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ABSTRACT

In this paper one method for analytically describing the

life distribution of a system is investigated. This is

done by using the inherent properties of convolutions and

mixtures of life distributions to create an algebraic struc-

ture. Once the algebraic structure is constructed it can be

used to develop algorithms to go from the schematic of a

system to its survival function. It is noted along the way

that many combinations of constant failure rate components,

e.g., redundant, series, or parallel systems can be described

by a mixture of convolutions and that often these expressions

can be greatly simplified.
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I. ALGEBRA.IC PROPERTIES

An algebraic structure has been derived for the combina-

tion of life distributions which describe the reliability

of systems. Such a structure consists of a set of elements

D, ,D^/...,D combined by operations such as addition or

multiplication. The set of elements in the algebraic struc-

ture derived here is life distributions. Each life distri-

bution is assumed to have a probability density function.

An exception is the ZERO distribution defined later. The

random variable associated with the distribution is time.

Since a life distribution can be fully described by its

survival function, that representation will often be used.

The operations used in this algebraic structure will not be

addition and multiplication but the operations of © and MIX,

They are defined as follows:

D-, © D- is the convolution of two life distributions.

Using survival functions:

t

'1 " "2 '1D, © D^ => F. (t) + / F2(t-s) f^(s)ds

In words this says the probability that the system resulting

from D, © D^ will survive till time t, is the probability that

the component whose life distribution is D, will survive till

time t plus the probability that the component whose life

distribution is D- will survive from time s until t given





that component one (whose life distribution is D^ ) lived

until time s and failed at that moment. It will be shown

later that the probability the system created by the con-

volution will survive till time t is the same regardless

of whether D, or D- is considered first.

MIX is the mixing or combination of life distributions

with a priori mixing probabilities. In terms of survival

functions:

MIX[p^D^,P2D2] =>
P^L^^L^^^ +P2F2(t).

This relation says the probability that the system result-

ing from MIX [p, D, ,P2D2] will survive till time t is the

sum of the probabilities that either component will survive

till time t multiplied by their a priori mixing probabili-

ties. These operations display certain algebraic properties

such as commutativity , associativity, distributivity , and

the presence of an identity. The following theorem summarizes

these properties. The proof for the theorem is manipulative.

The theorem is true more generally than for just independent

and continuous distributions for nonnegative random variables,

but only this case is shown here.

THEOREM: THE SET OF LIFE DISTRIBUTIONS D,,D„,...,D FORM12 n

A MONOID UNDER THE OPERATIONS OF © AND MIX.





PROOF

(1) Commutativity

(a) D, ® D^ => F (t) + / F„(t-s) f, (s)ds

The fact that F(t) = 1 - F(t) yields:

t
1 - / f, (s)F^(t-s)ds.

^ "^

Using the convolution property of integrals

yields

:

t
1 - / f, (t-s) F^(s) ds.

-^ ^

Now applying integration by parts we have

t
1 - / F (t-s) f^(s) ds.

^ ^

And if the previous steps are retraced;

D^ e D^ ^ ^2^^' "^ I F^(t-s) f^Cd) ds

which is zhe survival function for the life

distribution D © D-,.





(b) MIX[p^D^,P2D2] ^ PiF-^(t) +p2F2(t).

Applying the commutative property of normal addi-

tion yields p-F^Ct) + p,F,(t) which is the

survival function for MIX [p^D- ^p, D, ]

.

(2) Associativity

_ t _
(a) (Dj_ © D2) 003=^ ^1+2^^^ "^ / F^Ct-s) f^^2(s)cis

where F^^^^^^^ = F^(t) + / F2 ( t-s) f ^ ( s) ds

s

and f-| p(s) = / f ^ (s-u) f , (u) du.
^

Making the substitutions and invoking the associa-

tive property of convolution integrals yields

:

_ t _ t t-s
F, (t) + / F, (t-s) f, (s) ds + / / F^(t-s-u) f, (s)^0 00

X f 2 (^) duds

.

This integral equation reduces to:

F, (t) + / F^^.(t-s) f, (s)ds,
X "

which is the survival function for the life

distribution D, © (D2 © D^) .

10





(b) MIX[(p^D^,p2D2) /P3D3]

(p^F^(t) + P2F2(t)) + p^F^Ct)

Applying the associative property of normal

addition yields:

p^F^(t) + (p^F^lt) + P3F3(t))

which is the survival function for

MIX[p-^D^, (P2D2,P3D2) ]

(3) Distributivity

D^ e MlXip^^^rP^D^]

F^(t) + / (p2F2(t-s) + P3F3(t-s) ) f^(s)ds

Letting p- + p^ = 1 results in:

_ _ t _
p^F^Ct) + P3F^(t) + / P2F2(t-s) f^(s)ds

t _
+ / P3F2(t-s) f-^(s) ds

wh ich implies MIX[p^(D-, S D^),P3(D^ © D^) ]

It is assumed in the MIX operation that the assigned a

priori probabilities will sum to one. If the sum of the a

11





priori probabilities is less than one, then the life distri-

bution resulting from the MIX operation will be an improper

distribution, but this can be remedied by the use of the ZERO

distribution. ZERO will act as an identity element for both

® and MIX. By definition ZERO(t) = 0; this means the proba-

bility of a component (with a ZERO life distribution) being

alive at time t > is 0.

(4) Identity

(a) i. Right identity

D, e ZERO => F, (t) + / ZERO(t-s) f, (s) ds
1 i

Q
1

This equals F, (t) which is the survival

function for just D, .

ii. Left identity

There is not a comparable form for showing

ZERO to be a left identity, but by employing

an extended commutative property first the

needed result can be obtained.

(b) MIX [p-^D^,P2 ZERO] ^ p^F^(t) + p^ZEROCt)

This equals p-, F, (t) which implies p-, D-, . The

left identity for MIX is obvious using the

commutative property.

12





This argument establishes all the properties necessary

for the operations of ® and MIX to form a monoid over the

set of continuous life distributions with ZERO adjoined.

The next question would be to ask if this set of operations

form a group. The answer is negative since there does not

exist a unique inverse for each element in the set of life

distributions

.

There is another property that could prove valuable in

the manipulation of life distributions. That property is

the idempotence property for the MIX operation, i.e.,

MIX[p^D,p D] => D

It is a further observation that a mixture of mixtures is

a mixture

.

13





II. LIFE DISTRIBUTIONS AND BR?^CHING DIAGRAMS

The power of the previous algebraic properties can be

most easily seen using exponential life distributions. As

an example, the life distribution of a redundant system with

failure rates of the primary and backup components of A, and

Ap respectively, can be described as EXP{A,} ® EXP{a2}.

EXP{A} is a convenient shorthand to describe an exponential

life distribution with failure rate A . The survival function

for the system will be the convolution of the survival func-

tions for the two components. It is given by

-A^t t -A^Ct-s) -A^s
: + / e '^ e ds

^

which simplifies to:

-A,t -A^t

^2 " '^1 ^1 " ^^2

This equation is symmetric in A-, and A-, hence the operation

is commutative. The form of this solution can be extended

to the nth case EXP{A-^} ® EXP{a2} e ... ® EXP{A^}. The survi-

val function is

:

-A .t

n A . e ^

JT^J

i=l n ( A .
- A . )

14





In the case A, = A^ = A-, = . . . = X the closed form of the12 3 n

solution is:

? (At)^-^ -At
^ (k-l) ' ®

k=l ^
^' '

If two exponentially lived components are connected in series,

the life distribution of the system will be EXP{A, + X ^}

,

and the survival function is:

-(A^+A2)t
e

If two components are connected in parallel the life distri-

bution of the system is:

EXP{A^+ A2} ® MIX[
^ ^^

EXP{A^},
^ _^^

EXP{A^}],

where the a priori mixing probabilities are the probabili-

ties that EXP{Aj_} will fail before EXP{A2}, and EXP{A } will

fail before EXP {A-,}, respectively. The survival function

for the parallel system is:

-A,t -A^t -(A^+A2)t
e + e - 9

Both the series and parallel system can be extended to the

case of n components.

15





These various simple systems can be connected to form

more complex systems, but all can be analytically described

by a mixture of convolutions. It will be necessary to adopt

a convention to describe graphically the life distribution

of these complex systems. This convention will be a branch-

ing diagram as seen in Figure 2.1.

EXP{ EA.}

n

Exp{iAj} ^ r- rrr^^^v^^'^j

A

^•EXP{ ZA.}

ZA . /I J

^i / K—EXP{ EA.} ® f— T^EXP{ EA.} © ... ZERO

EA. '^ ^ .^^'3

Figure 2.1. Branching Diagram

At the base of the diagram will be (a) , the probability

distribution for the survival of all the components. Branch-

ing from the base are different paths that represent the

mixture of the life distributions of the remaining components

given that one or more of the original components has failed.

The life distribution at point (a) will be convolved with

the mixture of the branches. Each of these branches is given

an a priori probability of occurrence. Each of these paths

16





may again branch, giving rise to a new mixture which will be

convolved with preceding life distribution. These branches

will continue until the failure of any component will result

in the failure of the complete system. When all the branches

have been drawn out to completion, the sum of the products

of the a priori probabilities along each branch must be one.

It may be necessary to use the ZERO distribution, as described

in Chapter I, to achieve this sum. A couple of examples

will clarify the point.

Example 2a)

The schemat i c

:

The convolution diagram:

EXP{a^+A2 + -^3}

A^+A2+X3 ZERO

The life distribution:

1 '^2 '^3-

17





Example 2b)

The schematic:

4 2

The convolution diagram:

EXP{A^+A2}

Y—rT-EXP{A,+A^}A , -r A ^ 1 £.

a7Ta^^^^^^1^^2>

A^ + A^
;r—ZERO

A,
ZERO

A^+A^

The life distribution

A^ A-. K^

EXP{A.,+A^}®MIX[ , /; EXP{A.,-HA„}@MIX[
, /; ZER),

, ^, EXP{A,+A-}],
1 2. A^+A^ 1 2 A-| +A^ A-j +A- 1 Z

A^ A-| A^

, ^, EXP{A^ +A^} ® riLX[ ,
/•- EXP {A, +A^} , , Z^ ZEPO] ]A,+A„ ± Z A, +A^ 1 Z A,+A^

Writing out these complete life distributions can be

quite long and tedious, but by invoking the distributive

and idempotent properties shown earlier, we can move each life





distribution from outside the MIX brackets to the inside,

and express MIX of a MIX as a single MIX. The life distribu-

tion in the second example would become:

2 2
^1 "" ^2

MIX[-i =WEXP{A +A } © EXP{A +A }) ,

(A^+ A )^ -^ ^ ^ ^

2A, A2
(EXP{At+A^} EXP{A,+A^} © EXP{A,+A^})]

(A^+X^)'
^ ^

^^^.>1 <-r .....>, .2

By using the above algorithm to express the life distri-

bution of a complex system, we have proven the following

theorem:

THEOREM: THE LIFE DISTRIBUTION OF ANY SYSTEM WHICH CAN BE

REPRESENTED BY A BRANCHING DIAGRAM WITH EXPONENTIAL LIFE

DISTRIBUTIONS ALONG THE BRANCHES CAN BE EXPRESSED AS A

MIXTURE OF CONVOLUTIONS OF EXPONENTIAL LIFE DISTRIBUTIONS.

By further applying the algebraic properties some very

simple expressions can be derived from some very complex

ones. A good example of one such identity is:

A, A«
EXP{A,+A^} © MIX [^—=r—ZERO, Y—rr—2XP{X, }] => EXP{A,}xZ A-i+A^ A-i+A^ i. -L

19





III. THE CORRESPONDENCE BETWEEN BPANCHING
DIAGRAMS AND FAULT TREES

In the preceeding chapter the notion of a branching

diagram was introduced. We can also graphically display

complex systems and the effect of the failure of some com-

ponents on the whole system by the method of fault trees

.

The class of systems which can be represented by fault trees

and the class of systems which can be represented by branch-

ing diagrams are not identical. There exist systems which

can be represented by branching diagrams which cannot be

represented by fault trees. An example of such consists of

systems involving standby redundancy. In this chapter it

will be shown that, given a system that can be represented

by a fault tree, the length of the paths of the branching

diagram can be determined by the minimum cut sets from the

fault tree. It is assumed that the components fail indepen-

dently of each other and the life distribution of those

components are exponential.

The fault tree provides a convenient and efficient

format helpful in the computation of the probability of

system success or failure. The fault tree consists of boxes

representing basic events, AND gates, and OR gates. The top

box in the tree will represent system failure. If the top

box had represented system success the fault tree would have

become an event tree. Immediately below the top event will

20





be a gate with lines leading to the next level of events.

If the gate is an AND gate, marked with a -, then all the

events on the next level must occur to cause the top event

to occur. If the gate is an OR gate, marked by a +, then

the occurrence of any of the events of the next level will

cause the top event to occur. The tree will continue to

grow until all possible events have been considered. Once

the tree has been drawn it is an easy chore to write down

the minimum cuts. A minimum cut is defined to be a minimum

set necessary for the top event to occur. The algorithm

to find such cuts is taken from Barlow and Proschan's Sta-

tistical Theory of Reliability and Life Testing [ Re f . 1

:

p. 256]. The algorithm begins with the gate immediately below

the top event. If the gate is an OR gate, each input is used

as an entry in separate rows of a list matrix. If this gate

Figure 3.1. Schematic for Example 3a

21





is an AND gate, each input is used as an entry in the first

row of a list matrix. If one of these inputs is another

gate, then the inputs to that gate are listed in the same

or separate rows of the list matrix according to the nature

of the gate. Multiple entries in the rows of the list

matrix are the result of AND gates. A row with entry a,b

implies that this minimum cut will occur if both components

a and b fail. Once the list contains all components and

no gates then the minimum cuts can be read across each row.

Example 3a is given to clarify this point.

Example 3a) Given the schematic in Figure 3.1 it is obvious

that the system will fail if either component one or all the

other components in the parallel structure fail. The first

gate in the fault tree is an OR gate and is shown in Figure

3.2.

SYSTEM FAILUPEI MINIMUM CUT

Gl Gl

Figure 3.2. First Level of the Fault Tree

The minimum cut representation is listed beside the fault

tree. Because the gate was an OR gate the inputs were listed

as separate rows of a list matrix. The next level is an AND

22





gate and its inputs are two more gates as seen in Figure 3.3

The AND gate causes the inputs to be listed in the same row

of the list matrix. The complete fault tree and its corres-

ponding minimum cuts are given in Figure 3.4.

SYSTEM FAILURE

© Gl

Q
G2 G3

MINIiMUM CUT

1

G2,G3

Figure 3.3. Second Level of the Fault Tree

SYSTEM FAILURE

©

G2

Gl

Q

©0

G3

MINIMUM CUT

2,3,4,5

©

Figure 3.4. The Complete Fault Tree and
Its Minimum Cut Representation

23





For a system such as that of Example 3a an algorithm can

also be developed to find the resulting exponential survival

function once all minimum cuts have been found. Step one is

to find the survival function for each row. This step is

relatively easy since the union of the events in each row

will yield the proper exponents for the exponential functions.

For the second row of the list matrix in Example 3a this

would be

:

2,3,4,5 = (2) + (3) + (4) + (5) - (2+3) - (2+4) - (2+5)

- (3+4) - (3+5) - (4+5) + (2+3+4) + (2+3+5)

+ (3+4+5) + (2+4+5) - (2+3+4+5)

Now insert the respective failure rates and the quantities

in parenthesis times -t are the exponents for the exponen-

tials in the survival function. The sign in front of the

parenthesis is also the sign of the exponential. The survival

function for the second row would be:

-X^t -X,t -X.t -X^t -(X„+X-)t -(X^+X )te^+e^+e^+e^+e ^^ +e ^4
(-X2+X3+X^+\^)

t

"* • • • ' w

Step two is to take the product of the exponential survival

functions of the rows. For the above example:

24





-A,t -A^t -A^t -A.t -A^t -(A„+A,)t -

(

A„+A ^+A ,+A ^ )

t

(e M(e 2 +e ^ +e ^ +e 5 +e ^ 3 ^^_^^ 2 3 4 5^

-(A-L+A2)t -(A^+A3)t -(A^ + A^)t - ( A, +A2 + A3+A .^A^ ) t
= e +e +e + . . . + e

This expression represents the complete survival function

for the system in Example 3a.

There exists an isomorphism between the paths of the

branching diagram and all possible sequences of failures of

components in the fault tree. The bottom level of the fault

tree corresponds with the base of the branching diagram, all

components are functioning at the start of the system. The

failure of any component or components will cause branching

in the branching diagram and gates to be affected in the

fault tree. There is exactly the same number of initial

branches as components in the fault tree. If the failure of

a component caused system failure in the fault tree its

respective branch in the branching diagram will end in a

ZERO distribution. If the component failure did not cause

system failure then the distribution of time to next failure

among the remaining components will be at the end of the

branch respective to the component that failed. Once again

there is a one to one correspondence between components re-

maining in the fault tree and branches of the branching

diagram at that point. This process will account for all

possible permutations of events leading to system failure.

25





The branching diagram for the system in Example 3a is

given in Figure 3.5. Due to the size of the branching

diagram, only a few of the branches of the diagram are drawn

out to completion. If drawn out completely there would be

65 possible paths through the branching diagram. This is

the same as the number of possible sequences of failures in

the fault tree. Not coincidently this is the same number of

possible peirmutations and combinations of the two minimum

cuts summed together.

For a coherent system with n components there are n!

possible paths through the branching diagram if the only

minimum cut set is the set of all components. If the mini-

mum cut sets are proper subsets of the set of all components

a path of the branching diagram will end in a ZERO distribu-

tion once the set of failed components corresponding to that

path contains a minimum cut set. That is, a system will

remain up and paths will continue to branch on component

failure until the set of components along a path contains

one of the minimum cut sets found by the fault tree algorithm,

The probability of the occurrence of the minimum cut set or

any particular sequence of failures is the product of the

a priori probabilities of the corresponding path in the

branching diagram.
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