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A “vertical” condensation scheme for discrete probability distribution (DPD) calculations is
presented as an alternative to the earlier “horizontal” scheme, an example of which was
presented recently by Kurth and Cox. When applied to DPDs over a space of curves, the

. vertical condensation results in a “regularization” of the “spaghetti”

of curves that results

from combination operations on such DPDs.
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1. INTRODUCTION

A recent paper by Kurth and Cox‘" compared
the use of DPD and Monte Carlo methods in com-
puting the size of a crack growing according to the
formula

g—% = Co*[1%?

(1)
where a= the crack size,

N = the number of stress cycles,

o = the far field stress, and,

C= an empirical constant.

In their calculations, Kurth and Cox included
probabilistic representations of their uncertainty in C
and in the initial size, a‘®, of the crack. The ¢ was
taken to be a true random or fluctuating variable
whose value changes from cycle to cycle. Because of
this, thc numer of doublets in their DPD increased
every cycle, and they required a condensation proce-
dure to reduce this number at each step.

'Pickard, Lowe and Garrick. Inc., 2260 University Drive, Newport
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Thus, for fixed C, if the DPDs for o

{(r.0)) (2)
and for a'”
{{p, ai™y} (3)
each had 20 doublets, the DPD for q("*+V
{(pij’a§;+l) } (4a)
P, =pr (4b)
af}'*“=af"’+Coj4I_[2[af")]2 (4c)

would have 400 doublets. Kurth and Cox therefore
condensed these 400 down to 20 by establishing 20
bins on the a axis. An interesting feature was that
these bins were calculated anew after each cycle to
keep up with the growing crack.

This method of condensation is an example of
what could be called “condensation along the hori-
zontal axis”; that is, establishing bins along the axis
of the unknown variable, in this case crack size a.
This is the kind of condensation we described in Ref.
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2. Shortly after that paper was written, we began
using a condensation procedure based on the vertical
axis (i.e., the probability axis). We have found this
procedure to be superior in most cases and the
purpose of this paper is to make it more widely
known.

2. VERTICAL CONDENSATION

The best way to explain the vertical con-
densation procedure is with an example. Suppose,
then, we have a 15-doublet DPD

{{pisx)} (5)

that we wish to condensate down to 6 doublets.

Let us write the original DPD in a “fishbone
diagram” (Scheme I) to which we have also added
the cumulative probability, P,
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These cumulative probabilities are plotted against the
x, in Fig. 1.

Now imagine that we have defined six bins
against the vertical axis as shown. The first of these
extends from P=0 to P=.10, the second from
P =.10 to P =.20, the third from P =.20 to P = .40,
etc. The first two bins, therefore, contain 10% prob-
ability, and the remaining four each contain 20%
probability.

To obtain a condensed DPD according to this
vertical binning, we simply proceed as follows. Let
the condensed DPD be denoted

{(B. %)} (6)

Then, since the first three p, fit exactly the first
vertical bin, we set

pi=pr+pyt+py=01 (7a)

~

1 1
X, = E‘( P1Xyt pyxy + Paxs) = W('23) =23
(7b)
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Fig. 1. Cumulative DPD.
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The doublet ( p,, x,) fits entirely within the second
vertical bin, but the point ( ps, x;) must be appor-
tioned between the second and third vertical bms
according to the ratio

20— P,
PS——P4

20— .16

26—16 ~ 40

(8a)

Thus,

Py = pa + .40p, = 06+ (.40)(.10) = (8b)

X, = p'lz [ paxs+ (:40)(10)x;]

- % [(-06)(‘?'0)‘“ (.40)(.10)(5.0)] = 4.4 (8¢)

P3=1(0.6) ps + ps +(0.5) p, = .06+ .09+ .05 = .20

(%a)
Xy = _—21—0— [(0.6) psxs + pexs +(0.5) pyx,]
= 7-213 [(.06)5+ (.09)6+(.05)7] = 5.95 (9b)
'Proceeding similarly,
K= 7%6 [(.05)7+(.05)8+(.10)9] =8.25  (10)

£y= %0-[(.10)9+(.05)10+(.05)11] =975 (11)

% %[(.05)11+(.05)12+(.06)13
+(.02)14+ (.02)15]

=12.55 (12)
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Thus, we have the new DPD (Scheme II)
]2 | 15951825|975|1255 ]
plotfor] o] ] ] 2 | q
Scheme II.

Observe that the mean value of both the new and old
DPD is -

X=1797 (14)

Thus, this condensation procedure has the virtue
of being “mean preserving.” By selecting the vertical
bins appropriately, it is always possible to retain the
features of interest in the condensed curve. For ex-
ample, in the crack growth example most interest
centers on the high side tail of the p(a") curve. We
could thus choose small bins in the upper probability
range to get fine detail in the high tail. Similarly,
small bins at both ends (e.g., .99 to 1.0 and 0 to 0. 01)
would retain the “spread” of the distribution, and so
on.

Thus, the vertical condensation provides better
control of the process and avoids the problems of
selecting horizontal bins discussed by Kurth and Cox
in their Sec. 3.

Applied to the crack growth problem with a
fixed set of vertical bins, this condensation method
yields a set of discrete crack sizes, a, moving
smoothly in time. That is, it yields a DPD of the
form

{<pnaf(N)>}

which can be plotted conveniently as shown in Fig. 2
(see Ref. 3 for similar crack growth curves in turbine
rotors).

TIME OR CYCLE

Fig. 2. Plot of the DPD {(p,.q,(N))} showing crack growth vs. time.
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3. APPLICATION TO DPDs ON A
SPACE OF CURVES—DEFINITION
OF “SPAGHETTIS” OF CURVES

In the above, we described the application of the
vertical condensation procedurc to DPDs over a
“scalar” space (i.e., where the unknown x 1S an
ordinary scalar variable). In many applications, we
find it necessary to do operations with probability
distributions over a space of curves. For example, in
seismic risk assessment,® we deal with DPDs of the

type
F'={{(pi FY) (15)
Fi={(q. EY) (9

where the F,! and P}z are fragility curves against the
variable a, representing ground acceleration. The sets
F! and F2, thus, might represent fragility families
for two different components, 1 and 2. These might
appear as shown in Fig. 3 for example.

Now, suppose we combine the two components
through an “OR” gate.

®=0OvO (17)

1.0 COMPONENT®

§/5/

COMPONENT@

- N

1.0

oy

™ 3

Fig. 3. Fragility families for two components.
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then,

F={<p B (18a)
where
pii=pd, (18b)
F=FNa)V E}(a)
= F{a)+1- F(a@)] F*(a)  (18¢)

We would then obtain a DPD looking like Fig. 4. We
call such a family of curves a “spaghetti” of curves
for obvious reasons. If we now wanted to combine
this family with further components through further
“AND” gates and “OR” gates, the spaghetti would
get more and more complicated.

Obviously, then a condensation process is
needed. To do this simply, imagine that we have
discretized the a axis into discrete accelerations, a,.
Now, imagine cutting the family in Fig. 4 with a
vertical line at a,. We would obtain a set of ordinates

Ff,‘(“k) (19)
Each of these would come from a curve with prob-

ability p;.. Thus, at a,, we have the ordinary scalar
DPD

(P} Fila))} (20)

Suppose we now put this DPD through the
vertical condensation process. We then obtain

(B, Fr(an))) (21)

1.0 F@V®

0 —
a

Fig. 4. Fragility family for the combination Ov@=0-
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If we do this for each a,, keeping the same vertical
binning structure, we may then connect the points at
different a, for the same i. This leads us to a family
having the appearance of Fig. 5, which we may refer
to as a “regularized” spaghetti. Thus, the vertical
condensation process applied to a spaghetti of curves

1.0

Fig. 5. Regularized spaghetti for the combination

®=-0v0O.
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regularizes the spaghetti. This condensation process
can then be applied after each combination oper-
ation for curves, just as it is applied for scalars.

The set of curves shown in Fig. 2 can now also

be recognized as the regularization of the very com-
plicated spaghetti of time-dependent curves, a;,(n),
that would result from a straight application of DPD
marching forward in time.
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