
HyperGraphDB:
A Generalized Graph Database

Borislav Iordanov

Kobrix Software, Inc.http://www.kobrix.com

Abstract. We present HyperGraphDB, a novel graph database based
on generalized hypergraphs where hyperedges can contain other hyper-
edges. This generalization automatically reifies every entity expressed
in the database thus removing many of the usual difficulties in dealing
with higher-order relationships. An open two-layered architecture of the
data organization yields a highly customizable system where specific do-
main representations can be optimized while remaining within a uniform
conceptual framework. HyperGraphDB is an embedded, transactional
database designed as a universal data model for highly complex, large
scale knowledge representation applications such as found in artificial
intelligence, bioinformatics and natural language processing.

Key words: hypergraph, database, knowledge representation, semantic
web, distributed

1 Introduction

While never reaching widespread industry acceptance, there has been an exten-
sive body of work on graph databases, much of it in the 90s. Various data models
were proposed, frequently coupled with a complex object representation as a nat-
ural, practical application of graph storage. More recently, several developments
have contributed to a renewed interest in graph databases: large-scale networks
research, social networks, bioinformatics as well as the semantic web and related
standards. Part of that interest is due to the massive amounts of graph-oriented
data (e.g. social networks) and part of it to the inherent complexity of the infor-
mation that needs to be represented (semantics and knowledge management).
This body of work has been thoroughly reviewed in [1]. In this paper, we present
the implementation of a generalized hypergraph model independently proposed
by Harold Boley [4] and Ben Goertzel [5]. The model allows for n-ary hyper-
edges that can also point to other edges, and we add an extensible type tower
[6] to the mix. Two generalizations of graphs related to our work have been the
Hypernode model [2] and the GROOVY model [3], both focused specifically on
representing objects and object schemas. While hypergraphs have been exten-
sively used as an analytical tool in database research, we are not aware of any
other implementation of general hypergraphs as a native database.



The main contributions of HyperGraphDB1 lies in the power of its structure-
rich, reflexive data model, the dynamic schema enforced by an extensible type
system, and open storage architecture allowing domain specific optimizations.
It must be noted however that the representational flexibility also leads to per-
formance gains when fully exploited. While a hypergraph can be represented as
a regular graph, frequently the opposite is also true in a non-trivial way. Many
graphs will have repetitive structural patterns stemming from the restrictions
of the classical graph model. Such patterns can be abstracted via a hypergraph
resentation, leading to much fewer nodes and database operations. For example,
flow graphs where edges represent multi-way input-output connections can be
stored much more compactly using a hypergraph-based model.

Furthermore, reducing the complexity of a representation is not the only ben-
efit of a hypergraph model. As illustrated in the context of cellular networks,
”transformation to a graph representation is usually possible but may imply a
loss of information that can lead to wrong interpretations afterward” ([7]). In
fact, biological networks are replete with multilateral relationships that find a
direct expression as hypergraphs. Another example of how the ability to repre-
sent higher-order relations can improve algorithms can be found in [8], where
the authors present a learning algorithm for Markov Logic Networks based on
what they call ”hypergraph lifting” which amounts to working on higher-order
relations.

One common criticism of RDF ([9]) stores is the limited expressiveness of bi-
nary predicates, a problem solved by HyperGraphDB’s n-ary relationships. Two
other prominent issues are contextuality (scoping) and reification. A popular
solution of the scoping problem has been proposed in the form of Named Graphs
([11]). Reification is represented through a standardized reification vocabulary,
by transforming an RDF graph into a reified form ([10]). In this transformation
a single triplet yields 4 triplets, which is unnatural, breaks algorithms relying on
the original representation, and suffers from both time and space inefficiencies. A
similar example comes from the Topic Maps standard [12] where reification must
be explicitly added as well, albeit without the need to modify the original repre-
sentation. Those and other considerations from semantic web research disappear
or find natural solutions in the model implemented by HyperGraphDB.

The paper is organized as follows: first, we review some variations of hyper-
graphs and describe the particular one adopted by HyperGraphDB. In subse-
quent sections, we detail the system’s architecture: storage model, typing, index-
ing, querying and its P2P distribution framework. Lastly, we describe in some
detail one particular application in natural language processing.

1 The system is open-source software, freely available at http://code.google.com/

p/hypergraphdb.While the current implementation is in the Java programming lan-
guage, we note that the architecture is host-language-agnostic and we make very few
references to Java constructs in the exposition below.



2 Hypergraphs and the HyperGraphDB Model

The standard mathematical definition of a hypergraph is a family of sets over a
universal set of vertices V, or equivalently an undirected graph where an edge
can connect any number (> 0) of vertices. Such hypergraphs are studied in the
context of set combinatorics, where they are also called finite set systems [13]. In
representational problems directed hypergraphs have also been proposed, where
a hyperedge acquires an orientation in one of two ways: (1) partitioning it into a
head and a tail set yields several interesting applications as reported in [14]; or
(2) treating the edge as a tuple (ordered, with repetition) yields a very powerful
representational language [16].

In basic set theory a hypergraph essentially defines an incidence structure
over the universe of vertices V. Such a hypergraph is isomorphic to a bipar-
tite graph where one set represents the hypergraph’s vertices and the other its
hyperedges. If one includes hyperedges in the vertex universe as well, a set the-
oretic formalization becomes harder because the foundation axiom no longer
holds. Such hypergraphs are isomorphic to general (i.e. allowing cycles) directed
graphs and they have been studied from a set-theoretic perspective by P. Azel
[17]. But in a computational setting such generalized hypergraphs are a much
more natural construct as they directly allow the recursive construction of logi-
cal relationships while easily avoiding dangerous circularity in a manner similar
to Russel’s type theory. This is the model adopted by HyperGraphDB. The rep-
resentational power of higher-order n-ary relationships is the main motivation
behind its development.

In the HyperGraphDB data model, the basic representational unit is called
an atom. Each atom has an associated tuple of atoms called its target set. The
size of the target set is called the atom’s arity. Atoms of arity 0 are called nodes
and atoms of arity > 0 are called links. The incidence set of an atom x is the set
of atoms that have x as a member of their target set (i.e. the set of links pointing
to x). The use of tuples instead of sets for an atom’s target set is not the only
possible choice; both can be supported, but we have focused on the former as
the most practical by far.

Moreover, each atom has an associated strongly typed value. Values are of
arbitrary types, and types themselves are atoms (see below for a detailed dis-
cussion of the type system). Atoms and values represent two orthogonal aspects
of the information content stored in a HyperGraphDB instance. Atoms are the
semantic entities that form the hypergraph structure, while values are typed
data that may be structured or not. The value of an atom can be changed or
replaced with a value of a different type while preserving an identical linkage
structure. Several atoms may share the same value. On the other hand, values
are immutable entities.2

2 One could directly overwrite a value in storage or change its runtime representation
and HyperGraphDB has no control over that, but there are no means in the API to
modify a value.



Note that this model does not need to impose any particular semantics on
the data being stored. It is a semi-structured, general purpose model incorporat-
ing graph, relational, and object-oriented aspects. The HyperGraphDB database
schema is a type system that can evolve dynamically, where data integrity con-
straints can be enforced by type implementations. As exemplified by RDF, such a
flexible architecture is called for on the open web, where fixed database schemas
can easily break.

3 Two-Layered Architecture

A key aspect of HyperGraphDB’s architecture are the two levels of data organi-
zation which we now describe. We note that the actual physical storage is mostly
irrelevant with the notable requirement that an efficient key-value indexing must
be available, such as the BerkeleyDB storage system [18] which is currently being
used.

The two-layered architecture defines a primitive hypergraph storage abstrac-
tion, the primitive storage layer and a model layer. The primitive storage layer
is partitioned into two associative arrays (i.e. key-value stores):

LinkStore : ID → List < ID >
DataStore : ID → List < byte >
In other words, the primitive layer consists of a graph of pure identifiers

and raw data. Each identifier maps either to a tuple of identifiers or to a plain
byte array. The default representation of identifiers is a cryptographically strong
type 4 UUID [19]. This makes it easier to manage them in a large distributed
environment while virtually eliminating the chance of collision - each data peer
can make up new IDs without a central authority. This layer is augmented with
a set of indices some of which form an essential part of the data organization
while others can be added by users or extension implementations. The main
requirement from the key-value store perspective is that the indices support
multiple ordered values per single key.

The model layer is where the hypergraph atom abstraction lives, together
with the type system, caching, indexing and query facilities. The model layer
is implemented by formalizing the layout of the primitive storage layer in the
following way:

AtomID → [TypeID, V alueID, TargetID, ..., TargetID]
TypeID → AtomID
TargetID → AtomID
V alueID → List < ID > |List < byte >
In other words, each identity is taken to represent either a hypergraph atom,

or the value of an atom. In the former case, the atom is stored as an identity
tuple where the first argument is the (identity of the) type of the atom, the
second its value, and the rest of the arguments form the target set of the atom.
In the latter case, the value can be directly stored as a byte array or it can be
an aggregate stored as an identity tuple as well. The layout of atom identities
is managed by the core framework while the layout of data values is delegated



to type implementations. Note that ValueIDs also form a recursive structure
enabling the storage of arbitrarily complex structures that are orthogonal to the
graph atom abstraction. The TypeID → AtomID production will be detailed
in the next section.

The core indices needed for the efficient implementation of the model layer
are:

IncidenceIndex : UUID → SortedSet < UUID >
TypeIndex : UUID → SortedSet < UUID >
V alueIndex : UUID → SortedSet < UUID >
The IncidenceIndex maps a hypergraph atom to the set of all links pointing

to it. The TypeIndex maps a hypergraph type atom to the set of all its instance
atoms. The ValueIndex maps (the ID of) a top-level value structure to the set
of atoms carrying that value as a payload.

4 Typing

HyperGraphDB has the ability to store arbitrary types of data as atoms in
a programming-language-neutral way. Specifically, as an embedded database it
maps data values in the host language to and from permanent storage. Therefore,
it must cover typing constructs found in various languages in a way that inte-
grates seamlessly with a given language’s runtime environment. This is achieved
via a general, extensible typing mechanism that interacts very closely with the
storage layer, based on the foundational notion of a type in computer science.

In computational type theory, types are formalized by saying what can be
done with them. A defining notion is equality: when are two elements of a given
type equal? Another fundamental concept is compounding (or constructing) new
types out of simpler ones. To make a new type, one needs type constructors, that
is types of types. Finally, the notion of sub-typing, which is akin to subsump-
tion or substitutability, is usually introduced independently. On the other hand,
equality can be conceived as bi-directional subsumption: two instances of the
same type are equal iff they subsume each other. The essence of types has been
nicely summed up by the logician Jean-Yves Girard as “...plugging instructions.
A term of a given type T is both something that can be plugged somewhere as
well as a plug with free, typed variable” ([20]). This duality, together with the
considerations above lead to the following minimalistic design:

– A type is an atom capable of storing, constructing and removing runtime
representations of its instances to and from the primitive storage layer.

– A type is capable, given two of its instances, to tell whether one of them can
be substituted for the other (subsumption relation).

In other words, types are just atoms assigned a special role that allows the system
to maintain the assocation between types and instances as well as super-subtype
relationships. This is formalized in the following Java interface that each type
atom must implement:



public interface HGAtomType

{

Object make(ID valueId,

List<ID> targetSet,

Set<ID> incidenceSet);

ID store(Object instance); // return valueId for runtime instance

void release(ID valueId);

boolean subsumes(Object general, Object specific);

}

In addition to the subsumes relation, the interface simply defines CRUD
methods needed to manage values in the storage layer. Because values are by
definition immutable, there is no update method. Note that the make method
takes both the target and incidence sets as extra parameters (besides the iden-
tifier of the value in primitive storage). Thus, the representation of an atom is
a function of both those sets. This means that an atom can be annotated with
various relationships that define what it is at runtime. The make method makes
a type into an object factory. A type constructor is simply a type atom that
returns an HGAtomType instance from its make method.

Now, the type system is bootstrapped by a set of (configurable) predefined
types covering standard simple values such as numbers and strings as well some
standard type constructors for record structures, lists and maps. Such predefined
types all have the same type called Top, which is its own type. For example, the
type constructor for record structures is managing record types which in turn
manage concrete records. A compound type such as a record or a list can store
its components by relying recursively on other HyperGraphDB types. That is,
HGAtomType implementations can handle values both at the atom level and
the pure (composite) value level.

Record-style structures with named parts are so common that we have de-
fined an abstract interface for them called HGCompositeType that views com-
plex values as multidimensional structures where each dimension is identified by
a name and has an associated HGProjection implementation which is able to
manipulate a value along that dimension. Such types that deal with complex
structures are free to split them into separate identities in storage (i.e. as value
links in the low-level graph) and provide functions like indexing, querying or
reference counting for their parts. Alternatively, they can store them as compact
blobs accessible only at the atom level.

In sum, types in HyperGraphDB aggregate many aspects commonly found
in type systems in various computer languages. They play the role of object
factories like classes in object-oriented languages. They are classes in the set
theoretic sense, having a well-defined extension. They also define the structural
properties of atoms and hence are intensional. Finally, they play a semantic
role in constraining atom usage and enforcing certain consistency and integrity
properties as typical in both typing and database systems. The combination
of those aspects enable HyperGraphDB to naturally integrate many different
formalisms without the need to single out any one in particular. Meta-models



such as Sowa’s conceptual graphs, RDF, combinatory logic expressions, object-
orientation and even the standard relational model can be implemented “on their
own terms”. Furthermore, it allows for storage customization and optimization
all the way to the very primitive values.

5 Indexing

Keeping in the spirit of the reflexive, open architecture of HyperGraphDB, in-
dexing facilities are also an extensible feature. The implicit indexing of atoms
described in section 3 is not optional as it is essential for an efficient support of
the model layer semantics. For example, the incidence set indexing is crucial for
the performance of both graph traversals and in general for querying the graph
structure. Additional indices are being maintained at both the primitive and
model layers.

At the primitive layer custom indices are employed by type implementations.
Such indices are obtained directly from the storage layer and managed internally
by a type. For instance, the default implementation of primitive types maintains
an index between the primitive data and its value identifiers, thus enforcing value
sharing between atoms at the storage level with reference counts. 3 Value sharing
and reference counting is not done by default for complex types because there
is no universal way to implement it efficiently unless the notion of primary key
(i.e. a given dimension or a combination thereof) is introduced by implementing
an appropriate complex type constructor.

At the model layer, indices can work both on the graph structure and value
structure of atoms. However, they are always associated with atom types. This
association is less constraining than it seems since an index will also apply to all
sub-types of the type it is associated with. Indices are registered with the system
by implementing the HGIndexer interface which must produce produce a key
given an atom. HGIndexer instances are stored as atoms as well, and can thus
have associated persistent meta-data for query planning, application algorithms
etc. Some of the predefined indexers are listed in the following table:

ByPartIndexer Indexes atoms with compound types along a
given dimension.

ByTargetIndexer Indexes atoms by a specific target (a position
in the target tuple).

CompositeIndexer Combines any two indexers into a single one.
This allows to essentially precompute and
maintain an arbitrary join.

LinkIndexer Indexes atoms by their full target tuple.
TargetToTargetIndexer Given a link, index one of its target by an-

other.

3 This is not necessary conceptually or technically; it is transparent at the model layer
and could be changed in case different performance characteristics are required.



Though we have not done that in the current implementation, an indexer
could detect and index local graph structures to be used in more sophisticated
graph mining algorithms.

6 Querying

Querying a graph database may take one of several forms. A graph traversal is
a form of query yielding a sequence of atoms. Retrieving a set of not necessarily
linked atoms matching some predicate, as in relational databases, is yet another
kind. Finally, a third prominent category is pattern matching of graph structures.

Traversals are defined in terms of iterator APIs. Evidently, the more general
hypergraph model entails a corresponding generalization of traversals.4 There
are several aspects to that generalization, some of which are already outlined
in [16]. Firstly, the notion of node adjacency is generalized. Adjacent atoms are
found as in a standard graph, by examining the links pointing to a given atom,
i.e. its incidence set. Given an atom xi and a set of typed link tuples pointing
to it, one might want to examine only a subset of those links. Then given a
particular link of interest l = [x1, ..., xi, ..., xn], the adjacent atoms could be a
subset of {xi+1...xn}or{xi−1...x1} depending on both atom types and properties
and the direction of the traversal. Furthermore, in a case of uniform structural
patterns in the graph, one might be interested in a notion of adjacency where
more than on link is involved - that is, y is adjacent to x if it is reachable in a
certain way. All of those cases are simply resolved at the API level by providing
the traversal algorithm (breadth-first or depth-dirst) with an adjacency list gen-
erator - an interface that returns a list of atoms adjacent to a given atom. The
second generalization of traversals adds an additional dimension to the process
by allowing one to follow incident links as well as adjacent atoms. While handled
equally trivially at the API, such hyper-traversals model a conceptually different
phenomenon: jumps in abstractions levels within the representational structure.
Because such jumps are highly domain dependent, they haven’t been formalized
within the system. It must be noted that both flat and hyper-traversals depend
on the incidence index and the efficient caching of incidence sets.

Set-oriented queries are implemented through a simple, but efficient querying
API where data is loaded on demand with lazy join, bi-directional (whenever
possible) cursors. Query expressions are built out of a set of primitives5:

4 In hypergraphs as finite set system, traversals are generalized to the notion of
transversals which are sets having non-empty intersection with every edge of the
graph. Computing minimal transversals has applications in various combinatorics
algorithms, but HyperGraphDB has been mainly applied to tuple-oriented repre-
sentational problems and instead provides facilities for computing directed n-ary
traversals.

5 For brevity, we list only the most fundamental ones.



eq(x), lt(x), eq(”name”, x), . . . Compare atom’s avalue.
type(TypeID) Type of atom is TypeID.
typeP lus(TypeID) Type of atom is a subtype of TypeID.
subsumes(AtomID) Atom is more general than AtomID.
target(LinkID) Atom belongs to the target set of LinkID.
incident(TargetID) Atom points to TargetID.
link(ID1, . . . , IDn) Atom’s target set includes {ID1, . . . , IDn}.
orderedLink(ID1, . . . , IDn) Atom is a tuple of the given form.
arity(n) Atom’s arity is n.

as well as the standard and, or and not operators. Much of the querying
activities revolve around performing join operations on the various indices avail-
able for the query. Small to moderately sized atom incidence sets are cached as
ordered ID arrays, which makes scanning and intersecting them extremely effi-
cient. Wholes or portions of larger storage level indices get cached at the storage
layer as well, but remain in B-Tree form. Joins are mostly performed on pairs
of sorted sets (usually of UUIDs) via a zig-zag algorithm, when the sets support
key-based random access, or a merge algorithm, when they don’t. Intersections
are implemented as bi-directional iterators, which allows for backtracking during
more sophisticated search algorithms.

Because of the generality of the HyperGraphDB data model, querying for
patterns would most conveniently be done through a special purpose language
in the style of [21]. Such a query language, accounting for the various structural
possibilities of typed atoms with directed or undirected hyperedges and complex
values, is currently a work in progress.

7 Peer-to-Peer Distribution

Data distribution in HyperGraphDB is implemented at the model layer by using
an agent-based, peer-to-peer framework. Algorithms are developed using com-
munication protocols built using the Agent Communication Language (ACL)
FIPA standard [22]. ACL is based in turn on speech act theory [23] and it de-
fines a set of primitive communication performatives such as propose, accept,
inform, request, query etc. Each agent maintains a set of conversations imple-
menting dialog workflows (usually simple state machines) with a set of peers.
All activities are asynchronous where incoming messages are dispatched by a
scheduler and processed in a thread pool.

The P2P architecture was motivated by the most common use case of Hyper-
GraphDB as a distributed knowledge representation engine. It is assumed that
total availability of all knowledge at any particular location will not be possible,
or in many cases not even desirable. For example, an eventually consistent data
replication schema is based on the following algorithm:

1. Upon startup each agent broadcasts interest in certain atoms (defined by a
boolean predicate) to its peers by sending a subscribe performative.



2. Each peer then listens to atom events from the database and upon addition,
update or removal of an atom, it notifies interested peers by sending an
inform communication act.

3. To ensure consistency, local transactions are linearly ordered by a version
number and logged so that they can eventually reach all interested peers.

4. A peer that receives a notification about an atom transaction must acknowl-
edge it and decide whether to enact the same transaction locally or not.
There is no two-phase commit: once an event is acknowledged by a receiver,
the sender can assume that it was processed.

This approach pushes the balance of replication vs. partitioning of data to
the user level. We felt this was the appropriate choice since simple partitioning
schemas, such as by type or by value, are easily configured on top of the base
algorithm while application-dependent graph structures can only be distributed
meaningfully at the domain level. A fully transparent alternative that attempts
to adapt the precise location of atoms based on local usage and meta-data would
result in unpredictable and frequent remote queries, in addition to requiring a
significant amount of additional local storage.

8 Example Application

One area where HyperGraphDB has been successfully applied is Natural Lan-
guage Processing (NLP). We developed a distributed NLP processing system
called Disko where the representational power of the data model considerably
simplified the task. Disko uses a relatively standard NLP pipeline where a doc-
ument is split into paragraphs and sentences, then each sentence is parsed into
a set of syntactic dependency relations. Finally semantic analysis is applied to
those relations yielding a logical representation of their meaning.

In this application, several domains are naturally represented independently
while interacting in a clean and meaningfull way. First, a manually curated OWL
ontology is stored as a hypergraph representing OWL classes as types that create
runtime instances of OWL individuals based on their graph linkage. The OWL
classes themselves are typed by an OWLTypeConstructor. Prior to parsing, an
entity detection algorithm maps named entities (such as people and organiza-
tions) into individuals of that ontology. Second, the WordNet lexical database
[24] is represented by storing synonym sets as undirected links between word
atoms and semantic relationships between those sets (e.g. part-whole) as 2nd
order directed links. A parser based on a dependency grammar [25] combined
with a postprocessing relational extractor [26] yields strongly typed syntactic
relationships between word atoms while a WSD (Word Sense Disambiguation)
phase yields semantic relationships between synonym sets, again 2nd order, n-ary
links. Further semantic analysis is performed by Prolog rules operating directly
on the database instance via a mapping of logic terms to HyperGraphDB atoms,
yielding further semantic relations. Both syntactic and semantic relations are of
varying arity ranging from 1 (e.g. verb tense) to sometimes 4 (e.g. event(buy,



time, buyer, seller, object)). The tree-like structure of the document is
also recorded in HyperGraphDB with scoping parent-child binary links between
(a) the document and its paragraphs, (b) a paragraph and its sentences, (c) a sen-
tence and each linguistic relationship inferred from it. Finally, an implementation
of the dataflow-based programming model ([27]) also relies on HyperGraphDB
to store its distributed dataflow network.

A semantic search based on the NLP pipeline output makes heavy use of
HyperGraphDB’s indexing capabilities. First, a user question is translated into
a set of relationships using the same pipeline. Ontological and lexical entities
are quickly resolved by various ByPartIndexers on their object-oriented rep-
resentation. Non-trivial relationships (the ones with arity > 1) between those
entities are matched against the database using orderedLink(x1, x2, ...) queries.
Such queries are translated to joins between the incidence sets of x1 through
xn and possibly including ByTargetIndexers on some particularly large types
of relationships. The matches thus accumulated are grouped according to their
sentence/paragraph scopes, where the scopes themselves are efficiently resolved
via a TargetToTargetIndexer, which is usually applied when one wants to effi-
ciently navigate a tree sub-graph of a large hypergraph. The groups are scored
and sorted into a search result set.

Note that both the ability of links to hold more than two targets and to
point to other atoms is essential in this representation. Furthermore, the type
system simplifies the programming effort by (1) making the mapping between
persistent data and runtime representation transparent and (2) enforcing schema
constraints on the representation. An approach relying on most other database
models (including ODBMs, RDBMs, RDF stores, classical graph stores etc.)
would force a contrived mapping of the several disjoint domains involved to a
representation motivated solely by storage.

9 Conclusion

The data model adopted by HyperGraphDB generalizes classical graphs along
several dimensions (reified n-ary links, strong typing) and as such it doesn’t
lend itself to a pointer structure based storage layout. On the other hand, an
open layered architecture and an extensive type system allow the model to easily
subsume many different formalisms without necessarily incurring a performance
penalty in the process. Further development of the query language for the Hy-
perGraphDB model, bindings for other programming languages such as C++,
support for nested graphs and distributed algorithms based on the established
foundation will hopefully fuel the adoption of this data model also in domains
outside AI/NLP/Semantic Web research.

References

1. Angles, Renzo, Gutierrez, Claudio: Survey of Graph Database Models. In: ACM
Computing Surveys, Vol. 40, No 1, Article 1 (2008)



2. Levene, M. Poulovassilis, A.: The Hypernode model and its associated query lan-
guage. In: Proceedings of the 5th Jerusalem Conference on Information technology.
IEEE Computer Society Press, 520530, (1990).

3. Levene, M. Poulovassilis, A.: An object-oriented data model formalised through
hypergraphs. In: Data Knowl. Eng. 6, 3, 205224, (1991).

4. Boley, Harold: Directed recursive labelnode hypergraphs: A new representation-
language. In: Artificial Intelligence, 9(1), (1977).

5. Goertzel, B.: Patterns, Hypergraphs & Embodied General Intelligence. In: IEEE
World Congress on Computational Intelligence, Vancouver, BC, Canada, (2006)

6. Sheard, Tim: Languages of the Future. In: Proceedings of the ACM Conference on
Object-Oriented Programming, Systems, Languages and Applications, Vancouver,
British Columbia, Canada, (2004)

7. Klamt, S., Haus Utz-Uwe, Theis, F: Hypergraphs and cellular networks.In: PLoS
Comput Biol, 5(5), (2009).

8. Kok, S., Domingos, P.:Learning markov logic network structure via hypergraph
lifting. In: ICML 09: Proceedings of the 26th Annual International Conference on
Machine Learning, pages 505512, New York, NY, USA, 2009. ACM.

9. Resource Description Framework, http://www.w3.org/RDF/
10. RDF Semantics, http://www.w3.org/TR/rdf-mt/
11. Carroll, Jeremy J. and Bizer, Christian and Hayes, Pat and Stickler, Patrick:

Named graphs, provenance and trust. In: WWW ’05: Proceedings of the 14th in-
ternational conference on World Wide Web, pp. 613–622. ACM, New York (2005)

12. Topic Maps, http://www.isotopicmaps.org/
13. Berge, C.,: Hypergraphs: combinatorics of finite sets. North-Holland (1989)
14. Gallo, G., Long, G., Pallottino, S. and Nguyen, S.: Directed hypergraphs and ap-

plications. In: Discrete Applied Mathematics., 42(2-3):177201, (1993).
15. XML Schema, http://www.w3.org/XML/Schema
16. Boley, H.: Declarative operations on nets. In: Fritz Lehmann, editor, Semantic

Networks in Artificial Intelligence, pp. 601-637. Pergamon Press, Oxford, (1992).
17. Aczel, P.: Non-well-founded sets., CSLI Lecture Notes, 14, Stanford, CA: Stanford

University, Center for the Study of Language and Information, (1988)
18. Olson, M. A., Bostic, K., and Seltzer, M.: Berkeley DB. In: Proceedings of the An-

nual Conference on USENIX Annual Technical Conference. USENIX Association,
Berkeley, CA, pp. 43–43, (1999)

19. IETF UUID draft specification,http://www.opengroup.org/dce/info/
draft-leach-uuids-guids-01.txt

20. Girard, Jean-Yves, Lafont, Y., Taylor, P.: Proofs and Types, Cambridge University
Press, (1989)

21. SPARQL Query Language for RDF,http://www.w3.org/TR/rdf-sparql-query/
22. FIPA Agent Communication Language Specification,http://www.fipa.org/

repository/aclspecs.html

23. Searle, J.: Speech Acts, Cambridge University Press (1969)
24. Miller, G. A.: WordNet: A Lexical Database for English. Communications of the

ACM Vol. 38, No. 11:, pp. 39–41, (1995)
25. Sleator, D., Temperley, D.: Parsing English with a Link Grammar. Carnegie Mellon

University Computer Science technical report CMU-CS-91-196, (1991)
26. RelEx Dependency Relationship Extractor, http://opencog.org/wiki/RelEx
27. Morrison, J.P.:Flow-Based Programming: A New Approach to Application Devel-

opment, Van Nostrand Reinhold, (1994)


