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This paper deals with various kinds of Sugeno's fuzzy measures which,
with the exception of probability measures, have been introduced re-

cently in the literature

gy —fuzzy measures, Shafer's belief and

plausibility functions, Zadeh's possibility measures, necessity measu-
res among others. First are recalled the existing axiomatic theories dea-
ling with large classes of fuzzy measures : Shafer's belief theory and

the triangular norm-based approach.
remarkable families of fuzzy measures

From both approaches emerge three

the probability, possibility and

necessity measures. Shafer's belief and plausibility functions can be
represented via a so-called basic probability assignment (which is no-
thing but a random set) ; triangular norm-based fuzzy measures can be

expressed in terms of a density ;

the relations existing between these

two representations, basic assignment and density, are investigated for
the various families of introduced fuzzy measures. The remainder of the
paper 1is more particularly devoted to the study of the consistency re-

lationship existing between possibilistic and probabilistic informa-

tion

A distinction is made between physical and epistemic possibility.

It is shown how to derive an epistemic possibility distribution from
statistical evidence (i.e. a given histogram) in a rather natural way.
The results are in agreement with the loose connections which exist,
according to common sense, between the probable, the possible and the

credible.
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1 - INTRODUCTION

Probability theory was the only well-
established existing approach to un-
certainty until recently. The appea-
rance of alternative approaches such

as Shafer's belief theory or Zadeh's
possibility theory has introduced new
points of view on uncertainty. Conside-
ring an event, we may try to evaluate
its probability, its feasibility, its
possibility of occurrence or how much
it seems credible for instance. All
those evaluations, performed in the
framework of the above-mentioned theo-
ries, are based on some sets of numbers,
generally normalized in some sense,
whieh model our state of knowledge and
which have to be combined in accordance
with the characteristic axioms of those
theories. As far as those models are
actually in agreement with what is usual-
ly meant by "'probable", "possible'" or
"credible", the various evaluations as
well as the basic sets of numbers

which are used cannot be completely

unrelated, even 1f strictly speaking they
represent independent informations. Indeed
according to common sense there exists
some loose connections between the pro-
bable, the possible and the credible.

This paper is an attempt to explore the-
se connections.

First, we recall the existing axiomatic
theories dealing with large classes of
Sugenc'fuzzy measures, namely Shafer's
belief theory and the triangular norm-
based approach recently proposed by

Dubois and Prade. From both approaches
emerge three remarkable families of un-
certainty measures : the probability,
possibility and necessity measures. Then,
we focus our attention on the relations
existing between the basic probability as-
signment, on which are based Shafer's be-
lief and plausibility functions, and densi-
ties which enable the convenient expression
of any uncertainty measures issued from

the triangular norm-based approach. The
following section is devoted to the study
of the consistency relations existing be-
tween possibilistic and probabilistic
information. In this discussion,
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a distinction is made between physical
possibility which concerns the feasibi-
lity of events and epistemic possibility
which is relative to their occurrence.
It is shown how to build an (epistemic)
possibility distribution from a proba-
bility density in a rather natural way.
Concluding remarks emphasize the results
which have been obtained, their inte-
rest and stress open questions.

2 - TWO_AXIOMATIC APPROACHES TO THE
MODELLING OF UNCERTAINTY

In 1972, Sugeno [20] introduced the
concept of a fuzzy measure in order to
depart from the too rigid framework of
probability theory. A fuzzy measure is

a set function whose characteristic pro-
perty is only monotonicity rather than
additivity. More precisely, assuming
that the universe X is finite for sake
of simplicity (in this paper, X will

be always supposed to be finite except
explicit statement of the contrary), a
fuzzy measure is a set function g from
an algebra Yt (e.g. the set T (X) of sub-
sets of X) defined on X to the real in-
terval [0,1]1, such that

i) g @) =0 ; ii) g(X) =1 (1)
iii) vAe&, WBeok, if AcB, then
g(A) < g(B)
The fol lowing inequalities hold

YVAedk , WBeA, g(AnB) £ min (g(A),q(B)) (2)
vAek , wBest, g(AB) » max (g(A),g(B)) (3)
The characteristic axioms and proper-

ties of two worth-considering classes
of fuzzy measures are now recalled.

2.1 - Triangular norm-based approach
to fuzzy measures.

Only basic results are given here ; for
further details the reader is referred
to Prade [151, Dubois [4] and more par-
ticularly to Dubois and Prade [8].

Axioms (1) are very general and may be
particularized in various ways in or-
der to obtain noticeable classes of
fuzzy measures. The following axiom
seems rather natural

JYAeR, WBek, if ApB = @, then
«g(AyB) = g(A) * g(B) (4)

where * is some operator under which
[0,1] is closed. (4) expresses that the
grade of uncertainty of disjoint events
A and B only depends upon the grade of
uncertainty of A and the grade of un-
certainty of B.

The algebraic structure of & induces com-
patibility constraints on * which lead

to choose * among the triangular conorms.
A triangular conorm (see Schweizer and
Sklar [17])is a two place real-valued
function whose domain is the unit square
[0,1] x [0,11, and which satisfies the
following conditions

i)1*1=130%a=a*0 =a (boundary
conditions)

ii) a * b £ ¢ * d whenever a £ ¢ and b £ d
(monotonicity)

iii) a * b = b * a (symmetry) )

iv) a * (b ¥ ¢) = (a * b) * c (associativity)

The main triangular conorms are the ma-
ximum operator (max (a,b)), the probabi-
listic sum (a+b-a.b), the bounded sum,

min (l,a+b), and the so-called TY ope-
rator (defined by the boundary condi- 5
tions and by TY (a,b) = 1, ¥(a,b)e(0,1]°).
The following inequalities hold between
them

¥(a,b)e [0,177, _ 5

max(a,b) ¢ a+b-a.b & min(1l,a+b) { T W(a,b) (6)

Moreover, every conorm * is such that

¥(a,b)& [0,1]%, max (a,b)ga*{T* (a,b)  (7)
W

An interesting consequence of (4) is
vAedk, g(A) * g(A) = 1 (8)

A conorm-based set function g (i.e. sa-
tisfying (4) is uniquely defined by the
knowledge of the conorm * and the va-
lues of g over the set of singletons of
X. Indeed, let X = {x1,...,xp}, A =
%Xh}""xipg and g; = g(xi}), then

g(A) =g ( \4/ {Xi.% ) = 94 * o ¥y (9)
.j:]-sp = P

The normalization condition g(X)=1 en-
tails

gl*...*gn =t (lo)

The set of numbers {gigi 21.n Will be
- ’

called the '"density" attached to the
set function g. Obviously, (9) is very
interesting from a computational point
of view.

Choosing the bounded sum for *, (4)
yields

if AnB =0,
then g(AyB) = min(1,g(A) + g(B)) (11)

(9) and (10) give respectively

X € A
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and

(13)

iME
;o
WV
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letting this latter expression be an
equality, we clearly recover probabili-
ty measures.

The probabilistic sum does not lead to
a well-known family of set functions.
However, in this case (8) is equivalent
to

vAek , max (g(A),g(R)) = 1 (14)

Similarly, letting a * b = max (a,b),
(4) yie lds

vaeh , wBek , g(AyB) = max (g(A),g(B)) (15)

(It can be shown that (15) is effecti-
vely equivalent to (4) with * = max, i.
e. the condition AnB = @ is not requi-
red in this case). We recognize Zadeh's
possibility measures [23]. Possibility
measures satisfy (14) also and (10) reads

max g; = 1 (16)

i=1l,n

and (9) yields, using the notation IV for
possibility measures

vAed, TI(A) = max TI({x]}) (17)
XeA

The density is usually called possibi-
lity distribution and (17) is trivially
extended when X =R by

TI(A) = sup 7¢(x) (18)
XeA

where the possibility distribution x
is a mapping from R to [0,1] such that
sup w(x) = 1.

X ER

Note that the way of estimating the pos-
sibility of an event, which is only ba-
sed on the most favorable case (it
strongly departs from probability calcu-
lus where all the favorable cases are
cumulated) is in agreement with the idea
of possibility which means feasibility
or "happenability". Besides, (14) ex-
presses that at least one of two contra-
dictory well-defined events must be pos-
sible, which is rather natural.

Sugeno's g, -fuzzy measures [20] whose
characteristic axiom is

YAeh ,¥Bed , if AnB = @, then

%}\(AUB) = gx(A)+g)\ (B)+ )\.gf/\(A).g >‘<B)l

with X> -1, correspond to the parame-
tered conorm

a*p = min (l,a+b+ da.b) =
min (1, 71 (y(a) + (b)) (20)

where w(t) = Ln(l+ Mt)

provided that the normalization condi-
tion

| i (l+)gi) =1+ (21)

i=1,n

holds. As pointed out by Wierzchoh L 211
q%g> is nothing but a probability
measure, with 1

¥~y Y

If g is a fuzzy measure, the set func-
tion g' defined by

vaeR , g'(A) = 1 - g(&) (22)

is also a fuzzy measure ; (22) expres-
ses the duality existing between g and
g'. If g is a conorm-based set function
satisfying (4), then the characteristic
axiom of the dual measure g' is

vaek , wedl , if AUB = X,

then g' (AnB) = g' (A)L g' (B) e
where & denotes the triangular norm dual
of *, defined by

adb=1- (l-a)* (1-b).

A triangular norm satisfies (5) where
the boundary conditions are replaced by

0. L0=08 5 lda=adlzs (24)

The triangular norms dual of the follo-
wing concrms maximum, probabilistic
sum, bounded sum, T; are respectively
the minimum operator (alb=min(a,b)),
the product, the so called Tm operator
(Th(a,b) = max(0,a+b-1)) and T, (defi-
ned bg (24) and Ty(a,b) = 0, ¥ (a,b)e
[0,1)2). We have

¥(a,b) €[ 0,112,

Tw(a,b)gmax(o,am—l) £ a.b L min(a,b) (25)
and for any triangular norm L :

¥(a,b) €[0,11%, T (a,b)¢ albgmin (a,b)(26)
Properties of trianqular norm-based set
functions (i.e. satisfying (23)) can be

easily deduced by duality from'those of
conorm-based set functions. We have now

vAek , g' (AL g'(F) =0 (27)
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|
v =gl M (= §xd )
: i x¢ A t 3

=g B NP 1% o (28)
i i

1
where A = %xil,?f.,xipj ard g'i =
g (x- §xgd )= 1 - g3 4F 4933 4 2 1,n

is the density attached to the conorm-
based set function g, dual of g'.
g'(g)= 0 entails

gl e el g7 =0 (29)

Choosing ‘L = T yields

if AyB = X, then
q'(ApB) = max(0,g' (A) + g'(B)-1) (30)

the normalization condition is

n
Z . g'.&n-1 (31)
i=1 *
while (27) reads
g'(A) + g'(K)g 1 (32)

Probability measures obviously satisfy
(30) and letting (31) be an equality
yields their normalization condition.

Probability measures are pointwisely
their own dual in the transformation
(22)s

Choosing L = product does not yield so-
mething very well-known, in spite of
its simplicity. Then, (27) is equiva-
lent to

\'/Aeﬁ, min(g'(A), g'(A)) =0 (33)
Choosing L = min, (23) is equivalent to

yaet , wBeok , g'(ApB) = min(g'(A),qg'(B))
(34)

Fuzzy measures satisfying (34) are dual
of possibility measures, and as sugges-
ted by Dubois and Prade [ 7] can be na-
med "necessity measures" since the ne-
cessity g'(A), denoted in the following
by N(A), of an event A is the grade of
impossibility of the opposite event,
1-TT(A) from (22) whereT is the dual of
N. (29) reads

min N(X- §xi§ ) =0 (35)

i=1l,n

and is equivalent to (16) since
N(X- §%33 ) = 1-TTC§%;3 ) Necessity mea-

sures also satisfy (33) ; (33) entails

that at most one of two contradictory”
well-defined events may be somewhat ne-
cessary, which is rather natural. By
duality, (17) yields

vaelk , N(A) = min N(X- {x3) (36)
x¢A

with N(X- $x3 ) = 1 - TT(§x3)
and (18) corresponds to

N(A) = inf{l - K(x)é (37)
X¢A ’

Lastly, because of (22) and (33) we ha-
ve the entailment

N(A) >0 =>N(R) =0 <= T(A) = 1 (38)

which expresses that an event somewhat
necessary must be completely possible.
Then, we have

vaedt , N(p) £ T(A) (39)

The dual of a g, -fuzzy measure is a
I p - fuzzy measure with p = - T&IX
(Prade [14], Dubois Prade [ 7], In other
words, we have

vAeH | _ox (A) =1 - A 40
3 g 1+x(> g, (A (40)

2.2 -Shafer's theory of evidence.

Independently from the de?elopment of
fuzzy set and possibility theory,
Shafer [19] has proposed a theory of
evidence where he has introduced the
mathematical concept of belief func-
tion. See [121 and [22] for a discus-
sion.

A belief function is a set function Bel
from P (X) to [ 0,11 such that

"i) Bel(@) = 0 ; ii) Bel(X) =1

iii) ¥melN, VA, € X, izl,m,

m m
Bel (\J A.) 3> _Bel (A) - > Bel(AnA.)
i 1 : 1 ST LA |
i=1 i=1 1<)
m+1 n

+ ..+ (=1) Bel (M Ai)

izl (41)
(41) implies (1) and then a belief func-
tion is a particular case of Sugeno's
fuzzy measures. For m = 2, (41) yields
YAcX, ¥B c X,
Bel (AyB) > Bel(A) 4 Bel(B) - Bel(AnB) (42)
then, ¥ AcX, ¥BeX

Bel(A B) ;> max (0,Bel(A)+Bel(B)-1)
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and Bel (ApnB)¢ min (Bel(A),Bel(B)) (43)
and
YA < X , Bel(A) +Bel (A) <1 (44)

shafer [19] has shown that any belief

function is uniquely defined through

the specification of a mapping m from

Q (X) to [0,1] called "basic probabi-

lity assignment", satisfying

m@) =0 3 2 n(A) =1 (45)
AcX

then, we have

YA < X , Bel(A) = L m(B) (46)
BcA

Conversely, m is obtained from Bel by

L (-1)"MBlge1(a) (47)

Bc A

¥VAc X , m(A) =

where |Al denotes the cardinality of
the set A.

A so-called commonality function Q can
be defined [191 from m by

;E::, m(B) (48)

BcX

AcB
Note that Q(@) = 1. Bel can be expres-
sed directly in terms of Q

YA < X, Bel(A) = L_ {= 1)'BI Q)
BcA

YA < X, Q(A) =

(49)

Thus, Q provides another way of spe-
cifying a belief function.

A subset A of X such that m(A) > 0 is
called a focal element of the belief
function defined through m. Probabili-
ty measures are particular cases of
belief functions, their focal elements
are singletons. "m(A) measures the be-
lief that one commits exactly to A, not
the total belief that one commits to A"
(shafer [191). The set of focal elements
may be thought as the set of the possi-
ble localizations of the truth, probabi-
listically weighted by m.

By assigning basic probabilities to
subsets which are not singletons, the
basig probabilities and hence the de-
grees; of belief of smaller subsets
(which correspond to more precise lo-
calizations of the eventual truth) are
diminished because of the constraint
(45). Note that (46) can be written

<
VA c X , Bel(A) = £ m(B). (Inf Xp(x))
Bc X xeB

(50)

where Xp is the characteristic func-
tion of the subset A. Thus, Bel(A) ap-
pears to be the expectation that the
truth lies certainly in A, calculated
from the set of prDbablllSth weights
$m(B), Be X and B # #3 attached to
the possible localizations of the truth,
since inf X (x) = 1 if Bc A and is ze-

x€B
ro otherwise.
If Bel is a belief function, the set

function Pl defined by duality is cal-
led a plausibility function

WA <X , PL(A) = 1 - Bel (A) (51)

Clearly, a plausibility function is a
fuzzy measure in the sense of Sugeno.

Perhaps, credibility functions would
be a better name for belief functions
since '"credible" sounds like "plausi-
ble'". Moreover, in the evidential vo-
cabulary, the more credible an event
is, the less plausible is the opposite
event and conversely.

We have

. YAc X, Bc X,
P1(AyB) L PL(A) + P1(B) - P1(ApB) (52)

. YA < X, ¥Bc X, max(P1(A),P1(B))< P1(AyB)

ant P1(AyB) ¢ min(1,P1(A)+P1(B)) (53)
. YA C X, PL(A) + PL(R) » (54)
and then YA ¢ X, P1(A) 7 Bel(A) (55)

P1 is also uniquely characterized by
means of the basic probability assign-
ment m

YA c X, PL(A) = L;a_ m(B) (56)

B:BAAFD

Note that P1 ( §x3) =0Q ( §x3) ;
(56) can be written

e
YA < X, P1(A) = £ m(B).(sup X, (x))
BeX xeB

(57)

Thus, P1(A) appears to be the expecta-
tion that the truth lies possibly in
A since sup XA (x) =1 if ApB £ 0
xeB
and is zero otherwise.

Shafer [19] has specially studied se-
veral particular cases of belief func-
tions, among others the simple support
functions and the consonant support
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functions.

A simple support function is defined by,
given YeX (Y £ @), sel0,1]

0if APY
WA c'X, Bel(A) = {s if A DY and A # X (58)
1 if A = X

Its basic probability assignment is

such that m(Y) = s ;3 m(¥y) = 1 - s and
m(A) = 0 if A # Y and A # X. The be-
lief function defined by (58) corres-
ponds to a situation where the possible
localization of the truth is non-ambi-
guous and where the statement "the truth
lies in Y" is corroborated to the degree
s. When s = 1, our certainty that the
truth lies in Y is total.

A consonant support function is a be-

lief function whose focal elements are
nested, i.e. its focal elements can be
arranged in order so that each is con-
tained in the following one :

A] €Ay €... CAp and if A £ Aj, then

m(A) = 0. Simple support functions are
particular cases of consonance. In case
of consonance, all the possible loca-
lizations of the truth are not conflic-
ting because they are nested. It can be
easily shown that a consonant support
function is nothing but a necessity
measure and then satisfies (34) and
conversely a necessity measure is al-
ways a consonant support function.

Note that consonant support functions
were considered at length by the En-
glish economist Shackle [181] more than
twenty years ago ; Shackle's theory was
based on the "grade of potential sur-
prize" attached to an event which exact-
ly corresponds to the necessity of the
opposite event. Then, possibility mea-
sures are particular cases of plausi-
bility functions. Thus if Pl is atta-
ched to a basic probability assignment
m whose focal elements are nested, we
have

VA c X, A# @, P1(A) = max X (x)
x & A
with 7 (x) = P1( §x3 ). £59)

It can be shown [19] that the commona-
. lity function in case of consonance is

%

# given by
VAC X ,A# B, Q(A) = min 7 (x) (60)

x € A

Probability measures are the only be-
lief functions which are also plausi-
bility functions, but probability is

not consonant ! Indeed the basic proba--
bility assignment underlying a probabi-
lity measure completely departs from the
one underlying a possibility measure :
in the first case possible localizations
of the truth are precise (they corres-
pond to singletons) and are associated
with frequencies, in the latter case,
possible localizations of truth are mo-
re or less imprecise but consonant.

Banon [ 17 proved that for x>0, a gy -
fuzzy measure is a belief function ; no-
ticing that the mapping from (-1,0] to
[0,+%) defined by +—s p = IA> is

+
involutive and one-to-one and owing to
formula (40), it can be easily deduced
that g» - fuzzy measures for -1 <r & 0
are plausibility functions.

Besides, it has been also shown (Prade
(151, Dubois, Prade [8]) that a fuzzy
measure which satisfies (23) for the
triangular norm'product' is a belief
function.

Thus, from both approaches --triangular
norm based approach and belief function
approach-- three remarkable families of
fuzzy measures emerge the probabili-
ty, the possibility and the necessity
measures.

3 - BASIC PROBABILITY ASSIGNMENT AND
DENSITY

3.1.- Some examples

A belief or a plausibility function can
be build from a basic probability as-
signment which is a set-function and
thus contrasts with a density. Prac-
tically speaking, on a set X whose car-
dinality is n, we peed 2" - 2 (taking
into account (45)) values in order to
define a belief or a plausibility mea-
sure from a basic probability assign-
ment while n-1 (taking into account the
normalization condition) values are
sufficient to define a fuzzy measure
which can be expressed in terms of a
density.

Several examples of belief or plausi-
bility functions, which are also fuzzy
measures satisfying (4) or (23) and
which can be defined in terms of a den-
sity consequently, have been given in
the precedent section. Then, in such ca-
ses, the set of values §m(A), AcX 3

can be estimated out of the set

i gl $xi3 ) = g;, i:l,ng only, and re-

ciprocally owing to (47) and (51). Let
us give some results

. for a probability measure
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(9; if A= gxig
m(A) = 3 (61)

0 otherwise

for a g, -fuzzy measure (Banon [1]),

al-1
mA) = A ] g (62)

where] denotes the product.

for a fuzzy measure satisfying (23)
with the norm product (Dubois, Prade
[81).

m(A) :ﬁgi - ﬁ (l"gi) (63)
x; € A xiEK

Let us examine the case of possibility
and necessity measures more particular-
ly. Their focal elements are nested ;
then, we can arrange a nested sequence

Al = ixl; ’ A2 = le, xz} yoeooy
A = §xl, xz,...,xig yoeees A= X
such that VYA £ AL m(A) = 0.

However, it is possible that for some
i, m(A;) = 0. With the notation
mj = m%Ai), izl,n and gty = W(xi)

= T { Xi} ) where 1| is the possibility

measure defined from m; applying (56) ,
we get

. o=m; + My + ... +m_ =1 (from (45)

l 1 % n‘ since m(@)=0)
", = My + «ou + M
»Rln = mn

¥i=1,n ﬁﬁ = 2 mj (64)

¥i = 1,n ) moo= T - G (65)
with 7tn+l = 0 and 5?1 = 1,

Taking into account m (@) = 0, the
normalization condition max fri =1

i
is equivalent to this of m (i.e.(45)).
For a simple support function defined
by (58) and expressed in terms of 4

173

via (36), we have
if x, € Y
i

?l

N, =

i .

1-s if Xi# Y

A complete investigation of the links
between the triangular norm approach
and Shafer's theory is still to be car-
ried out.

(66)

3.2. -About Dempter's rule and the
condition m(@) = 0 [16]

A possibility distribution may be ge-
nerally viewed as a fuzzy set (Zadeh
[23]) ; as noticed by Goodman [9],

L10] and by Nguyen [13], a basic pro-
bability assignment defines a random
set. Goodman [91, [10] proves that a
fuzzy set is equivalent to a class of
random sets ; when X is finite, this
equivalence corresponds to a linear sys-
tem of n+l linear equations, where M is
the membership function of the fuzzy
set, ( W(x.) is the plausibility of 3jx.},
see (56)) : *

‘ }L(Xi) = 2 m(A) i=l,n

AcC X

AS 93 (67)
1 = L m(A)
AcX

It is a linear system with coeffi-
cients 0 or 1, in 2" unknowns ; here,
m(@#) is not apriori supposed to be ze-
ro. In case of consonance, this linear
system (67) reduces to (64) with

L F(xi), and then m can be uni-

quely determined from w .

As noticed by Goodman [10], Dempster's
rule of combination of evidence [2]
(191, corresponds to the intersection
of two statistically independent ran-
dom sets of the same base space. Given
two basic probability assignments my

and mZ,Dempster's rule enables to build

a basic probability assignment m corres-
ponding to their intersection [ 191, de-
fined by m(g) = 0 and

/f ' ml(Ai).mZ(Bj)
1,]
A.AB. = A
m(A) = N7 (68)
1- ;E;j ml(Ai)'mZ(Bj)
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It is easy to check that Z n(A)=1.
A <X

Thus, Dempster's rule corresponds to

the intersection of two satistically in-

dependent random sets of the same base

space, after renormalization.

As pointed out by Dempster [2 ] and Sha-
fer [191, the combination is more easi-
ly expressed in terms of commonality
functions since we have
Q,(A). Q,(A)
VA < X, Q(A) = ———— (69)
K

where K denotes the denominator of
fraction (68).

Zadeh [24] has questioned the validity
of the normalization of (68). It is
worth noticing that the problem of nor-
malization vanishes as soon as we admit
that a basic probability assigned to
the empty set @ may be non zero and

we define the "intersection" of my and
m, by

2
H X
m (A) = E ml(Ai).mz(Bj) (70)
i,
A, B =A
It is easy to check we have gz:;m*(A)
c

= 1, even if ml(ﬂ) # 0 or mz(ﬂ) £ 0.

In the remainder of this section 3.2,

the normalization condition of a basic

probability assignment m will be only

given by m(A) = 1 and the re-
A< X

quirement m(B) = 0 is dropped. Keeping

definition (48) unchanged, (69) becomes

YA € X, Q(A) = 03(A). Q,(A) (71)

Taking into account (50), Bel(A) ap-
pears to be the expectation that the
truth lies certainly in A, computed from
the set of probabilistic weights 3} m(B),
B < X and B # @ 3 attached to the possi-
ble localizations of the truth.

According to this interpretation in
terms of expectation, when m(@) may be
non-zero, (46) must be modified into

YA < X, Bel(A) = m(B) (72)

P/

B
B

LS
=2 >

(56) remains unchanged, but (51) be-
comes

WA « X, P1(A) + Bel(R) = 1 - m(g@) (73)

However, we keep YA < X, P1(A) > Bel(A). AS
soon as m(@) # 0, Bel and Pl are no
longer normalized

Bel(X) <1 ; PL(X)L 1 (74)

We still have Bel(@) and P1(@) equal to
zero.

1f the empty subset of X has a non-zero
probabilistic weight, it means that a
possible localization of the truth is
outside of X, then it may seem natural
that the credibility and plausibil-

ity that the truth lies din X are strict=
ly less than 1 ; then, (73) means that
'A non plausible' does not entail that
A is completely credible.

Let us consider the particular case of

consonance . Due to (64), m(@#) = 0 if

and only if % is normalized (since 2 (x,)

= max W(x) = 1 - m(@).m(@#) is the com-"
x &€ X

complement to 1 of the height of the

fuzzy set whose membership function is

the possibility distribution 5T .

From (73) and (59), then we get

VA ¢ X, A# @, Bel(A) = min_ {(max 5¢(x))- %(x)]
xeA xe€X
(75)

Let my and m, be two consonant basic

probability assignments whose focal ele-
ments are respectively the increasing
nested sequences AlC . CAm and

B;C ... CB, (if ml(ﬂ) # 0, we add
AD =@ ; if m, (d) # 0, we add

BD = @). The combination of my and m,

by Dempster's rule does usually yield a
basic probability assignment m which is
not consonant since m is non-zero only
on the subsets Air\Bj’ =l oM o5 Jalel

which are not nested generally.

However, we have from (71)
bx € X, Q(§x3) =0 (§x3). 0, (§x3) (76)

i.e. since Q; ($x3) = P1; ( gxg )
=%, (x), i=1,2, (76) expresses that

x —>Q ( éxg ) is the membership func-
tion of a fuzzy set which is the inter-
section (performed using product) of
the fuzzy sets whose membership func-
tions are respectively 7{1 and 7{2.

Consonance is lost and moreover

30 (§x3), xeX3 does not represent

all the information. Indeed the number
of unknowns is generally greater than

the number of equations in the system
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(67)
Q ( §x3} ) = Z m(A)
Ac X
R
1 = > m(A).
A c X

If my and m,

functions (a particular case of conso-
nance) in the sense of (58) with para-
meter s and s, and reference set Yl

are two simple support

*
and Y, respectively, m (which is equal
tom If YN Y, # @) is defined by

S,.8

1

*
m (YlnYZ)

1°72
m* (Yl) = sl(l—sz)
" (77)
m (Yz) = sz(l—sl)
*
m  (X) = (1-s;)(1-s,)
b =0 Af B# YymTps¥{iTysk

when Y # Yy, Y, & Yy, vlgé ¥y

Note that this result is no longer con-
sonant since Y, M Y2y Yl’ Y,, X are
nested if and only 1f Y1 an% Y2 are nes-

ted which is not assumed in (77).
However m* can still be equivalently
represented by means of a fuzzy set who-
se membership m is defined by (67) be-
cause in this case, the linear system
(67) has the same number of equations
and of unknowns.

We have
)A.(X) = 3 if XEYlnYzyf @
M.(X) = l—S2 if XeYlnYz -
K(x) = 1—31 if xeYlnY2

m(x) = (l-sl)(l—sz) if x&VinVé

which is consistent with the intersection of
fezzy sets defined by the product of
membership grades (since ¢ 1 and X ,,

the possibility distributions which are
attached respectively to my and m, and

which may be regarded as fuzzy sets are
defined by (66)). g is not normalized
if Y1 N Y2 = d.

The two intended purposes of this sec-

tion were

1) to question the normalization condi-
tion m(@#) = 0 of a basic probability
assignment m and to study its impli-
cations for Dempster's rule of combi-
nation especially.

2) to show in what way Dempster's rule
of combination is related to fuzzy
set intersection based on product. In
that perspective a natural question
is raised what combination rule
would be related to fuzzy set inter-
section based on min operation (for
instance) ? Normalization of fuzzy
sets and normalization of basic pro-
bality assignments appear to be clear-
ly related.

3.3~ Approximating a belief or a
plausibility function

Sometimes, it may be interesting to
approximate a belief function Bel or a
plausibility function Pl, whose basic
probability assignment m cannot be re-
duced to an equivalent density, by a
fuzzy measure which can be expressed in
terms of a density. It can be carried
out in several ways (Prade [14]) :

. by means of a probability measure.
By "equidistributing" the values of
the basic probability assignment, it
is easy to build the probability den-
sity N

¥xeX, p(x) = 2 A .m() (79)
1B

B >3

The probability measure defined by

Prob(A) = 2 p(x) satisfies the fol-
x € A

lowing inequalities :

YA < X, Bel(A) € Prob(A) £ PI(A) (80)

which can be checked by noticing that

Prob(A) = ;E:: m(B) + ;g:: ;E:::gérm(B)

Bc A xe&A B >4}

Bt A

5 ; B em) (81)

gex Bl

N o IB n K,
and P1(A) = Prob(A) + 2 i1 -m(B)
BnAqf 7}

/]

(82)

(80) expresses in what way Prob appro-
ximates Bel and Pl. When m is a proba-
bility density (i.e. m(A) = 0 as soon
as A is not a singleton), we have ¥Yx e X,

p(x) = m( 2x3).



176 D. Dubois and H. Prade

by means of a possibility and a ne-
cessity measure
We have the inequality, VYAc X,

™

P1(A) = (sup X3(x).m(B)) >
BcX xeA
sup (;z__ XB(x)-m(B)) =sup P1 (§x3)
xeA BeX xeA

(83)

The right part of (83) is normalized if
and only if 3 xe¢X, P1 ( §x3 ) = 1,

1% 8%
/\ B # D (84)

B < X
m(B) # 0

$P1( $x} ), xe X} can be then consi-
dered as the possibility distribution
of a possibility measure Pos satisfying
YAc X ,P1(A) > Pos(A) ; if the basic
probability assignment m is consonant,
then the plausibility measure and the
possibility measure are equal.The con-
dition (84) expresses that there exists
some consistency among all the possible
localizations of the truth, since they
have a common non-empty part. Note that
the basic probability assignment m under-
lying a probability measure does not
satisfy (84) generally, since then m
takes non-zero values only on single-
tons ; thus, a probability measure can-
not be "approximated" by a possibility
measure, using (83).

Dually, we have, taking into account

Bel(A) = £ m(B) = £ _ (inf Xz (x)).m(B))

BoA BecX xeA
(85)

The inequality

YA < X, Bel(A) £ inf ( § 5 (x).m(B))
x€A BcX
= inf (1-P1 ( §x3)) (86)
xeA
if (84) holds, in the right part of (86)
we recognize the necessity Nes(A) of A
where Nes is the necessity measure atta-

ched to the possibility distribution
§PLC§{xy ), xeX} .

Then we have, if and only if (84) is
satisfied :

YA <X, 0 £ Bel(A) £ Nes(A) ¢ Pos(A) < P1(A)<1
(87)

Thus, as soon as (84) holds, if Bel(A)>0,

then P1(A) = 1. (cf. (38)).

The inequality (87) expresses the con-

sistency of the possibility and the ne-
cessity measures with the plausibility

and the belief functions.

Besides, it is easy to check that the
probability measure which derives via
(81) from the basic probability assign-
ment of Bel and Pl does not satisfy,

for all A c X,Nes(A) £ Prob(A) £ Pos(A),
where Pos and Nes are defined by (83)
and (86). It shows that the two ways of
approximating a belief or a plausibili-
ty function presented here correspond

to different points of viewe.

4 - CONSISTENT PROBABILITY AND POSSI-
BILITY

4.1.Preliminary discussion

An event A may be considered from se-
veral points of view : what is its pos-
sibility, its probability or its neces-
sity for instance ? Then, we are faced
with the question of the relationship
between the probable and the possible
(or between the probable and the neces-
sary) since intuitively, it seems such
a link exists, even if it is vague.

Let us start with an example used by
Zadeh [23] in his introductory paper

on possibility theory. Consider the
statement "Hans eats u eggs for break-
fast" where u takes values in the set
i1, 2, 3, 4, ...} . The following ta-
ble, taken from [23], gives the possi-
bility Pos ( §$x3) (corresponding here

to the "degree of ease" with which Hans
is able to eat x eggs for breakfast)
and the probability ProbU ( }xs ) of the

same event, for various values x of the
variable u.

X 1 2 3 4 5 6 7 8

Pos  (x3) 1 1 1 1 0.8 0.6 0.4 0.2

ProbU (§x3)0.1 0.8 0.1 © 0 0 0 0

According to Zadeh [23 ] the degree of
consistency of the probability densi-
ty p; = Prob ( ixig )y, i=1,n with the
possibility distribution v, = Posu(iﬁgb

i=1, n is defined by

X :Li n’i.pi (88)

This consistency is all the best thaty
is closer to 1. y = 1 if and only if

7fi = 1 as soon as P; > 0. According to
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Zadeh [23 1 "it is an approximate for-
malization of the heuristic observa-

tion that a lessening of the possibi-
lity ot an event tends to lessen its

probability - but not vice-versa".

In fact, we have to make a distinction
between two different uses of the word
"possible". The first one corresponds
to "what can be done", the second one
to "what may happen". This dichotomy
is reminding of the difference between
de re modality and de dicto modality
(see Hacking [111). Thus, we have to
distinguish between, on the one hand
"It is possible for Hans to eat four
eggs for breakfast" and on the other
hand "It is possible that Hans eats
three eggs for breakfast". The first
example deals with Hans' ability and
the second one with what may actually
happen. It must be clear that what may
happen can be done - but not vice-ver-
sa. Thus, in our example, Hans is de-
finitely able to eat four eggs for
breakfast, although it never happened
(at least if the probability py is
strictly zero). The values of possibi-
lities which are given here correspond
to what Hans is able to do, but not to
what he may do ; these values are a com-
plementary information to the frequency
histogram of the number of eggs Hans ate
breakfast which tells us about Hans'
actual behavior. (88) estimates the
consistency between Hans' behavior and
Hans' ability.

Beside the possibility degrees repre-
senting Hans' ability, it may be inte-
resting to estimate the possibility

that a given event happens, for ins-
tance that Hans eats x eggs for break-
fast ; that latter possibility must be
less or equal to the degree of ease

with which the event can happen, since
what happens can be done. If we con-
sider only $0-13 - valued possibilities,
in our example, the only possible events
which may actually happen taking only
into account the available frequency
information, are that Hans eats one,

two or three eggs for breakfast, while
from four eggs the possibility will

be zero. The problem we are facing he-
re is the "possibilistic" interpreta-
tion of histograms concurrently to the
usual probabilistic interpretation. Such
an interpretation would enable to ans-
wer the question "How many eggs does
fans eat for breakfast ?" which calls
for a possibility distribution (which
may be viewed as a fuzzy number) rather
than for a precise number with its at-
tached probability.

4.2. Interpretation of Histograms

Shackle [18 1] interpreted the possibi-

lity of an event as the absence of sur-
prise felt when it occurs. An event which
often occurs is not very surprising and
then it seems very possible that it hap-
pens ; on the other hand, events which
are not very possible do not often occur
and are surprising. Then, by an inducti-
ve reasoning, we are conducted to suppo-
se that if an event seldom occurs, it
must be less possible than events which
often occur. The "possibilistic" inter-
pretation of histograms may be carried
out in several ways, at first glance,

at least.

Let $h(x)e RT , x eX} be an histogram.
It is supposed that the events which

are collected occurred in the same cir-
cumstances and that their amount is suf-
ficient in order to equalize frequencies
and probabilities.

Then, a quite simple way to deduce a
possibility distribution is' to normalize
the height of the histogram :

h(x)
sup h(x)
xeX

¥x e X, ﬂh(X) = 5 (89)

thus, the most frequent event receives
a degree of possibility equal to 1
(Dubois, Prade [51, [71). By equalizing
frequencies and probabilities, we get

¥x e X, ph(x) = —;—(X')j(—xy (90)

x € X

In the lack of any information other
than the histogram, the possibility of
occurrence of an elementary event is
thus supposed to be directly linked
with its number of occurrences. From
(89) and (90), we get

¥x € X, ﬂh(_X) >ph(><) (91)

This inequality agrees with the intui-
tive idea according to which the more
probable an event is, the more possible
we must consider its occurrence. Howe-
ver, (91) concerns elementary events
only ; the extension of such an inequa-
lity to any events (i.e. to events
which are not necessarily represented
by singletons) depends on the shape

of the histogram. Indeed, if Posh and

Probh respectively denote the possibi-

lity measure and the probability mea-
sure built from "y, and Pps the follo-

wing inequality does not hold for any
subset A of X

Pos, (A) = sup T, (x) 3 Prob, (A) = L P, (x)

x€eA X €A (92)
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where h is any positive real-valued map-
ping.
h(x)

]Xh(x)dx

(92) holds for any A < X, for instance,

If % =R and p,(x) = , then

with h(x)

% 1 if xelcX
0 otherwise

with h(x) = max(U,a(l—%)) (a>0 and

b>0) or with h(x) = a e_bX (a >0,
b > 0), but not with h(x) = max(0,a- VX)

(a > 0).

If we want to have the inequality (92)
for any A < X, we have to look for pos-
sibility distributions which are consis-
tent with the density (90) in the sense
of (92). The following result (Dubois
[3]) gives a sufficient condition in
order that a possibility distribution

R be consistent with a probability
density p. Consider the subsets of X de-
fined by

Vo € [Q,swp p], C (&) = §xeX, p(x) <=3 (93)
They are nested, ¥V g>«x , C (8)>C (x).

Then, if ¥xe X, X(x) 3 Prob(C{p(x)))

= ;; p(t) (94)

te C(p(x))

& is consistent with p.
Indeed, YA « X,
Pos(A) = sup st(x) ) sup Prob(C(p(x)))
X €A XeA
*
= Prob(C(et ))
* *
where o = sup p(x). We have A € C( )
x €A
and then ¥ A < X, Pos(A) 3 Prob(A).

Moreover, we check that sup prd%(c[p[x)])
x € X

= Prob(C(sup p)) =1 Q.E.D.

But the condition (94) is not necessa-
ry ; however, it becomes necessary if
we demand X and p to have "similar"
shapes, i.e. more precisely,

¥x € X, ¥x'€ X,
T Yy Tx') &=

Indeed, we have then

p(x)7 p(x") (95)

¥x @ X, C(p(x)) = §x'e X,p(x') g p(X)}‘
= %x'é X, ®ix') £ ®(xIE 3

x))) and because

then, ®(x) = (
> Prob(C(p(x))),

Pos(
of (92) Pos(C(p(x)
which yields (94).

C(p
))

Among the possibility distributions
which satisfy (94), hence are consis-
tent with a probability density p in
the sense of (92), there exists one
whose interpretation in terms of neces-
sity is remarkable. It is the topic of
the remainder of this section.

First, consider the example of a game
of heads or tails with a biased coin.
We have X = )xl = heads, x, = tails 3

1
and 1 2.pl > 5 2Py = 1
Py = Prob( § Xi} ), i=1,2. If heads

are the most frequent outcomes, we may
say that there is some necessity to get
heads or that there is some impossibili-
ty to get tails. An estimation, which
may seem to be natural, of this necessi-
ty ny is the excess of probability PPy

Py > 0 where

in favor of heads ; the possibility 7#2
to get tails will be then equal to l—nl

(the necessity of an event corresponds
to the impossibility of the opposite
event) ; lastly, we should have %l = L

and n, = 0 where %l is the possibility
corresponding to heads and n, the ne-

cessity corresponding to tails (since
the excess of probability is not in fa-
vor of Xy and in any cases, we must
have (see (38)) n; > 0 = X, o= ). If
Py = P, = %, we get ny = ny = 0 and
Ny = Xy =
heads or tails are equally possible and
there is no necessity that onecomes out
rather than the other, which is natural
since probabilities are "equidistribu-
ted". Necessity appears as soon as we
are out of the domain of pure random-
ness. If pl:l and pZ:O, we have nl:l,

1, i.e. if the coin is fair,

nZ:O and xl:l, 9(2:0 which agree with
the fact the only possible outcomes are
heads.

Let us generalize this approach. The
elements of X are supposed to be ranked
in decreasing order with respect to
their probability of occurrence :

Py » Py > .-+ 3P, where p, = Prob({xij).

Let A, = §x1,...x13 . Let
N(Ai) denote the total excess of pro-
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bability of the elements of Ai with res-
pect to the element having the greatest
probability outside of A, (i.e. x

if i £n-1) ;

i+l

we have
a =
N(Ai) = . (pJ pi+l)'é Prob(Ai)
j:l
i=1,n-1 L)

N(An) = N(X) =1

More generally, N(A) 2 hax N(Ai)<PrMKA)
i
A.<A
i

(96bis)
Particularly, N(A) = 0 if xl¢'A (96ter)
Let us check that the set function de-

fined by (96) is a necessity measure.
N(AAB) = max N(Ai) ; because the

i
A,cAnB ‘
A. are nested, if max N(A.) 2 N(A,*)
i i i i
A.C A
i

and max N(A;) éN(Aj*) with for instan-
i
A.CB
€L

* x
ce i » j , then Ai* c A AB and Ai*
is the greatest Ai contained in AAQB

therefore N(A N B) = min (N(A),N(B)) ;
if _ﬂi* or Aj*, then N(A) = 0 or
N(B) = 0 and then N(ARB) = O.

Let us build the possibility distribu-

tion & which enables to express N via
formula (37). We must have X. =

X (x;) = 1 - N(X- §x;3 ) = 1 - N(A,_,).

e

i=1,n-1

1

_1i
RN R},

Yol j Ti+l

),

Taking into account the constraint

o
> p®= 1, we get
i=1

5 Xy =Pyt Pyt e P

.
L
& ", = n.p,
and more compactly
n
N, = i.p. + > p. i=1l,n
i i e J
j=i+l
and reciprocally (97)
n
¥i=l,n , pizé.xi— —lﬁj

JEi41 Jel5=1)
(98)

The xi's are normalized if and only if
the pi's are., It is easy to check that

this possibility distribution satisfies
(94). Anyway from (96) we have

YA © X , TI(A) » Prob(A) 3 N(A) (99)

where 1T is the possibility measure, dual

of N, based on X 13 fal,n" The ine-

qualities (99) express the consistency
between the possibilitv, the probabili-
ty and the necessity measures the mo-
re necessary (ineluctable) an event is,
the more probable it must be and the
more possible its occurrence must be.

Thus, from the intuitive idea of the
concept of necessity, it has been pos-
sible in a natural way to associate a
possibility distribution with a proba-
bility density ; then, this possibility
distribution leads to possibility and
necessity measures which are consistent
with the probability measure. Converse-
ly, in section 3.3 it has been shown
how to derive a probability density and
thus a probability measure by equidis-
tributing a basic probability assign-
ment (see formula (79)) ; then, the
probability measure is bounded by the
belief and the plausibility functions
(whose particular cases are necessity
and possibility measures) issued from
the basic probability assignment, similarly to
(99). Let us prove that when the belief and
plausibility functions reduce to necessity and
possibility measures, the probability density
defined by (79) satisfies (98) also, i.e. pos-
sibility, probability and necessity are in the
same relation in both approaches.

The expression of (79) is

E 1 :
pi = ,Kl. m(A) 1_1,n

A szig

Since m is the basic probability as-
signment of a consonant belief function,
the only subsets of X on which m is
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possibly non-zero are nested and can be

ordered in the following way : Ai =

le ""Xig , i=l,n (see section 3,1.).

Then, taking into account (79),
we get

» n n
E 1 S 1
P: = . =M. = —.( X, - b14 )
oy 3y =l J J+1
(100)

It is easy to recognize (98) in this
expression.

Then from (100) we deduce

m, = i.(pi -p ), i=1,n (101)

i Ti+l

with p = 0. Besides, we have

n+1

Xy - Xy = PPy (102)

which entails

i ® Tl S Pi T Piad (103)
and
K, =0 L£==b p; =10 (104)

Lastly, (97) can be easily written wi-
thout supposing the pi's are ordered

<
R =2

o=

min(pi,pj) i=l,n (105)

Contrastedly with (89) and (90), here,
each % i does not depend only on P but

also on the other pj's. The possibility

of occurrence of an elementary event
depends on its own probability and on
the difference between this probabili-
ty and the probabilities of the other
elementary events.

When X = R, (105) is generalized by

¥x € R =®(x) ://’ min(p(x),p(t)) dt

5 (106)

Thus %X (x) corresponds to the shaded
area on the figure below
3

P

Owing to formula (105), the table given
in the example discussed in 4 .1. can
now be completed

amount of eggs 1 2 3 4 5
physical possibility 1 1 1 1 0.8
possibility of 0.3 1 0.3 0 O
occurence

probability 0.10.80.1 0 O
amount of eggs 6 7 8
physical possibility 0.6 0.4 0.2
possibility of occurrence o0 0 O
probability 0 0 O

Observe that the possibility of occur-
rence is bounded by the probability and
by the physical possibility.

5, - CONCLUDING REMARKS

Among uncertainty measures, probabili-
ty, possibility and necessity measures
play a remarkable role even if other
fuzzy measures may be worth-considering.
Their respective axiomatics emphasize
the differences existing between them.

The dual concepts of possibility and
necessity may refer to several slightly
different meanings, especially from the
one hand the physical possibility and
necessity which relate to the restric-
tions on possible events due to mate-
rial constraints and on the other hand
the epistemic possibility and necessi-
ty which relate to the potential sur-
prise caused by the occurrence of events.
Even if in this latter case, it seems
possible to derive the (epistemic) pos-
sibility distribution from a probabili-
ty density (via a formula such as (106)),
it does not mean that the possibility
of an event can be expressed only in
terms of its probability (Indeed, the
only existing relation between the pos-
sibility, the necessity and the proba-
bility of an event is the inequalities
(99)).

This situation contrasts with g, -fuzzy
measures which are equivalent to proba-
bility measures through a regular trans-
formation (see 2.1.). Moreover, formu-
la (106) and (89) enables to derive pos-
sibility distributions from statistical
evidence, which may be important for
fuzzy set membership function estimation.

The relation existing between Shafer's
belief theory -and the triangular norm
approach to fuzzy measures still need
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to be clarified. However, relations be-
tween probability assignments and densi-
ties have been explicited for all intro-
duced families of fuzzy measures which be-
long to both frameworks. Moreover, consis-
tency inequalities have been encountered
gach time we exploit a given representa-
tion of evidence from several points of
view., Lastly, links between combination

of evidence via Dempster's rule and inter-
section of fuzzy sets have been stressed.
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