(x) may be written (cf. (22.1)) as 

(35.6) 

where the product is extended to the (;) minimal links, that is, to the (3 
combinations of k components. 

cpk.(.Y) = 1 - U(l - s,, .Y,. ... SUk) 

(8) cpi(x) is a symmetric function of the variables xl, x2 , . . . , x, . 

Example. We consider an example that illustrates the above properties. Let 
X: be a system whose components constitute the set { el,  e, , e 3 ,  e4, e5 }. 
The network is made up of (2) = 10 links in parallel (Fig. 35.3). We note that 
any subset with three components or more is a link. 

There are (:) = 10 minimal links, (2) links with four components, and 
(2) = 1 link with five components. The structure function is 

(35.7) 
cp:(x,, .Yq, S) ,  .Y4, s 5 )  = 1 - ( 1  - SI  .Y2 . Y 3 ) . (  I - . Y l  .Y2 s4) 

x(1 - XI  .Y2 xs) . ( l  - .Y, .Y3 . Y 4 ) . ( l  - .YI  .Y) .Y5).(l - X I  .Y4 Sj) 

x ( 1  - .Y2 .Y) x4). ( I  - .Y2 .Y) s 5 ) .  ( 1  - .Yz .Y4 s 5 ) .  ( 1  - .Y) .Y4 .Y j) . 

It is easy to see that this function is symmetric; it is not changed if one per- 
mutes an x i  with an xi, i # j .  For example, 
(35.8) c p ( . Y l ,  x 2 ,  x 3 ,  x4, .Y5) = cp(s*, .Yg, .Y), x4, s 2 )  . 

Reduction of a Type k of n Network. A structure function of type k of 
n in form (35.6) or the equivalent network following the scheme of Fig. 35.2 
is very complicated when n becomes large; it is of interest to be able to sim- 
plify these. We therefore seek a network possessing a minimal number of 
arcs equivalent to a given network Xk . 

Hansel [29] has shown that this minimal number of arcs for a network 
Xi may be given by 

(35.9) 
where m is defined by 

(35.10) 

E,' = n(m + 2) - 2"" 

2" < n < 2"+' . 

Example. Consider the reduced networks X:, n = 3, 4, 5 .  One obtains 

(35.11) n = 3 3 m = 1 ,  E: = 5 (Fig. 3 5 . 4 ) ,  

(35.12) n = 4 = m = 1 ,  E i  = 8 (Fig.35.5),  
(35.13) n = 5 + m = 2 ,  E: = 12 (Fig. 35 .6) .  
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FIG. 35.4. FIG. 35.5. 

FIG. 35.6. 

The following rule permits one to construct easily reduced networks 
%: , although not necessarily reduced to a minimum: %: is always equivalent 
to the network represented in Fig. 35.7, where 

(35.14) I d l d n - 1 ,  
(35.15) 
(35.16) 

i = MAX { 0, I + k - n } ,  
j = MIN { k ,  I } .  

FIG. 35.7. 

Here X = { 1, 2, ... , 1 } is the set of the first 1 components and Y = { 1 + 1,  
1 + 2, ... , n }. 

An especially reduced network is obtained by choosing 

(35.17) I = [;I 
where [ A ]  is the greatest integer less than A .  
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Examples. Two explicit examples are given in Figs. 35.8 and 35.9: 

(a) 3 of 4 network, for I = 2 (i = l , j  = 2); 
(b) 3 of 5 network, for I = 2 (i = 0 , j  = 2). 

FIG. 35.8. 

- - 

FIG. 35.9.  

Type k of n Structure with Components of the Same Reliability. If the 
components of a structure cp,k(x) have the same reliability p, the reliability 
function may be written, from (25.18) and taking into account property (4) 
given above, 

(35.18) 

We go on to see that when 2 < k < n - 1, the curve representative of 
h,k(p) is of type I1 (p. 138), that is, an S curve; it intersects the first bisector at 
a point po defined by the equation 

(35.19) hk,(Po) = P o .  

I f p  > po , the type k of n structure is more reliable than a single component; 
on the contrary, i f p  < po , it is less reliable than this single component. 

Indeed, we calculate the first and second derivatives of h,k(p) expressed 
by (35.18); after simplification we have 

n !  
* p k - l . ( l - / > ) " - k ,  

d 
dp h , k ( p ) = ( k -  1 )  ! ( n - k )  ! 

(35.20) - 

(35.21) 
d2 n !  .pk-* . ( l - />)" -k- ' . [~- I - ( , - l )p] .  
- h,k(p) = 
dP2 ( k -  1) ! ( n - k )  ! 
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According to (35.20) and the condition 2 < k < n - 1, we have h'(0) = 
h'(1) = 0, which shows that the curve is of type I1 (see (27.19)). On the other 
hand, we have 

n-1 
FIG. 35.10. 

Figure 35.10 illustrates these properties. We have also drawn in Fig. 35.10 
the reliability function of an arbitrary monotone structure, in order to illus- 
trate the following theorem. 

Theorem 35.1. Let h(p) be the reliability function of an arbitrary monotone 
structure of order n;  if h(p) is not of type k of n, the curve representative of 
h(p) intersects at most once each curve h:(p), andat thepoint of intersection ( i f i t  
exists), the slope of h:(p) is greater than that of h(p). 

Indeed, according to (25.20), we have 

(35.25) 
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where A i  is the number of links having i components. It then follows that 

(35.26) 

= ( 1  - p y g ( Z ) ,  

where g(z) is a polynomial of the positive variable z = p / ( l  - p ) .  Since 
(1) 2 A i ,  the coefficients of the polynomial g(z) present at  most one change of 
sign and g(z) therefore has at most one positive root (Descartes' rule). 

If g(z) has a root, then A i  > 0 for at  least one value of i less than k ;  but 
in this case if p is an infinitely small positive number, we obtain 

(35.27) (P + 0) * (hXP) < N P N .  

The curve hi(p) therefore intersects the curve h(p) from below (see Fig. 35.10). 



CHAPTER V l  

SYSTEMS PRESENTING TWO 

DUAL TYPES OF FAILURES 

36 Introduction 

The study of the reliability of systems of electric relays presents a par- 
ticular difficulty: indeed, a relay must, according to the command sent to it, 
let pass or interrupt an electric current; it may thus present two types of 
contradictory failures : 

faifure of type a: circuit remains open whatever the command (no 
current passes) ; 

failure of type b: circuit remains closed whatever the command (current 
always passes). 

For example, arrange four relays according to the scheme shown in 
Fig. 36.1 and send the same command to all four relays. If relays 1 and 2 or 
3 and 4 present failures of type b, current passes whatever the command. 
Likewise, if relays 1 and 3 or 1 and 4 or 2 and 3 or 2 and 4 present failures of 
type a,  the set has failed; in fact, whatever the command, no current will be 
able to pass. 

Electric 
current - - 

N0.3 

FIG. 36.1 

I90 
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In this example, each component has three possible states: good state, 
failure a, or failure b. Similarly, the system has three possible states, defined 
in the same fashion. One might imagine generalizing the theory of structure 
functions, developed in Chapter 111, to the case of systems and components 
presenting more than two possible states. We go on to see, however, that the 
systems analogous to those of the example above may, because of their 
peculiarities, be studied with the aid of bivalent structure functions like those 
discussed in the preceding chapters. 

One may consider the system represented in Fig. 36.1 as serving two 
functions : 

Function I :  when the command to close is sent, the circuit is to be 
closed; 

Function 2: when the command to open is sent, the circuit is t o  be 
opened. 

Function 1 is assured if and only if there exists in the graph formed by the 
electric circuit a path such that all the relays located on the path are closed; 
this will happen if each of the relays is either in a good state (in which case it 
will obey the command to close) or presents a failure of type b (since then it is 
always closed). Moreover, note that when function 1 is assured, the system 
is in a good state or presents a type b failure. One sees that this analysis takes 
in the three possible states of the system and of its components through only 
a partition into two subsets of states: 

good state or failure of type b;  
failure of type a. 

This reduces us to taking account of only failures of type a, the failures 
of type b not being distinguished from “good state”; proceeding thusly, one 
may trace a reliability network (which will turn out to be identical to the graph 
formed by the electric circuit) or define a structure function. 

We now pass to function 2. This function is assured if there exists a cut 
in the graph of the circuit such that any relay of this cut is open, that is, either 
in a good state or presents a type a failure. In this case, the system itself is in 
a good state or presents a type a failure. This second analysis requires taking 
into account only failures of type b, the failures of type a having been joined 
with “ good states.” 

In conclusion, we verify that the state of the system as a function of the 
states of its components may be represented completely by two reliability 
functions or structure functions of the type we have defined in Chapter 111. 
Moreover, these two networks or structure functions are dual to one another. 
In fact, we have seen: 

that the reliability network obtained by considering only failures of type 
a (first analysis) coincide with the graph of the circuit; 

that the reliability network obtained by considering only failures of type 
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b (second analysis) has for links the cuts of this graph, that is, the cuts of the 
first network. This second network is thus the dual of the first (Section 19, 

We shall say that the system presents two "dual" types of failures. This 
situation, although a very particular one, is not uncommon in the study of 
logical or numerical circuits, whose increasing importance in modern technol- 
ogy needs hardly be emphasized. This is why we shall study this in detail 
in the present chapter. 

First we shall give another example. Many electronic components (diodes, 
resistors, ...) present essentially two type of failures: short circuits (zero 
resistance) or open circuits (infinite resistance). If one is concerned with the 
sudden appearance of these two types of failure between two points of a 
complex circuit, as was, for example, Price [45] in the particular case of com- 
ponents in parallel (from the point of view of electronic circuits), the method 
that we shall go on to describe is useful. Note, however, that the study of 
logic circuits raises a number of other problems that we shall not mention 
(see, for example, Wilcox and Mann [SS]). 

P. 79) 

37 Definition. Properties 

Consider a system with n components that present two types of mutually 

failure of type a, 
failure of type b. 

To each component there corresponds two Boolean state variables : 

4 = 0 if component ei presents failure a;  
xs = 1 if component et  is in a good state or presents failure b;  
x: = 0 if component ei presents failure b, 
x: = 1 if component ei is in a good state or presents failure a. 

The system itself presents two types of failure, also designated a and b, 
coming only from, respectively, the type a and type b failures of its compo- 
nents. In other words, the state of the system is defined by the two following 
structure functions: 

exclusive failures : 

~(x", x; , . . . , x,") = 0 if the system presents failure a, 
= 1 if the system does not present failure a ;  

@(xi, x: , . . . , x:) = 0 if the system presents failure b, 
= 1 if the system does not present failure b. 

In addition, @(xi, x! , ... , x:) is the dual of p(4, x; , ... , xi), that is, 
- (37.1) dx,, x2. ..., x,) = 1 - q(1 - x,, 1 - x2, ...) 1 - X") . 
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The structure function of the system, defined as taking the value 1 if the 
system is in a good state and the value 0 if it presents one of the two types of 
failure, is then 

(37.2) y(x7, x;, ..., *< ; x!, xl, ..., x:) 
= cp(x'l, x;, . . . , .Y;) .cp(s:, xi, . . . , s:) 

= q(x' l ,  x;, .. ., xi). [ 1 - cp(l - s;, I - s;, . . ., 1 - x:,] . 

Theorem 37.1. The system cannot simultaneously present failures a and b, 
that is, one may not have cp(x") = @(xb) = 0. 

Indeed, if @(xb) = 0, the components presenting failure b form a cut of 
(p(xb), but this cut of @(xb) is a link of cp(x"), and for all components of this 
link, x: = 1,  therefore cp(xa) = 1 .  The system therefore has only three possible 
states, which we shall designate, respectively, by A (failure a) ,  B (failure b), 
and C (good state). 

Theorem 37.11. If ip(x") is monotone and nondegenerate, the system cannot 
function when all the components have failed. 

Indeed, if the system functions, there exist: 

a link of cp(x") for which all components present failure b (they have all 

a link of @(xb), thus a cut of cp(x"), for which all components present 

This is impossible, however, since a path and a cut of a monotone struc- 
ture have at least one component in common (Theorem 19.11 on reliability 
networks). 

failed, and none presents failure a) ;  

failure a .  

Example. Consider the system of three relays arranged as shown in Fig. 
37.1. For failures of type a (open circuit), the reliability network 32 is like the 
electric network (Fig. 37.2). For failures of type b (closed circuit), we obtain 
the reliability network X by taking the dual of the network 32. That is, the 
minimal links of 3 are the minimal cuts of 32: { el  } and { e 2 ,  e3 }. 

The reliability network X is very different from the electric network 
(Fig. 37.3). 

The structure function for X is 

cp(x") = x;[l - (1 - .Y?) ( 1  - . Y 3 ]  

?(X*) = 1 - (1  - x!) ( 1  - .Y; .Y3) 

and that of X is 
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el Network % 

e3 

FIG. 37.2.  
FIG. 37 .1 .  

Network 

FIG. 3 1 . 3 .  

and that of the system of relays is 
y(xa, x h )  = cp(x") ?(xb)  . 

We may with this example verify Theorem 37.11. If, for example, relay K2 has 
failure a and relays K, and K3 have failure b, we obtain 

X'l = 1 , x'; = 0 ,  
. u ; = o ,  x h , = I ,  

x; = 1 , .Y; = 0 ,  

and it follows that 

y(x" ,xb)  = [ I  - ( 1  - O ) ( l  - I)]  [ I  - ( 1  - 0) ( I  - 1 x O)] = 0 .  

38 Reliability Function of a System Presenting 
Two Types of Failures 

Definition. Denote by 

p ;  the probability that component ei has failure a, 
p! the probability that component e ,  has failure b. 

From this 
1 - h( l  - p'l, I - p ; ,  ..., 1 - p i ) ,  

1 - h( l  - p'; ,  1 - p i ,  ..., 1 - p ; )  , 

the probability that the system is in state A (presents failure a), 
- 

the probability that the system is in state B (presents failure b). 

We obviously have 

(38.1)  1 - h( l  - p") = 1 - q,(l - p" )  



38 A S Y S T E M  P R E S E N T I N G  T W O  T Y P E S  O F  F A I L U R E S  195 

where q,(x) is the simple form (see 31.5)) of the structure function cp, and 
(38.2) 

- - 
1 - h(l - ph) = 1 - q,(l - ph) = 1 - [ I  - cp,(Ph)l = V,(Ph) = 

Denoting by C the state of the system presenting neither a nor b failures, 
we must have 
(38.3) 

since events A, B, and C are incompatible (see Theorem 37.1). 

system, we have 
(38.4) 

prob { C 1 = f(&, P;, ...) pi 

prob { A } + prob { B } + prob { C } = 1 

Writingf(p7, p i ,  ... , p i ;  p l ,  b b  p 2  , .. . , p:) for the reliability function of the 

h h  
pz? 

= 1 - [ I  - h(l - p‘l, 1 - p ; ,  ..., I - / I : ) ]  - h(p! ,ph, ,  ..., 171, 

ExumpZe 1. Consider a system of relays in series-parallel (Fig. 38.1), each 
relay receiving the same command (see Section 36). 

- - - 4- - - & 
FIG. 38 .  I .  

Let a be the “circuit always open” failure; any series of n relays 
{ r ( i )  , r2  (i) , ... , r,? } is a link of q($, x i ,  ... , x:) and we obtain 

(38.6) q,(x’f,  x;, ..., xi) = 1 - n ( 1  - X‘f .u; ... xi) 

where the product is taken over m minimal links. 
Suppose that the m x n relays all have the same reliability. Let t~ be the 

probability of a type a failure (circuit always open) and p be the probability 
of a fiilure of type b (circuit always closed); one has 

(38.7) h(a) = 1 - ( 1  - X n y  
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and 

(38.8) . f(K /I) = (1 - B")" - [ l  - (1 - x ) n y  . 

Example 2. Consider the system of five relays shown in Fig. 38.2. As in the 
preceding example, let LY and p be the probabilities of failures of type a (circuit 
always open) and type b (circuit always closed). 

The minimal links of the structure q(xy ,  P2, xg , x i ,  x;) are 

(38.9) { r l ,  r4 1 , { r 2 ,  r 5  1,  { r I ,  r 3 ,  r 5  1, and { r2, r 3 ,  r4 1 , 
and from this 
(38.10) 
Cp(4. x;, x f ,  x;, x;) = 1 - ( 1  - X't x;) ( 1  - x; Xt; )  

- ( 1  - X'l x; x;) (1 - x; x; x;) , 

from which 
(38.11) 
Cp,(x't, x;, xg, x:, x;) = x't x; + x; x; + x't x; x: + .u; x g  x; 

- x't x; x; x; - x't x; xf x; - S'I XI; xf x; 

- X'f Xf  X i  .V: - .V; .Kf .V; X; + 2 S'f .U; I; .V; X; 

and 

(38.12) 
and thus finally 

(38.13) 

h(a) = 2 a2 + 2 !x3 - 5 x4 + 2 x 5 ,  

f ( x ,  p) = (1 - a)2  [4 - 2 o! - 5(i - a ) 2  + 2(1 - 

- p [ 2  + 2 p - 5 p 2  + 2 pi . 

Moore-Shannon Upper Bound. As in the case of a system with only one 
type of failure (Section 25), one may indicate limits for the reliability function, 
as a function of the length p and the width 1 of the system, whenever the 
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components are all identical. Recall (Section 17, p. 66) that the “length” of 
a system is the smallest number of components forming a link, and the 
“width” the smallest number forming a cut. Here we shall apply these defini- 
tions considering only failures of type a (the second reliability network, 
obtained by considering only failures of type b, is dual to the first, and has 
therefore length p and width A). 

If all the components have the same probabilities of failure a (type a) 
and /? (type b), one has, from Theorem 25.V (p. 123), 

(38.14) 

and likewise 
PA < h(/l)  6 1 - ( 1  - /l)” 

(38.15) ( 1  - a)’ 6 h(l - a)  < 1 - x ” .  

The reliability function of the system, given by 

(38.16) 

therefore satisfies the inequalities 
(38.17) 

f (% P )  = h(l - r )  - M P ) ,  

+ (1 - /l)” - 1 < J ’ ( x ,  /I) 6 1 - X” - /I”. (1 - 

Theorem 38.1. In order that the probability of failure (type a) of the 
system be less than 6 ,  and the probability of failure (type b) be less than 6, , it 
is necessary that the number of components n satisfy the inequality 

(38.18) logh,  logs,  
log a log p 

n 2 - a -  

where a is the probability of type a failure of each of the components, and p is 
the probability of type b failure of each of the components. 

Indeed, the probabilities of type a and of type b failures must satisfy the 
inequalities 
(38.19) 

(38.20) 

and this entails 
(38.21) 

(38.22) 

Q’ < 1 - h(l - a)  6 6, , 

PA < h(P) 6 6, 9 

p log a 6 log 6,  , 

A log p < log 6, . 

Since log a and log f i  are negative (a < 1 and p < l), we obtain 

1% 6 2  A>- 
l ogB  ’ 
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By applying Theorem 19.V1, p. 77,, one may write 

log6,  log6, 
logcr 10gp . 

n 2 2 . p  2 - * - 

39 Redundance in Systems with Components 
of the Same Reliabilities 

In the case studied here of two types of failure, the optimal procedure for 
redundance depends on the relative frequencies of each type of failure. If, for 
example, it is a matter of juxtaposing a redundant component to a given 
component, and if almost all failures are of type a (circuit always open), the 
most effective redundance consists in arranging the two components in 
parallel; if, on the other hand, the most frequent failure is of type b (circuit 
always closed), it would be better to arrange the two components in series. 

We shall give in succession a few results concerning the simplest mono- 
tone structures (orders 1, 2, and 3), and series-parallel networks. In the 
following section we shall examine a particular kind of redundance, composi- 
tion of a structure with itself. 

In the present section we shall suppose that all the components have the 
same reliabilities, LY being the probability of type a failure and p the prob- 
ability of type b failure. 

Simple Monotone Structures. Optimal Arrangement of One or Two 
Redundant Components. If we wish to arrange a redundant component, we 
may place it in parallel or in series with the initial component of the structure; 
we obtain, according to (26.58): 

For the parallel arrangement (Fig. 39.1): 

(39.1) h\Z’(cr) = 2 x - x 2  . 

For the series arrangement (Fig. 39.2) : 

2 (39.2) h\2’(.) = x . 

e, e, 

FIG. 39.2. / -  

FIG. 39. I .  
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In order to study the effectiveness of these two arrangements, we thus 
must compare 

(39.3) 

and 
f / ” ( M ,  p) = 2(1 - a)  - (1  - rw)2 - 2 /I + p2 

fJ2’(M, p) = (1 - a)’ - p’ . (39.4) 

(39.5) y = l - a - P ,  

For this, we introduce a new variable 

which represents the reliability of a component (neither type a nor type b 
failure). Note that y 2 0, from expression (38.3). 

We have 

(39.6) 

(39.7) 
f : ” C M ,  /I) = 2 Y - y(y + 2 P) , 
fJ2’(% B) = Y(Y + 2 P )  . 

The relative increment in reliability is therefore 

(39.8) 

(39.9) 

Then we obtain the graph of Fig. 39.3. 

L 

FIG. 39.3. 

Note that since hi2)  is the dual structure of f i 2 )  follows from f‘i” 
by permuting ci and p and the two lines are symmetrical with respect to the 
line 
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When fi < (1 - y)/2, and therefore p < a, the parallel arrangement is 
more effective; conversely, it is the series arrangement that is more effective if 
p > (1 - y)/2; thus /3 > a. If p = (1 - y)/2, that is, p = a, redundance is 
useless. 

We now consider the case of two redundant components. We shall use 
the results given in Section 26 on monotone structures of order 3 ((26.60)- 
(26.64) and Fig. 26.13). We obtain the following results : 
(39.10) 

-el- 
-ec 

I e L  
f : 3 ’ ( ~ ,  /I) = 3(1 - Z) - 3(1 - a)2  I @  

- -  r z  0 
+ (1 - .)3 - 3 p + 3 p q 3  @ + 

= ( I  - p ) 3  - x 3 ;  

(39.11) 
f j 3 ) ( a ,  /I) = 1 - z + (1 - Y ) ~  - ( 1  - x ) ~  

- B - p2 + p 3  

= I - 222 + a 3  - /I - p2 + p 3 ;  

(39.12) 
. f i 3 ) (x .  p )  = 3(1 - x)’ - 2(1 - a)3 

- 382  + 2 B 3  

= 1 - 322 + 2@3 - 3p2 + 2 1 3 3 ;  

(39.13) 
p ( z ,  p) = 2(1 - x ) 2  - (1  - x ) 3  -el- 

_e2 

_ -  
- _  - 2 p2 + 8 3  

= 1 - x - x 2  + x 3  - 2p2 + p 3 ;  

(39.14) 
f43)(., /I) = ( I  - r ) j  - p 3  . 

0 Z 

The graph given in Fig. 39.4 is obtained. We have set 

y = l - x - / l ,  

and we have used as ordinate (l/y)f(a, p),which is the relative increment in 
reliability. Note that the graph is symmetric with respect to the line 
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I 
I 

6 6 
FIG. 39.4. 

Note also that f i3), f i3), and f i3) have a common point of intersection, and 
similarly for f 2, f z ,  and f :. 

From Fig. 39.4 we draw the following conclusions: If 

(39.15) 

the arrangement f i3) is most effective. If 

4 - 3 y - J T T - 7  2 - 3 y + -  
6 < f i <  6 

(39.16) 

one would prefer f k3)‘. If 

(39.17) 
2 - 3 y + J C - Q  

B 2  6 

one would prefer f \”. 
At the point 

4 - 3 y - Jw- 
B =  6 

f i3), f i3), f i3) are equal, but these structures are preferable to f i 3 )  and to 
f $3’. 
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At the point 

2 - 3 y + J W  
B =  6 9 

f ( 3 )  4 9  f l 3 ) ’ , f k 3 )  are equal, but these structures are preferable to  fy) and to 
f $3). 

Series-Parallel Structures. Consider the structure represented in Fig. 
39.5 and make the hypothesis that all the components possess the same 
probabilities a and f l .  

&I’ 7 e”’ 
n 

-L” i  ---------- ------- J- 
--- -- 

FIG. 39 .5  

The reliability of this structure is (cf. (38.8)) 

(39.18) f ( a ,  p) = (1 - p”)“ - [ l  - (1 - xy1m. 

With n fixed, we denote by m* the value of m that maximizes the reliability 
of the series-parallel structure. 

We may easily show (see Barlow and Proschan [ 5 ] )  that m* has the follow- 
ing properties: 

Property 1. 

(39.19) 

where [XI  signifies the “integer part of” X ,  with 

m* = [mol + 1 

log (1  - a)  - log p 
log (1 - p”) - log [ l  - (1 - x)” ]  . 

mo = n (39.20) 

Property 2. 

(39.21) moln is an increasing function of n. 

Property 3. If n + 03, 

(39.22) 



40 I T E R A T I V E  S T R U C T U R E S  203 

Property 4. 

(39.23) 

(39.24) 
(39.25) 

(p” + (1 - a)” > 1 )  * (m* = l ) ,  
(p” + (1 - a)” = 1 )  3 (m* = 1 or 21 ,  

(p” + ( I  - a). < 1 )  = (m* > 1) .  

40 Iterative Structures 

We first define the notion of iterative structure in the case of systems 
with only one type of failure, using the composition of structures defined in 
Section 26. 

Let cp(x,, x2,  ... , xn) be a monotone structure function. Let us suppose 
that these Boolean quantities are themselves structure functions : 

(40.1) 

Put 

(40 .2) 

Thus we have realized a composition of the structure function cp in itself. 

Example. Consider the network of Fig. 40.1 ; the monotone structure func- 
tion that corresponds to it is (cf. Fig. 26.13, p. 134) 

(40.4) cp(x,, x*, x3) = x, x3 + .Y2 .Y3 - x,  .Y2 s 3  

Make the hypothesis that these n n-tuples are independent, that is, that the 
corresponding components form modules (see Section 26) ; we then put 
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@-q*+ 0 Z 

FIG. 40. I .  FIG. 40.2. 

Now, suppose that each component el, e2,  e3 is itself a module having 
the same structure as that of the network in Fig. 40.1. By considering the 
3 x 3 = 9 components that occur in the new network (Fig. 40.2) we may 
write 

We leave this exercise to return to the general exposition. Suppose that 
all the components have the same reliability p ;  we may then write, by con- 
sidering the corresponding reliability functions, 

Indeed, if the structure function rp is put in simple form, expression (40.3) 
similarly gives rp2 a simple form since it corresponds to a composition of 
modules (see the example above) ; the reliability functions are then connected 
by the same relations. Similarly, 

(40.7) 

(40.8) 

Example. Consider again the example of Figs. 40.1 and 40.2. We have 

(40.9) h ( p )  = 2 p 2  - p 3 ,  
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from which 

We return to the general case and graphically represent the realized 
iterations using the curves studied in Section 27 (Fig. 27.2). We see that 
(Fig. 40.3): 

(1) if the reliability function is of type I, the iteration diminishes the 
reliability of the set; 

(2) if the reliability function is of type 11, the iteration increases the 
reliability whenever p > p o  and diminishes it when p < p o  , where p o  is the 
nonzero solution of h ( p )  = p ;  

( 3 )  if the reliability function is of type 111, iteration increases the reli- 
ability. 

( b )  

FIG. 40.3. 

Now we go on to the case where the system possesses two types of fail- 
ures. Then, as we have seen, the reliability function of the system is 

(40.12) f ( x ,  /3) = h(l - 2) - h(P) . 

If we desire to improve the reliability, we must increase h(1 - a) and 
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po 

reduce A(/?). To reach this goal through an iterative composition, we must 
have : 

(1) on one hand, that the reliability function h(p)  be of type 11, 
(2) on the other hand, 

(40.13) / I < p , <  ] - a ,  

(40.14) h(P)  = I’ . 

A simple solution to this problem of improving the reliability consists 
in choosing a k of n structure (see Section 35) for which the reliability function 
cuts the first bisector at a point p o  satisfying (40.13). 

Birnbaum and co-workers [8] have calculated a table of values of p o  for 
n < 25. In Table 40.1 we give an extract from this table. 

p o  being the solution of the equation 

0.50 0.40 0.35 0.26 0.23 0.13 0.08 0.025 0.01 0.05 

n 3  8 6 7 4 5 6 10 15 22 

k 2  4 3 3 2 2 2 2 2 2 

TABLE 40.1 

Moore and Shannon give a general method, somewhat more complex, 
for increasing the reliability in the case considered here. 



APPENDIX 

P ~ L Y A  FUNCTIONS OF ORDER 2. 

TOTALLY POSITIVE FUNCTIONS 

OF ORDER 2 

A.1 Pdlya Functions of Order 2 

Definition A function f ( x )  defined in R, taking its values in R +  = [0, 001, 

and such that 

(A1 .l) v x l ,  x 2 ,  Y , ,  y z  E R, with -yI < -YZ, Y I  < Y Z  : 

jB 0 
f ( x 1  - Y1)  f ( X l  - Y 2 )  

f ( X 2  - Y 1 )  f ( x 2  - YZ) 

is called a Pdlya function of order 2 (in the following, the phrase of order 2 will 
be understood). 

Condition (A1 . I)  may also be written, by expanding the determinant, as 

( A l . 2 )  

The four arguments that occur in this inequality have, from the con- 
ditions x 1  < x2 and y1 < y 2 ,  relative positions on the real axis as shown 
schematically by the lattice of Fig. AI.1, where the arrows point from each 
quantity to one that is less than or equal to the first. 

A x 1  - Y d f ( X 2  - Y J  3 f ( x 1  - Y d f ( X 2  - Y l )  * 

207 
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F I G .  A l .  1. 

Some Properties 
(1) r f  f (x) is a Pdlya function, then the function 

(Al.3) g(x) = fC- .-) 
is also a P d y a  function. 

and ( y l ,  y 2 )  in definition (A1.2). 
This property results from the interchangeability of the pairs (xl, x2) 

(2) Iff(x) is a Pdlya function, the set 

(Al.4) I = { . / f ( x )  > 0 )  

is an interval. 

We set aside the trivial case of an identically zero function, where I = 0. 
Conversely, if f(x) is nonzero, I = R. Suppose now that f(x) is not 

identically zero, but is made zero by at least one value xo of x. We apply 
(A 1.1) in the particular case where 

(Al.5) 
X I  = .Yo , s 2  > .Yo , 

?.‘I = o ,  1’2 > o .  
It follows that 

f(.uo).f(x, - v2) 3 f ( X 0  - u2)..1’(x2), 

that is, since f(xo) = 0 and the second term is nonnegative, 

(Al .6)  f(% - y2). f (x2) = 0 

If there exists a y 2  > 0 such that f ( x o  - y 2 )  > 0, one must havef(x,) = 0 
for all x2 > x o ;  conversely, if there exists an x2 > xo such that f(x2) > 0, 
one must havef(xo - y 2 )  = 0 for all y2 > 0. We thus see that a value xo of 
x for which f (x) is zero cannot be bracketed by values of x for which f(x) 
> 0, which shows that I is an interval. This interval may be unbounded on the 
left or on the right; it may be open or closed. 
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(3)  A nonnegative function f ( x )  is a Pdlya function if and only i f  it satis- 

(a) the set I defined by (A 1.4) is an interval; 
(b) f ( x )  satisfies (A1.2) for  xl, x 2 ,  y , ,  y 2  such that x1 < x 2 ,  y ,  < y 2 ,  

and such that the four arguments appearing in (A1.2) belong to the closure 

In other words, if f ( x )  = 0 outside of the closed interval [a, 61, and 
f ( x )  > 0 in the open interval ]a, b[ ,  where a may be replaced by - 00 and b 
by +a, it suffices to satisfy (A1.2) whenever the four arguments are all in 
[a, b] ,  that is, for (see Fig. Al.1) 

(Al.7) x1 - y z  B u and x2 - y ,  d h .  

fies the following two conditions: 

of I. 

This property follows immediately from the fact that if x1  - y ,  < a 
and/or x2 - y ,  > 6,  the second member of (A1.2) is zero; the first term being 
nonnegative, (Al.2) is certainly satisfied. 

(4) A Pdlya function f ( x )  that is piecewise continuous is unimodal; that is, 
either it is nondecreasing, or it is nonincreasing, or there exists an xo such that 
f ( x )  is nondecreasing for  x < xo and nonincreasing for  x 2 xo . Moreover, it 
may be discontinuous only at the endpoints of the interval I .  

Indeed, let 

(Al .8 )  g(x) = In f (-r) 

The function g(x) is defined in I. Set 

(A1.2) may then be written as 

(A]. 10) f ,(XI - Y l )  B f ( x 1  - Y 2 ) . f ( - Y 2  - Y l )  
or 

(A1 . 1 1 )  

The value of g at the middle of an interval is therefore at least equal to the 
average of the values that it takes at the extremities of this interval. If x1 - y 2  
and x2 - y ,  are rational, one may, by continuing to divide the interval into 
2, 4, 8, ... equal parts, show that g(x) is concave on the set of rationals. The 
fact that f (x), and as a consequence g(x), are continuous by intervals permits 
the extension of this property to the entire interval, but if g(x) is concave, it 
is either nondecreasing, or nonincreasing, or there exists xo such that g(x) 
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is nondecreasing for x < xo and nonincreasing for x 2 xo . Since the logarithm 
function is increasing, f (x) has these same properties. On the other hand, the 
function g(x), concave in I, is necessarily continuous there; it is therefore the 
same for f (x), which may be discontinuous only at the endpoints of I. 

(5 )  A function f(x) such that 

( A l .  12) f(x) = C Vx < xo (resp. x 2 .yo), 

where C > 0,  is a Pdlya function if and only if: 

(a) 
(b) it satisJies (Al . l )  for  

it is nonincreasing (respectively, nondecreasing) ; 

( A l .  13) 

We shall restrict ourselves to the case of piecewise continuous functions. 
The function g(x) defined by (A1.8) being constant for x 4 xo (respectively, 
x 2 xo), the condition that it be concave implies that it is nonincreasing 
(respectively, nondecreasing), and it is the same forf(x). Conversely, if g(x) 
is nonincreasing (respectively, nondecreasing), and if it is concave for x 2 xo 
(respectively, x < xo), it is concave in R, andf(x) is a P6lya function. 

x, - y ,  2 xo (resp. x2 - yl  < -yo). 

Examples of P6lya Functions 

(1) The function 

(A1 .14) f(x) = eax, X E R ,  U E R ,  

is a P6lya function. Indeed, one has f(x) > 0 and 

(A1 .15)  ea'x' - Y 1 ~ * e a ~ x 2 - Y 2 ~  = ea'Xl - Y 2 ~ * e a ~ x 2 - Y l ~  

(2) The complementary distribution function 

(A1 .16) 

where a > 0 is a P6lya function; this follows from property ( 5 )  above, and 
from the fact that (A1.14) is a P6lya function (it suffices to exchange a for 
-a ) .  

(3) The function 

(A1 .17) f(x) = x e-x2/2,  .Y 3 o , 
= 0 ,  x < o ,  
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is a P6lya function. Indeed, according to property (3), it suffices to check 
(Al.2) for nonnegative values of the arguments, but the inequality 
(Al .  18) 

follows from the following two inequalities, which we may easily verify: 
(A] .  19) 

(x1 -Y1) ( X 2 - Y 2 ) 2 ( 2 1  -Y2)  ( - Y 2 - . r l )  if  . u 2 2 x ,  , .v2>yI , 

(x, - Y , ) ~ + ( X ~ - Y ~ ) ~ < ( X ~  - Y ~ ) ~ + ( . \ . ~ - . v ~ ) ~  if . ~ 2 2 . ~ 1  , ~ 2 2 ~ ~ .  

(A 1 .20) 

(4) The function 

(Al.21) f ( . )  = x + I ,  .Y 3 - I ,  

.Y < - 1, = 0 ,  
is a P6lya function since the inequality 

(Al.22) (XI - ~1 + I)(x2 - ~2 + 1)  2 (XI - Y ,  + ] ) ( . ~ 2  - ~i + 1 )  

may be reduced to (A1.19). 

( 5 )  One may also verify that the complementary distribution function 
(Al.23) c ( t )  = I ,  r < 0 ,  

, 1 2 0 ,  /I3 1 ,  - - ,-(a )” 

is a P6lya function. This function generalizes (A1.19) (see the Weibull law 
(6.18)). 

Theorem A.Z. A nonnegative function f (x) is a P d y a  function ifand only 
if: 

(a) f (x) 2 0, and the set I = { xI f (x) > 0 } is an interval; 
(b) Vh E R:, the function of x 

(Al.24) 

is nondecreasing in the set I where it is defined, 
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We have seen that any P6lya function satisfies condition (a) (definition 
of a Pblya function and property (2)). We show that if z1 and z2 are two 
numbers such that z1 < z 2 ,  f ( z , )  > 0 and f ( z 2 )  > 0, and h is a positive 
number, then we have 

(Al.25) 

Choose x2 arbitrarily and put 

which proves (Al.25). 
Consider now a functionf(x) that satisfies conditions (a) and (b) of the 

theorem. If it is identically zero, then it is a Pblya function. If not, it suffices 
to verify (A1.2) in the interval wheref(x) > 0 (property (3)). Given x,, x2, 
y l ,  y, such that x1 < x2 and y, < y 2  and thatfis nonzero for the four argu- 
ments of (A1.2), we may define zl, z 2 ,  and h by (A1.29), with z1 < z2 and 
h > 0; (Al.28) thus entails (A1 .31), and therefore (A1.30). Thus f(x) is a 
P6lya function. 

A.2 Totally Positive Functions of Order 2 

A function of two variables f (x, y)  defined for x E X and y E Y, where X 
and Y are totally ordered sets, is said to be totally positive of order k if and 
only if 

(A2.1) 
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Generally, X and/or Y will be intervals of R or subsets of N, either finite or 
not. 

We shall be particularly interested in totally positive functions of order 
2, that is, those that satisfy 

Totally positive functions of order 2 generalize the P6lya functions of 
order 2. Indeed, if q(x )  is a P6lya function of order 2, the function 

(A2.3) 

is a totally positive function of order 2 on RZ, of a particular type since it 
depends only on the difference between its two variables and since it is non- 
negative. Conversely, if q ( x  - y )  is nonnegative and totally positive of order 
2 in RZ, q(x )  is a P6lya function. 

f k Y )  = v ( - y  - Y )  

Examples. 
(1) The function 

is totally positive of order 2 in RZ. 
(2) The function 

(A2.5) 

is totally positive of order 2 in R2. 

A.3 Relation to IFR Functions 

Theorem AJI .  The following four properties are equivalent: 

(a) v(t) is an IFR survival function: 
(b) A(t) (see (4.18)) is a convex function; 
(c) u(t) is a Pdlya function of order 2; 
(d) v(x - y )  is a totally positive function of order 2 in R2. 

We have seen in Section 10, Theorem 10.1, that (a) o (b); and in Section 
A.2 that (c) o (d). We show that (a) o (c). 
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Let u(t )  be an IFR survival function. We have seen in Section 9 that then 
the failure rate by intervals defined by (9.10) 

is a nondecreasing function o f t  for all x 2 0. It then follows that u(t)/u(t + x) 
is also nondecreasing, and similarly that the function v(t - x)/u(t) obtained 
by translation is also nondecreasing. According to Theorem A.1, u(t )  is then 
a P6lya function. The converse is proved in the same fashion. 
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Numerals in boldface indicate section numbers. Lightface numerals give page numbers; 
those in italics refer to pages with definitions. 

A 

Age, 4, 5 
Arc, 68 

B 

Basin curve, 33 
Binomial law, 25 

negative, 26 
Boolean lattice, 59, 64, 146 
Bridge structure, see Structure 

C 

Cannibalization, 171 
Cardinality, 61 
Catastrophic failure, I 
Coefficient of variation of lifetime, 54, 158 
Coherent structure, see Monotone 

Component, 56, 71, 114, 169 
structure 

of same reliability, see Reliability 
state of set of, 56, 59, 128, 146 

latin (concatenation), 103 
linear, 96, 113, 127, 143 
monotone linear, 129, 150, 155, I7 I 
o f  structures, 90, 26, 170, 40 

Composition 

Concavity, I80 
Conditions of use, 5, 114 
c u t  

of graph, 71 
minimal, 63, 75 
of structure, 16, 17, 73, 23, 159 

D 

Degenerate structure, 66, 75, 131, 144, 158, 

Drift, I 
Duality, 65, 79, 151, 190, 199 

171, 193 

E 

Equivalence of structure functions and 

Erlang law, 18 
Eulerian function, 17 
Exponential law, 16, 29, 40, 148, 155, 

reliability networks, 20, 85, 124 

159-162, 165 

F 

Failure, two types of, Chapter VI 
Failure rate 

cumulative, 12, 34, 39, 154, 158, 160 

219 
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Failure rate (confinued) 
decreasing (DFR), Chapter 11, 160 
increasing (IFR), Chapter 11, 155, 160 
increasing, average (IFRA), 12, 155, 161 
in interval, 34 
mean, between 0 and t ,  47, 158 

Function of system, 191 

G 

Galton law, 20 
Gamma law, 16 
Geometric law, 27 
Graph, 60, 18, 100, 103 

partial, 70, 73 
r-fold, 69, 72 

Guarantee, 29 
Gumbel law, 23 

H 

Hyperexpontential law, 148 

I 

Isomorphism between monotone structure 
functions and reliability networks, 85, 
94 

Iterative structure. 40 

J 

Jensen’s inequality, 44 

L 

Lattice 
Boolean, 59, 65, 146 
free distributive, 89, 133 

of system, 66, 77, 123, 196 
of path, 70 

Lifetime, 2, 5, 6, 115, 153, 168 
Limit 

Length 

on functioning, 30, 39 
of tolerance, 1 

INDEX 

Link, 16, 17, 79, 23, 144, 171 
minimal, 63, 75 

Log-normal law, 20 

M 

Matrix, latin, 103 
Mean lifetime, see Moments 
Models, 6 
Module, 124, 170,203 
Moments of survival law, 13, 31, 42, 49, 

53, 153, 158 
Monotone structure, 58, 21, 112, 116, 120, 

129, 27, 143, 149, 155, 161, 170, 34, 
193, 198, 203 

Monotone in probability, system, 28 
Moore-Shannon, 122, 135, 196 

N 

Nonmonotone structure, see Structure 
Nonnew equipment, 28 
Normal law, truncated, 22 

0 

Order of structure, 57, 89, 124, 128, 135, 
143, 144 

P 

Partial structure, see Structure 
Pascal law, 25 
Path, 61, 70, 73, 100, 105, 147, 191 

Poisson law, 25 
P6lya function, 40, A1 
Probability, conditional, of failure, 11, 36 

elementary, 70, 100, 103 

R 

Reduction of network, 185 
Redundance, 58, Chapter V 

active, 162, Chapter V, 39 
passive, 168 

Relays, 190 
Reliability, 114-115 

function, 25, 125, 133, 145, 180, 187, 38 
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Reliability (continued) 
network, 19-23, 123, 130, 170, 180, 182, 

system and component, 119,27, 144, 

type of, see Type 
totally positive function, A2 

Routes, method of, 92 

184, 191 

163, 187,39,203 

S 

Series structure, see Structure 
Simple form of structure function, 95, 99, 

Simplification of structure function, 95 
State of set of components, see Com- 

ponent 
Structure, 55, 74 

117, 150, 152 

bridge, 75, 140, 150 
function, 15-17, 74, 20-23, 125, 129, 

function, random, 117, 140, 158 
iterative, 40 
nonmonotone, 58,64, 95, 116, 128, 140, 

146 
parallel, 57, 78, 127, 140, 160, 162, 169, 

180, 184, 198 
parallel-series, 79 
series, 57, 77, 127, 140, 159, 162, 173, 

177, 184, 198 
series-parallel, 79, 162, 195, 202 
type k of n, 35,206 

169, 183, 190 

Subnetwork, 94, 124 
Substructure, 124, 152, 168, 169 
Survival (curves, function, law), Chapter I, 

11, 29, 31 

Survival function, 6 ,115 

Switch, 162 
logarithmic, 12 

T 

Totally positive function, 40, A2 
Tree, 71, 101 
TypeW 

of failure, two, Chapter VI 
k of n structure, see Structure 
of probability law, 7 
of reliability function, 138, 187, 205 

U 

Use, 28 
Useless component, 82, 83, 86, 101, 131, 

140 

V 

Values, law of extreme, 23, 164 

w 

Width of system, 66; 77, 123, 159, 196 
Weibull law, 18, 154, 166, 165, 211 

Y 

Youth failure, 33 

A 
8 7  
C B  
D 9  
€ 0  
F 1  
6 2  
H 3  
1 4  
J 5  
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