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Abstract

We present several new variations on the theme of nonnegatatrix factorization (NMF). Con-
sidering factorizations of the fornk = FG”, we focus on algorithms in whicldi is restricted to
contain nonnegative entries, but allow the data mafixto have mixed signs, thus extending the
applicable range of NMF methods. We also consider algosthmwhich the basis vectors aof’
are constrained to be convex combinations of the data poiris is used for a kernel extension
of NMF. We provide algorithms for computing these new faidations and we provide supporting
theoretical analysis. We also analyze the relationshipsden our algorithms and clustering algorithms,
and consider the implications for sparseness of solutibimally, we present experimental results that

explore the properties of these new methods.

Index Terms

Nonnegative Matrix Factorization, Singular Value Decowipion, Clustering

I. INTRODUCTION

Matrix factorization is a unifying theme in numerical limeglgebra. A wide variety of matrix
factorization algorithms have been developed over mangdkes; providing a numerical platform
for matrix operations such as solving linear systems, spececomposition, and subspace
identification. Some of these algorithms have also proverfulisn statistical data analysis, most
notably the singular value decomposition (SVD), which uhés principal component analysis
(PCA).

Recent work in machine learning has focused on matrix fazgtons that directly target some
of the special features of statistical data analysis. Ini@dar, nonnegative matrix factorization
(NMF) (1; 2) focuses on the analysis of data matrices whosmehts are nonnegative, a common
occurrence in data sets derived from text and images. MerebMF yields nonnegative factors,
which can be advantageous from the point of view of integiyity.

The scope of research on NMF has grown rapidly in recent yddlkdF has been shown
to be useful in a variety of applied settings, including eonimetrics (3), chemometrics (4),
pattern recognition (5), multimedia data analysis (6)f tining (7; 8), DNA gene expression
analysis (9; 10) and protein interaction (11). Algorithrex¢tensions of NMF have been developed

to accommodate a variety of objective functions (12; 13) andriety of data analysis problems,
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including classification (14) and collaborative filtering5]. A number of studies have focused
on further developing computational methodologies for NiB; 17; 18). Finally, researchers
have begun to explore some of the relationships betweenixrfattorizations andikK’-means
clustering (19), making use of the least square objectifeBIMF; as we emphasize in the
current paper, this relationship has implications for th&eiipretability of matrix factors. NMF
with the Kullback-Leibler (KL) divergence objective haselmeshown (20; 13) to be equivalent
to probabilistic latent semantic analysis (21) which hasrb&irther developed into the fully-
probabilistic latent Dirichlet allocation model (22; 23).

Our goal in this paper is to expand the repertoire of nonmegatatrix factorization. Our focus
is on algorithms that constrain the matrix factors; we dorequire the data matrix to be similarly
constrained. In particular, we develop NMF-like algorithrthat yield nonnegative factors but
do not require the data matrix to be nonnegative. This exté¢hd range of application of NMF
ideas. Moreover, by focusing on constraints on the matrotois, we are able to strengthen
the connections between NMF ardd-means clustering. Note in particular that the result of a
K-means clustering run can be written as a matrix factoomafl = FGT, where X is the
data matrix,/’ contains the cluster centroids, agdcontains the cluster membership indicators.
Although F typically has entries with both positive and negative sjgriss nonnegative. This
motivates us to propose general factorizations in whitls restricted to be nonnegative and
F' is unconstrained. We also consider algorithms that coinstra in particular, restricting the
columns of F' to be convex combinations of data pointsXhwe obtain a matrix factorization
that can be interpreted in terms of weighted cluster ceddroi

The paper is organized as follows. In Section Il we preseattiw matrix factorizations and
in Section Il we present algorithms for computing thesetdézations. Section IV provides a
theoretical analysis which provides insights into the spaess of matrix factors for a convex
variant of NMF. In Section V-A we show that a convex variantNWIF has the advantage that it
is readily kernelized. In Section V we consider extension€a@nvex-NMF and the relationships
of NMF-like factorizations. In Section VI we present comgi@re experiments that show that
constraining the" factors to be convex combinations of input data enhancesititerpretability.
We also present experiments that compare the performanteeoNMF variants toK-means
clustering, where we assess the extent to which the impasiti constraints that aim to enhance

interpretability leads to poorer clustering performanEeally, we present our conclusions in
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Section VII.

[l. SEMI-NMF AND CONVEX-NMF

Let the input data matriX' = (xy,...,x,) contain a collection of. data vectors as columns.

We consider factorizations of the form:
X ~ FG”, (1)

where X € RP*" F € RP** andG € R™**. For example, the SVD can be written in this form.
In the case of the SVD, there are no restrictions on the si§gns and GG; moreover, the data
matrix X is also unconstrained. NMF can also be written in this forrheme the data matrix
X is assumed to be nonnegative, as are the fadtoasid G. We now consider some additional

examples.

A. Semi-NMF

When the data matrix is unconstrained (i.e., it may have msigds), we consider a factor-
ization that we refer to aSemi-NMFE in which we restrictG to be nonnegative while placing
no restriction on the signs af'.

We can motivate Semi-NMF from the perspective of clusteriBgppose we do & -means
clustering onX and obtain cluster centroids = (fi, ..., f;). Let G denote the cluster indicators:
i.e., gi = 1if x; belongs to clustet;; g;» = 0 otherwise. We can write th& -means clustering

objective function as

n K
J-means= > _ > gillxi — £il|> = [| X — FG"|.

i=1 k=1
In this paper,||v|| denotes thel, norm of a vectorv and ||A|| denotes the Frobenius norm
of a matrix A. We see that thd{-means clustering objective can be alternatively viewed as
an objective function for matrix approximation. Moreov#is approximation will generally be
tighter if we relax the optimization by allowing;; to range over values i0, 1), or values in

(0,00). This yields the Semi-NMF matrix factorization.
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B. Convex-NMF

While in NMF and Semi-NMF there are no constraints on the basisorsF” = (f;,--- , f;),
for reasons of interpretability it may be useful to impose tonstraint that the vectors defining

F' lie within the column space ok
fZ:w1€X1+"'+wnﬂxn:XW€7 or F'=XW. (2)

Moreover, again for reasons of interpretability, we may lwis restrict ourselves to convex
combinations of the columns of. This constraint has the advantage that we could interpeet t
columnsf, as weighted sums of certain data points; in particular,ef@sdumns would capture
a notion ofcentroids We refer to this restricted form of th& factor asConvex-NMFE Convex-
NMF applies to both nonnegative and mixed-sign data matriés we will see, Convex-NMF
has an interesting property: the factd#s and G both tend to be very sparse.

(24) considered a model in which the factors were restricted to the unit interval; i.e.,
0 < Fj, < 1. This so-called convex coding does not require fhgo be nonnegative linear
combinations of input data vectors and thus in general docapture the notion of cluster
centroid. Indeed, the emphasis in (24) and in (1; 2) is théspzEfrwhole encoding provided by
NMF, not the relationship of nonnegative factorizations/éztor quantization.

To summarize our development thus far, let us write the wifie factorizations as follows:

SVD:  X. =~ F.GE (©))

NMF: X, ~ F.G (4)
Semi-NMF: X, ~ F.G% (5)
Convex-NMF: X ~ X, W, GY, (6)

where the subscripts are intended to suggest the constiaipsed by the different factoriza-
tions.

Before turning to a presentation of algorithms for compgitBemi-NMF and Convex-NMF

factorizations and supporting theoretical analysis, waviole an illustrative example.
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C. An lllustration
Consider the following data matrix:

1.3 18 48 71 50 52 80
1.5 69 39 =55 -85 -39 =55
X=|65 16 82 —-72 —87 —-79 —-52
3.8 83 47 64 75 32 74
-73 —-18 =21 27 68 48 6.2

The K-means clustering produces two clusters, where the firdteduncludes the first three
columns and the second cluster includes the last four cadumn

We show that Semi-NMF and Convex-NMF factorizations givassigring solutions which
are identical to thé{-means clustering results. We run SVD, Semi-NMF and Conve¥NThe

matrix factorG obtained for the three factorizations are

025 0.05 022 —45 —44 —.46 -—-.52

Gl —
svd™ \ 050 060 043 030 —0.12 001 0.31
o (061 089 054 077 0.14 036 0.84
SEM 1012 053 0.11 1.03 060 0.77 1.16]
. 031 031 029 002 0 0 0.02
Genvx =
0 006 0 031 027 0.30 0.36

Both the Semi-NMF and Convex-NMF results agree with themeans clustering: for the first
three columns, the values in the upper rows are larger thaiother rows, indicating they are in
the same cluster, while for the last four columns the uppesrare smaller than the lower rows,
indicating they are in another cluster. Note, however, @anvex-NMF gives sharper indicators
of the clustering.

The computed basis vectors for the different matrix factorizations are as follows:

—041 050 0.05 0.27 031 0.53
035 021 0.40 —0.40 042  —0.30
Foyg=| 066 032 |, Fsemi=| 070 —0.72 |, Fenvx=| 056 —057 |,
028 0.72 0.30  0.08 049 041
—0.43 —0.28 ~0.51  0.49 —0.41  0.36
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and the cluster centroids obtained frolftmeans clustering are given by the columns of the

following matrix:

029  0.52
045 —0.32
Ckmeans= | 0.59 —0.60
0.46  0.36
—0.41 0.37

We have rescaled all column vectors so that tlginorm is one for purposes of comparison.

One can see thalt,,, is close t0Ckmneans || Femx — Cimeand| = 0.08. F., deviates substantially
from Cimeans || Fremi — Ckmeand| = 0.53. Two of the elements i, are particularly far from those
iN Cimeans (Frem)1.1 = 0.05 VS. (Cymeand1,1 = 0.29 vS. and(Fiem)s2 = 0.08 VS. (Cymeang 12 = 0.36.
Thus restrictions on/’ can have large effects on subspace factorization. Convek-NgMes
I factors that are closer to cluster centroids, validating expectation that this factorization
produces centroid-like factors. More examples are giveRigure 1.

Finally, computing the residual values, we hay® — FGT|| = 0.27940, 0.27944, 0.30877,
for SVD, Semi-NMF and Convex-NMF, respectively. We see that énhanced interpretability
provided by Semi-NMF is not accompanied by a degradatiorppr@imation accuracy relative
to the SVD. The more highly constrained Convex-NMF involvesnadest degradation in
accuracy.

We now turn to a presentation of algorithms for computingtthe new factorizations, together

with theoretical results establishing convergence ofehagorithms.

[11. ALGORITHMS AND ANALYSIS

In this section we provide algorithms and accompanyingyaiglfor the NMF factorizations

that we presented in the previous section.

A. Algorithm for Semi-NMF

We compute the Semi-NMF factorization via an iterative upgpalgorithm that alternatively
updatesF’ and G

(S0) InitializeG. Do a K-means clustering. This gives cluster indicatéts;;, = 1 if x; belongs

to clusterk. Otherwise,GG;, = 0. Add a small constant (we use the value in practice) to all
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elements ofGG. See Section IIV.C for more discussion on initialization.
(S1) UpdateF' (while fixing G) using the rule

F=XGGTa)™ )
Note GG is ak x k positive semidefinite matrix. The inversion of this smalltrais trivial.
In most cases(y’ G is nonsingular. Wheri:” G is singular, we take the pseudoinverse.
(S2) UpdateGG (while fixing F) using

(XTE) + [GETE) T

where we separate the positive and negative parts of a mates
Alo= (Al +Aiw) /2, A = (Al — Ai) /2. ©)

The computational complexity for Semi-NMF is of order(pnk + nk?) for Step (S1) and of

orderm(npk+kp*+n?k) for Eq. (8), wheren ~ 100 is the number of iterations to convergence.
Theorem 1:(A) Fixing F, the residual| X — FG*||* decreases monotonically (i.e., it is non-

increasing) under the update rule f6t (B) Fixing G, the update rule fo#" gives the optimal

solution toming || X — FG|[*.

Proof. We first prove part (B). The objective function that we mirmis the following sum of

squared residuals:
J=||X —FGT|P=Tr (XX - 2XTFG" + GFTFG™). (10)

Fixing G, the solution forF is obtained by computingJ/dF = —2XG + 2FGTG = 0. This
gives the solution = XG(GTG) .

To prove part (A), we now fixt” and solve forG while imposing the restrictiods > 0. This
is a constrained optimization problem. We present two tss(l) We show that at convergence,
the limiting solution of the update rule of Eq. (8) satisfiee KKT condition. This is established
in Proposition 2 below. This proves the correctness of thetilng solution. (2) We show that
the iteration of the update rule of Eg. (8) converges. Thisswblished in Proposition 3 below.
a

Proposition 2: The limiting solution of the update rule in Eq. (8) satisfiee KKT condition.
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Proof. We introduce the Lagrangian function
L(G) = Tr(—2XTFG" + GFTFG" — pG™), (11)

where the Lagrangian multipliers;; enforce nonnegative constrain{s;; > 0. The zero gradient
condition givesg—é = 2XTF4+2GFTF -3 = 0. From the complementary slackness condition,
we obtain

(—2XTF +2GF"F)y.Gy = BuGa = 0. (12)

This is a fixed point equation that the solution must satisfgavergence.
It is easy to see that the limiting solution of the update nfl&q. (8) satisfies the fixed point
equation. At convergence;(>) = G+ = G = G; i.e.,
(XTF)jh + [GFTF) Ju
’“ ’“\/<XTF>i; FGUETF) 4
Note F'F = (FTF)* — (FTF)"; FTX = (FTX)" — (FTX)~. Thus Eq. (13) reduces to

(—2X"F +2GF'F)  G3. = 0. (14)

Eqg. (14) is identical to Eq. (12). Both equations requiret #aleast one of the two factors is
equal to zero. The first factor in both equations are idehtfar the second factof;; or G%,,
if Gix = 0thenG?% = 0, and vice versa. Thus if Eq. (12) holds, Eq. (14) also holds ne
versa. a
Next we prove the convergence of the iterative update algori We need to state two
propositions that are used in the proof of convergence.
Proposition 3: The residual of Eq. (10) is monotonically decreasing (nuereasing) under
the update given in Eq. (8) for fixed.
Proof. We write J(H) as

J(H) =Tr(—2H"B* + 2H"B~ + HA*H" — HA"H") (15)

whereA = FTF, B=XTF, andH = G.
We use the auxiliary function approach (2). A functigH, H) is called an auxiliary function
of J(H) if it satisfies

Z(H,H) > J(H), Z(H H)=J(H), (16)
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for any H, H. Define
H"Y = argmin Z(H, HY), (17)
H

where we note that we require the global minimum. By consiong we haveJ(H®) =
Z(HO HO) > Z(HED HO) > J(H®Y). Thus J(H®) is monotone decreasing (non-
increasing). The key is to find (1) approprialé H, ﬁ) and (2) its global minimum. According
to Proposition 4 (see below),(H, H') defined in Eq. (18) is an auxiliary function of and its
minimum is given by Eq. (19). According to Eq. (17),*t" «— H and H") «— H’; substituting
A=FTF, B=FTX, andH = G, we recover Eq. (8). ]
Proposition 4: Given the objective functioy defined as in Eq. (15), where all matrices are

nonnegative, the following function

+H”
Z(HH') == 2B{H,(1+ 1ogH, + Z B Hl Hiy + B
ik ik

(H'A* )ikH- P H;.H;
4y Ak §jA H/, H,(1 + log ) (18)
T, e e T

is an auxiliary function forJ(H); i.e., it satisfies the requirement§ H) < Z(H,H') and

J(H) = Z(H, H). Furthermore, it is a convex function i and its global minimum is

. Bt + (H' A7)
Hy = Z(H,H') = H] ik =, 19
k arghr’mn (H,H') m\/BZ_76 i (H,A+)ik (19)
Proof. The functionJ(H) is
J(H)=Tr(—2H"B* + 2H"B~ + HATH" — HA™H"). (20)

We find upper bounds for each of the two positive terms, ancetoounds for each of the
two negative terms. For the third term if(H), using Proposition 5 (see below) and setting

A« I,B«+ A", we obtain an upper bound
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using the inequality: < (a* + b?)/2b, which holds for anya, b > 0.
To obtain lower bounds for the two remaining terms, we useitieguality = > 1 + logz,

which holds for anyz > 0, and obtain

Hp, Hi,
> 1+ log =, 1)
Hj, Hj,
and
1+1lo . 22
m, > (22)

From Eq. (21), the first term i/ (H) is bounded by

Hiy,
Tr(H"BY) =) BjiHy>>» BLiH)(1+ 1ogH, ).
ik ik ik

From Eq. (22), the last term id(H) is bounded by

HyH,
TH(HATH") > 3 A Hj HY (1 + log %),
il k™l

Collecting all bounds, we obtai&(H, H') as in Eq. (18). Obviously/(H) < Z(H, H') and
J(H)=Z(H,H).
To find the minimum ofZ(H, H'), we take

0Z(H, H') H! Hy, 2H' A i Hye (H'A ) H!

) — _9B" ik 2B WV 9 ¢ Zk‘ 23
OH " Hi et H, i, Hiy 239
The Hessian matrix containing the second derivatives

0?Z(H,H')
o ) S
OHzoH;

is a diagonal matrix with positive entries
A[(BT)ix + (H' A7) Hjy, 5 Biy + (H' A7)
2 + 2 !
ThusZ(H, H') is a convex function of{. Therefore, we obtain the global minimum by setting
0Z(H,H')/0H = 0 in Eq. (23) and solving fo#/. Rearranging, we obtain Eq. (19). 1
Proposition 5: For any matricesd € R?*", B € RE** 5 € R"** S" € R"** with A and B

Yir =

symmetric, the following inequality holds:

ZZ AS/ w5, > Tr(STASB). (24)

=1 p=1
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Proof. Let S, = Sgpuip. Using an explicit index, the differencA between the left-hand side

and the right-hand side can be written as

A= Z Z Aij S} BopSt (U3, — wipjq).

4,j=1p,q=1
BecauseA and B are symmetric, this is equal to
A= A48 By (Mot oo - Ay, BanSiy12, = 112,) >
Z Z v 2 _uipu]q - Z Z i qu> = 0.
4,j=1p,q=1 Z] 1p,q=1

1

In the special case in whicB = I and S is a column vector, this result reduces to a result due
to (2).

B. Algorithm for Convex-NMF

We describe the algorithm for computing the Convex-NMF faztdion whenX has mixed
sign (denoted ax(;). When X is nonnegative, the algorithm is simplified in a natural way.

(CO) Initialize W andG. There are two methods. (A) Fresh start. DA ameans clustering. Let
the obtained cluster indicators Gé = (h;,--- ,hy), Hy = {0,1}. Then setG¥) = H + 0.2F,
where E is a matrix of all 1's. The cluster centroids can be computed,a= Xhy/n;, or
F = XHD,*', where D,, = diag(ny,---,nx). ThusW = HD,'. We smoothiW and set
WO = (H +0.2E)D;'. (B) Suppose we already have an NMF or Semi-NMF solutionhis t
case( is known and we seG®) = G + 0.2E. We solve X = XWGT for W. This leads
to W = G(GTG)~L. SinceW must be nonnegative, we sBt(”) = W+ + 0.2E(WT), where
(A) =3, 14i1/11Allo and where{|A[| is the number of nonzero elements in

Then update>, and IV, alternatively until convergence as follows:
(C1) UpdateG . using

o o LX) Wi 4 [GWT(XTX) W
ETIVIXTX) Wi + [GWT(XTX) Wy,

(25)
This can be derived in a manner similar to Eq. (8), repladihgy X W,

(C2) UpdatelV, using

Wi mk\/[(XTX)+ Jix + [(XTX) WGTGly. 26)

G
(XTX) Gl + [(XTX) " WGTG i,
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The computational complexity for convex-NMF is of ordé€ip +m(2nk +nk?) for Eq. (25)
and is of orderm(2n2k + 2nk?) for Eq. (26), wherem ~ 100 is the number of iterations
to convergence. These are matrix multiplications and carcdraputed efficiently on most
computers.

The correctness and convergence of the algorithm are asftas the following:

Theorem 6:Fixing G, under the update rule for/ of Eq. (26), (A) the residual|X —
XWGT||? decreases monotonically (non-increasing), and (B) thetisol converges to a KKT
fixed point.

The proof of part (B) is given by Proposition 7, which ensutes correctness of the solution.
The proof of part (A) is given by Proposition 8, which ensuties convergence of the algorithm.

Proposition 7: The limiting solution of update rule of Eq. (26) satisfies €T condition.

Proof. We minimize
Jo =X = XWGT?P=Tr (X'X - 2G"X"XW + WIXTXWGTG),

where X € R, W € R* G € RE*™. The minimization with respect t6: is the same as

in Semi-NMF. We focus on the minimization with respectiig that is, we minimize
JW) =Tr (=2G"XTXW + WIXTXWGTQ). (27)
We can easily obtain the KKT complementarity condition
(—XTXG + XTXWGTG) Wiy = 0. (28)
Next we can show that the limiting solution of the update rfldeq. (26) satisfies
(—XTXG + XTXWGTG) W3 = 0. (29)

These two equations are identical for the same reasons thaf1B) is identical to Eq. (12).

Thus the limiting solution of the update rule satisfies theTKii&ked point condition. a
Proposition 8: The residual, Eq. (27), decreases monotonically (it is imaneasing). Thus

the algorithm converges.

Proof. We write J(WW) as

J(H)=Tr (=2H"B* +2H"B~ + H'A"HC — H"A"HC), (30)
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whereB = XTXG, A= XTX,C =G"G,H =W. J(H) differs from J(H) of Eq. (20) in that
the last two terms has four matrix factors instead of thredlowing the proof of Proposition 4,

with the aid of Proposition 5, we can prove that the foIIowi‘u@ction

+ H"?
Z(H,H') = _ZzB;Hgk( +lo H, —th___ &
ik
A"H'C)yH>, H. H,
+Z< ka)k ZA H, CrHy(1+ log HjZH(j) (31)
ik v ijke J t

is an auxiliary function of/(H), and furthermoreZ(H, H') is a convex function off and its

global minimum is

B+ (A"H'C)y,
Hy = in= H' ik Gy 32

From its minima and setting/“*" «— H and H® «— H’, we recover Eq. (26), letting3* =
(XTX)'G, B~ =(X"X) G, A=X"X,C=G"G andH = W. ml

C. Some generic properties of NMF algorithms

First, we note all these multiplicative updating algorithare guaranteed to converge to a local
minimum, but not necessarily to a global minimum. This i®dlsie for many other algorithms
that have a clustering flavor, including-means, EM for mixture models, and spectral clustering.
Practical experience suggests thhéimeans clustering tends to converge to a local minimum that
is close to the initial guess, whereas NMF and EM tend to erpdolarger range of values.

Second, we note that NMF updating rules are invariant wiipeet to rescaling of NMF. By
rescaling, we meawG” = (FD1)(GDT)T = FGT, where D is a k-by-k positive diagonal
matrix. Under this rescaling, Eq. (8) becomes

G G \/ (XTE)f + [GFTF) I @3
(XTF) + [GFTF) |
Since(XTF)y = (XTF)yD;l, (GFTF)y = (GFTF)y, Dy} and (G)ir = (@) Diie » EQ. (33)
is identical to Eq. (8).

Third, we note that the convergence rate of the NMF multgihe updating algorithm is

F
generally of first order. To see this, we f@t= and view the updating algorithms as a
G

mapping®*+Y = M (0®). At convergenceP* = M(©*). The objective functions have been
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proved to be non-increasing,(0¢+Y) < J(©®). Following Xu & Jordan (25), we expahd
© ~ M(0*) + (0M/00)(0 — ©*). Therefore,

oM
(t+1) _ * < - . (t) _ *
[0 — e < |55 |- 60 — &

under an appropriate matrix norm. In genera@l\//00 # 0. Thus these updating algorithms
have a first-order convergence rate, which is the same asNhal@orithm (25).

Fourth, we note that there are many ways to initialize NMF.our paper, we use the
equivalence between NMF and relax&dmeans clustering to initializé’ andG to the K-means
clustering solution. Lee and Seung (2) suggest randonalizigition. An SVD-based initialization
has recently been proposed by Boutsidis and Gallopoulgs $& more initialization references
in (26; 17).

IV. SPARSITY OFCONVEX-NMF

In the original presentation of NMF, (1) emphasized the dirsitum ofsparsity For example,
in the case of image data, it was hoped that NMF factors woailcespond to a coherent part of
the original image, for example a nose or an eye; these waikpharse factors in which most of
the components would be zero. Further experiments havershmwever, that NMF factors are
not necessarily sparse, and sparsification schemes hawedbeeloped on top of NMF (16; 5).
Parts-of-whole representations are not necessarily ezedvby NMF, but conditions for obtaining
parts-of-whole representations have been discussed $2é)also (28) (29), and (30) for related
literatures on sparse factorizations in the context of PCA.

Interestingly, the Convex-NMF factord” and G are naturally sparse. We provide theoret-
ical support for this assertion in this section, and provédigitional experimental support in
Section VI. (Sparseness can also be seen in the illustraaeple presented in Section II-C).

We first note that Convex-NMF can be reformulated as

: 21T (17 _ Ty||12 nxk kxn
Mr/%gozk:akHvk(I WG|, st. WeRI™, GeRI", (34)

where we use the SVD ok = UXV? and thus haveX” X = >, ofv,v]. Therefore||X —
XWGHI? =Tr (I - GWHXTX(I —WGT) =3, of||[vi(I — WGT)|]>. We now claim that

INote that a nonnegativity constraint needs to be enforced.
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(a) this optimization will produce a sparse solution §oF and GG, and (b) the more slowly
decreases, the sparser the solution.
This second part of our argument is captured in a Lemma:

Lemma 9:The solution of the following optimization problem
min ||I — WGT|]?, st. W,Ge R,
W,G>0

is given byWW = G = any K columns of(e; - - - ex), Whereey, is a basis vector(ey);., =
0, (ex)i=r = 1.
Proof. We first prove the result for a slightly more general casd. De= diag(dy,-- ,d,) be
a diagonal matrix and lef; > dy > --- > d,, > 0. The Lemma holds if we replaceby D and
W =G = (Vdye; - - - /diex).2 The proof follows from the fact that we have a unique spectral
expansionDe;, = dpe, and D = 22:1 dkeke;f. Now we take the limitd; =---=d,, = 1. The
spectral expansion is not uniqué:= Y7 , u,u} for any orthogonal basisu;,--- ,u,) = U.
However, due the nonnegativity constraify; - - - e,,) is the only viable basis. Thug” = G =
for any K columns of(e; - - - e,). 1

The main point of Lemma 9 is that the solutionsitany, || — WGT||*> are the sparsest
possible rankK matrices W, G. Now returning to our characterization of Convex-NMF in
Eqg. (34), we can write

11 =WGT]P =" llef (I = WG|
k

Comparing to the Convex-NMF case, we see that the projectio/of WGT) onto the
principal components has more weight while the projectibt/e- W GT) onto the non-principal
components has less weight. Thus we conclude that spassttyforced strongly in the principal
component subspace and weakly in the non-principal compongspace. Overall, Lemma 9
provides a basis for concluding that Convex-NMF tends todysgarse solutions.

A more intuitive understanding of the source of the sparsiy be obtained by counting
parameters. Note in particular that Semi-NMF is basedVgR,., = kp+kn parameters whereas
Convex-NMF is based oW,,,..,, = 2kn parameters. Considering the usual case p (i.e., the

number of data points is more than the data dimension), CeNlk has more parameters than

%In NMF, the degree of freedom of diagonal rescaling is always ptesedeed, letE = (e, - - - ek ). Our choice of W =
G = EV/D can be written in different way®v G* = (EvD)(EvVD)" = (ED*)(ETD'=*)T, where—oco < a < oo.
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Semi-NMF. But we know that Convex-NMF is a special case of SdMF. The resolution of

these two contradicting facts is that some of the paramé@te@onvex-NMF must be zero.

V. ADDITIONAL REMARKS

Convex-NMF stands out for its interpretability and its sjggrproperties. In this section we
consider two additional interesting aspects of Convex-NMé& ae also consider the relationship

of all of the NMF-like factorizations that we have develoged/i’-means clustering.

A. Kernel-NMF

Consider a mapping; — ¢(x;), or X — ¢(X) = (¢(x1), -+, ¢(x,)). A standard NMF or
Semi-NMF factorizationp(X) ~ FG* would be difficult to compute sincé” and G depend
explicitly on the mapping function(-). However, Convex-NMF provides an appealing solution
of this problem:

O(X) = H(X)WE".
Indeed, it is easy to see that the minimization objective

16(X) — $(XOWET||* = Tr[p(X)" ¢(X) — 2GT¢" (X) (X)W + W' (X)p(X)W G G
depends only on the kerngl = ¢7(X)4(X). In fact, the update rules for Convex-NMF
presented in Egs.(26) and (25) depend’hX only. Thus it is possible to “kernelize” Convex-

NMF in a manner analogous to the kernelization of PCA a&hdneans.

B. Cluster-NMF

In Convex-NMF, we require the columns df to be convex combinations of input data.
Suppose now that we interpret the entries(ofas posterior cluster probabilities. In this case
the cluster centroids can be computed fas= Xg;./n;, or F = XGD,', where D, =
diag(ny,--- ,ng). The extra degree of freedom fdr is not necessary. Therefore, the pair
of desiderata: (1)F' encodes centroids, and (ZJ encodes posterior probabilities motivates

a factorizationX ~ XGD,'GT. We can absortD,, 2 into G and solve for
Cluster-NMF: X ~ XG,G™. (35)

We call this factorizatiorCluster-NMF because the degree of freedom in this factorization is
the cluster indicatorz, as in a standard clustering problem. The objective funct®.J =
X — XGGT|2.
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C. Relation to relaxed<-means clustering

NMF, Semi-NMF, Convex-NMF, Cluster-NMF and Kernel-NMF aliMeai-means clustering
interpretations when the factdr is orthogonal G*G = I). Orthogonality and nonnegativity
together imply that each row aff has only one nonnegative element; i.€.,is a bona fide
cluster indicator. This relationship to clustering is madere precise in the following theorem.

Theorem 10:G-orthogonal NMF, Semi-NMF, Convex-NMF, Cluster-NMF and Ke&rNMF
are all relaxations of{-means clustering.
Proof. For NMF, Semi-NMF and Convex-NMF, we first eliminafé. The objective isJ =
| X — FGT||?2 =Tr(XTX — 2XTFGT + FFT). SettingdJ/OF = 0, we obtainF = XG. Thus
we obtain/ = Tr(XTX — GTXTXG@). For Cluster-NMF, we obtain the same result directly:
J = || X — XGGT||*? = Tr(XTX — GTXTXG). For Kernel-NMF, we have] = |¢(X) —
H(X)WGT||? = Tr(K — GTKW + WTKW), where K is the kernel. Settind.J/OW = 0,
we have KG = KW. ThusJ = Tr(X7X — GTKG). In all five of these cases, the first
terms are constant and do not affect the minimization. Th@mzation problem thus becomes
maxgra—; THGTKG), where K is either a linear kerneX” X or (¢(X), ¢(X)). It is known
that this is identical to (kernel-k-means clustering (31; 32). a

In the definitions of NMF, Semi-NMF, Convex-NMF, Cluster-NMRdKernel-NMF, G is

not restricted to be orthogonal; these NMF variants s versions of K-means clustering.

VI. EXPERIMENTS

We first present the results of an experiment on synthetia ddtich aims to verify that
Convex-NMF can yield factorizations that are close to clusentroids. We then present exper-

imental results for real data comparidg-means clustering and the various factorizations.

A. Synthetic dataset

One main theme of our work is that the Convex-NMF variants mayide subspace fac-
torizations that have more interpretable factors thanehastained by other NMF variants (or
PCA). In particular, we expect that in some cases the faktaiill be interpretable as containing
cluster representatives (centroids) ardvill be interpretable as encoding cluster indicators. We

begin with a simple investigation of this hypothesis. In g 1, we randomly generate four
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two-dimensional datasets with three clusters each. Compioth the Semi-NMF and Convex-
NMF factorizations, we display the resulting factors. We see that the Semi-NMF factors
(denotedf.,, in the figure) tend to lie distant from the cluster centroi@s the other hand, the

Convex-NMF factors (denoted,,) almost always lie within the clusters.
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Fig. 1. Four random datasets, each with 3 clusters. are F..,, factors and &” are F,,, factors.

B. Real life datasets

We conducted experiments on the following datas&iansphereand Wave from the UCI
repository, the document datas&iRCS WebkB4 Reuters(using a subset of the data collection
which includes the 10 most frequent categoriédgbAceand a dataset which contains 1367

log messages collected from several different machinels different operating systems at the
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School of Computer Science at Florida International Unisgr3 he log messages are grouped
into 9 categoriesconfiguration connectioncreate dependencyother, report, request start, and
stop Stop words were removed using a standard stop list. The @9 vords were selected
based on frequencies.

Table | summarizes the datasets and presents our expealhmesults. These results are
averages over 10 runs for each dataset and algorithm.

We compute clustering accuracy using the known class labéis is done as follows: The
confusion matrix is first computed. The columns and rows laes treordered so as to maximize
the sum of the diagonal. We take this sum as a measure of theaagc it represents the
percentage of data points correctly clustered under thiengetd permutation.

To measure the sparsity @f in the experiments, we compute the average of each column
of G and set all elements below 0.001 times the average to zeraepdat the number of the
remaining nonzero elements as a percentage of the totaleruohlelements. (Thus small values
of this measure correspond to large sparsity).

A consequence of the sparsity 6f is that the rows ofG tend to become close to orthog-
onal. This indicates a hard clustering (if we vieW as encoding posterior probabilities for
clustering). We compute the normalized orthogonality” G)nm = D~Y/2(G*G)D~'/2, where
D = diag(GTG). Thusdiag[(GTG)nm| = I. We report the average of the off-diagonal elements
in (GT'G)nm as the quantity “Deviation from Orthogonality” in the table

From the experimental results, we observe the following:All of the matrix factorization
models are better thai’-means on all of the datasets. This is our principal emginesult. It
indicates that the NMF family is competitive withi-means for the purposes of clustering. (2)
On most of the nonnegative datasets, NMF gives somewharlztturacy than Semi-NMF and
Convex-NMF (with WebKb4 the exception). The differences mm@dest, however, suggesting
that the more highly-constrained Semi-NMF and Convex-NMFy rha worthwhile options if
interpretability is viewed as a goal of a data analysis. (B8)tke datasets containing both positive
and negative values (where NMF is not applicable) the SemkNesults are better in terms
of accuracy than the Convex-NMF results. (3) In general, CoiNEIF solutions are sparse,
while Semi-NMF solutions are not. (4) Convex-NMF solutioms generally significantly more

orthogonal than Semi-NMF solutions.
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TABLE |

DATASET DESCRIPTIONS AND RESULTS

Reuters URCS WebKB4 Log WebAce Ilonosphere Wave
data sign + + + + + + +
# instance 2900 476 4199 1367 2340 351 5000
# class 10 4 4 9 20 2 2

Clustering Accuracy

K-means 0.4448 0.4250 0.3888 0.6876 0.4001 0.4217
NMF 0.4947 0.5713 0.4218 0.7805 0.4761 -

Semi-NMF 0.4867 0.5628 0.4378 0.7385 0.4162 0.5947
Convex-NMF  0.4789 0.5340 0.4358 0.7257 0.4086 0.5470

0.5018

0.5896
0.5738

Sparsity (percentage of nonzeros in matrix G)

0.9747
0.4861

Semi-NMF 0.9720 0.9688 0.9993 0.9104 0.9543 0.8177

Convex-NMF  0.6152 0.6448 0.5976 0.5070 0.6427 0.4986
Deviation from Orthogonality

Semi-NMF 0.6578 0.5527 0.7785 0.5924 0.7253 0.9069

Convex-NMF  0.1979 0.1948 0.1146 0.4815 0.5072 0.1604

0.5461
0.2793

C. Shifting mixed-sign data to nonnegative

While our algorithms apply directly to mixed-sign data, italkso possible to consider shifting

mixed-sign data to be nonnegative by adding the smallesttannso all entries are nonnegative.

We performed experiments on data shifted in this way for trev&Vand lonosphere data. For
Wave, the accuracy decreases to 0.503 from 0.590 for Sent-BiMi decreases to 0.5297 from
0.5738 for Convex-NMF. The sparsity increases to 0.586 frad9® for Convex-NMF. For
lonosphere, the accuracy decreases to 0.647 from 0.72%for-SMF and decreases to 0.618
from 0.6877 for Convex-NMF. The sparsity increases to 0.888nf0.498 for Convex-NMF. In

short, the shifting approach does not appear to provideisfaetbry alternative.
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Fig. 2. A dataset with 2 clusters in 3D. Top Left: clusters obtained usihnmeans, as indicated by eithe¥” or “o”. Top

Right: clusters obtained using NMF. Bottom: The differegeé¢i) — g1 (), i = 1,--- , 200, “V” for those mis-clustered points,

and ‘0" for correctly-clustered points.

D. Flexibility of NMF

A general conclusion is that NMF almost always performs drsethan iK-means in terms
of clustering accuracy while providing a matrix approximat We believe this is due to the
flexibility of matrix factorization as compared to the riggbherical clusters that th&-means
clustering objective function attempts to capture. Wherddita distribution is far from a spherical
clustering, NMF may have advantages. Figure 2 gives an eleafpe dataset consists of two
parallel rods in 3D space containing 200 data points. The ¢entral axes of the rods are
0.3 apart and they have diameter 0.1 and length 1. As seenreirigbre, K-means gives a
poor clustering, while NMF yields a good clustering. Thetbot panel of Figure 2 shows the
differences in the columns @¥ (each column is normalized {9, gx(¢) = 1). The mis-clustered
points have small differences.
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Finally, note that NMF is initialized randomly for the diffent runs. We investigated the
stability of the solution over multiple runs and found thatiN converges to solutiong’ and
G that are very similar across runs; moreover, the resultisgrdtized cluster indicators were

identical.

VIlI. CONCLUSIONS

We have presented a number of new nonnegative matrix faatayns. We have provided
algorithms for these factorizations and theoretical asialgf the convergence of these algorithms.
The ability of these algorithms to deal with mixed-sign datakes them useful for many
applications, particularly given that covariance masiege often centered.

Semi-NMF offers a low-dimensional representation of datents which lends itself to a
convenient clustering interpretation. Convex-NMF furthestricts the basis vectors to be convex
combinations of data points, providing a notion of clustentcoids for the basis. We also
briefly discussed additional NMF algorithms—Kernel-NMFda@luster-NMF—that are further
specializations of Convex-NMF.

We also showed that the NMF variants can be viewed as retaysabf K -means clustering,
thus providing a closer tie between NMF and clustering thas Iheen present in the literature
to date. Moreover, our empirical results showed that the Nafgorithms all outperformi-
means clustering on all of the datasets that we investigatéerms of clustering accuracy. We
view these results as indicating that the NMF family is wertt further investigation. We view
Semi-NMF and Convex-NMF as particularly worthy of furthewastigation, given their native

capability for handling mixed-sign data and their partaiy direct connections to clustering.
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