7
Non-Well-Founded Set Theory

The approach to set theory that has motivated and dominated the study
presented so far in this book has essentially been one of synthesis: from
an initial set of axioms, we build a framework of sets that can be used
to provide a foundation for all of mathematics. By starting with pure
sets provided by the Zermelo-Fraenkel axioms, and progressively adding
more and more structure, we may obtain all of the usual structures of
mathematics. And then, of course, we may make use of those mathematical
structures to model various aspects of the world we live in. In this way,
set theory may be used to provide ways to model ‘mathematical’ aspects
of our world.

But there is an alternative way to approach set theory, namely in an
analytic fashion, where we start with all of the various ‘mathematical’ struc-
tures we observe in the world and progressively strip away structure until
all that is left are pure sets.

As you might expect, there is no a priori reason that these two ap-
proaches will lead to the same theory of sets. Indeed, some very familiar
real-world structures give rise to a dramatically different conception of set
from the now-familiar Zermelo—Fraenkel notion.

For example, suppose I try to model set-theoretically the items of in-
formation in some information-storage device, say this very book. Let B
be the set of all sets explicitly referred to in this book. Clearly, since B is
referred to in this book (I am just now referring to it), we have

B e B.

More generally, it is not hard to think up examples of ‘real world’ sets
having closed loops of membership:

a€as & ... €a, € a.

Such sets are said to be circular. With the growing tendency to apply
set-theoretic methods in computer and information science, it is getting
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144 7. NON-WELL-FOUNDED SET THEORY

steadily harder to avoid having to deal with such sets in a formal and
rigorous manner.

Now, in Zermelo—Fraenkel set theory, the Axiom of Foundation explic-
itly rules out the formation of circular sets or sets having themselves as
members. So at the very least, if we are to approach set theory in an ana-
Iytic fashion, in a manner that will, for instance, allow us to capture some
of the self-referential structure that arises in information systems, we will
have to dispense with this particular axiom. But just how significant a step
will this be? Will it, for instance, mean that we shall be working within a
framework quite unlike that used in other parts of mathematics?

The answer turns out to be ‘no’. Simply dropping the Axiom of Founda-
tion from the axioms of set theory results in practically no change in almost
all of present day mathematics (or its applications). The reason is that this
axiom is totally irrelevant as far as most applications of set theory are con-
cerned. The kinds of sets that arise in, say, Analysis or Algebra, simply
are, as a matter of fact, noncircular. No axiom is required to guarantee
this. It is really only within set theory itself that the Axiom of Foundation
is important.

Thus, in contemplating the introduction of a set theory that violates
the Axiom of Foundation, which is what this chapter is all about, we are
not starting out along a path that will bring us into conflict with the bulk
of current mathematical practice. We shall simply find ourselves using sets
of a different nature than those used elsewhere (for different purposes).

Of course, in developing a set theory as a conceptual abstraction from,
say, information structures in the world, there may turn out to be other
features that do conflict with the set theory used elsewhere in mathematics.
But as far as is known, this is not the case. Indeed, it is possible to regard
the universe of sets described below as an extension of the Zermelo—Fraenkel
universe, one that enlarges the domain of study to include all those circular
sets that the Axiom of Foundation normally excludes from consideration.

In this respect, what we are doing is analogous to the extension proce-
dure that takes you from the real numbers to the complex numbers. New
‘numbers’ are introduced to enlarge the real number system to a richer
structure in which more equations have solutions, etc. No properties of the
real numbers are violated by this extension. More things become possible
at no cost in terms of existing theory.

So too in our introduction of a ‘non-well-founded set theory’, as I shall
refer to any theory of sets that violates the Axiom of Foundation. Indeed,
the analogy with the complex numbers is an even better one. Just as the
complex numbers may be defined in terms of the real numbers, so too
the non-well-founded (or circular) sets of our new theory may be defined
in terms of the more familiar, well-founded (i.e. noncircular) sets of the
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a b

3 5 Zermelo Fraenkel

Figure 7.1: Graphical representation of two simple sets.

Zermelo-Fraenkel theory. And just as the ‘new’ complex number system
shares many of the fundamental properties of the ‘old’ real numbers—for
instance, both systems are fields—so too the universe of non-well-founded
sets will satisfy many of the axioms of the well-founded Zermelo—Fraenkel
universe of sets. Indeed, it satisfies all axioms except for Foundation.!

It should perhaps be pointed out that in the case of an analytic approach
to set theory, it is quite natural to allow for atomic (i.e. non-set) elements,
or urelements, entities that may be used in order to construct sets, but
which are not themselves analyzed in a set-theoretic fashion. Traditionally,
Zermelo—Fraenkel set theory does not allow for the existence of atoms,
though it is easy to amend the axioms to do so. I shall denote by ZFCA
the theory ZFC amended to allow for atoms.

An excellent illustration of the application of non-well-founded set the-
ory is provided by Barwise and Etchemendy in their book The Liar [2],
in which they provide a set-theoretic account of the classical Liar Paradox
and some other logical paradoxes.

7.1 Set-Membership Diagrams

Consider then, some very simple, circular sets of the kind that might easily
arise in a discussion of information storage, say

a={3,5} and b= {Zermelo, Fraenkel}.

We may picture these sets by means of simple diagrams as in Figure 7.1.
The idea in the case of such diagrams is to represent set membership
by means of directed line segments. Thus, referring to Figure 7.1, the

1Though, as we shall see, the Axiom of Extensionality does not always serve to
distinguish non-well-founded sets as it does for well-founded sets, and another axiom
will be required in order to overcome this problem.
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arrows pointing from the set a to each of the two numbers 3 and 5 indicate
that the set a has precisely the two elements 3 and 5, and likewise the
arrows pointing from b to the two objects (atoms) ‘Zermelo’ and ‘Fraenkel’
represent the fact that the set b consists of precisely these two objects (and
is thus a set consisting of two particular people). Thus Figure 7.1 provides
an alternative means of indicating the set-theoretic structure of the sets a
and b, other than the more familiar notation used above to introduce these
sets.

Both notations show what it is that the two sets a and b have in com-
mon, as well as the way in which they differ. Any set is, of course, a
purely abstract construct. In the case of set a, the elements of this set are
themselves also abstract entities. Set b, on the other hand, is an abstract
construct built out of two real objects in the world (or rather two objects
that at one time did exist in the world). But in both cases, the set-theoretic
structure itself is the same: each consists of two objects that are (conceptu-
ally) collected together to form a single (abstract) entity. With traditional
set notation, this common structure is reflected in the fact that in each case
precisely two objects occur between the braces { and }; in Figure 7.1, the
obvious isomorphism between the two diagrams indicates the same common
structure.

Now, in the case of simple sets like the two above, there seems to be little
to choose between the two notations, the traditional and the diagramatic,
but when it comes to indicating the hereditary (membership) structure of
more complex sets, the diagramatic form can be much easier to understand,
allowing as it does for the various membership paths to be traced along the
connecting arrows. This is illustrated by Figure 7.2, which gives diagra-
matic representations of the first four ordinal numbers (under the familiar
von Neumann definition used in this book, that takes any ordinal number
to be just the set of its predecessors).

Both Figures 7.1 and 7.2 are examples of what are known as graphs.
The points that occur in a graph, such as the points labeled a, 3,5 in the
first graph in Figure 7.1, are generally referred to as nodes of the graph,
the lines (or arrows) connecting them as edges.?

In Figure 7.2, the ordinal 0, being the empty set, is depicted by a
diagram consisting of a single node with no edges emanating from it. The
graph for the ordinal 1, being the singleton set {0}, consists of two nodes,
the top node depicting the ordinal (set) 1 itself, the node beneath it the
single element, @, of that top node. And in the remaining two cases, the
top node depicts the ordinal number concerned while the remainder of

2Strictly speaking, what we have here are directed graphs or digraphs, the adjective
‘directed’ indicating that the edges, being arrows, have a specified direction.
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Figure 7.2: Graphical representation of the first four ordinal numbers.

the graph shows the sct-theorctic structurc of that ordinal number. An
instructive exercise is to label each of the nodes in Figure 7.2 with the
appropriate von Neumann ordinal.

One thing to notice concerning Figure 7.2 is that there was really no
need to label the top nodes in each of the four cases. Since the only set
depicted by a node from which no edges (arrows) emanate is the empty
set, each of the bottom nodes in the four graphs must represent the empty
set, so in each case we may work our way up the various paths through the
graph in order to determine the exact nature of the set depicted.

This is quite unlike the situation in Figure 7.1. Here the bottom nodes
all denote particular entities, as indicated by the labels attached to those
nodes. In the case of the set a, if we regard the elements 3 and 5 as being
sets under the von Neumann definition of an ordinal, then of course we may
extend this particular graph to one without labels in the obvious way. But
for the set b, such a procedure is clearly not possible, and the bottom nodes
must be regarded as atoms or atomic nodes of the graph, depicting entities
that either have no set-theoretic structure or whose set-theoretic structure
is not pertinent.

In order to avoid confusion, I shall use hollow circles, rather than dots,
to indicate atoms in graphs. Thus, the set {Zermelo, 1} will be represented
graphically as in Figure 7.3.

If we allow infinite graphs in the case of infinite sets, then it is clear
that any set may be represented by a membership graph in this fashion,
providing a diagramatic representation of the entire hereditary structure
of the set. Indeed, there is an obvious method for producing a graph that
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Zermelo

Figure 7.3: The set {Zermelo, 1}, where 1 = {0}.

2 3

Figure 7.4: Alternative graphical representations of the ordinals 2 and 3.

depicts a given set.? Namely, start with the set concerned as top node, and
then enumerate all its elements beneath it, joining the top node to each
of these by means of a downward pointing arrow. Then, for each of these
nodes in turn enumerate all their members beneath them, and make the
appropriate edge-connections. And so on.

Now, a particular set may be represented by more than one graph. For
instance, referring back to Figure 7.2, in the graph depicting the ordinal
number 2 there are two nodes denoting the ordinal number 0. If we identify
these two nodes then we obtain the alternative graphical representation of
the ordinal 2 shown on the left of Figure 7.4. Likewise, the graph depicting
the ordinal 3 in Figure 7.2 has four nodes that correspond to 0 and two
corresponding to the ordinal 1, and identification of the nodes in these two
groupings leads to the graph shown on the right in Figure 7.4.

Again, it is an instructive exercise to label each of the nodes in Figure 7.4
with the appropriate ordinal number and to relate these two graphs with
the corresponding graphs in Figure 7.2.

By allowing the appearance of loops within graphs it is possible to
depict (some) non-well-founded sets by means of finite graphs. Indeed, this

3This procedure can only be actually carried out in the case of reasonably small finite
graphs, but it is easy to see that it will work ‘in principal’ for any set.
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!

Figure 7.5: Different graphs depicting the set €.

is arguably the most appropriatc means of depicting a circular set, since
circularity is a ‘looping’ concept. Figure 7.5 illustrates this quite clearly,
by giving a number of different graphs each of which represents the circular

set
Q= {Q}

Finally, consider the sets a, b, ¢ defined as follows:
a = {bc},
b = {Zermelo, Fraenkel, c},
¢ = {Hilbert, Fraenkel, b}.

Here we have both circularity and atoms. Figure 7.6 provides a graph
depicting the set a.

Now, as things stand at the moment, all I appear to have done is exhibit
a rather handy, though perhaps obvious, means of depicting sets—or rather
the hereditary membership relation of sets—by means of graphs. Except, of
course, that I have extended the discussion into what from the standpoint of
classical (well-founded) set theory is the decidedly fanciful domain of ‘sets’
involving circularity. But, in fact, I have prepared the way for a significant
payoff. All that needs to be done in order to collect that payoff is to recall
the basic strategy of developing our theory of sets by an analysis of the
constituency structure of the kinds of objects that arise in the real world.
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a

Zermelo Fraenkel Hilbert

Figure 7.6: A circular set containing atoms.

According to that strategy, graphs (of the general forms of those dis-
cussed above) are, in a sense, prior to the sets they depict. Given some
structured object a in the world, we may (in theory, at least) represent
its hereditary constituency relation by means of a graph and thereby ob-
tain a ‘set-theoretic’ model of a by moving from the graph to the set it
depicts—namely, the set that corresponds to the top node of the graph.

In order for this process to work, what we need to know—and all that
we need to know—is that to every graph G of the appropriate form (see
momentarily) there is a set that G depicts (as its hereditary membership
relation). And it is this concept of ‘set from a graph’ that I intend to work
with.

Under this conception of ‘set’, all the ‘usual’ well-founded sets are avail-
able, since each is depicted by the graph of its hereditary membership rela-
tion, obtained as outlined above. In addition, any graph that has an infinite
descending path or else contains a circuit (loop), as in Figures 7.5 and 7.6,
will give rise to a non-well-founded (or circular) set. Thus non-well-founded
sets arise quite naturally alongside the more familiar well-founded sets.

At this stage, I need to be precise as to just what kinds of graphs give
rise to ‘sets’ in the above fashion.

First of all, we are restricting our attention to directed graphs, that is to
say, graphs for which every edge has a single, designated direction. Within
classical set theory, such a graph, G, is usually defined as consisting of a
nonempty set G of nodes (or vertices) and a set F of (directed) edges, where
each edge in E is an ordered pair (z,y) of nodes. If (z,y) € E, we say =
and y are joined by the edge (x,y).
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When I draw a particular graph, I represent an edge by means of an
arrowed line connecting the two nodes concerned (in the appropriate direc-
tion). Thus if (z,y) € E, I write £ — y. In such a case, I say z is a
parent of y or that y is a child of x.

It does not matter what elements of the set-theoretic universe are taken
to act as the nodes of any given graph. A canonical choice——and the one I
shall officially adopt—is to use the ordinal numbers for this purpose. The
important issue is the graph-theoretic structure exhibited by that graph.

A path in a graph is a finite or infinite sequence

ng — Ny —> Mg — ...

of nodes, each of which (except the first) is a child of its predecessor.
If there is a path

n —Ng — ... — N

from a node n; to a node ng, I say that ny is an ancestor of ny or that ny
is a descendant of n;.

A graph is said to be pointed if there is a unique, distinguished node
no (called the point or top node, or sometimes the root, of the graph) such
that all other nodes are descendants of ng. Diagrams of pointed graphs
generally show the ‘top node’ at the top of the picture. In this book, I shall
assume all graphs are pointed. Thus, from now on, the word ‘graph’ should
be taken to mean ‘pointed, directed graph’.

It is of course the top node of a graph that corresponds to the ‘set’
depicted by that graph.

7.2 The Anti-Foundation Axiom

Broadly speaking, the intuitions that lead to the axioms of Zermelo—Fraenkel
set theory hold true in the present situation, except for the Axiom of Foun-
dation. So, providing we can be assured that the resulting system is con-
sistent (i.e. consistent relative to the Zermelo—Fraenkel system itself), it is
sensible to combine our new conception of a ‘set determined by an arbitrary
graph’ with the remaining axioms. But there is a problem. To see what it
is, consider the two non-well-founded sets

a = {Zermelo, a} , b= {Zermelo, b}.

Are the sets a and b equal or not? In the case of well-founded set theory,
the answer to a question of this nature is readily obtained by applying the
Axiom of Extensionality: two sets are equal if and only if they have the
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Zermelo

Figure 7.7: Graph depicting the unique set a such that a = {a, Zermelo}.

same elements. But in the present case, this axiom simply leads to the
conclusion

a=1> if and only if a =b.

So in order to resolve identity conditions where non-well-founded sets
are concerned, we will have to look for some alternative principle. Given
the motivation that lies behind out present theory of sets, it seems fairly
clear where we should look—and indeed what the solution to our problem
should be: any given graph should (presumably) depict only one set, or,
to give an alternative formulation, two sets that are depicted by the same
graph should be identical.

In the case of the above example, both sets give rise to the same heredi-
tary membership graph, namely, the one shown in Figure 7.7. Consequently,
these two sets are (i.e. should be) one and the same.

This consideration leads fairly rapidly to the formulation of the following
additional axiom that ought to be assumed in order to obtain an intuitive
and workable theory of sets that allows for the existence of circular sets.

Every graph depicts exactly one set.

Because this principle explicitly gives rise to the existence of non-well-
founded sets, I shall follow Aczel* and refer to this principle as the Anti-
Foundation Aziom (AFA).

Our task now is to develop our theory of sets in a rigorous manner to
incorporate this extra principle.

Obviously, since our present conception of a set requires the notion of
an arbitrary graph, we need to establish some form of basic set-theoretic
framework before we can even state the axiom AFA introduced above. This
means that we need to write down some initial collection of set-theoretic

4The present development of a non-well-founded set theory follows closely that of
Peter Aczel [1].
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Figure 7.8: Decorations of the graphs shown in Figure 7.4.

principles, principles that will not effect the issues addressed by AFA one
way or the other.® Since the present aim is to remain as close to traditional
set theory as possible, while remaining true to the modeling process we have
in mind, I take for this initial framework the theory ZFCA (i.e. the Zermelo—
Fraenkel axioms modified to allow for atoms), modified by dropping the
Axiom of Foundation. I denote this theory by the acronym ZFCA~. 1
denote the set of atoms by A.

Let G be a graph with top node ng. A tagging of G is an assignment to
every childless node of G of either an atom (of the underlying set theory)
or else the empty set, #. That is, a tagging is a function from the set of
childless nodes of G into the collection A U {0}.

Suppose now that G is tagged, that is, there is some tagging function, t,
for G. By a decoration of G (relative to t), I mean a function, d, defined on
G such that:

(i) if n is a childless node, then d(n) = t(n);
(ii) if n is not childless, then d(n) = {d(n') | n — n'}.

For example, the two graphs shown in Figure 7.4 have the decorations
shown in Figure 7.8 (assuming the one childless node is tagged with the
empty set in each case).®

A graph is said to be well-founded if it has no infinite path. The fol-
lowing fact concerning well-founded graphs is a slight reformulation of a
standard result of classical set theory.

Theorem 7.2.1 [The Collapsing Lemma) Every well-founded tagged graph
has a unique decoration.

SRecall that I took a similar course with Zermelo—Fraenkel set theory. Some initial ax-
iomatic development of set theory is necessary in order to properly define the cumulative
hierarchy that provides the underlying conception for the entire theory.

6A glance at this figure should indicate why I use the word ‘decoration’ for this
concept.



154 7. NON-WELL-FOUNDED SET THEORY

Proof: A straightforward application of definition by recursion on the well-
founded graph relation, giving d as the unique function satisfying the re-
quirements (i) and (ii) above, for each node n of the graph. [Exercise: Fill
in the details.] O

Given a set z, any tagged graph that has a decoration which assigns x
to its top node is called a picture of .

Thus, for example, Figure 7.2 gives pictures of the first four ordinal
numbers, Figure 7.4 gives alternative pictures of the ordinals 2 and 3, Fig-
ure 7.5 gives a number of different pictures of the set €2, and Figure 7.7
gives a picture of the unique set a such that

a = {a, Zermelo}.

[Exercise: Give two other pictures of this particular set, one a finite graph,
the other infinite.]

As an immediate consequence of Theorem 7.2.1, we see that every well-
founded graph is a picture of a unique set.

By simply regarding the hereditary membership relation of a given set
as a graph (i.e. n — n’ if and only if n’ € n), we see that every set has at
least one picture. In fact, we can say more. In graph-theoretic terminology,
a tree (see Section 4.4) is a graph such that for any node n there is a unique
path starting from the top node and terminating at n. Then we have

Lemma 7.2.2 Every set can be pictured by a tree.

Proof: Let G be a graph with top node ng that pictures the set x. Define
a new graph G’ as follows. The nodes of G’ are the finite paths

ng—mny — ... — N
starting from ng, and the edges are the pairs
(ng = ... >Nk, Ng— ... = Nk — Nkg1)-

It is easily seen that if d is a decoration of the graph G, then d’ is a decoration
of G’, where we define

d/(TLQ s A nk) — d(nk)

(Taggings are likewise intimately related.)
Thus G’ also pictures the set z. I refer to G’ as the unfolding of G. O

It should be noted that even when we restrict our attention to trees,
pictures of sets will not be unique. For instance, the graphs shown in
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Figure 7.9: Nonisomorphic graphs for the set €2.

Figure 7.9 all picture the set §2, but they unfold to different (nonisomorphic)
trees.

Using the newly introduced terminology, I may now state the axiom
AFA:

The Anti-Foundation Axiom (AFA): Every tagged graph
has a unique decoration.

The existence part of AFA alone clearly violates the Axiom of Foun-
dation. For instance, none of the graphs depicted in Figure 7.5 can be
decorated using sets from the well-founded Zermelo—Fraenkel universe of
sets.” On the other hand, each of these particular graphs can be decorated
by assigning the non-well-founded set 2 = {Q2} to each node.

By a universe for a theory T of sets we mean a collection V of sets that
is a model of T. The following result is proved in Section 7.8.

Analogously to ZFCA, I denote by ZFC™ the theory ZFC minus the
Axiom of Foundation.

Theorem 7.2.3 If V is a universe for ZFC set theory (respectively, a uni-
verse for ZFCA set theory, where the atoms form a collection .A), then there
is a universe V* for ZFC~ + AFA (respectively, ZFCA~™ + AFA with atoms
from A) such that V C V*. O

Besides showing that the theory ZFCA~ + AFA is consistent relative
to ZF, the proof of this result shows how a given model of ZFC may be
extended to a model of ZFC™ + AFA (respectively, how a given model of
ZFCA may be extended to a model of ZFCA™ 4+ AFA having the same
collection of atoms).

"In fact the statement that no non-well-founded graph can be decorated is just a
reformulation of the Axiom of Foundation.
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7.3 The Solution Lemma

One of the most important consequences of AFA, as far as applications
are concerned, is the way that it guarantees the existence of ‘solutions’ to
systems of ‘equations’.

The general problem is perhaps best introduced by way of a simple
example.

Suppose X, y, z are set-indeterminates, and consider the system of equa-
tions

x = {Zermelo,y}

y {Fraenkel, z}

z = {3,5}

(where 3 and 5 are the usual von Neumann ordinal numbers).
Then it is easy to ‘solve’ this system of equations for the unknowns x,
y, z. The three sets concerned are

x = {Zermelo, {Fraenkel, {3,5}}}
y = {Fraenkel, {3,5}}
z = {3’5}

(where ‘3’ and ‘5’ here denote the corresponding von Neumann sets).

To obtain this solution, you simply observe that the last equation al-
ready gives a solution for z, then substitute for z in the second equation to
obtain the solution for y, and finally substitute for y in the first equation
to obtain the set corresponding to x.

Now consider the amended system

x = {Zermelo,y}
y = {Fraenkel, z}

Z = {x,y}

where the sets 3 and 5 in the first system have been replaced by the inde-
terminates x and y. Here the circularity in the system makes it impossible
to derive a solution as for the first system. But, given the previous dis-
cussions, a natural approach is to investigate the graph that any solution
would have to satisfy.
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Zermelo Fraenkel

Figure 7.10: Solution of a system of equations using a graph.

A few moments analysis reveals that a graph as in Figure 7.10 provides a
representation of the membership structure any solution must have. (Here
I use the letters x, y, z to provide ‘labels’ for the nodes corresponding to the
indeterminates X, y, z, respectively. For the sake of this informal, intuitive
discussion, these labels should be regarded as nothing other than diagra-
matic markers that serve to distinguish the nodes until the application of
AFA yields sets to which these nodes correspond.)

By AFA, the tagged graph in Figure 7.10 has a unique decoration, d.
Then, if d(z) = X,d(y) = Y,d(z) = Z, the sets X,Y, Z clearly solve the
system of equations (for x, y, z, respectively). That is to say, these three
sets satisfy the identities

X = {Zermelo,Y}
Y = ({Fraenkel, Z}
Z = {X,Y)}.

Now, intuitively, it seems clear that this approach using graphs and
AFA should work for any such system of equations, involving any number
of unknowns, with the set-theoretic constructions on the right-hand sides
of the equations being arbitrarily complex, having as many nestings of sets
as required. As long as each indeterminate appears, on its own, on the
left-hand side of precisely one equation in the system, it should be possible
to draw a graph depicting the membership structure that any solution will
have to have, and thus, by AFA, to obtain a (presumably unique) solution
to the system.

The Solution Lemma, proved using AFA, says that this is indeed the
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case. In order to state the lemma properly, I need to first set up the
appropriate machinery.

I denote by V4 the ‘universe’ of all sets (of the theory ZFCA™ +
AFA) built on the collection A of atoms. Let X be a collection of set-
indeterminates. I denote by V4[X] the collection of all set terms that can
be built up using elements of V4 and the indeterminates in X. That is,
V4[X] will be an extension of V4 that contains objects such as

{a,b,x,{y,c}}
{a, {x,{b,{z}}}}
{1,2,{Q,x}}

where a,b,ce V4 and x,y, z € X.
Formally, I regard the indeterminates in X’ as extra atoms and take

V.A[X] = Vaux-

This construction is clearly analogous to the formation of the ring F[X]
of polynomials in indeterminates from X over a field 7. And just as the
members of F[X] give rise to systems of polynomial equations to be solved
in F, so too the members of V4[X] provide systems of set equations to be
solved in V4.

By an equation in X, I mean an expression of the form

x =t

where ¢ € V4[&].
By a system of equations in X, I mean a family of equations

{x =tx |x € X},

where there is exactly one equation for each indeterminate x € X.
By a solution to an equation

X =1t

I mean an assignment

f: X —=Vy

of sets or atoms to indeterminates such that the equation yields a valid
set-theoretic identity when each occurrence of each indeterminate in the
equation is replaced by its image under f.

Thus, to use a suggestive notation familiar from formal logic, if ¢ is an
element of V4[X] that involves the indeterminates x, y, z, ..., and I write
t =t(x, Yy, z, ...) to indicate this fact, then the assignment
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fx)=a, fly)=0b, f(z)=c,...

will be a solution to the above equation if and only if
a =t(a,b,c,...).

More generally, I say that an assignment f of sets to the indeterminates
in X is a solution to a system of equations

X=tx (XGX)

if and only if f is a solution for every equation in the system:.

To formalize the above notions within our theory of sets, the idea is to
proceed as follows. First prove that any assignment f : X — V4 extends
in a natural and unique fashion to a function

f:ValX] - Va.
Then say that the assignment f : X — V4 is a solution to the equation
Xx=t
if and only if
F(x) = f(®).

This formal development is carried out in detail in Section 7.6, where I also
prove the following key result:

Theorem 7.3.1 [The Solution Lemma] Every system of equations in a
collection X of indeterminates, over the universe V4, has a unique solution
in V4. O

The general idea for the proof of this result is to develop a formal, and
more general, analogue of the method used above in order to solve our
sample system of three equations (where we proceeded via the graph in
Figure 7.10 and then applied AFA to obtain the required sets).

It is worth remarking that the Solution Lemma is logically equivalent
to AFA (over the theory ZFCA™).

7.4 Inductive Definitions Under AFA

Inductive definitions pervade set theory and logic. For instance, the class
of ordinals can be defined inductively as the smallest class Ord such that:
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(i) 0 €Ord,
(ii) if @ €0rd, then aU {a} €O0rd;
(iii) if £ COrd and z is a set, then |Jr €Ord.

In the absence of the Axiom of Foundation, this definition serves to define
the class of well-founded ordinals.

To see why this definition is described as inductive, imagine trying to
construct the ordinals one by one in the following ‘inductive’ fashion. Start
out with 0 = (). The successor ordinal to an ordinal « is defined as the set
a U {a}. In the case of limit ordinals, take unions, so that a limit ordinal
« 1s given as

a=U{B|8 <a}=Ua.

Of course, this procedure to define the ordinals cannot be carried out as
described, since it assumes that the ordinals are already available to index
the definition (i.e. to provide the domain of the scquence of ordinals being
defined). But the original definition of the class Ord given above serves to
capture the class of ordinals, by taking minimal closure under the two con-
structive principles (successor and union) used in this attempted iterative
construction.

As a first step toward obtaining a general framework that encompasses
such minimal-closure, inductive definitions, consider the function = from
sets to sets defined by

y(z) = {0 u{Uz}u{yU{y} |y ez}
For any class X now, define
N(X)=U{v(z) |r C X Azis aset}.

Then clearly, I' is an operator taking classes to classes, that is monotone,
in the sense that

X CY implies TI'(X)CI(Y).
Moreover, I' is set-based, which means that, for any set z,
if z € '(X), then z € I'(z) for some set z C X.

Clearly, a straightforward translation of our definition of the class of
ordinals now is that Ord is the smallest class X such that I'(X) = X.
(Since X C I'(X) for any class X, this is equivalent to Ord being the
smallest class X such that I'(X) C X.)
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In general now, if I' is any class operator that is monotone and set-based,
as defined above, then, as I shall prove in Section 7.7, there will be a least
fized-point X for I', that is, a smallest class X such that T'(X) = X. I then
say that the operator I' thereby provides an inductive definition of the class
X.

I shall also prove that every monotone, set-based operator has a greatest
fixed-point. If Y is the greatest fixed-point of I', I shall say that I" provides
a co-inductive definition of the class Y.

In the case of the particular operator I" defined above, the greatest fixed-
point is the class, V, the entire universe of sets (this is easily seen), so the
co-inductive definition gives us nothing new. But for other examples the
greatest fixed-point can be both nontrivial (i.e. not just V) and distinct
from the least fixed-point. And in cases where the underlying set theory is
ZFCA™ + AFA rather than ZFCA, it is often the greatest fixed-point that
is of more use than the least fixed-point. The example below is a case in
point.

Assume for simplicity that the collection A of atoms is finite. Consider
the operator I" that assigns to any class X the class of all finite subsets of
X UA. In ZFCA, this operation has a unique fixed-point, the set HF of
all hereditarily finite sets. But in ZFCA~™ + AFA, there are many distinct
fixed-points. The smallest fixed-point, HFj, can be characterized as the
smallest set satisfying the condition

if a CHFy U A and a is finite, then a € HF

(i.e. T'(HFy) CHFy.)
The greatest fixed-point, HF, can be characterized as the largest set
satisfying

if a €HF;, then a CHF; U A and a is finite

(i.e. HFy CT(HF).)

It is clear that HFy CHF;, and in ZFCA these two sets coincide. But
under AFA, the inclusion is proper. In particular, it is easily demonstrated
that every member of HFy is well-founded, but HF; contains non-well-
founded sets. For example, €2 is a member of HF. Indeed, HF; consists of
all and only those sets that can be pictured by at least one finitely branching
graph. Since this latter is obviously the correct notion of hereditarily finite
set under our present conception of sets as determined by graphs, in this
case the co-inductive definition provides the most appropriate definition.

The above example is typical of the situation in non-well-founded set
theory. A pair of inductive and co-inductive definitions that characterize
the same set or class in classical set theory often yield distinct classes under
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AFA. The least fixed-point, specified by the inductive definition, usually
consists of the well-founded members of the largest fixed-point, given by
the co-inductive definition. For reasons outlined below, it is usually the
latter that is required for applications (under AFA). (Though in the case
of the class Ord considered above, it is the inductive definition that is by
far the more important of the two. But this is for the special reason that
the well-foundedness of the ordinals that is one of their most significant
properties.)

It is largely because of the way the Solution Lemma operates that, when
AFA is assumed, co-inductive definitions are often more useful than induc-
tive definitions. The situation is best explained by starting with a simple
example, namely, the co-inductively defined set HF; of all hereditarily finite
sets in the AFA universe (with a finite set of atoms).

Suppose we have some finite system of equations of the form

x =ax(x,y,...)

where each ax is in the collection HFY¥ of all hereditarily finite sets in the
expanded universe V4[X] (which, you may recall, is formally the same as
Vaux)- And suppose that we apply the Solution Lemma to obtain a solu-
tion f to this system of equations. Intuitively, the set-theoretic structure of
each V4[X]-set ax is that of a hereditarily finite set, and consequently one
might expect that the solution sets f(x) are also hereditarily finite, that
is, in the collection HF} as defined in the universe V4. That this is indeed
the case is a special case of what is known as the Co-Inductive Closure
Theorem, proved in Section 7.7. A nonrigorous argument for the present
example is given below.

Recall that in my original motivation for the Solution Lemma, I showed
how, in the case of a simple example at least, a system of equations may be
‘unraveled’ to produce a graph that any solution will have to satisfy, whence
by AFA we can conclude that there is in fact a solution. As I mentioned
at the time, the proof of the Solution Lemma consists of a formal analogue
of this heuristic argument. The idea behind the proof of the Co-Inductive
Closure Theorem is to trace through the proof of the Solution Lemma and
check that closure is indeed achieved. (This requires that the class operator
I' concerned satisfies some fairly general additional requirements that will
be made precise when I give the formal proof.) In the case of the present
example, the following argument gives the desired result.

First of all, by introducing more indeterminates, we may assume that
each equation is of one of the following simple forms:

o x=10;

e X = a, for some atom a € A;
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® X= {YI)”',yn},

where y1,..., y, are other indeterminates with their own equations in the
system.

Let f be the solution to this modified system. It is clear that the
collection HFyUran(f) satisfies the defining condition for HF;. So, by the
maximality of HFy, ran(f) CHF, as required.

The general statement of the Co-Inductive Closure Theorem runs roughly
like this. Suppose I' is some monotone, set-based class operator. Using I,
we can co-inductively define a collection of objects from the universe V4
as the largest fixed point of I' in V4. Call the objects in this collection
I'-objects. Likewise, we may use the same operator I' in order to define an
analogous collection in the universe V4[X]. Call the objects in this collec-
tion parametric I'-objects. What the Closure Theorem says is that, provid-
ing I' satisfies some fairly general requirements, any system of equations
involving only parametric I'-objects will have only I'-objects as solutions.

The combination of the Solution Lemma and the Co-Inductive Closure
Theorem provides a powerful tool for handling non-well-founded sets under
AFA and, in this respect, takes on the role played by the recursion principle
in Zermelo—Fraenkel set theory.

7.5 Graphs and Systems

The notion of a graph has been precisely defined already. In order to obtain,
in particular, a proof of the consistency of AFA, I require the following
generalization to allow for a proper class of nodes.

By a system I mean a class M of nodes together with a class of (directed)
edges, each edge being an ordered pair (n,n’) of nodes. I write n — n’ if
(n,m’) is an edge of M. Any system is required to satisfy the requirement
that, for each node n, the collection

chyy(n)={n" e M |n— n'}

of all children of n is a set.

Clearly, any graph is a system. For an example of a system that is not
a graph (because the collection of nodes forms a proper class), take the
collection of nodes to be the universe V of all pure (i.e. atomless) sets,
with the edges given by =z — y if and only if y € .

Note that whereas graphs are assumed to have a unique top node, no
such requirement is placed on systems.

Because of the different roles played by the two collections of atoms in
our theory, taggings are defined as partial functions. Thus, a tagging of the
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system M is an assignment, ¢, to some or all of the childless nodes, a, of M,
of an atom, t(a) (i.e. a member of AU X'). I denote such a tagged system
by (M,t). (Note that ¢ may be a ‘function’ only in the proper class sense.)

Notice that if t is the nowhere-defined tagging on M, then the tagged
system (M,t) is essentially the same as the untagged system M. Accord-
ingly, I shall henceforth use the terms ‘system’ and ‘graph’ to mean ‘tagged
system‘ and ‘tagged graph’, respectively.

In order to establish the Solution Lemma, I shall need to associate atoms
(‘indeterminates’) with nodes, as well as be able to handle the assignment
to each indeterminate of a set in V4 when the equational system is solved.
The following definition supplies the appropriate machinery. Since it may
be necessary to associate more than one indeterminate to a given node, the
‘labeling’ function defined below assigns not a single set/atom but a set of
sets/atoms, to each node.

A labeling of a (tagged) system (M, t) is a function ! (possibly a ‘func-
tion’ in the proper class sense) defined on M —dom (¢) that assigns to each
node n not in dom (t), a (possibly empty) set [(n) of sets/atoms.

The elements of the set I(n), for any node n, are the labels assigned to
the node n by the labeling function.

A labeled system then is just a system, (M,t), together with a labeling
function, /. I denote such a system by (M, t,1).

A decoration of a labeled system (M,t,[) is an assignment d of a set
d(n) to each node n such that:

(i) if n € dom(t), then d(n) = t(n);
(ii) if n ¢dom(t), then

d(n) = {d(n’) | n — n'} Ul(n).

By virtue of the above remark, this definition includes the special case
of a decoration of an unlabeled system (M, t): if [(n) = (@ for each parent
node n of M, then d(n) = t(n) for all tagged nodes and d(n) = {d(n’) |
n — n'} for all untagged nodes. This simply extends to (tagged) systems,
the definition of a decoration of a (tagged) graph given in Section 7.2.

Our starting point is the axiom AFA:

The Anti-Foundation Axiom (AFA): Every (tagged) graph
has a unique decoration.

I shall prove that this formulation is already enough to prove the ap-
parently stronger result that every labeled system has a unique decoration.
The following theorem provides the first of two steps toward this goal, by
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showing that it is possible to go from decorations of unlabeled graphs to
decorations of unlabeled systems.

Theorem 7.5.1 (Assuming AFA.) Every (tagged) system has a unique
decoration.

Proof: Let (M,t) be a system. For each n € M, we may define a graph M,
by taking the nodes of M, to be all nodes of M that lie on some path of
M starting from node n, and taking as edges all edges of M that connect
two members of M,,. Since the collection of all children of any given node
in M forms a set, it is easily seen that M, is itself a set. Indeed, if we take
Xo = {n} and, for each natural number i, define

Xip1 = Ufchp(m) | m € X},

then each X; is a set, and we have M,, = |J;2,X;.

The restriction ¢,, of the tagging function ¢ to M, is obviously a tagging
of the graph M, for each n. By AFA, each (M, t,) has a unique decoration
dn. Define d on M by

d(n) =d,(n) (Vn e M).

I show that d is the unique decoration of (M, ).
First note that if n € dom(t), then n is the only node of M,, and

d(n) = dn(n) = tn(n) = t(n).

To handle the remaining nodes of M, we observe that if n — m
in M, then every node of M,, will be a node of M,, and the restriction
of d, to M,, will be a decoration of M,, and, hence, equal to d,,, the
unique decoration of (M,,,t,). Thus whenever n — m in M, we have
dn(m) = d,(m) = d(m). Consequently, for each untagged node n € M, we
have

d(n) = dp(n) = {dn(m) |n — m in M,} = {d(m) | n — m in M}.

Thus d is a decoration of (M, t).

To see that d is unique, simply notice that any decoration of (M, t) will
restrict to a decoration of (M,,t,) for any node n, hence, must extend d,,
and, therefore, has to be equal to d. O

The following theorem completes our extension of AFA to cover labeled
systems.
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Theorem 7.5.2 (Assuming AFA.) Every labeled (tagged) system has a
unique decoration.

Proof: Let (M,t,1) be a labeled system. Define a new, unlabeled, system
(M’,t') as follows. Let the nodes of M’ be the members of the set

{(1,n) | ne M}U{(2,a) | a € V4[X]}.
The edges of M’ are:
e (1,n) — (1,n'), whenever n — n/ in M;
e (1,n) — (2,a), whenever n € M, n ¢ dom (t), and a € I(n);
e (2,a) — (2,b), whenever b € a.
Define the tagging ¢’ on M’ by:
e t/(1,n) =t(n), if n € dom (¢);
o t/(2,a)=a,ifae AUX.

By Theorem 7.5.1, (M’,t') has a unique decoration, d. Thus, for each node
n € dom (t),
d(1,n) =t'(1,n) = t(n),

and, for eacha € AU X,
d(2,a) =t'(2,a) = a.
Moreover, for each untagged (by t) node n € M,
d(1,n) ={d(1,n') |n — n' in M} U {d(2,a) |a €l(n)},
and, for each nonatomic a € V4[X],
d(2,a) = {d(2,b) | b € a}.

Now, the assignment of the set d(2, a) to each a € V4[X] is a decoration
of the system V4[X], tagged with the identity function on AU X. But the
identity function on V4[X] is also a decoration of the same tagged system.
So by Theorem 7.5.1, we must have d(2,a) = a for all a € V4[X].

Define e on M now by

e(n) =d(1,n).
Then if n is a tagged node of M,

e(n) = t(n),
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and if n is an untagged node of M, then
e(n) = {e(n)|n—n"in M}U{a|ae€l(n)}
= {e(n')|n — n' in M} UIl(n).

So e is a decoration of (M, t,1).
To check uniqueness, suppose €’ is also a decoration of (M,t,l). Then
d’' is a decoration of (M’,t'), where we define

e d'(1,n) =€ (n), for n € M;
e d'(2,a) = a, for a € V4[X].
By Theorem 7.5.1, we have d’ = d. Hence for all n € M, we have
e'(n) =d(1,n) =d(1,n) = e(n),

so e =e. a
In the future, I shall often simply refer to Theorem 7.5.2 above as AFA.

The following general result establishes the key facts I shall use in the
proof of the Solution Lemma.

Theorem 7.5.3 (Assuming AFA.) Let (M,t,l) be a labeled system (in
V4[X]) such that t(n) € A for all tagged nodes n € M, and I(n) C X for
all untagged nodes n € M.

(i) Let w: X — V4. Then there is a unique map 7 : M — V4 such that
for each n € M:

e if n is a tagged node of M, then 7(n) = t(n);
e if n is an untagged node of M, then

7(n)={7(n)|n —n' in M}U{n(z) | z € l(n)}.

(ii) Suppose that to each € X there is assigned a node a, of M. Then
there is a unique map 7 : X — V4, such that for all z € X,

m(x) = T(ag).
Proof: (i) Let m : X — V4 be given. Let l; be a new labeling of (M, 1),

defined by setting
lr(n) = {n(z) | z € I(n)}
for all untagged nodes n of M.
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Clearly, the unique decoration of the labeled system (M, t,1,) is the
desired map 7.

(ii) Let M’ be the system having the same nodes as M, and all the edges
of M, together with the edges n — a, whenever n € M and z € I(n).
By Theorem 7.5.1, the unlabeled system (M’,t) has a unique decoration,
d. Thus, for each tagged node n € M’,

and, for each untagged node n € M’,
d(n) ={d(n') |n — n/ in M} U {d(a,) | z € l(n)}.

Let m(z) = d(ay) for each x € X. Thus 7 : X — V4. Moreover, for each
untagged node n € M,

d(n) ={d(n') |n —n' in M} U {r(z) |z €l(n)}.

So by part (i) of the theorem, d = 7. So, in particular, for all z € X, we
have
m(z) = 7(ay).

To show that 7 is unique with this property, suppose that 7’ : X — V4 is
such that 7/(z) = 7’'(a;) for all z € X. Then clearly, 7’ will be a decoration
of (M’,t). Thus by Theorem 7.5.1, 7’ = d. Hence for any = € X,

7' (z) = 7' (az) = d(az) = 7(z).

Thus 7’ = . O

7.6 Proof of the Solution Lemma

I shall present the proof of the Solution Lemma in two parts. The first,
which I shall call the Substitution Lemma, says that if you start with a
collection, C, of members of V4[X], and if you replace each indeterminate =
that occurs (in the transitive closure of ) some member of C by some member
by of V4, then the result will be a family C’ of well-defined members of V4.

Theorem 7.6.1 [Substitution Lemma)] (Assuming AFA.) Let m: X — V4.
Then there is a unique map 7 : V4[X] — V4 such that:

(i) 7(a) =a,foralla € A ;
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(ii) w(a) ={7d) | be Vu|X] & beal U {n(z) |z € X & x € a}, for all
other a.

Proof: Let M be the system whose nodes are the members of V4[X] and
whose edges are given by

a — b if and only if b€ a.

Let ¢t be the identity function on A. (So t is a tagging for M.) Define a
labeling I of (M, t) by setting

l(a)=anX

for all a € V4[X] — A. (Thus l(a) C X for all a € dom(!).)
Let 7 be related to (M,t,l) and 7w as in Theorem 7.5.3(i). Clearly, 7 is
as required. O

Theorem 7.6.2 [Solution Lemma] (Assuming AFA.) Let a, be a member
of V4|X] for each indeterminate . Then the system of equations

r=a; (x€X)

has a unique solution. That is, there is an assignment 7 : X — V4 such
that
7(z) = 7(az)

for all x € X.
Proof: Let (M,t,l) be as in the proof of Theorem 7.5.3 and apply Theo-
rem 7.6.1(ii). O

7.7 Co-Inductive Definitions

I indicated earlier that the Solution Lemma can often be combined with
co-inductive definitions in order to obtain solution sets with particular prop-
erties. In this section I develop this idea formally.

I start off by recalling that a class operator I' is said to be monotone if

XCY = I'(X) CI(Y),
and is set-based if

a €T'(X) = a€T(z), for some set z C X.
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Taken together, these two conditions are equivalent to the following: for

any class X,
INX)=U{I'(z) |z € X Az is aset}.

Operators that satisfy this requirement are usually said to be set-continuous
(or, simply, continuous).

It is a standard fact of ZFC™ set theory that every continuous operator,
I', has both a least fixed-point and a greatest fixed-point. The least fixed-
point of I' is the unique smallest class I such that I'(/) C I. The largest
fixed-point is the unique largest class J such that J C I'(J). Our present
interest is in the largest fixed-point, and accordingly I commence with a
proof that such a largest class J exists.

Note that as an operator on classes, a class operator I' should be thought
of in terms of some defining formula, not as some form of extensional object.
(The use of the word ‘operator’, as opposed to ‘function’, is intended to
emphasize this point.)

Given I, define J by

J={z|zisaset Az CTI'(z)}.

Lemma 7.7.1 J CT'(J).

Proof: Let a € J. Then by definition, a € x for some set £ such that
z C I'(z). Since z C J and I' is monotone, I'(z) C I'(J). Thus z C I'(J).
Hence a € T'(J). 0

Lemma 7.7.2 If X CI'(X), then X C J.

Proof: Assume X CT'(X), and let a € X. I prove that a € J.

I first show that for each set £ C X, there is a set £’ C X such that
z CI'(z'). Let £ C X. Then, by the assumption on X, z C I'(X). Hence
as I' is set-based,

(Vy € 2)(3u)(y € T'(u) Au C X).
By the Axiom of Replacement, there is a set A such that
(Vyez)(Fue A)(y eN'(u) Au C X).

Set
g = J{ue A|uC X}

Then z’ is a subset of X. Moreover, as I' is monotone, I'(u) C I'(z’) for all
u € A, sox C T ().
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Using the above result, we can choose (using the Axiom of Choice)
an infinite sequence zg,x1,... of subsets of X such that zo = {a} and
Zn, CI'(zp41) for all n. Set

= oZn-

Then z is a set. Moreover, if y € x, then y € z,, for some n, so y €
I'(xp41) CT'(z). Thus z C I'(z). Hence  C J. Since a € zg C z, it follows
that a € J. a

Lemma 7.7.3 J is the unique largest fixed-point of I'.

Proof: By Lemma 7.7.1 and the monotonicity of T,
I'(J) S T(I'(J)).

So by Lemma 7.7.2, ['(J) C J. Thus by Lemma 7.7.1 again, I'(J) = J,
and so J is a fixed-point of I' By Lemma 7.7.2 again, J is the largest
fixed-point of I'. O

The task now is to establish a general result that will enable us to show
that under certain conditions, the solution sets to a system of equations all
satisfy a given co-inductive definition (where, you may recall, a co-inductive
definition of a class is one that determines the class as the largest fixed-
point of some continuous operator). The development should (continue to)
be thought of as taking place in the set-theoretic universe V4[X].

Let I" be a continuous operator. Assume I' has the following ‘absolute-
ness’ property: for any set z, I'(xNVy4) = I'(z)NV4. Let J* be the largest
fixed-point of I" as defined in V4[X], and let J be the largest fixed-point as
defined in V4. Notice that by virtue of the above absoluteness assumption
on T, J = J* NVy. (This is easily proved.)

Let

r=a; (r€X)

be a system of equations such that a, € J¥, for all z € X.
The basic question to ask now is this. Given a solution

T(x) =b, (z€X)

to this system, by sets b, in V4, under what conditions may we conclude
that each set b, is in fact a member of J, the largest fixed-point of I' as
defined in V47 The answer, though not particularly pretty, is generally
quite easy to apply in specific cases. It depends on the following definition.
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Call a map 7 : V4[X]| — V4 faithful (for the given system of equations)
if 7(a) = a for all a € A, and for all other a € V4[X],

7(a) ={7r(b) |[bea}U{r(az) |z €an X}.

Theorem 7.7.4 [Co-Inductive Closure Theorem] (Assuming AFA.) Let
I, J¥, J, a; (x € X) be as above. Suppose that for any faithful map
T : Va[X] — V4, it is the case that

(%) a € J* = 1(a) € T'(K),
where K is the range of 7 on J¥.

Then the unique solution to the system of equations consists entirely of
sets in J.

Proof: The Solution Lemma (Theorem 7.6.2) tells us that there is a unique
map 7 : X — V4 such that

m(z) = 7(az)
for all x € X, where 7 : V4[X] — V4 is such that 7(a) = a if a € A, and
7(a)={7)|b€atU{n(z) |z €anX}
if a € A.

Since 7(x) = 7(a;) for all z, 7 is faithful. Thus, by assumption, 7 must
satisfy condition (). So, if K is the range of 7 on J¥, we have
(%) a € J¥ = 7(a) e T(K).

Now, if b € K, then b = 7(a) for some a € J¥, so by (x*), b € ['(K).
Hence K C I'(K). So by the maximality of J*, K C J*. But K C Vj4.
Hence, as J = J¥* NV4, K C J, and it follows that 7(a) € J. In particular,
7(z) = 7T(a,) € J for all z € X, as required. O

As an illustration of the use of the above result, take the example of
the hereditarily finite sets discussed informally at the end of the previous
chapter. The co-inductively defined collection HF of all hereditarily finite
sets is the largest fixed point of the continuous operator

['(X)={a]aC XUA& a is finite}.

(As before, I assume that the collection A of atoms of V4 is finite here.)
Notice that I' satisfies the absoluteness requirement stipulated above for
operators to which the Co-Inductive Closure Theorem may be applied.
Suppose

r=a; (xedi)
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is a system of equations such that a, € HF* forallz € X. Let 7 : V4[X] —
V4 be a faithful map. I show that (x) is satisfied.

Let a € HF*. We must prove that 7(a) € I'(K), where K is the range
of 7 on HF*. If a € A this is trivial. For the remaining cases,

7(a) ={r(b) |bea}U{r(az) | x € an X}.

So, 7(a) C K, and since a is finite, so too is 7(a). Thus 7(a) € T'(K), as
required.

Hence, by the Co-Inductive Closure Theorem, the unique solution to
the system consists of hereditarily finite sets in the sense of V4.

7.8 A Model of ZF~ +AFA

This final section is fairly technical and assumes a sound knowledge of
basic model theory. It is included for completeness only, since the material
presented is not, at the present time, widely available.

The relative consistency result for AFA, Theorem 7.2.3, depends on an
investigation of the dual questions:

e When are two sets pictured by the same graph?

e When do two graphs picture the same set?

This is the task I turn to in this section. Unless otherwise indicated, the as-
sumed underlying set theory is ZFC™; that is, Zermelo—Fraenkel set theory
without the Axiom of Foundation. (I shall therefore ignore the possibility
of atoms from now on. They would play no role in our development and
would only be an unnecessary encumberance.)

The fundamental graph-theoretic notion that underlies our answer to
the first of the above two questions is that of a bisimulation.

Let M be a system. A binary relation R on M is called a bisimulation
on M if, whenever aRb, then

(Vz € chpr(a))(3y € char(b))(xRy) A (Vy € char(b))(Fz € char(a))(zRy).

In words, if a and b are related via R, then for every child, z, of a there is
a child, y, of b that is related to z, and vice versa.

The following example of this notion is basic. For two sets a, b, write
a = b if and only if there is a graph M that is a picture of both a and b.
Then = is a binary relation on the system V (i.e. the class of all sets, with
the edge relation x — y if and only if y € x).

8The name comes from earlier uses of this notion in Computer Science, where it is
related to a pair of processes each of which could ‘simulate’ the behavior of the other.
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Lemma 7.8.1 The relation = is a bisimulation on V.

Proof: Suppose a = b. Then there is a graph M, with top node m, and
decorations dy,d2 of M, such that d;(m) = a and do(m) = b. Let z € a.
Then, as d; is a decoration

z € {di1(n) | m — n},

so £ = dj(n) for some n € chps(m). Let y = d2(n). Thus y € b. I claim
that z = y. (By symmetry, this will be enough to establish the lemma.) In
fact, the graph that pictures both x and y is just M,,, the restriction of M
to all nodes that lie on some path starting from n. (The decorations that
produce both z and y from this graph are simply the restrictions of d; and
d2 to M, respectively.) O

In general, a system will have many bisimulations. But, as I show below,
there is always a unique maximal bisimulation. (The relation = of the above
lemma is the maximal bisimulation on the system V.) The definition of the
maximal bisimulation on a given system is straightforward.

Call a relation R on a system M small if it is a set. Then define a
relation =,, on M by

a=, b if and only if aRb for some small bisimulation R on M.

As I show below, the relation =,, is the maximal bisimulation on M.

The following auxiliary notion will be helpful in our proof. If R is a
binary relation on a system M, define the binary relation Rt on M by
aR*b if and only if

(Vz € ch,, (a))(Ty € ch,, (b))(zRy) A (Vy € ch,, (b))(3z € ch,, (a))(zRy).

Then a relation R will be a bisimulation on M if and only if R C R*, i.e.
if and only if
aRb = aR™b.

Note that the operator ( )T is monotone; that is, if Ry C R, then R'f C R'{ .
Lemma 7.8.2 Let M be any system. Then the relation =,, is the unique
maximal bisimulation on M. That is:

(i) =,, is a bisimulation on M; and

(ii) if R is any bisimulation on M, then for any a,b € M,

aRb = a=,, b.
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Proof: (i) Let a =,, b. Thus aRb for some small bisimulation R on M. By
definition of =,,,
Ry = z=,,y (Vz,y € M).

So as ( )T is monotone
+ =+
tRy=z=] y (Vr,ye M).

But R is a bisimulation, so R C R*. So, in particular, aR*b, and hence
a =} b. This shows that =,, C =}, which proves (i).

(ii) Let R be a given bisimulation on M, and let aRb. I show that a =,, b.
Let
Ry = RN (Mg x Mp).

It is routine to check that Ry is a bisimulation on M such that aRgb. But
Ry is small. Hence by definition of =,,, a =,, b. O

I am now in a position to show that the relation = on V is the maximal
bisimulation on V.

Theorem 7.8.3 For all sets a,b
a=b & a=, b
Proof: By the maximality of =, we know that
a=b = a=, b

Conversely, assume a =,, b. Thus for some small bisimulation R on V', aRb.
Define a new system M as follows. The nodes of M are the elements of R,
that is, the ordered pairs (z,y) such that xRy. The edges of M are

(z,y) — (u,v) ifandonlyif uez & vey.
Now, if we define d; and d; on M by

dl(way) =T, d2(xay) =Y,

then it is easily seen that d; and dy are both decorations of M. But (a,b) €
M, so M, ) is a picture of both a and b. Thus by definition, a = b. m|

In general, bisimulation relations are not equivalence relations. But as
the notation suggests, maximal bisimulations are equivalence relations.

Lemma 7.8.4 For any system M, the relation =,, is an equivalence rela-
tion on M.
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Proof: Reflexivity. Since the identity relation on M is clearly a bisimulation
relation, =,, is reflexive.

Symmetry. Suppose a =,, b. Thus for some small bisimulation R, aRb.
Let S be the reversal of R, i.e.

ySxz < TRy.

It is easily seen that S is a bisimulation. Since bSa, it follows that b =,, a.

Transitivity. Suppose a =,, b and b =,, ¢. Let R, S be small bisimulations
such that aRb and bRc. Define a relation 7' on M by

2Tz < Jy(zRy ANySz).

It is routine to verify that T is a bisimulation on M. Since aT'c, it follows
that a =, c. a

The following simple lemma provides two conditions that imply a =,, b.

Lemma 7.8.5 Let M be any system. Then for all a,b € M:

(i) ch,,(a) =ch,(b) = a=,, b
(i) M= My = a=,, b.

Proof: (i) Define R on M by
R={(a,b)}U{(z,z) |z € M,}.
It is easily seen that R is a bisimulation on M such that aRb. Hence a =,, b.
(ii) Let 0 : M, = My, and define R on M by
zRy & ze M, ANy e My ANO(x) =y.

Again it is routine to check that R is a bisimulation on M, so as aRb we
again conclude that a =,, b. O

A system M is said to be extensional® if, for all a,b € M,

a=,,b = a=hb

Theorem 7.8.6 The following are equivalent.

9In [1], Aczel uses the phrase ‘strongly extensional’ for this notion. In my develop-
ment, I have no need for the weaker notion that Aczel refers to as ‘extensional’.
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(i) Every graph has at most one decoration.

(ii) V is extensional.

Proof: Assume (i). Let @ =, b. Then by Theorem 7.8.3, a = b, so there
is a graph GG with top node n, and decorations d; and dy of G, such that
d1(n) = a and dz(n) = b. By (i), d; = d;. Hence a = b. This proves (ii).
Assume (ii). Let d; and dy be decorations of a graph G. If z € G,
then G, is a picture of both d;(z) and dg(x), so d1(x) = d2(z). Hence by
Theorem 7.8.3, di(z) =, da(z). So by (ii), d1(z) = da(z). Hence d; = ds.
This proves (i). O

A system map from a system M to a system M’ isamapn: M — M’
such that for all a € M, m maps the children of a in M onto the children
of w(a) in M’; i.e. for all a € M,

chars(m(a)) = {r(8) | b € chy, (a)}.

For example, any system map from a graph G into V is just a decoration

of G.
The following result, which indicates how system maps preserve bisim-
ulations, will be of use later.

Lemma 7.8.7 Let m,m5 : M — M’ be system maps.

(i) If R is a bisimulation on M, then R’ = (m; X m2)R is a bisimulation
on M’, where we define

(m1 x wo)R = {(m1(a1),m2(az2)) | a1 Ras}.

(ii) If S’ is a bisimulation on M’, then S = (m; x o)1 S’ is a bisimulation
on M, where we define

(7('1 X 7!'2)_15/ = {(al,ag) eEMxM l (71'1(&1))5’(7’(‘2(0;2))}.

Proof: (i) Let by R'by and suppose b] € chps(by). I show that there is a
by € chps(b2) such that by R'b,. Let a1,aq be such that by = m(ay),by =
m(az), a1 Rag. Since by € chps(b1), there is an a} € ch,,(a;) such that
b| = m(a}). Since R is a bisimulation, there is an a5 € ch,,(a2) such that
ai Ray. Let by, = m(a4). Then b is as required.

Likewise, if by R'by and b), € chps/(b2), then there is a b € chpy(by) such
that b] R'b,,. Thus R’ is a bisimulation on M’.

(ii) This is entirely analogous to the proof of part (i). a
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Suppose now we have a system M and a bisimulation R on M that is
also an equivalence relation on M. A system M’ is said to be a quotient of
M by R if and only if there is a surjective map 7 : M — M’ such that for
all a,b e M,

aRb < w(a)=m(b).

Our main interest in quotients here concerns the extensional ones. The
following lemma supplies some information about this.

Lemma 7.8.8 Let K be a bisimulation equivalence relation on a system
M, and let 7 : M — M’ be the corresponding quotient of M. Then M’ is
extensional if and only if R is the relation =,,.

Proof: Suppose R is the relation =,,. Let w(a) =,, m(b). I show that
n(a) = m(b). By Lemma 7.8.7(ii), R’ = (7 x m)~'R is a bisimulation on M
such that aR’b. Thus a =,, b. But 7 : M — M’ is the quotient of M by
=,, (since this is R), so this implies that 7(a) = 7(b).

Conversely, suppose that M’ is extensional. I show that if S is any small
bisimulation on M, and if aSb, then aRb, which at once implies that R is
=,,- By Lemma 7.8.7(i), S’ = (7 x 7)S is a bisimulation on M’ such that
m(a)S’'w(b). Thus 7(a) =,, w(b). Hence as M’ is extensional, 7w(a) = m(b).
Thus aRb, as required. a

Using the above lemma, I can prove that every system, M, has an exten-
sional quotient. The overall approach is as follows: take the bisimulation
equivalence relation =,, on M, and construct a map 7 with domain M such
that for all a,b € M,

(%) m(a) =w(b) & a=, b

In the case where M is a set, there is no difficulty in carrying out such a
construction—it is all quite standard. The elements of the new system M’
are taken to be the equivalence classes of M under the equivalence relation
=,,, and ™ maps each element of M to its equivalence class.

But in the case where M is a proper class, problems arise if any of the
equivalence classes is a proper class. To circumvent this difficulty, the usual
trick when working in well-founded Zermelo—Fraenkel set theory is to define
‘equivalence classes’ as being subsets of the least level of the cumulative
hierarchy (of sets) at which they are nonempty. That is, given any a € M,
take the ‘equivalence class’ of a modulo =,, to be the set

{beVy|beM & a =,, b},

where a is minimal such that this collection is nonempty.
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But in the absence of Foundation, this approach will not work. Instead,
we adopt the following alternative.

For each a € M, the set M, is (by the Axiom of Choice) in one-one
correspondence with some ordinal number, and this induces an isomorphism
between the graph M, and a corresponding graph whose domain is an
ordinal. Let T, be the class of all graphs with domain an ordinal, that are
isomorphic to My for some b € M such that a =,, b. Let

m(a) ={G eV, |G eT,}

where « is the least ordinal such that this set is nonempty. I show that this
definition satisfies (%), as required.

Ifa, =,, as,thenT,, =T,,,s07(a;) = 7(az). Conversely, ifa;,a; € M
are such that m(a;) = m(az), then there is a graph G such that G € T,,
and G € T,,. Since G € T,,, there is an a] € M such that a; =,, a] and
G = M,;. Likewise, as G € Ty,, there is an a5 € M such that a2 =,, a3
and G = M,;. Then M, = M,, so by Lemma 7.8.5(ii), ay =,, a5. Thus
a; =,, as.

Theorem 7.8.9 Let M be any system. The following are equivalent:

(i) M is extensional;

(ii) for each (small) system Mj there is at most one system map
m: My — M;
(iii) for each system M’, every system map 7 : M — M’ is one-one.

Proof: (i) = (ii). Let my,mq : My — M be system maps. By Lemma 7.8.7(i),
R = (m xm2)(=pg,) is a bisimulation on M, where =, is the identity rela-
tion on My. Now, if m € My, then (m;(m))R(ma(m)), so w1(m) =,, ma(m),
and hence by (i), m(m) = mg(m). Thus 7; = 72, proving (ii).

(ii) = (i). (For arbitrary systems Mj.) Let My be the system whose nodes
are the pairs (a,b) such that a =,, b, and whose edges are all (a,b) —
(@/,b') where a — a’ and b — V' in M. Define m;, 79 : My — M by
m1(a,b) = a, ma(a,b) = b. It is routine to verify that m; and 7y are system
maps. Thus by (ii), m = w2, and hence a = b whenever a =,, b, proving
(i).

(For small systems My.) It suffices to show that (ii) for small systems
implies the unrestricted form of (ii). Let M, be a system, and let 7y, @ :
My — M be system maps. Let a € My. Then (M), is a small system,
and m; (Mp)y =72 (Mpy),. In particular, m1(a) = 72(a). But a € My was
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arbitrary. Hence m; = ms.

(i) = (iii). Let 7 : M — M’ be a system map. By Lemma 7.8.7(ii),
R = (m x ®)~!(=,,,) is a bisimulation on M (where =, , is the identity
relation on M’). So, if w(a) = n(b), then aRb, so a =,, b, whence by (i),
a = b. Thus 7 is one-one, as required.

(iii) = (i). Let # : M — M’ be an extensional quotient of M. By (iii), =
is one-one. Hence w: M = M’. So, as M’ is extensional, so too is M. O

I am now ready to give the construction of a model of the theory ZFC™
+ AFA.

Given a system M, an M-decoration of a graph G is just a system map
T:G—- M.

Thus, in particular, a V-decoration of G is simply a decoration of G.

I call a system M complete if every graph has a unique M-decoration.
(AFA says that V is a complete system.)

By Theorem 7.8.9, every complete system is extensional.

Let Vj be the class of all graphs. Notice that every member of V} is of the
form GG,, where G is a graph and a is a node of G. Using this observation,
we make Vj into a system by introducing the edges G, — G whenever
G isagraphand a — b in G.

Let 7. : Vo — V, be the extensional quotient of V}.

Lemma 7.8.10 For each system M, there is a unique system map
T M-V,

Proof: If a € M, then M, € V3. Define 7 : M — Vy by n(a) = M,.
Clearly, 7 is a system map. Then n,om : M — V, is a system map, which
is unique by virtue of Theorem 7.8.9. 0O

Corollary 7.8.11 V_ is complete.

Proof: Immediate. a

Given any system M, we may obtain an interpretation of the language
of set theory by letting the variables range over the nodes of M, and inter-
preting the predicate symbol ‘€’ by the relation €,, defined on M by

a€, bifandonlyif b —ain M

for all a,b € M.
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By virtue of the above corollary, the following result, which will be
proved in just a moment, establishes the consistency (relative to that of the
theory ZF™) of the theory ZFC™ + AFA.

Theorem 7.8.12 Every complete system is, under the interpretation de-
scribed above, a model of ZFC~™ + AFA. O

Combining this theorem with Corollary 7.8.11, we see that V, is a model
of ZFC~™ + AFA. In fact, by virtue of Lemma 7.8.10, there is a unique
system map 7 : V — V_, so V, is a model of ZFC™ + AFA that canoni-
cally embeds V. Thus we may regard our construction of the model V. as
providing an extension of the universe V. This gives the result stated as
Theorem 7.2.3.

Call a system M full if for every set u C M, there is a unique element
a € M such that u = ch,, (a).

For example, V is a full system, as is W, the class of all well-founded
sets.

Lemma 7.8.13 Every complete system is full.

Proof: Let M be a complete system. Let u C M be a set. Let G be the
graph consisting of all nodes and edges of M that lie on paths starting from
a node in u. Obtain G from G by adding one more node, ¢, together with
edges t — x for all x € u.

Since M is complete, G has a unique M-decoration, d. Let dg =d Gjy.
Then d; is an M-decoration of Gy. But the identity map is clearly the
unique M-decoration of Gy. Hence dg(x) = z for all z € Gy. So if we set
a =d(t), then a € M and

ch,,(a) = {d(z)|t — z in G}
= {z|t— zin G}

For uniqueness, suppose a’ € M is also such that ch,,(a’) = u. Then
we may define an M-decoration d’ of G by setting d'(t) = o', and d'(z) =z
for all x € Gy. So by the uniqueness of d, d’ = d. Hence, in particular,

a =d(t)=dt) =a.

The proof is complete. U
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Theorem 7.8.14 Every full system is a model of ZFC™.

Proof: Let M be a full system. Fullness tells us that for each set u C M
there is a unique a € M such that u = ch,,(a). We shall denote this unique
a by uM. Using this notation, we check each of the axioms of ZFC~ in

turn.

Extensionality. Let a,b € M be such that
ME (Vz)(z €ae xzed).

Then ch,,(a) = ch,, (). But a = (ch,,(a))™ and b = (ch,,(b))¥. Hence
MEa=h.

Pairing. Let a,b € M. Then {a,b} C M, so let ¢ = {a,b}™. Clearly,
ME[aecAbed.

Union. Let a € M. Then =z = | J{ch,,(y) | y € ch,,(a)} is a subset of M,
so let ¢ = z™. Then

M E (Vy €a)(Vz € y)(z € ).

Power set. Let a € M. Then =z = {yM | y C ch,,(a)} is a subset of M, so
let ¢ = z™. Then

M EVz[(Vz € z)(z € 2) — (z € ¢)].

Infinity. Let

00 = QM,
(ch,, (6,)U {6, )M, forn=0,1,2,....

0n+1
Then 6,, € M for all n, so
0={0,|n=0,12,.1"eM.

Clearly,
M = [0 € 0 A (Vz € 6)(3y € 8)(z € v)).
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Separation. Let a € M, and let ¢(z) be a formula, possibly containing
constants for elements of M, with at most the variable x free, and set

c={b€ chy(a) | M= p(0)}".

Then
MEVz(z€c & x €aAn d(x)).

Collection. Let a € M, and let ¢(z,y) be a formula, possibly containing
constants for elements of M, with at most the variables £ and y free, and
suppose that

M = (Vz € a)(3y)é(x, y)-

Then
(Vz € ch,, (a))(3y)y € M & M k= ¢(z,y)].

By the Collection Schema, there is a set b such that
(Vz € chy, (a))(Jy € b)ly € M & M k= 4(z,y)].

Let ¢ = (bN M)™. Then

M = (Vz € a)(3y € c)¢(z,y).

Choice. Let a € M be such that

M = (Vz € a)(3y)(y € )

and
M= (Vx1,22 € a)[3y(y € 21 Ay € x2) — (21 = 2)].

Then
(Vz € ch,, (a))(ch, (z) # 0),

and, for all z1,z2 € ch,,(a),
ch, (z1) Nch,, (z2) #0 = z, = zo.

Thus {ch,,(z) | z € ch,,(a)} is a set of nonempty, pairwise-disjoint sets. So
by the Axiom of Choice there is a set b such that for each z € ch,,(a), the
set bNch,, (z) has a unique element ¢, € M. Then ¢ = {c, | z € ch,,(a)}¥
is such that

ME (Vzea)Ty € x)(Vu € x)[u €c—u=y).
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The proof is complete. a

By virtue of Lemma 7.8.13, the above result tells us that every complete
system M is a model of ZFC~. Thus the following completes our proof of
Theorem 7.8.12.

Theorem 7.8.15 Every complete system is a model of AFA.

Proof: Let M be a complete system. For a,b € M, define the “M-ordered
pair” (a,b),, of a,b by

(a,b)y = {{a}™, {a, 0} }".

(Thus, within M, (a,b),, has the standard set-theoretic structure of the
usual ordercd pair of a,b.)

Now, a graph is, officially, an ordered pair consisting of a set and a
binary relation on that set. Thus for c € M,

M = “cis a graph”
if and only if there are a,b € M such that ¢ = (a,b),, and
M = “bis a binary relation on ao”.

This last requirement reduces to

ch, () C{(z,y) | 7,y € ch, (a)}.

Hence, if ¢ € M is such that M |= “cis a graph”, we may define a genuine
graph G by taking a,b as above and letting the elements of ch,,(a) be the
nodes of G and the pairs (z, y) such that (z,y),, € ch,,(b) the edges. Since
M is complete, G has a unique M-decoration, d. Then d : ch,,(a) = M,
and for all z € ch,,(a),

d(z) = {d(y) | (z,¥), € ch, (b)}.

Set
f= {(xad(w))M | WS ChM (a)}M
Then f € M, and it is routine to verify that

M = “f is the unique decoration of the graph G”.

The proof is complete. a
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