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~ Abstract— Successful investment management relies on allocat- portfolio asset returns are anti-correlated, certain assets may
ing assets so as tbeat the stock marketAsset classes are affected |gse value and others may rise in value but this will average out

by different market dynamics or latent trends. These interactions yegylting in possibly a smaller reward but a reduced risk. The
are crucial to the successful allocation of monies. The seminal

work on portfolio management by Markowitz prompts the adroit BI&‘,Ck'SC,h0|es .optlor]s D“C'”Q,mf’de' proposed in [2], combines
investment manager to consider the correlation between the assets@ time dimension with volatility to calculate the fair market
in his portfolio and to vary his selection so as to optimize his risk- value for an option.

return profile. The factor model, a popular model for the return The goal of this work is to learn an alternative clustering

generating process has been used for portfolio construction and ¢ a5sets in the stock market by clustering their returns with
assumes that there is a low rank representation of the stocks. In

this work we contribute a new approach to portfolio diversifi- a spa_rS|_ty constraint on the aSS|g_nment matrix yielding more
cation by comparing a recently developed clustering technique, descriptive latent trends or centroids, and consequently, fami-
SemiNMF, with a new sparse low-rank approximate factorization lies of stocks with approximate disjoint support. We argue that
technique, Sparse-semiNMF, for clustering stocks into latent diversification of investment based on subspace factorizations

trend based groupings as opposed to the traditional sector based ity sparsity constraints could lead to improved reduction of
groupings. We evaluate these techniques using a diffusion model

based on the Black-Scholes options pricing model. We concludeVOIatIIIty of a given portfo[lo. . .
that Sparse-semiNMF outperforms semiNMF when applied to ~ Let us start by introducing recent work. The seminal appli-
synthetic stocks as the contribution of each trend to each stock cation of Independent Component Analysis (ICA) to financial
is more disjoint for Sparse-semiNMF than for semiNMF, in an time series was by [1]. The goal was to find the latent

inter-class sense, meaning that the underlying trends for each factors of instantaneous stock returns, specifically for the daily
stock are more readily apparent, whilst preserving the accuracy

of the factorization. We conclude that the trend-based asset closing prices of the Tokyo StOCk exch_ange. The Indepen(_jent
classes generated by Sparse-semiNMF should be considered ifcomponents (I.C.) were weighted with respect to the first
the investment management process to reduce the risk in portfolio stock return and were sorted using thg, norm. The central

selection. _ _ ~assumption made in this work was that the returns reflect the
~ Keywords: Finance, Clustering, Low Rank Approxima-reaction of the stock market to “a few statistically independent
tions, Portfolio Diversification. time series”, e.g., we have a low rank representation of the

stocks. [3] discuss the factor model and its importance in
. INTRODUCTION many financial theories, such as, Modern Portfolio Theory and
Let us set the scene for our work by sketching a brief outlin®rbitrage Pricing Theory. These theories assume that securities
of Modern Portfolio Theory (MPT). The foundation for MPTare represented as linear combinations of some factors. The
was laid down by Markowitz in [11] and [12]. His work onauthors apply ICA to discover the hidden factors and their
the effects of risk on efficient portfolio selection are knowworresponding sensitivities. Their work is a continuation of
more formally as theMarkowitz Efficient Portfolioand the that in [1]. Prior to the application of ICA to financial
Markowitz Efficient FrontierIn layman’s terms, a portfolio on data, Principle Component Analysis [15] was widely used
the Markowitz Efficient Frontiergives the optimum expectedto reveal the driving mechanism in returns. [1] reported that
return for a given risk and thilarkowitz Efficient Portfolids ICA revealed more readily interpretable underlying structure
the portfolio that has been diversified, so that there is no scdapethe data than PCA. This movement from an orthogonality a
for further reduction of risk. These theories laid the ground faonstraint (PCA) to an independence constraint (ICA) yielded
the Capital Asset Pricing ModdlICAPM) proposed by Sharpe independent trends, and sensitivities which were posited to
in [18]. Some of the basic tools for achieving the risk-rewardelp minimize the risk for an investment model by helping to
balance are outlined in [11], [12] and [18], where volatilityincrease the diversity, by identifying the underlying indepen-
represents risk and is a function of the correlation of the assdent factors in the market.
in the portfolio, and the return is a function of the asset returnsICA is applied to real returns in [3] by transforming the
in the portfolio. Risk can be minimized by selecting a portfoligecurities to returns and then learning the I.C.s and fitting a
that contains assets that are anti-correlated, but rewardnigsnber of the I.C.’s (Low rank) and weights or sensitivities
heavily dependent on risk. Diversification is the process @b the “Independent Factor Model”. Further work in the same
reducing the risk for a given portfolio return by spreadingpirit is contributed in [4], where the Minimum Description
your bets. For example, if a portfolio contains a few assets ahdngth Principle is used to determine the number of factors
they are strongly dependent on the same underlying trends, theise in the factor model. They explore a number of measures
portfolio has a high volatility, and the return is uncertain. If théo determine the properties of the learnt factors so that they



can seleck factors. These measures afe; L., kurtosis and wherei =1,...,n. It follows that

a measure based on the Wald-Wolfowitz Test (a test that scores

the randomness of a sequencel@f(l — «)% confidence 1= , m

level). These measures are used to sort the I.C.'s in terfa§Si(t)) = In(S;(0)) + | ri — 52%‘ t+ Y oy Wy(t).

of energetic significance, maximum value of the factors, non j=1 j=1

gaussianity, and randomness of the sequence. They conclude )
that it is more appropriate to assume that the underlying trerl¥¢ propose setting)[-] to be the detrend operator, namely
are independent rather than uncorrelated. Related work g operator that removes any linear trend, leaving the factor
financial time series was presented in [20] where a mod@pPdel: m

for chain stores was developed. Cashflow is the observable 4 _ R

mixture of products (sources) in a store and they have the Dlin(S3)](t) = ZU”WJ (t). “)
cashflow for the same number of stores as they have products. =t

They use association rules mining to find related variables thgsuming further that we observe prices at discrete titnes

can be considered to be from the same class and reduce ;t T . .
dimensionality of their ICA model. They try to estimate théfget’ k=1,..,K At wh_ereT is the total observation
distributions of each product at a given time period. interval andAt¢ the discrete time step, we can represent the

In this paper we combine techniques and ideas from di@bservations as a largex K array:
parate communities e.g., source separation and finance to S -2 W )
tackle what is essentially a Blind Source Separation (BSS) S
task. We note that previous work has applied algorithmgnhere we use the notatioS;;, X;;, Wi, to denote the
blindly to real financial data, making the assumption thalements of each array arl. to denote that the elements
the generative factor model was composed of uncorrelatefls, for example, can lie anywhere iR"*% where asX is
or independent latent trends. We propose using a diffusigsstricted to the positive orthant & <™.
model based on the Black-Scholes PDE as a test-bed for
algorithmic development. We illustrate the performance of Six = D[In(S;)](kAt), Xy; = 045, Wy, = Wi(kAt) (6)

Sparse-semiNMF by comparing it with semiNMF using ou nx K s XK
Black-Scholes synthetic data. é € RUK), 3 € o, and W € R K. This is strongly

In Section Il we discuss how we generate the market d%ﬁ{mmsqent of the semi non-negative matrix factorization
rmulation, see Section IV. We want to cluster the positive

using the closed form solution of the Black-Scholes PDE. = pendencies of the stocks on the underlving trends. e.a.. the
give an illustration of portfolio diversification in Section IIl. P ying » €.0.
éandom walks.

We discuss semiNMF in Section IV and its suitability for th

semiNMF in section V. Finally, we illustrate the different . . .
clustering methods in Section VI and make our conclusions W& motivate our paper by considering the following thought
in Section VII. experiment which we analyze numerically in our experiments

We shall use the convention that denotes the absolute!™ Section VI.

. N
value function,> ;" |;| the L; norm and||.|[2 the Ly norm A A synthetic diversification problem

in the following sections. Consider a simplified stock market comprising of the stocks

in equation (7). There aré' = 2 families of stockska with

Il. TERSE DESCRIPTION OF THEBLACK-SCHOLESPDE n — 3 stocks per family. Each family is indexed by —

AND DIFFUSION MODEL

1,...,F and each stock is indexed hby= 1,...,n and we
Let us generate families of stocks governed by latent trendi@ive K = 200 returns. Each family’s behavior is governed by
We consider a family of. stocks whose prices are governedn = 2 random Walkstk, wherej = 1,..., m. Examining

by the Black-Scholes PDE [19]. We assume that this family, the volatility matrix, we see that stocks from familigs= 1
collectively depends om: independent realizations of a nor-and f = 2 are disjoint in an inter-familial sense, that is, stocks
mal random walk (the interesting case being when< n). from family 1 are not constructed using the random walks
Denoting the price of théth stock byS;(¢), i =1,...,n, we from family 2. In this work we cluster stocks into underlying
have, according to the Black-Scholes PDE: trend based groupings as opposed to the traditional sector
based groupings, e.g. health care, technology. The minimum

m description length principle states that any regularity in a given
dsS;(t) = S;(¢t) | ridt + Zoidej(t) . (1) set of data can be used to compress data, and in the case of
j=1 the investor the quality of the compression, e.g. understanding

of the underlying factors in the market, is related to the
S;(t) follows a linear combination of independent Browniafinancial gain [10]. Having identified the underlying trends
motions,W;(t), with constant drift; and volatility o;;. This in a given set of financial series, we can cluster the data
can be solved in closed form to yield: based on the weights of those trends in a given mixture. We
ask the questionls there an underlying trend that says a
1 m company that would be traditionally classed in the technology
Si(t) =S;(0)exp | |7 — 3 Zafj t+ ZUUWJ(t) ,  sector, e.g. IBM, actually behaves like a company that would
j=1 j=1 be traditionally classed as health care sector company, e.g.
(2) Pfizer?For example, consider the traditional groupings versus
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TRADITIONAL VERSUS TREND BASED CLUSTERS

Financial series|

Traditional sector

Latent trend based

concept of aSeparable Factorial Articulation Familfor a

unique decomposition in [7] and its resonance in light of our
formulation for the stock generation process using the Black-
Scholes model lead us to consider a NMF variant for our

S1 11200 health care Family 1 performance based clustering.
53 1:200 health care Family 1
S3 11200 technology Family 1 A. Variants on the NMF theme: Semi-NMF
3 :
251200 ?ee;:;holcoare E:g::yg Traditionally, NMF [6] considers the following problem:
2,1:200 i s GivenY = [y(1),y(2),...,y(T)] € R™*T, the data matrix,
5.1:200 technology amty NMF decomposes th¥ into the product of two matrices: a

basis, signatures or mixing matri® € R™*" and the source
component or activation matri€' € R7<", where all matrices
H&ve non-negative elements.

These decompositions are approximative in nature, i.e.,
The reason for asking this question is that an investor

~ T
might think they have diversified their portfolio by investing in Y.~ DiCy. 8)

different_traditionallsectorsl, e.g. health care and_ technology RY/F has been used in a wide range of clustering applications,
purchasing stock§; and S, but thatlsuppofs_ed diversificationgchy as, document clustering [17] and gene clustering [14].
might actually be ill-founded asS3, traditionally classed |ndeed, in [8] we presented our initial work on portfolio
as a technology stock, might actually behave like a heall3jection. We decomposed the daily closing prices of the 30
care stock, meaning that their portfolio might actually betocks which make up the Dow Jones Industrial Average, into
homologous in nature. Our contention is that investing ihderlying trends and governing weights, and showed that
stocks belonging to different clusters (identified by a spar§@\viF revealed consistent groupings, which differed from the
low rank decomposition), but not necessarily the differeptagitional latent trend based groupings.
traditional sectors might offer genuine portfolio diversification gne of several extensions of the NMF technique by [5]
opportunities. , allows NMF to be applied in a k-means type framework with
We explore a clustering type approach, for example, Nojhe of the factors constrained to be non-negative and the
negative Matrix Factorization (NMF), as anti-correlation methyaia and the other factor unconstrained, e.g. can have mixed

ods such as PCA [15] fail to acknowledge the multi-trendigns They illustrate the connection between semiNMF and
nature of stock prices. PCA algorithms only use second ordgmeans. Given the generative model

statistics and give projections of the data in the direction of
maximum variance in the remaining orthogonal subspaces.
Principle components are less meaningful than ICA compo-

C)
nents which enforce a stronger condition, that is, statistigiley minimize the objective|Y . — Dicﬁﬂg where the

independence. We investigate NMF and its variant semiNMfglumns of D, contain the cluster centroids and the elements
as the factors are more intuitive than standard ICA. It ©,,. are soft assignments compared to the hard assignment
tempting to apply vanilla NMF [6] blindly to stock data as it isand centroids given by k-means. This model is the transpose of
non-negative, but knowledge of the Black-Scholes generatiguation (5). We will refer td> andC as opposed t®, and
model, in equation (4) causes us to consider semiNMF as @), as the signs are clear from the context in the remainder
directs us to cluster the stocks, which psitivelycorrelated of this work. [5] conclude that NMF variants give a better
to the underlying random walks. In this work we contribute gjystering than k-means when clustering accuracy as well as
new approach, Sparse-semiNMF, which exploits the sparsityfhtrix approximation is considered. They also state that their
the underlying assignment matr® outlined in the synthetic factors are more interpretable than k-means. Given a mixed
market in the previous section, and learns intuitive factors. TReémeans-canonical pseudo inverse initialization, they learn a

Sparse-semiNMF type approach, leads to more disjoint int@fatrix factorization using an element-wise multiplicative rule
familial clustering where the factors mirror the block diagonahr ¢ and a closed-form rule fob:

structure ofX¥ in equation (7).

trend based clustering of the stocks in equation (7) a
summarized in Table I.

Y.~ D.CY,

_ T —1
IV. CLUSTERING APPROACHES b = YcC(C C; ’ _ (10)
The advent of non-negative matrix factorization as aclus- o . (Y D)*]py + [C(D” D)~ (11)
tering technique [6] and especially the introduction of the pa pa [(YTD)—]pq+ [C(DTD)+]pq7



where equivalent to equation (10). We now hald fixed and take the
partial derivatives with respect ©©. We use the Non-negative

[(B)"]pg = (|Bpql + Bypq) /2, (12)  quadratic programming rule presented in [16] to iteratively
[(B) " lpg = (|Bpg|l — Bpq)/2, (13) learn C-. ] o

NQP is a general framework where, if the objective can

V. MOTIVATION FOR A SPARSE EXTENSION manipulated into the standard NQP form, e.g. (16), the mul-

Considering the disjointness of the matrix formed by placirigplicative rule, (18), is guaranteed to minimize the objective
eachX/ block along the diagonal used to generate the deaaeach iteration. Given that the assignment maffixs non-
in equation 7, and where by disjointness we mean sparsitggative and the feasible region for the solution of NQP is the
and independence of occurrence, we propose to exploit thigsitive orthant we manipulate the cost (15), into the standard
sparsity and learn a more interpretable factorization for tigadratic form (16),
data. We note that in this representative problem the sparsity 1
is not readily apparent due to the dimensions of the exemplar. —vT Av + b, (16)
Considering the Dow Jones Index, it would be more reasonable 2
to search for up td0 families of stocks, where a reasonablevhere ve¢.) is a function that vectorizes a matrix column-
number of stocks per family could be as largelds which wise, Q) denotes the Kronecker produdt, and1,r are the
would yield tall £/ matrices and consequently a very sparddentity matrix of dimensionn x m and a vector of ones of
assignment matriXCp ;. For example, according to the low-dimensionr7" x 1,
rank assumption made in [12] and [9], a possible assignment

1
matrix for the Dow Jones IndexX; p;, could have the follow- Q= iveo(CT)T(Im ) 2D" D)veqC™)
ing form:
9 ) +veq —2D"Y)TveqCT) a7
[E1)5%3 0 0 0 0 T T
0 [22]6><3 0 0 0 + )‘erveC(C )a
0 0 [23]4x2 0 0 and we use the element-wise multiplicative update rule from
0 0 0 (4543 0 [16] :
0 0 0 0 [25]5><2 -b; + A/ bz2 + 4a;c;
where there arel’ = 5 families of stocks with2 or 3 2a;
underlying trends per family and, 5 or 6 stocks per family. where
This underlines the need for an additive sparsity constraint on T -
the latent assignment matrix in the objective as in (15). a; = [(I, @ 2D" D)t rrvedC™ )], (19)
A vectorx is considered to be sparse if most of its elements - T 1\ = nap T
are relatively small [13]. We consider tllg norm of a vector ¢i = [(Im ®2D D) vedC )L, (20)
x, 22;1 |&,|, as our sparsity measure in this paper as the b; = [(ved—2DTY) 4+ A)T);, (21)

assignment matribC we learn is guaranteed to remain non-
negative due to the multiplicative form of its update if it isvhere, .
initialized in the positive orthant. This makes taking the partial At _ { A if A >0 } 22)
derivatives of the additive sparsity term in (15) trivial. * 0 otherwise |’

SemiNMF gives a soft assignment and this results in a more
interpretable factorization than the hard assignment learnt by A;j"qp = {
k-means. We propose to learn a sparse assignment matrix

where variation of the sparsity will tune the “softness” ojnd we assume the matrig is symmetric and semi-positive

the assignment to a cluster centroid while maintaining thffinite so that the objective (15) is bounded below and its
interpretability of an NMF factorization and increasing thgptimization is convex.

disjointness between the columns @67 as the sparsity
increases. VI. EXPERIMENTS
. We illustrate the differences between semiNMF and Sparse-
A. Sparse semiNMF semiNMF using synthetic data generated using the Black-
We present an extension to semiNMF in this section whe8tholes diffusion model. Consider the synthetic detrended
non-negative quadratic programming (NQP) is used to mirtock market, consisting a$65 returns illustrated in rowl
mize the regularized objective in (15) with respecto Our of Figure 1. This market is constructed families of stocks
technique alternates between a closed form solutio€fand with 4 stocks per family, giving a total of2 stocks, with
an iterative update foD, where D is normalized by thel, 2 underlying trends per family, e.d@ latent trends in total.
norm after the iterativdD update has converged. To illustrate the performance of Sparse-semiNMF we ask the
Consider the objective: guestionGiven that the number of underlying trends is known,
o can we cluster the stocks, dependent on the same underlying
T2 T trends, in the same groupings?/Ve initialize the assignment
Q =Yy~ DiCY[F+A)_ |vedC")|  (15) matrix, C, of both semiNMF and Sparse-semiNMF with
the same initial factors, using k-means clustering, as both
Taking the partial derivatives of (15) with respect 0 techniques are dependent on their initializatiabs the trends
we calculate the closed form expression fbY, which is are initialized using the update rule (10) and we normalize

0 otherwise (23)

n=1
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Fig. 1. The upper plot shows 12 de-trended stocks generated by the Black-Scholes diffusion model using uniformly distributed random numbers for the
volatility matrix and drift. There are 365 returns. 6 underlying trends were used to generate these stocks. There are 3 families of stocks each relying on 2
trends each. Rows 1 and 2 show the latent trends found by semiNMF (row 1) and Sparse-semiNMF (row 3). The assignment matrices on row 4 for semiNMF
(column 1) and Sparse-semiNMF (column 2) show the advantage of a sparsity constraint. Sparse-semiNMF yields more disjoint columns giving a better
representation of the inter-familial disjointness. SemiNMF produces a noisier assignment of stocks to families. SemiNMF yields an SNR of 216.6032 dB

where as sparse-semiNMF yields an SNR of 86.5903 dB.

each column ofY” using theL, norm. Each algorithm iteratesaccuracy of the clustering based on this percentage.

for 10,000 iterations to ensure convergence and we illustrate )

the resulting factorization into thé latent trends, in row$ quzf Ch

and 3, and assignment matrices, in rofy columns1 and 2 Sp = 727" c? (24)

of Figure 1. The desideratum, after the successful application =1

of semiNMF or Sparse-semiNMF, is a permuted and scaleghere I; denotes the set of indices for the pair of columns,
version of the initial assignment or volatility matrix, a blockgs there are two underlying trends per family, 6f that
diagonal matrix, which was used to generate the data. Onggtrespond to the trends of family. Given that we have
we reverse the permutation introduced in both algorithmiglentified the pairings of columns of the dominant weights for
and have identified the latent trends that should be groupgé |atent trends for each family and calculated the percentage
together, we can then evaluate the dependence of each siQ&lfe for each row of the assignment matrix, we quantify
on the latent trends by identifying which columns@f  have the measure of accuracy of the clustering by averaging the
the most energy and assign stocks to families in this fashigsercentages for each row over the whole assignment matrix.

A. The advantage of Sparsity in this setting

. o ) It is immediately evident from the assignment matrices on

We undo the permutation ambiguity by forming a conrow 4 of Figure 1 that Sparse-semiNMF learns harder assign-
fusion matrix W = HC”, where H consists of ideal ments due to the additive sparsity constraint in the objective
columns of the assignment matri®” along its rows. For (15). The increase in the sparsity comes at a cost of reducing
example, one of the rows off for Figure 1 would consist the SNR, e.g. from an SNR &16.6032dB for semiNMF to
of [0,0,0,0,1,1,1,1,0,0,0,0], which yields a large inner an SNR 0f86.5903dB for Sparse-semiNMF due to the trade-
product with columnst and5 of the assignment matrixG’”,  off in the objective. The extracted trends in row 3 of Figure
for the Sparse-semiNMF assignment matrix in Figure 1. Farare more expressive allowing the assignments to represent
example, we calculate the percentage of energy ingew9 the data more efficiently. Consequently, the columns of the
of C* in the correct positions$,, e.g. the percentage of theassignment matrix for Sparse-semiNMF are more disjoint in
energy in the columns corresponding to the trends for familn inter-familial sense, meaning that the structure of the block-
f defined by the indice$; = [4,5] , and give a score for the diagonal matrix used to generate the families is readily visible.



they mirror the underlying inter-familial disjointness of the

stock market families. Sparse-semiNMF lends itself to the
detrended Black-Scholes diffusion factor model as the model
dictates that we should only consider positive correlations in
the assignment matrix and mixed-signs trends. We conclude
that sparse-semiNMF identifies valuable clusters, worthy of

90

% of energy in correct positions

1
1.5e-3 1.5e-4 1e-4 1.5e-5 0

SNR dB
g
T
I

— | We

} -
1.5e-3 1.5e-4 1e-4 1.5e-5 0

»

(1]

Fig. 2. Box plots are used to illustrate the increase in accuracy of the
clustering as sparsity), is increased. Each plot represents the median an
interquartile range of the results. The trade off between sparsity and SN
in clearly evident, yet a decomposition with an SNR8fdB is a worthy
reconstruction.

K]

VIl. RESULTS
[4]

We run100 Monte Carlo experiments and illustrate the sta-
tistical break-down of the results in Figure 2, where we iterat?
each technique for0, 000 iterations. For each experiment we 5l
initialize our factors as in the previous section. We use the
same initial conditions for each Sparse-semiNMF tuned bifl
the different sparsity parameteksfor a single Monte Carlo 7]
run and also for semiNMF. We hagefamilies with 2 trends
per family and4 stocks per family. The trade-off between [8]
SNR and sparsity, tuned by the parametein the objective
(15) is clearly identifiable. An SNR 050dB is more than
sufficient for an accurate representation of the data. Figure 2
tells us that, as we increasethe degree of hardness of thdt0l
clustering increases making the following assignment of stocjs;
to families step easier as the dependence on latent trends,
specifically the trends for a certain family, is more clearl
defined. semiNMF learns a softer clustering which gives [&g]
more accurate representation of the data, but for clustering
purposes, Sparse-semiNMF outperforms semiNMF as there
is a clear delineation between the support of the assignmeny
matrix for the underlying trends. The disjoint support of
the weights in the assignment matrices resulting from the
application of Sparse-semiNMF with &> 1 x 10~* yields [15]
far a superior measure of the percentage of the energy in the
correct columns compared to standard semiNMF. (16]

17
VIIl. CONCLUSIONS 1

In conclusion, we have presented a new technique, Sparget
semiNMF for clustering stocks based on latent trends, so that
this information can be leveraged to minimize the risk whepg;
selecting a portfolio of holdings. We have used a detrended
diffusion model derived from the Black-Scholes option priciné°!
model as a benchmark for comparing our technigue with the

state-of-the-art. Sparse-semiNMF combines the advantages of

an intuitive factorization, with sparse assignments, to decom-
pose synthetic stock data into a meaningful assignment matrix
and latent trends matrix, where the hardness of the clustering
assignment can be tuned to reveal assignments with disjoint
support. We note that harder assignments yield factors which
were more in line with the factors used to generate the data as

consideration in the diversification of a portfolio.

ACKNOWLEDGMENT

Supported by Science Foundation Ireland and the Irish
Research Council for Science Engineering and Technology.

thank Paul O'Grady for advice.

REFERENCES

A.D. Back and A.S. Weigend. A first application of independent
component analysis to extracting structure from stock returig.
Journal of Neural System8(4):473-484, August 1997.

Fischer Black and Myron Scholes. The pricing of options and corporate
liabilities. The Journal of Political Economy1(3):637—654, May - June
1973.

Siu-Ming Cha and Lai-Wan Chan. Applying independent component
analysis to factor model in finance. [DEAL '00: Proceedings of
the Second International Conference on Intelligent Data Engineering
and Automated Learning, Data Mining, Financial Engineering, and
Intelligent Agentspages 538-544, London, UK, 2000. Springer-Verlag.
L. Chan and S. Cha. Selection of independent factor model in findmce.
The Proceedings of the Third International Conference on Independent
Component Analysis and Signal Saparati@d01.

. Ding, T. Li, and M.l. Jordan. Convex and seminonnegative matrix
factorizations. Technical Report 60428, Lawrence Berkeley National
Laboratory, 2006.

Daniel D.Lee and H.Sebastian Seung. Learning the parts of objects by
non-negative matrix factorizatiorNature 401:788-791, 1999.

D. Donoho and V. Stodden. When does non-negative matrix factorization
give a correct decomposition into parts, 2003.

K. Drakakis, S. Rickard, R. de Frein, and A. Cichocki. Analysis of
financial data using non-negative matrix factorizatioimternational
Journal of Mathematical Science§(2), June 2007.

[9] A. Hyvarinen and E. Oja. Independent component analysis: algorithms

and applicationsNeural Networks13(4-5):411-430, June 2000.

Jr. Kelly, J. A new interpretation of information rateformation Theory,
IEEE Transactions on2(3):185-189, Sep 1956.

Harry M. Markowitz. Portfolio selectionJournal of Finance 7(1):77—

91, 1952.

Harry M. Markowitz. Portfolio Selection and Efficient Diversification

of InvestmentsJohn Wiley and Sons, Inc., New York, 1959.

Paul D. O'Grady, Barak A. Pearlmutter, and Scott T. Rickard. Survey
of sparse and non-sparse methods in source separdtiternational
Journal of Imaging Systems and Technolog§(1):18-33, 2005. Blind
Source Separation and De-convolution in Imaging and Image Processing.
Alberto D. Pascual-Montano, Francisco Tirado, Pedro Carmona-Saez,
Jos Mara Carazo, and Roberto D. Pascual-Marqui. Two-way clustering
of gene expression profiles by sparse matrix factorization. C8B
Workshopspages 103-104. IEEE Computer Society, 2005.

K. Pearson. On lines and planes of closest fit to systems of points in
space.Philosophical Magazine2, 1901.

F. Sha, L. Saul, and D. Lee. Multiplicative updates for non-negative
quadratic programming in support vector machines, 2002.

Farial Shahnaz, Michael W. Berry, V. Paul Pauca, and Robert J.
Plemmons. Document clustering using honnegative matrix factorization.
Inf. Process. Manage42(2):373-386, 2006.

William F. Sharpe. Capital asset prices: A theory of market equilibrium
under conditions of risk. The Journal of Finance19(3):425-442,
September 1964.

K. Sircar and G. Papanicolaou. General black-scholes models accounting
for increased market volatility from hedging strategies, 1996.
Shangming Yang and Yi Zhang. Fast ica for online cashflow analysis.
In ISNN (2) pages 891-896, 2005.



