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Abstract

Three questions motivate much work in AI. How should an agent’s state of belief
be represented? How should an agent change its state of belief upon recording an
observation? And what is a practical way for domain experts to convey their states
of belief to agents?

Probability calculus provides answers to these questions: A state of belief should
be (1) represented by a probability function over some language, (2) changed using
probabilistic conditionalization, and (3) conveyed using a probabilistic causal network.
Despite the popularity of these answers, domain experts have often complained about
their commitment to numeric degrees of belief. In this thesis, I attempt to address this
complaint by suggesting an abstract belief calculus that is not committed to numbers
(nor to any specific set of degrees of belief) and yet has the key features of probability
calculus. The abstract calculus has three components: (1) Abstract states of belief,
(2) abstract conditionalization, and (3) abstract causal networks. The calculus is also
equipped with an algorithm for computing degrees of belief, which corresponds to a
popular algorithm in the probabilistic literature.

I present many concrete instances of the proposed abstract belief calculus. Some
of these instances are well known, such as proposition, possibility, and probability
calculi. But other instances are novel, such as objection calculus. I also show that
objection calculus is closely related to clause management and diagnosis systems —

which are influential in AT — and study the ramifications of this relation.
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Chapter 1
Introduction

The basic question underlying this thesis was motivated by two personal experiences.

In this chapter, I introduce these experiences and the question they have motivated.

I was at the Knowledge Systems Laboratory at Stanford University during the aca-
demic year of 1989, taking part in an effort to build an intelligent agent for real-time
monitoring and control. The agent was called GUARDIAN because its goal was to
guard patients in Intensive Care Units (ICUs). My initial task was to maintain and
improve a component of GUARDIAN called REACT. This component had the fol-
lowing responsibilities: possess a state of belief about a patient in the ICU, change
this state of belief as more information became available, and react when the patient
was thought to be in danger.

Given these responsibilities, it was clear to me that a number of questions needed
to be addressed: How should REACT’s state of belief be represented? How should
REACT change its state of belief as it recorded new observations? And how should
a domain expert convey her own state of belief to REACT?

Following up on work that was done by another student, I referred to the proba-

bilistic literature for answers:

1. A state of belief is a probability function over a propositional language.

1



2 CHAPTER 1. INTRODUCTION

2. A state of belief is changed using probabilistic conditionalization.
3. A state of belief is conveyed using a probabilistic causal network.

These answers turned out to have a number of desirable features.

First, a probabilistic state of belief admits uncertain propositions, which is a cele-
brated feature in real-world applications. Classical logic, by comparison, allows only
true and false propositions. Second, probabilistic conditionalization as a commitment
for changing a state of belief leads to plausible patterns of belief change [Polya, 1954;
Pearl, 1988]. Third, and probably most important, constructing a consistent prob-
abilistic causal network is straightforward. An additional attraction of probabilistic
causal networks is that they lay the foundation for a number of efficient algorithms
for computing conditional and unconditional probabilities.

In spite of all the desirable features I just mentioned, I did face a major challenge
when using probability calculus to support the functionality of REACT. Specifically,
on more than one occasion, the domain expert refused to give me the probabilities
I wanted: “I don’t have these numbers” was a common reply! And even when I
did manage to get them, other members of the project felt uncomfortable using some
probabilities that REACT computed: “I don’t want to base this decision on numbers,”
is one statement that I still remember vividly. This does not seem to have been an
isolated experience. Other researchers have pointed to similar difficulties in using

probability calculus and other numerical approaches:

One difficulty is that while it is relatively easy to elicit tentative propo-
sitional rules from experts and from people in general, it is considerably
harder to get the commitment to particular grades of certainty ... Worse
still, individual informants frequently vary in their answers to a repeated
question depending on the day of the week, their emotional state, the

preceding questions, and other extraneous factors. [Doyle, 1990]

To be fair though, the people I worked with had mixed feelings about probability
calculus. On the one hand, they were very impressed by its features that I have

discussed above. On the other hand, they found the commitment to numbers to be



a very high price for these features. But I did continue using probability calculus
to support the functionality of REACT, not by choice, but for lack of a satisfactory

alternative. Again, this does not seem to have been an isolated experience:

Understandably, expert system designers have difficulty justifying their
use of the numerical judgements in face of these indications of psycho-
logical and pragmatic unreality. Unfortunately, they have had to stick to
their guns, since no satisfactory alternative has been apparent. [Doyle,

1990]

I joined the Ph.D. program at Stanford University in the fall of 1989. In the spring
of 1990, I decided to write a thesis on probabilistic temporal reasoning under the
supervision of Dr. Matthew Ginsberg. Although I was able to convince Dr. Ginsberg
that “uncertain” temporal reasoning is important to AI, it was hard to convince
him that “probabilistic” temporal reasoning was the way to go. His argument was
simple, “The desirable features of probability calculus do not justify the commitment
to numbers.” I tried hard to change his mind, but with no success.

During my attempt to convince Dr. Ginsberg, I was puzzled by the following
questions: If numbers were intrinsic to the features of probability calculus, then why
was there no proof of this? And if they were not, then why was there no symbolic
belief calculus that has the desirable features of probability calculus?

Having no answers to these questions, my determination to convince Dr. Ginsberg
to adopt probability calculus was gradually replaced by an occupation with the fol-
lowing question: Is it possible to relax the commitment to numbers while retaining
the desirable features of probability calculus? The answer to this question and its

ramifications are what this thesis is about.

As I shall demonstrate, it is possible to relax the commitment to numbers without

losing the key features responsible for the success of probability calculus.



4 CHAPTER 1. INTRODUCTION

The demonstration is constructive. I shall present in Chapters 2-5 a belief calculus
that is not committed to numbers and yet has the key features of probability calculus.
The calculus is abstract in the sense that it is not committed to either numeric or
symbolic degrees of belief. It is comprehensive and has three major components:
Abstract states of belief, abstract conditionalization, and abstract causal networks.
These components subsume their probabilistic counterparts, and they are discussed
in Chapters 2, 3, and 4.

Similar to their probabilistic counterparts, abstract causal networks lay the foun-
dation for algorithms that compute conditional and unconditional abstract degrees
of belief. Chapter 5 presents such an algorithm and Chapter 6 presents a Common
Lisp implementation.

Beyond demonstrating that numbers are not strictly needed, the abstract calculus
unifies a number of concrete calculi that exist in the uncertainty literature. This role
shall be evident from instances of the calculus that are given in Chapters 2 and 3.
All of these calculi, however, employ numeric degrees of belief. This observation
has motivated the creation of objection calculus, which employs symbolic degrees of
belief. Objection calculus is discussed in Chapter 7.

Being symbolic, objection calculus enhances the unifying role of the abstract cal-
culus. Moreover, and probably more important, objection calculus is closely related
to clause management and diagnosis systems, which are influential in AI. This relation
and its ramifications are studied in Chapter 8.

The results in this thesis have sparked a number of important questions. I try
to answer some of these questions in Chapter 9. Finally, I conclude the thesis in
Chapter 10 by a summary of results, a review of some technical limitations, and a

discussion on future work.



Chapter 2

Abstract States of Belief

In this chapter, I formalize the notion of abstract states of belief and show that some

ATl representations can be viewed as instances of abstract states of belief.

2.1 What is a state of belief?

In probability calculus, a state of belief is usually defined as a mapping from a lan-
guage L into the interval [0,1]. This representation is restrictive because of its com-
mitment to numbers as degrees of belief. I adopt a more general representation of a

state of belief that is not committed to numeric degrees of belief:

Assumption 2.1.1 An state of belief is a mapping from a propositional language L

into a set of quantities S.

In principle, requiring that £ be a propositional language is not necessary. But
relaxing this requirement leads to states of belief that are outside the scope of this
thesis.

The quantities in § are called degrees of support. They are neither strictly numeric
nor strictly symbolic. Degrees of support can be integers, rationals, and even logical
sentences. A degree of support is a primitive concept that derives its meaning from

the operations and relations that are defined on degrees of support.
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Degrees of support could be positive or negative. Positive degrees of support
quantify the support for a sentence, while negative degrees of support quantify the
support against a sentence. Positive and negative degrees of support are dual: The
positive support for a sentence is the negative support for its negation, and vice versa.
I shall consider concrete states of belief that use positive degrees of support. I shall
also consider concrete states of belief that use negative degrees of support.

There is a difference between degrees of support and degrees of belief. Although
I did not introduce degrees of belief yet, we shall see later that the degree of belief in
a sentence is determined by the degree of support for the sentence and the degree of
support for the negation of that sentence.

I assume that degrees of support are useful in the following sense.

Definition 2.1.2 A degree of support is useful precisely when it is attributed to a

sentence by some state of belief.

Notation a, b, ¢, and s denote degrees of support in S.



2.2. COHERENCE AND NORMALITY 7

2.2 Coherence and normality

The notion of a state of belief as embodied by Assumption 2.1.1 fails to capture some
intuitions about “coherent” states of belief. For example, let the degrees of support

be {possible, impossible}, and consider a state of belief that

e attributes possible to sentence A,
e attributes impossible to sentence B, and

o attributes impossible to sentence AV B.

Intuition says that this state of belief is incoherent because we expect the support
for AV B to be possible in this case. To exclude such incoherent states of belief, we
need to impose more constraints on the notion of a state of belief. Below are some

constraints that I have identified.

Axiom 1 The support for A equals the support for B when A and B are logically

equivalent.

Axiom 2 The support for AV B is determined by the support for A and the support
for B when A and B are logically disjoint.

Axiom 3 If A entails B, if B entails C, and if A has the same support as C, then
B has the same support as A and C'.

Theorem 2.2.1 Aziom 3 implies Aziom 1.

It is common to compare the degree to which a sentence is supported by different
states of belief. Such a comparison is meaningful only if different states of belief use
the same support scale. Below are two constraints that unify the support scales used

by different state of belief.
Axiom 4 Unsatisfiable sentences have the same support across all states of belief.

Axiom 5 Valid sentences have the same support across all states of belief, which is

different from the support for unsatisfiable sentences.

A formal statement of Axioms 1-5 is given in Appendix C.
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2.3 Defining abstract states of belief

Axioms 2-5 lead to a number of formal properties. First, they lead to the existence

of an algebraic structure given by the following definition:

Definition 2.3.1 A partial support structure is a pair (S, D), where

1. § is a set containing at least two elements.
2. @ is a partial function from § X § to S that satisfies the following properties:

(X0) a®b=0a.
(X1) (a®b)Dc=a®(bdc).
(X2) If (a®b)®c=a, then also a® b = a.

(X3) There is a unique element 0 in S that satisfies the following property:
forallain S, a®0 =a.

(X4) There is a unique element 1 # 0 in S that satisfies the following property:
for all a in S, there exists b in S, such thata ® b= 1.

The function @ is called support summation, 0 is called zero support, and 1 is called
full support. Table 1 lists some partial support structures.
Axioms 2-5 also lead to properties of states of belief that are embodied by the

following definition:

S adb 0 1

Proposition | {0,1} max(a,b) 0 1
Probability | [0, 1] a+b 0 1
Improbability | [0, 1] a+b-1 1 0
Possibility [0, 1] max(a,b) 0 1
Impossibility | {0,1,...,00} min(a,b) oo 0

Table 1: Examples of partial support structures.
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Definition 2.3.2 Let (S, @) be a partial support structure and L be a propositional
language. A state of belief ® with respect to (S,®), is a mapping from L to S that
satisfies the following properties:

1. ®(A) = &(B) when = A= B.
2. ®(AV B) = ®(A) & ®(B) when = (A A B).
3. ®(false) = 0.
4. ®(true) = 1.

Definition 2.3.1 of a partial support structure and Definition 2.3.2 of a state of
belief are consequences of four theorems. These theorems refer to the notion of a
meaningful sum, which I did not introduce yet. Therefore, I shall introduce this
notion first, and then state the theorems.

The definition of a partial support structure does not specify the domain of support
summation—the definition only says that support summation is a partial function.
The domain of support summation is not specified because the definition of a partial
support structure is a consequence of Axioms 2-5, which do not entail the definition
of support summation. This raises the question, “Where should support summation
be defined?”

If a partial support structure is to be used for modeling states of belief as suggested
by Definition 2.3.2, then a @ b should be defined precisely when a @ b is a meaningful
sum. Let me first state what a meaningful sum is and then justify the previous

statement.

Definition 2.3.3 A sum over § is defined as follows:
e aPbisasum overS ifa and b are in S.
o aPbisasum overS if a and b are sums over S.

Definition 2.3.4 A sum over S is meaningful precisely when there exists an intuitive

state of belief that attributes the supports appearing in the sum to logically disjoint

sentences.!

ntuitive states of belief are states of belief that Definition 2.3.2 attempts to formalize.
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For example, suppose that the partial support structure is ([0,1],+) and degrees of
support are frequencies. Then .4 + .9 is not a meaningful sum, because there is no
state of belief that attributes .4 and .9 to logically disjoint sentences. However, .24 .3
is a meaningful sum, because there is a state of belief that attributes .2 and .3 to
logically disjoint sentences.

Depending on the domain of support summation, mappings from £ into § may or
may not qualify as states of belief. If a @ b is meaningful but not defined, then some
intuitive states of belief may not be captured by Definition 2.3.2. Moreover, if a ® b
is defined but not meaningful, then Definition 2.3.2 may admit mappings that do not
correspond to intuitive states of belief. This is why a @ b should be defined precisely
when a @ b is a meaningful sum.

The existence of a partial support structure and the properties of states of belief

given by Definition 2.3.2 are consequences of the following theorems:

Theorem 2.3.5 Assume Aziom 1. If Aziom 2 holds, then Properties (X0) and (X1)

hold over meaningful sums.
The above theorem proves that support summation is commutative and associative.

Theorem 2.3.6 Assume Azioms 1-2. Aziom 3 holds precisely when Property (X2)

holds over meaningful sums.

The next two theorems prove the existence of zero and full supports, respectively.

Theorem 2.3.7 Aziom 4 implies Property (X3) given Azioms 1-2.

Theorem 2.3.8 Aziom 5 implies Property (X4) given Azioms 1-3.
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2.4 Absolute attitudes

Abstract states of belief hold absolute and comparative attitudes towards sentences.
I discuss absolute attitudes in this section and comparative attitudes in Section 2.5.
There are two types of absolute attitudes towards sentences. The first type has

?

the form, “I support A to degree s,” while the second type has the form “I believe A

to degree d.”
Definition 2.4.1 The degree to which a state of belief ® supports sentence A is ®(A).

The support for a sentence does not determine the support for its negation in general.
For example, if degrees of support are {possible, impossible}, and if possible is the

support for A, then the support for = A could be either possible or impossible.

Definition 2.4.2 The degree to which a state of belief ® believes sentence A, written
B(A4), is (B(A4), 8(-A)).

On the other hand, the belief in a sentence does determine the belief in its negation.
Moreover, degrees of belief are closer to truth values in many-valued logics [Rosser
and Turquette, 1952; Rescher, 1969; Ginsberg, 1988] than are degrees of support. For

example, if degrees of support are {possible, impossible}, then
1. (possible, impossible) represents the truth value true.
2. (impossible, possible) represents the truth value false.
3. (possible, possible) represents the truth value unknown.

In general, every abstract state of belief has two extreme belief attitudes that

correspond to truth and falsity. These are the attitudes of acceptance and rejection.
Definition 2.4.3 A state of belief ® accepts sentence A precisely when <I>(A) = (1,0).

Definition 2.4.4 A state of belief ® rejects sentence A precisely when <I>(A) =(0,1).
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The correspondence between acceptance and truth and between rejection and falsity
becomes evident when we discuss the process of observing in Chapter 3. As we shall
see, acceptance and rejection are attitudes that can never be given up as a result of
recording more observations.

A sentence is rejected precisely when it is supported to degree 0. And a sentence
is accepted only if it is supported to degree 1. But if the sentence is supported to
degree 1, it is not necessarily accepted. For example, when degrees of support are
{possible, impossible}, a sentence and its negation could be possible. Here, both the

sentence and its negation are supported to degree possible, but neither is accepted.
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2.5 Comparative attitudes

Abstract states of belief hold two types of comparative attitudes towards sentences.
The first type has the form, “I support A no more than I support B,” while the
second type has the form, “I believe A no more than I believe B.”

Comparative attitudes are based on ordering degrees of support and belief. De-
grees of support can be ordered using support summation. The intuition here is that

the sum of two supports is at least as great as each of the summands.

Definition 2.5.1 Support a is no greater than b, written a <g b, precisely when there

s a support ¢ such that a ® ¢ = b. The relation =g s called a support order.

Table 2 lists some support orders. The following theorem shows that every support

order is a partial order with minimal and maximal elements:

Theorem 2.5.2 The relation =g is a partial support order under which 0 is minimal

and 1 is mazimal.
Degrees of belief can also be ordered.

Definition 2.5.3 Degree of belief (s1,82) is no greater than degree of belief (ss3,84),

written (s1,82) Cg (83, 34), precisely when s; =g s3 and sy =g sa. The relation Cg

1s called a belief order.

The belief order is also a partial support order with minimal and maximal elements:

<87 ®> a j@ b
Proposition ({0,1}, max) a<b
Probability ([0,1],+ a<b
Improbability ([0,1],(A(ab)a+b—1)) b<a
Possibility ([0, 1], max) a<b
Impossibility  ({0,1,...,00}, min) b<a

Table 2: Examples of support orders.
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Theorem 2.5.4 The relation Cg is a partial order under which (0,1) is minimal

and (1,0) is mazimal.

Now that we have ordered degrees of support and belief, we can define the com-

parative attitudes held by abstract states of belief.

Definition 2.5.5 Sentence A is no more supported than B by a state of belief ®,
written A =g B, precisely when ®(A) <o ®(B).

Definition 2.5.6 Sentence A is no more believed than B by a state of belief ®, writ-

ten A Cg B, precisely when <I>(A) Ce ®(B).

If two sentences are equally believed, then they are also equally supported. But the
converse is not true. For example, when degrees of support are possible, impossible,
a state of belief ® may be such that ®(—Bird) = impossible and ®(Bird) = ®(Fly) =
®(—Fly) = possible. Although Bird and Fly are equally supported by &, Bird is more
believed than Fly.

Rejected sentences are always minimally supported, and accepted sentences are
always maximally supported. But although minimally supported sentences are re-
jected, maximally supported sentences are not necessarily accepted. A sentence and
its negation may be maximally supported at the same time, while neither of them
may be accepted.

Rejected sentences are always minimally believed and accepted sentences are al-

ways maximally believed. The converse is true as shown by the following theorem:

Theorem 2.5.7 The relation CTg satisfies the following properties:

1. Cg is a partial order.

NS

. AE B only if ACsB.
3. For all A, false Cs A Cg true.

. A 1s rejected precisely when A is minimal under Cg.

B3

5. A is accepted precisely when A is mazimal under Cg.
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2.6 Concrete states of belief

In this section, I present a number of concrete partial support structures that induce
states of belief in propositional logic, probability calculus, and nonmonotonic logic
based on preferential models [Kraus et al., 1990]. In Chapter 7, I present a partial

support structure that has symbolic degrees of support.

2.6.1 Propositional

Below is the simplest partial support structure.
Theorem 2.6.1 The pair ({0,1}, max) is a partial support structure. y

A state of belief with respect to this structure is called a propositional state of

belief. A propositional state of belief ® places a sentence A into one of three classes:
1. A is rejected: ®(A) = 0.
2. Ais accepted: ®(—A4) = 0.
3. Ais undetermined: ®(A4) =1 and ®(-4) = 1.

This is the classification of a propositional logic database: A sentence A is entailed by
the database (A is true), its negation —A is entailed by the database (A is false), or
neither is entailed by the database (A is unknown). Next I show formally that every
propositional state of belief corresponds to a consistent database in propositional

logic.

Definition 2.6.2 A propositional state of belief ® corresponds to database A in
propositional logic precisely when for all A: ® accepts A precisely when A entails A.

The correspondence between propositional states of belief and consistent databases

in propositional logic is stated by the following theorem:

Theorem 2.6.3 For every consistent database A in propositional logic there is a

propositional state of belief that corresponds to A.

What can be represented by a database in propositional logic can be also represented

by a propositional state of belief.
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2.6.2 Probabilistic and improbabilistic

The following theorem shows that probabilistic states of belief are instances of ab-

stract states of belief as defined in this chapter.

Theorem 2.6.4 The pair ([0,1],+) is a partial support structure and its support

order is <.

A state of belief may attribute improbabilities, as opposed to probabilities, to
sentences. The following theorem shows that these states are also instances of abstract

states of belief.

Theorem 2.6.5 The pair ([0,1],A (ab)a+ b— 1) is a partial support structure and

its support order is >.

2.6.3 Possibilistic and impossibilistic

A state of belief may attribute degrees of possibility to sentences. There is more
than one choice of degrees of possibility; the following theorems identify two of these

choices.

Theorem 2.6.6 The pair ([0,1],max) is a partial support structure and its support

order is <.

Theorem 2.6.7 The pair ({0,1,...,00}, max) is a partial support structure and its

support order is <. g

A state of belief may also attribute degrees of impossibility to sentences. Again,
there is more than one choice of degrees of possibility, and the following theorems

identify two of these choices.

Theorem 2.6.8 The pair ([0,1],min) is a partial support structure and its support

order is >.

Theorem 2.6.9 The pair ({0,1,...,00}, min) is a partial support structure and its

support order is >. g
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A state of belief with respect to the structure ({0,1,...,00}, min) is a variant
of Spohn’s natural conditional function [Spohn, 1987; Spohn, 1990] — the major
difference being the existence of oo, which Spohn does not allow. I therefore refer
to states of belief with respect to this structure as Spohnian states of belief. These

states place a sentence A into one of the following classes:
1. A is rejected: ®(A) = oo.
2. Ais accepted: ®(—A) = co.
3. A is rejected by default: ®(A) # oo > 0. ®(A) is the default’s strength.
4. A is accepted by default: ®(—A) # oo > 0. $(—A) is the default’s strength.
5. A is undetermined: ®(A4) =0 and ®(—~A4) = 0.

This classification is more refined than the one given by propositional states of belief.
Its value becomes more evident when I discuss belief change in Chapter 3 where
sentences may change classes when new observations are recorded.

The notion of acceptance by default is central to the work on nonmonotonic rea-
soning. Indeed, I show next that each Spohnian state of belief corresponds to a
database in nonmonotonic logic based on ranked preferential models (RPM) [Kraus
et al., 1990).

The nonmonotonic logic I am referring to is very much like classical propositional
logic. We have a language L, truth assignments W, and the usual meaning func-
tion M that maps each sentence to the truth assignments that satisfy it. The only
additional construct that we have in RPM logic is a partitioning of the truth assign-
ments W into a well ordered set of classes p = Wy, Wy, ... The intuition is that truth
assignments in W, are preferred to those in W; when ¢ < j.

Given this preference over truth assignments, one can define the notions of pre-
ferred meaning and preferred entailment, both of which can be shown to subsume

their classical counterparts.

Definition 2.6.10 The preferred meaning of database A in RPM logic, written M ,(A),

is the set of the most preferred truth assignments in A’s classical meaning.
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Definition 2.6.11 Database A in RPM logic preferentially entails sentence A,

written A |=,, A, precisely when the preferred meaning of A is included in the classical

meaning of A.

The above entailment is nonmonotonic because, as we shall see in Chapter 3, it is
possible that A is preferentially entailed by A but not by A A B.

I am now ready to state the correspondence result.

Definition 2.6.12 A Spohnian state of belief ® corresponds to database A in RPM
logic precisely when the following holds: For all sentences A, ® accepts A, or accepts
A by default, precisely when A preferentially entails A.

Theorem 2.6.13 For every consistent database A in RPM logic there is a Spohnian
state of belief that corresponds to A.

According to Theorem 2.6.13, what can be represented by a database in RPM logic
can also be represented by a Spohnian state of belief. The reader is referred elsewhere
for a study of some other relations between Spohnian states of belief and databases

in RPM logic [Hunter, 1991].



Chapter 3
Abstract Conditionalization

Now that we know what an abstract state of belief is, we may ask, How should
an abstract state of belief change as a result of recording an observation? In this
chapter, I address this question when the observation is a non-rejected sentence.
This leads to the notion of abstract conditionalization, which generalizes probabilistic

conditionalization and enjoys its most desirable properties.

3.1 Observing

The treatment in this chapter is based on the following assumption:

Assumption 3.1.1 When a state of belief observes a non—rejected sentence it changes

into another state of belief.

We say that the new state of belief is the result of conditionalizing the initial state
of belief on the observation. The basic goal of this chapter is to formalize this condi-

tionalization process.

Definition 3.1.2 Let ® be a state of belief with respect to (S, ®),. If A is a sentence
in L that is not rejected by ®, then a conditionalization of ® on A, written ®4, is a

state of belief with respect to (S, ®), that accepts A.

According to this definition, the conditionalization of a state of belief on an ob-

servation is the state of belief resulting from accepting the observation. However,

19
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for a given state of belief and a given observation, there is usually more than one
conditionalized state of belief. Some of these conditionalized states of belief result
from plausible changes to the initial state of belief, but others do not. To exclude
implausible changes to a state of belief, we need to impose more constrains on con-
ditionalized states of belief. Below are some constraints that I have identified about
states of belief as formalized by Definition 2.3.2 and conditionalized states of belief
as formalized by Definition 3.1.2.

Axiom 6 The support for A after observing AV B is determined by the initial support
for A and the initial support for AV B.

Axiom 7 Observing a non—rejected sentence retains all accepted sentences.
Axiom 8 Observing an accepted sentence leads to no change in a state of belief.

Axiom 9 When AV B is equally supported by two states of belief, the observation
of AV B by each state does not introduce equality or order between the respective

supports for A.

Axiom 10 The support for a sentence either increases or does not change after

observing one of its logical consequences.

Axiom 11 If A’s support after observing C equals its support after observing BAC,
then B’s support after observing C' equals its support after observing A A C'.

A formal statement of Axioms 6-11 is given in Appendix D.

By accepting the above axioms, one is committed to (1) the existence of another
function on degrees of support — let us denoted it by @ — that has a number of
properties given later, and (2) a definition of a conditionalized state of belief in terms
of this function. The properties of @ interact with the partial support structure
(S, @) with respect to which a state of belief is defined. The resulting triple (S, ®, @)

is called a support structure and is defined below.
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S ad®b aQb
Proposition {0,1} max(a,b) min(a,b)
Probability [0,1] a+b a/b
Improbability | [0, 1] a+b—1 (a-0)/(1-0)
Possibility [0,1] max(a,b) a/b
Impossibility | {0,1,...,00} min(a,d) a—1>

Table 3: Examples of support scaling.

Definition 3.1.3 A support structure is a triple (S,®, ), where

1. (8,®) is a partial support structure.

2. @ is a partial function from § X § to S such that
(Y0) a @b is defined if a =g b # 0.

3. The function Q satisfies the following properties:

(Y1) 00a=0 whena#0.

(Y2) a0 1=a.

(Y3) aQ@c=>bQconlyifa=b when a,b=g c+#0.

(Y4) a0b=cod onlyifa®@c=b0d whena =g b,c 2g d and b,c,d # 0.

4. The functions @ and @ satisfy the following properties:

(Y5) aQb=g a whena =g b#0.
(Y6a) a®b =g c only if(a@c)® (b0 c) is defined when c # 0.
(Y7) (a®b)@c=(a@c)®(bdc) whena®b=g c#0.
(Y8) aQc =g b@conlyifa<gb when a,b=<gc+#0.
The function @ is called support scaling, and Table 3 provides some examples.
Let me iterate here that the existence of support scaling and its properties, as
given by Definition 3.1.3, are consequences of Axioms 6-11.

In particular, the existence of support scaling is a consequence of Axiom 6 as

suggested by the following theorem.
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Theorem 3.1.4 Aziom 6 holds precisely when
$4(B)=®(ANB)Q ®(A) when ®(A) #0 (1)
for some function Q.

The relation between the properties of support scaling and the axioms of belief change

is given by a sequence of theorems.

Theorem 3.1.5 Aziom 7 is equivalent to Property (Y1) given Aziom 6.

Theorem 3.1.6 Aziom 8 is equivalent to Property (Y2) given Azioms 6-7.
Theorem 3.1.7 Aziom 9 is equivalent to Properties (Y3) and (Y8) given Azioms 6-8.
Theorem 3.1.8 Aziom 10 is equivalent to Property (Y5) given Azioms 6-9.
Theorem 3.1.9 Aziom 11 is usefully equivalent to Property (Y/) given Azioms 6-10.

Theorem 3.1.10 Assumption 3.1.1, Aziom 6, and Aziom 7 imply Properties (Y0),
(Y6a), and (Y7).

According to Theorem 3.1.4, accepting Axiom 6commit us to the following defi-

nition of conditionalization.

Definition 3.1.11 Let ® be a state of belief with respect to (S,®),, and let A be a
sentence in L that is not rejected by ®. The conditionalization of ® on A with respect

to (S,®,Q), is defined as follows:
®4(B)=P(AANB)o ®(A4). (2)

Support scaling satisfies a number of other properties that could be very useful in
proving statements that describe how a state of belief changes. The following theorem

lists some of these properties:
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Theorem 3.1.12 If (S,®,Q) is a support structure, then
(Y10) a @a =1 when a #0.

(Y11) a@ (a@b) =b when a <g b and a # 0.

(Y12) a@b=conlyifa@c=">b whena =g b+#0, and c #0.

(Y13) a =g bonlyifa@c=¢bQc whena <g b=gc#0 and b+#0.
(Y1}) (a@c)@(b@c)=a@b whena =g b=gc#0, andb+#0.

(Y15) (a@b)@(a@c)=c@b when a <g ¢3¢ b#0, and c # 0.

For example, Property (Y14) can be used to prove the following result about condi-

tionalization:
Theorem 3.1.13 If A A B s not rejected by a state of belief ®, then
(®4)p (C) = 4r8(C).

This says that the order in which observations are recorded is not important.
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3.2 Extracting states of belief

Chapter 4 is devoted to the problem of extracting a state of belief from a domain
expert, which, as we shall see, is a constraint satisfaction problem. In particular, a
domain expert gives us constraints about her state of belief from which we try to

recover that state of belief. This process usually raises the following questions:

1. Is there a state of belief satisfying all the constraints? That is, are the

constraints consistent?

2. Is there only one state of belief satisfying these constraints? That is, are the

constraints complete?

The difficulty of these questions depends greatly on the support structure with respect
to which states of belief are defined. Below are two classes of support structures that

make these questions easier to answer.

Definition 3.2.1 A support structure (S,®, Q) is bijective precisely when
(Y9) For all b # 0 and c, there is an a such that a <gb and a @ b= c.

When extracting a state of belief from a domain expert, it is common to ask,
What is your support for B and what is your support for A after you have observed
B? 1If the expert’s state of belief and its conditionalizations are with respect to a
bijective support structure, then the answers will always be consistent.!

Let me now present another class of support structures that facilitates the extrac-

tion of a state of belief.

Definition 3.2.2 A support structure (S,®, Q) is distributive precisely when
(Y6b) (a@c)® (bc) is defined only if a® b =g ¢ when a,b <gc # 0.

The value of the above support structures is most evident given the following theorem.

Axiom 12 Given a state of belief that is conditionalized on sentence C, there is

nothing we can conclude about the support for C' before it was observed.

Theorem 3.2.3 Aziom 12 is equivalent to Properties (Y9) and (Y6b).

'T am assuming here that A and B are not logically disjoint.
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3.3 Concrete conditionalizations

In this section, I provide some concrete support scalings, which give rise to condi-
tionalization rules that can be used to (1) augment databases in classical logic, (2)

conditionalize probabilistic states of belief, and (3) augment databases in RPM logic.

3.3.1 Augmenting databases in classical logic

As I mentioned in Chapter 2, the simplest partial support structure is ({0, 1}, max).
So let us look at a support scaling function for this structure.

Property (Y1) says that 0 @ 1 should be 0, and Property (Y2) says that 1 © 1
should be 1. If we consider the definition of a @ b only when a <gb # 0, then there

is only one scaling function with the previous properties.
Theorem 3.3.1 ({0,1}, max,min) is a bijective, distributive support structure. y

Instantiating Equation 2 of Definition 3.1.11 with respect to the previous structure
gives

,4(B) = min(3(A A B), 3(A)).

And since we can only conditionalize on non-rejected sentences, it follows that ®(A)

must always be 1. We can then simplify the above equation to
$4(B)=®(AANB).

Conditionalizing a propositional state of belief is closely related to augmenting
a database in propositional logic. In particular, if a propositional state of belief is
viewed as a database in propositional logic, then conditionalizing a propositional state
of belief on a sentence amounts to augmenting the corresponding database with that

sentence. This is stated by the following theorem:

Theorem 3.3.2 Let A be a consistent database in propositional logic, and let ® be
its corresponding propositional state of belief. If A N A is also consistent, then its

corresponding propositional state of belief is ® 4.
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3.3.2 Bayes conditionalization

The following theorem provides a support scaling function for probabilistic states of

belief.
Theorem 3.3.3 ([0,1],+,/) is a bijective, distributive support structure. g

Instantiating Equation 2 with respect to this structure gives us Bayes conditionaliza-

tion:

$(ANB)
®(4)
The following theorem provides a support scaling function for improbabilistic

states of belief.

$4(B) =

Theorem 3.3.4 ([0,1],A (ab) a+b—1,A (ab) (a—b)/(1-b)) is a bijective, distributive

support structure. g

Instantiating Equation 2 with respect to this structure gives

B(A A B) — B(A)
1— ®(A)

$4(B) =

3.3.3 Augmenting databases in RPM logic

The following theorem provides a support scaling function for impossibilistic states

of belief.

Theorem 3.3.5 ({0,1,...,00}, min, —) is a bijective, distributive support structure. y

Instantiating Equation 2 with respect to the previous structure gives
$4(B)=®(AANB)—®A).

Moreover, if a Spohnian state of belief is viewed as a database in RPM logic, then
conditionalizing a Spohnian state of belief on a sentence amounts to augmenting the

corresponding database with that sentence. This is stated by the following theorem:

Theorem 3.3.6 Let A be a consistent database in RPM logic, and let ® be its cor-
responding Spohnian state of belief. If the database A A A is also consistent, then its

corresponding Spohnian state of belief is ® 4.
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The above theorem is important for the following reason: Preferential entailment
is nonmonotonic in the sense that a sentence may be preferentially entailed by a
database A but may not be preferentially entailed by an augmentation of A, say
A A A2 This property causes an implementation problem in AI applications.

In particular, suppose that we have modeled the state of belief of some agent by
a database A. A sentence that is preferentially entailed by A is considered a default
belief of that agent. Moreover, some default beliefs must be retracted when new sen-
tences are added to the agent’s database because they may cease to be preferentially
entailed by the augmented database. Note, however, that detecting default beliefs
that need to be retracted has proven to be a real problem from an implementational
viewpoint.

In the light of Definition 2.6.12, Theorem 3.3.6 is an important step towards imple-
menting this detection. Specifically, if ® is the Spohnian state of belief corresponding
to database A, then a sentence B is not preferentially entailed by an augmented
database A A A unless ®4(—B) > 0.

Chapter 5 is concerned with the computation of conditional supports in abstract
states of belief, which, together with Definition 2.6.12 and Theorem 3.3.6, provides a

complete implementation of detecting beliefs that need to be retracted.

The following theorem provides a support scaling function for possibilistic states of

belief.
Theorem 3.3.7 ([0,1],max, /) is a distributive, bijective support structure. y

Instantiating Equation 2 with respect to this structure gives us the following condi-

tionalization rule:

B(A A B)

HP) = ")

2The technical reason for this is that preferential entailment is defined in terms of preferred
meaning, which does not necessarily get smaller as the database gets bigger.
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3.4 Conditional and unconditional supports

For a theory of states of belief to be useful in building artificial agents, the specification
of a state of belief must be made intuitive enough so that a domain expert can
naturally map a state of belief onto an artificial agent. This section discusses a
function on degrees of support that helps in achieving this goal.

A Dbasic observation about human reasoning, claimed by Bayesian philosophers,
is that it is more intuitive for people to specify their support for a sentence A (e.g.,
“The grass is wet”) conditioned on accepting a relevant sentence B (e.g., “It rained”)
than to specify their unconditional support for A. It is therefore natural for domain
experts to specify their states of belief by providing conditional supports. This is
indeed the approach taken by most probabilistic representations where a domain
expert provides statements of the form “P(A|B) = p,” which reads as “If I accept B,
then my probabilistic support for A becomes p.”

One should note, however, that conditional supports are most useful when they can
tell us something about unconditional supports. For example, conditional probabili-
ties can be easily mapped into unconditional probabilities: P(AAB) = P(A|B)P(B).
It is then important to ask whether the previous equality is an instance of a more
general one that holds for abstract states of belief. This question is answered posi-
tively by the following theorem, which states that for every support structure there is
a function on degrees of support that plays the same role as that played by numeric

multiplication in probability calculus:

Theorem 3.4.1 Let (S,®,@) be a support structure. There is a partial function f
fromS xS to S such that

a@b=cand a=gb+# 0 only if f(c,b) =a.y

This theorem says that support scaling has an inverse, but only over a subset of its
domain. This subset consists of the pairs (a,b) such that a <g b # 0. But why is the
existence of an inverse restricted to this subset? The answer lies in Property (Y3),

which says indirectly that support scaling has an inverse:

a@c=b@conlyifa=020.
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S a®b
Proposition {0,1} min(a, b)
Probability [0,1] axb
Improbability | [0, 1] a+b—ab
Possibility [0,1] axb
Impossibility | {0,1,...,00} a+b

Table 4: Examples of support unscaling.

Note, however, that this property is conditional on a,b =g ¢ # 0. Therefore, we
can prove the existence of an inverse only when this condition is met. In fact, the
definition of a support structure requires support scaling to be defined only if this
condition is met. This is to be expected because in the context of conditionalization,
which has led to support scaling, it is meaningful to scale support a with respect to

support b only when a <gb # 0.

Definition 3.4.2 Support unscaling is a partial function ® from § X § to S such
that

c®b = a precisely when a @ b= c and a <gb # 0.

Table 4 lists some examples of support unscaling. Support unscaling is used in map-

ping conditional supports onto unconditional supports.

Corollary 3.4.3 If the state of belief ® does not reject A, then
P(ANB)=34(B)® ®(A4). (3)

We have looked before at two classes of support structures that facilitate the ex-
traction of states of belief. Each of these classes suggests an additional property that
support scaling should satisfy. Given the relation between support scaling and un-
scaling, these two classes of support structures can be characterized by the properties
that support unscaling needs to satisfy. The following two theorems identify these

properties:

Theorem 3.4.4 Let (S, D, ) be a bijective support structure and let ® be its support
unscaling function. Then a @ b is defined precisely when b # 0.
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This theorem says that if the support structure is bijective, then the following two

statements are always consistent:
1. My support for B is b # 0.
2. My support for A given B is a.

In particular, the state of belief ® such that ®(AA B) = a® b and ®(B) = b satisfies
these statements. In general, however, the two statements are consistent only if a @ b
is defined. Therefore, the domain of support unscaling is crucial in the process of

belief extraction. We shall see an example of this in Chapter 7.

Theorem 3.4.5 Let (S,D,0) be a distributive support structure and let ® be its

support unscaling function. Then

(a®c)®D(b®c) 2gc whena®b, a®c and b® ¢ are defined.
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Theorem 3.4.6 The following properties hold for support scaling and unscaling:
(Z71) (a@b)®@b=a.

(72) (a®b)©b=a.

(Z3) 0 ® a = 0.

(Z4) a®1 = a.

(Z5) a®b =g b.

(Z6) (a®b)@c=(a®c)P(bQc) when (aQ@c)® (b®c) 2g c#0.

(27) a =g bonly ifa®c =g b®ec.
(Z8a) a®@b=0>bQ®a.
(Z8b) a ® b is defined precisely when b® a is defined when a # 0 and b # 0.

(Y16) (a@b)@c=a@ (b®c)=(aQc)b whena <5 bQc+#0.
(This is a property of support scaling, but its proof is based on the above results).

(Z9a) (a®@b)@c=a® (bR c).

(295) (a®b) ® c is defined precisely when a ® (b® c) is defined.
(710) a ®b = a precisely when a = 0 or b= 1.

(Z11) (a®b)@c=aQ® (b0 c).

(Z12) (a®c) @ (b®c)=a@b whena®c =g bQc#0.

3.4.1 Concrete support unscalings

In this section, I will consider a number of support unscaling functions. But let me
first stress that unscaling functions are in general not total functions. I will show the

technical reason for this and then provide the intuition behind it.
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By definition, a®0 is not defined for any a. And unless the function @b: S — S'is
bijective, there will be other places where support unscaling ® is not defined. Recall
that the function @b is bijective precisely when for any support c, there is another
support a such that a <gb and a @ b = c¢. Recall also that the formalization of
Section 3.1 does not require the function @b to be bijective.?

Intuitively, it is very helpful to think of support unscaling in the context of Equa-
tion 3 of Definition 3.4.3, which can be viewed as defining the following inference

rule:

If ¢ is some information about a state of belief ® (®(A) = a), and 7 is
some information about a conditionalization of ® (®4(B) , then we

= b)
can infer more information about the state of belief ® ($(AAB) = b®a).

As it turns out, however, not all pieces of information ({,n) are consistent. That is,
it is possible that ( is true about a state of belief, but 7 is not true about any of
its conditionalizations. These are precisely the places where support unscaling is not
defined. In other words, cases where support unscaling is undefined correspond to
illegitimate scenarios of belief change.

The following theorem provides a class of partial support structures that is known

to induce states of belief with non—trivial illegitimate scenarios of belief change.

Theorem 3.4.7 If the set of supports S is finite and has more than two elements,
then there are supports a and b # 0 where a ® b is not defined.

In the remainder of this section, I provide the support unscaling functions of some

support structures that I have introduced earlier.
Theorem 3.4.8 Support unscaling of ({0,1}, max, min) is max. y
Theorem 3.4.9 Support unscaling of ([0,1],+,/) is X.

Theorem 3.4.10 Support unscaling of ([0,1],A(ab)a+b—1,A(ab)(a—b)/(1—-10))
is A(ab)a+b—ab.y

3Axiom 9 requires the function @b be an injection only.
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Theorem 3.4.11 Support unscaling of ({0,1,...,00}, min, —) is +. y

Theorem 3.4.12 Support unscaling of (|0,1], max, /) is X. y

3.4.2 Support scaling versus support unscaling

The way I have presented belief change seems to indicate that support scaling is
the primitive concept, and support unscaling is just a convenient side effect of that
concept. In fact, the existence of support unscaling is only a consequence of Axiom 9
discussed in Section 3.1. That is, had we not accepted Axiom 9, we would not have
had a support unscaling function in general. But we would still have had a legitimate
account of belief change that agrees partially with our intuition.

Surprisingly enough, it seems to be more customary in the literature to take a
variant of support unscaling as the primitive concept in formalizing belief change than
to choose support scaling. For example, in his work on Probabilistic Logic [Aleliunas,
1988], Aleliunas suggests a primitive operator called product, which is closely related
to support unscaling. And in their work on valuation-based systems [Shenoy, 1989;
Shenoy and Shafer, 1990], Shenoy and Shafer suggest a primitive operator called
combination that is also related to support unscaling.

The choice between support scaling and unscaling as a primitive in formalizing

belief change is a choice between one of the following two ways of asking questions:

1. Given an initial state of belief and an observation, what can we say about the

state of belief that results from accepting this observation?

2. Given a new state of belief and the observation that has led to it, what can we

say about the initial state of belief?

That is, the choice between support scaling and unscaling is a choice between pre-
dicting belief changes and explaining them. I find the first more intuitive as a tool
for formalizing belief change. I believe it is more natural for people to predict how
their beliefs would change as they obtain more information than to explain why their

beliefs could have changed in a particular way.
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3.5 Patterns of plausible reasoning

The ultimate objective of much work in Al—most notably on nonmonotonic logics—
is to capture patterns of plausible reasoning in nonnumerical terms. George Polya
(1887-1985) was one of the first mathematicians to attempt a formal characteriza-
tion of qualitative human reasoning. Polya identified five main patterns of plausible
reasoning and demonstrated that they can be formalized using probability theory
[Polya, 1954, Chapter XV]. Pearl highlighted these patterns in his recent book [Pearl,
1988] and took them—along with other patterns such as nonmonotonicity, abduction,
explaining-away, and the law of the hypothetical middle [Pearl, 1988, Page 19]—as
evidence for the indispensability of probability theory in formalizing plausible reason-

ing. In his own words:

We take for granted that probability calculus is unique in the way it
handles context—dependent information and that no competing calculus
exists that closely covers so many aspects of plausible reasoning [Pearl,

1988, Page 20].

I show in this section that four of Polya’s patterns of plausible reasoning hold with
respect to abstract states of belief and their conditionalizations. But first, I need to

formally define certain terms that Polya used in stating his patterns:

?

o To “verify,” or “prove,” a proposition is to accept it.

e To “explode” a proposition is to reject it.

?

e The “credibility of,” or “confidence in,” a proposition is its degree of support.

Four of Polya’s patterns of plausible reasoning follow. These patterns have the
form, If something holds about a state of belief, then something else holds about
its conditionalizations. The statement of each pattern is followed by a theorem that
proves the pattern with respect to abstract states of belief and their conditionaliza-

tions.
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Polya’s first pattern:

Pattern 1 (Examining a consequence) The verification of a consequence ren-
ders a conjecture more credible. [Polya, 1954, Page 120]

Theorem 3.5.1 If A D B is accepted and B is not rejected by a state of belief @,
then ®p(A) = ®(A) unless ®(A) =0 or &(B) = 1.

Polya’s second pattern:

Pattern 2 (Examining a possible ground) Our confidence in a conjecture can

only diminish when a possible ground for the conjecture has been exploded. [Polya,

1954, Page 123/

Theorem 3.5.2 If A D B is accepted and —A is not rejected by a state of belief @,
then ®_4(—B) =¢®(—B) unless ®(~B) =0 or &(—-A) = 1.

Polya’s third pattern:

Pattern 3 (Examining a conflicting conjecture) Our confidence in a conjecture

can only increase when an incompatible rival conjecture has been exploded. [Polya,

1954, Page 124/

Theorem 3.5.3 If A A B is rejected and —A is not rejected by a state of belief @,
then ®_4(B) ~¢®(B) unless ®(B) =0 or ®(-A4) =1.

Polya’s fourth pattern:

Pattern 4 (Examining several consequences in succession) The verification of
a new consequence enhances our confidence in the conjecture, unless the new conse-

quence is implied by formerly verified consequences [Polya, 1954, Page 125].

The condition, “the new consequence is implied by formerly verified consequences,”
means that the conditional probability of the new consequence given the formerly
verified consequences is one [Polya, 1954]. With respect to abstract states of belief and
their conditionalizations, this condition becomes, “the new consequence is maximally

supported given formerly verified consequences.”

Theorem 3.5.4 IfAD (Cy,...,A D C, s accepted and C1A\...NC, is not rejected by
a state of belief ®, then ®c n..nc,_1(A) <o ®cyn..nc,(A) unless B n.nc,_,(Cn) = 1.
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Chapter 4

Independence and Belief

Extraction

To specify an abstract state of belief over n primitive propositions, one needs to specify
2" degrees of support. This is unrealistic and counterintuitive: Specifying a state of
belief over 100 propositions should not require 1267650600228229401496703205376
degrees of support! In this chapter, I present a solution to this problem that is a

direct generalization of a similar solution for specifying probabilistic states of belief.

4.1 The intuition

This chapter is based on a key observation in the probabilistic literature [Pearl, 1988).

Observation 4.1.1 Assertions of the form, Observing A does not change the belief

in B, reduces the exponential number of supports required to specify a state of belief.

In particular, when an expert says that observing A does not change her belief in B,

this statement can be viewed as a constraint on the expert’s state of belief ®:
$4(B) = ®(B) and ®4(—B) = ®(—-B).

The more constraints of the above form, the lower the number of supports required
to specify a state of belief. Indeed, it is possible to reduce the exponential number of

required supports to a linear number.

37
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For example, an expert might tell us that for every proposition ¢, observing propo-
sitions 1,...,2—1 does not change her belief in ¢. This information, together with the
expert’s belief in proposition 7, specifies her state of belief completely. To see why,
note that a state of belief over propositions 1,...,n is determined by the support
for each sentence of the form [=]1 A...A...[7]n, where [-] means that the negation
sign may or may not appear. The support for sentences of this form are computed as

follows:

S(-|1LA . A...[An)
= ®rpiacna e ([7]7) @ Riac A —ne([]n—1) ® ... @ B([]1)
= o([-]n) @ ([~]n-1) ®...® ([~]1).

That is, using Observation 4.1.1, the number of supports required to specify a state of
belief over n propositions could be reduced from 2" to 2n, an exponential reduction.
If observing A does not change the belief in B, we say that A is independent
from B. Observation 4.1.1 can then be rephrased as follows: Independence assertions
reduce the exponential number of supports required to specify a state of belief.
What makes Observation 4.1.1 so powerful in extracting states of belief is that
it sets the basis for a claim and a result to be discussed in Section 4.3. The claim
concerns inducing independence assertions from the causal structure underlying a
domain of interest. The result concerns the number of degrees of support required to
complete the specification of a state of belief that is partially specified by a causal
structure. The following section explores the notion of independence in more detail,

which paves the way for Section 4.3.
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4.2 Independence among propositions

Section 4.1 talked about the independence of one sentence from another. Another
meaningful and very useful notion, as we shall see, is the independence of one set
of propositions from another. The intuition here is that a set of propositions J is
independent from another set I if observing any state of propositions J does not
change the support for any state of propositions I. The notion of a state is defined

more formally as follows.

Definition 4.2.1 A state of a primitive proposition 1, written 1, is either ¢ or —i. A
state of a set of primitive propositions I, written I, is /\ L.

el
For example, D and —D are the states of proposition D, while DAE, DA-E, -DAE,
and =D A —F are the states of propositions {D, E'}.

Definition 4.2.2 A state of belief ® finds I independent from J, written INg(I,J),
precisely when ® (1) = ®(I) for all I and every J that is not rejected by ®.

Independence is nonmonotonic. It is possible for a state of belief to find one set
of propositions independent from another, but then find it dependent after recording
an observation. It is also possible for dependent propositions to become independent

when more observations are recorded. Below are some examples.

1. ¢ is dependent on j initially, but it becomes independent from j once k is ob-
served. In Figure 1, the outputs of the AND gates are dependent on each other,
but they become independent once input k is observed. This is an example of

conditional independence.

2. 1 s independent from j initially, but it becomes dependent on j once k is o0b-
served. In Figure 1, the inputs to the XOR gate are independent from each
other, but they become dependent once output k is observed. This is an exam-

ple of conditional dependence.
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AND AND XOR

Figure 1: On the left, i is dependent on j initially, but it becomes independent from j once k is
observed. On the right, i is independent from j initially, but it becomes dependent on j once k is
observed.

In general, a set of propositions [ is conditionally independent from another set
J given a third set of propositions K if I is unconditionally independent from J once
the state of propositions K is observed. Therefore, conditional independence could

be defined in terms of unconditional independence as given below.

Definition 4.2.3 A state of belief ® finds I independent from J given K, written
INs(I,K,J), precisely when INg, (I,J) for every K that is not rejected by .

It is more customary to define conditional independence without appealing to
unconditional independence. Although I find Definition 4.2.3 more intuitive, I provide

the following result for the sake of completeness.

Corollary 4.2.4 A state of belief ® finds I independent from J given K precisely

when
k(L) = k(1)

for all I and every J A\ K that is not rejected by ®. g
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4.3 Extracting a state of belief

Observation 4.1.1 is powerful in extracting states of belief because of a claim that
independence assertions are induced by the “causal structure” underlying the domain
of interest. Let me first define the notion of a causal structure and then state the

claim.

Definition 4.3.1 A causal structure over primitive propositions N is a binary rela-

tion DC C N x N, where 1 DC j reads as t directly causes j. We say that ¢ causes
J (or, j is an effect of 1) precisely when

1. @ directly causes j, or
2. © causes k and k directly causes j.

In a causal structure, a proposition cannot cause itself.

It is common to represent a causal structure using a directed acyclic graph. For

example, the causal structure

Rain directly causes Slippery_Road
Rain directly causes Wet_Grass

Sprinkler _On directly causes Wet_Grass

is depicted graphically in Figure 2. We simply create a node for each primitive
proposition, and then add an arc from node ¢ to node 7 precisely when ¢ directly causes
j. By definition of a causal structure, the resulting directed graph is guaranteed to
be acyclic.

Below is a key claim that underlies the way independence assertions are induced

in many practical applications.

Claim 4.3.2 The ezpert who identifies a causal structure finds a proposition

independent from its non—effects given its direct causes.
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Sprinkler On

Slippery Road

Figure 2: A graphical representation of a causal structure.

The intuition here is that information about the non—effects of a proposition is rele-
vant to the proposition only because it conveys information about its direct causes.
Therefore, the information becomes useless once the state of direct causes is known.
For example, in Figure 2, information about Slippery_Road is relevant to Wet_Grass
only because it conveys information about Rain. However, once the state of Rain is

known, information about Slippery_Road is no longer relevant to Wet_Grass.

In practical applications, it is common to ask a domain expert to identify a causal
structure, and then use Claim 4.3.2 to induce constraints on the state of belief held by
the expert. The soundness of this practice hinges on the correctness of Claim 4.3.2,
which must be relative to some formal definition of causation. However, due to the
lack of a universally accepted definition of causation, we are in no position to provide
a satisfactory proof of Claim 4.3.2. Nevertheless, the role played by Claim 4.3.2 in

practical applications is not minor.

Given the discussion of Section 4.1, and Claim 4.3.2, an expert who identifies a
causal structure is in fact supplying us with constraints on her state of belief. We have
seen in Section 4.1 how these constraints reduce the exponential number of supports
required to specify a state of belief. This section focuses on the supports needed to

complete the specification of a state of belief.

One completes the specification of a state of belief by quantifying a causal struc-

ture. Quantification is the process in which an expert assesses her support for each
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primitive proposition given a particular state of its direct causes. For example, the

node Slippery_Road in Figure 2 is quantified by providing four conditional supports:
1. The conditional support for Slippery_Road given Rain.
2. The conditional support for Slippery_Road given — Rain.
3. The conditional support for —~Slippery_Road given Rain.
4. The conditional support for —Slippery_Road given = Rain.

These supports constitute the quantification of node Slippery_Road. The quantifica-
tion of node Wet_Grass, however, consists of eight conditional supports because there
are four possible states of the direct causes of Wet_Grass.

A quantified causal structure is called a causal network and is usually depicted

graphically using two components:
o A direct acyclic graph, which specifies a causal structure.

o A set of tables, which contain node quantifications. Each node has a table
associated with it. The table has two columns corresponding to the states of
the node. It has one row for each state of the node’s direct causes. Each entry
in the table is a support for some state of the node conditioned on a particular
state of its direct causes. The entries of each row must sum up to the full

support.

Figure 3 depicts a causal network with respect to the support structure ([0, 1],+, /).
Figure 4 depicts another causal network but with respect to the support structure
({0,1,...,00},min, —). The causal networks in Figures 3 and 4 share the same causal
structure, but they differ in the way they are quantified. We shall look at more
methods of quantification in the following chapters.

The formal definition of a causal network is given below.
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-
Rain | No Rain Off
5
Sprinkler On
Slippery Road
Slippery | Not Slippery Wet | Dry
Rain .8 2 Rain and On .99 .01
No Rain 05 95 Rain and Off .85 .15
No Rain and On .98 .02
No Rain and Off .01 .99
Probabilistic Causal Network
. J

Figure 3: A probabilistic causal network. The top left entry of the bottom left table reads, The

probability of Rain given Slippery_Road is .8.

Notation 7o denotes the parents of node i. L(N

constructed from primitive propositions V.

) denotes a propositional language

Definition 4.3.3 A causal network with respect to a support structure (S,®, Q) is a

triple (N,G,CS), where
o N is a set of primitive propositions.
o G is a directed acyclic graph over N.
e CS is a partial function L(

N)x L(N)— S

— CS,,(2) is defined, and
— CS:(i) ®CSis(—t) = 1,

for every node 1.

CS is called a conditional support function.

such that
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s
Rain | No Rain On Off
0 infinity 0 0
Slippery Road
Slippery | Not Slippery
Rain 0 17 Rain and On 0 63
No Rain and On 57
No Rainand Off 63 0
Spohnian Causal Network
. J

Figure 4: A Spohnian causal network. The top left entry of the bottom left table reads, The
impossibility of Rain given Slippery_Road is 0.

A causal network consists of two sets of constraints on a state of belief. The first
set is about independence assertions, while the second is about conditional supports.
Since the goal of constructing a causal network is to specify a state of belief, it is most
important to know whether a given state of belief satisfies the constraints imposed
by a causal network.

Notation < denotes the non—descendents of node z.

Definition 4.3.4 A state of belief ® over propositions N satisfies a causal network
(N,G,CS) precisely when

IN3(3,10,1<\ 10) and ®;,(¢) = CS;0(2) for every node 3.

If we view a causal network as a set of constraints, then the definition of a causal
network does not always guarantee the consistency of these constraints. Although
we can find a state of belief that satisfies the independences asserted by a causal
structure, it is not always possible to find a state of belief that satisfies the conditional

supports quantifying the causal structure. However, causal networks with respect to
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a distributive and bijective support structure are always consistent.

Theorem 4.3.5 An abstract causal network that is induced with respect to a distribu-

tive and bijective support structure is satisfied by exactly one state of belief.

Probabilistic and Sphonian causal networks are induced with respect to distributive

and bijective support structures.
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4.4 More on independence

Let me summarize what I have done so far.

I started with the problem of having to provide too many degrees of support in
order to specify a state of belief. I then observed that the number of supports can
be reduced if one utilizes independence assertions. I followed this observation by the
claim that independence assertions are induced by the causal structure of the domain
of interest. I concluded, therefore, that by appealing to causal structures, one can
reduce the number of degrees of support required to specify a state of belief.

In addition to this representational role, independence assertions play a major
computational role, as we shall see in Chapter 5. But to utilize independence asser-
tions computationally, we need to know more about their properties. Some of these
properties are discussed in Section 4.4.1. We also need to retrieve the independences
asserted by a causal network without having to reconstruct the state of belief satis-
fying the network. A retrieval method, which examines only the topology of a causal

network, is discussed in Section 4.4.2.

4.4.1 Properties of independence

In this section, I discuss five properties of independence. The first four are known
as the graphoid axioms [Pearl, 1988 and hold with respect to any support structure.
The fifth property, however, is shown to hold with respect to a restricted class of

support structures.

Independence 1 (Symmetry) If [ is independent from J, then J is also
independent from I.

Theorem 4.4.1 INg(I,K,J) precisely when INg(J,K,I).

By examining the proof of Theorem 4.4.1, we see that Symmetry of independence

hinges on Property (Y4) of support scaling.

Independence 2 (Decomposition) If I is independent from J, then it is also in-

dependent from any subset of J.
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Theorem 4.4.2 If INg(I, K,J U L), then INs(I, K, J).

To see why this property holds, recall that if I is independent from J U L, then
J U L is also independent from /. Hence, observing any sentence I does not change
the support for any sentence J A L. But this also means that observing any sentence

I does not change the support for any sentence L. This follows from

(L) = P eI AL).

Independence 3 (Weak Union) If I is independent from J U L, then I is inde-
pendent from J given L.

Theorem 4.4.3 If INg(I, K,J U L), then INg(I,K U J,L).

If I is independent from J U L, then Decomposition and Symmetry tell us that
J and L are also independent from I. Therefore, in the context of these properties,
Weak Union says: If I is independent from J, then it remains independent given an
independent L.

To see why Weak Union holds, suppose that observing some L makes I dependent
on J. That is, observing L and then observing some J changes the support for some
I. Therefore, observing L A J changes the support for /. But this is a contradiction
because [ is independent from J U L .

The above proof of Weak Union assumes that consecutive observations have the
same effect on a state of belief as simultaneous observations. This assumption is
satisfied by Definition 3.1.11: The states ®4rp and (®4)5 are equivalent if either is
defined. This result is stated by Theorem 3.1.13.

Independence 4 (Contraction) IfI is independent from J, and if I is independent
from L given J, then I is also independent from J U L .

Theorem 4.4.4 If INs(I,K,J) and INg(I, K U J,L), then INg(I,K,J UL).

Contraction holds because simultaneous observations have the same effect on a

state of belief as consecutive observations. That is, observing J followed by observing
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L leads to the same state of belief as observing J A L. The premise of Theorem 4.4.4
says that observing J does not change the support for I and neither does observing
L consequently. It follows that observing J A L does not change the support for I,
which is the consequence of Theorem 4.4.4.

Together, Decomposition, Weak Union, and Contraction, say that
INg(I,K,J) and INg(I,K U J, L) precisely when INg(I,K,J U L).

That is, I is independent from J U L precisely when [ is independent from J and [

is independent from L given J.

Independence 5 (Intersection) If I is independent from J given L, and if I is
independent from L given J, then I is also independent from J U L.

Theorem 4.4.5 If the state of belief ® is with respect to a distributive support struc-

ture, and if false is the only sentence rejected by ®, then
INg(I,KUL,J) and INg(I,K U J,L) only if INg(I,K,J U L).

4.4.2 Retrieving independence assertions

There is a topological test on directed acyclic graphs, called d—separation, that tells
us whether two sets of nodes are d-separated by a third set [Pearl, 1988]. The d-
separation test could be viewed as a relation INg C N x N x N where INg(I, K, J)
holds precisely when K d-separates I from J in the directed acyclic graph G. The

importance of d-separation stems from the following result [Verma, 1986]:

Theorem 4.4.6 Let ® be the state of belief satisfying a causal network (N,G,CS).
If K d-separates I from J in the graph, then the state of belief ® finds I independent
from J given K. That is, [fINg(I,K,J), then INs(I,K,J).

That is, d—separation allows us to infer many of the independences in a state of belief
by examining the topology of the corresponding causal network. These independences
will be very useful in deriving an algorithm for computing degrees of support, which
is presented in Chapter 5.

The following definition is required to state d—separation:
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Diverging Linear Converging

Figure 5: There are three types of intermediate nodes on a given path. The type of a node is
determined by its relation to its neighbors. A node is diverging if both neighbors are children. A
node is linear if one neighbor is a parent and the other is a child. A node is converging if both
neighbors are parents.

Definition 4.4.7 Let G be a directed acyclic graph and let I, J, and K be three
disjoint sets of nodes in G. A path between I and J is K—active precisely when its

nodes satisfy the following conditions:
1. A converging node belongs to K or has a descendent in K.
2. A diverging or linear node is outside K.
See Figure 5 for the definition of converging, diverging, and linear nodes.

Definition 4.4.8 ([Pearl, 1988]) In a directed acyclic graph G, nodes K d-separate
I from J, written INg(I,K,J), precisely when there is no K—-active path between I
and J in G.

I conclude this chapter by the following observation: Applying the test of d-
separation to a causal network is sound but not complete in terms of retrieving the
independences in the corresponding state of belief. That is, some of the independences

in a state of belief cannot be discovered by applying d—separation to the corresponding
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Wet Shoes | Not Wet Shoes

Rain| No Rain Wet Grass 5 5
1 9 Not Wet Grass 5 5

Wet Grass | Not Wet Grass

Rain 8 2
7

No Rain 3

Figure 6: A probabilistic causal network.

causal network. The causal network given in Figure 6 is such an example. There, d-
separation tells us that Wet_Grass is not d-separated from Wet_Shoes, which means
that Wet_Grass is dependent on Wet_Shoes. However, the state of belief specified by
this causal network finds Wet_Shoes independent from Wet_Grass.
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Chapter 5

Independence and Belief

Computation

In this chapter, I present an algorithm for computing the belief in every node of
an abstract causal network. The algorithm is a direct generalization of the polytree

algorithm, which is well-known in the probabilistic literature.

5.1 Introduction

Consider the causal network given in Figure 7, and suppose that we want to compute
the belief in Node 0 given the observation 22 A 30 A =39. This is an instance of the
computational problem I address in this chapter.

The probabilistic literature provides a number of algorithms for performing this
computation with respect to probabilistic causal networks. For example, when the
causal network is singly connected, the belief in a node can be computed using the
popular polytree algorithm [Pearl, 1988; Peot and Shachter, 1991].! The probabilistic
literature also provides a number of methods for extending the polytree algorithm to
multiply connected networks.

In this chapter, I show that a direct generalization of the probabilistic polytree

L A network is singly connected if every two nodes are connected by at most one undirected path.
The causal network given in Figure 7 is singly connected.
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Figure 7: A singly connected causal network. There is at most one undirected path between any
two nodes.

algorithm can be used to compute beliefs in abstract causal networks. I also show
how the method of conditioning, which is well-known in the probabilistic literature,
can be used to extend the abstract polytree algorithm to multiply connected causal
networks.

The abstract polytree algorithm is introduced in Section 5.2 and given in Sec-
tion 5.3. Control flow in this algorithm is discussed in Section 5.4, while its computa-
tional complexity is discussed in Section 5.5. The method of conditioning is discussed
in Section 5.6. In Chapter 6, I present a Common Lisp implementation of the abstract

polytree algorithm.
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5.2 Introducing the abstract polytree algorithm
The probabilistic polytree algorithm computes a pair of probabilities,
(Pr(i|d), Pr(- | 48)),

for each node ¢ in a causal network. Here, Pr is the probabilistic state of belief
satisfying the given causal network, and 4 is an observed state of some nodes in
the network [Pearl, 1988]. A modification to this algorithm, suggested by Peot and

Shachter, computes a different pair of probabilities,
(Pr(i A &), Pr(—i A J)),

for each node in the network [Peot and Shachter, 1991]. The first pair of probabilities

can be obtained easily from the second pair because of the following equalities:

Pr(8) = Pr(iAéd)+ Pr(—iAd),
Pr(i|8) = Pr(iAéd)/Pr(é).

Although both algorithms can be used to compute the conditional probability of
some node given an observation, the modified polytree algorithm is preferred if the
probability of the observation is desired. I shall, therefore, generalize the modified
polytree algorithm.

5.2.1 Breaking down the computation

The input to the abstract polytree algorithm is
e (N,G,CS), an abstract causal network, and
e 4, a state of some nodes in N.

The output of the algorithm is a pair of supports for each node ¢,

o (®(i NJ),® (-t AJ)), which is denoted by BL;,
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where @ is the state of belief satisfying the causal network (N,G,CS).

When node ¢ has n parents and m children, the abstract polytree algorithm breaks
down the computation of the pair BL; into » + m computations involving n 4+ m
subnetworks. Each of the first n subnetworks consists of nodes connected to node
¢t via an incoming arc, while each of the following m subnetworks consists of nodes
connected to node ¢ via an outgoing arc. Since the causal network is singly connected,
these subnetworks are guaranteed to be disjoint. For example, the computation of
BLy is broken down into five computations involving the five subnetworks in Figure 8.

I show next the elements of this breakdown of computation in three stages.

The first stage
In the first stage, the computation of the pair BL; is broken down into two com-

putations:
o (®(iNJ..),®(—7 AdL)), which is denoted by ;.
o (9,(d,.),®-;(d.)), which is denoted by A;.

Here, 4, is the observation about non—descendents of node 7, and §,, is the observation
about descendents of node i. When node ¢ is not observed, the observation § is
equivalent to the conjunction of observations §,, and §,,.

For example, the computation of BLy in Figure 8 is broken down into two com-

putations:
o ($(0 A d.),®(—0A,)), denoted by my.
o ($o(do.), P-0(d0.)), denoted by Ao.

Here, 4., is 22 A 30 A =39 and §,, is 50 A 54.

The second stage
In the second stage, the computation of the pair 7; is broken down into a number

of computations, each of which is associated with a parent j of node i:

o (®(5 Adi;), ®(—7 Adi;)), which is denoted by =;;.
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Figure 8: The computation breakdown for belief in Node 0 given the observation 22 A 30 A =39 A

50 A 54 .
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Here, §,.; is the observation about nodes connected to node ¢ via the incoming arc
J —t.
For example, the computation of 7y in Figure 8 is broken down into three com-

putations:

o (P(1Ados),®(—1 A doy)), denoted by 7 0.
o (P(2A00),®(72 A do2)), denoted by 7.

o (P(3 A dos),®(73 A dos)), denoted by ms.0.

Here, d,., is 22 A 30, &, is true and d,.; is —39.

The third stage
In the third stage, the computation of the pair A; is broken down into a number

of computations, each of which is associated with a child k& of node i:

o (9,(d,.r),®-i(d:r)), which is denoted by Ag.;.
Here, 4,,, is the observation about nodes connected to node i via the outgoing arc
1 — k.

For example, the computation of A in Figure 8 is broken down into two compu-

tations:
o ($o(Joss), P-0(do.s)), denoted by Aso.

o (®o(doss), -o(dous)), denoted by As .

Here, 4., is 50 and &, is 54.

Justifying the breakdown

The justification for the above computational breakdowns is based on:

1. An assumption that only leaf nodes having single parents could be observed in
a causal network. As we shall see in Section 5.2.3, this assumption does not
compromise the generality of the abstract polytree algorithm: Every observation
about a node in a causal network can be simulated by an observation about an

auxiliary leaf node having only one parent.
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2. The independences asserted by a causal network. These independences are

discussed in Section 5.2.4.

5.2.2 The message—passing paradigm

When each node ¢ in a causal network stores its conditional belief given every state of
its parents, that is, (CS;.(¢),CS,0(—1)), the abstract polytree algorithm can be viewed

as a process involving the following steps:

1. Node j computes the pair 7;,; and sends it as a message to its child <.
2. Node k computes the pair Az ; and sends it as a message to its parent :.
3. Node ¢ combines the messages 7, it receives from its parents to yield the pair =;.

4. Node 7 combines the messages Ai; it receives from its children to yield the

pair A;.
5. Node 7 combines the pairs m; and A; to yield the pair BL;.

Given this view, the abstract polytree algorithm is specified by answering the following

questions:

1. How should node ¢ compute the message it must send to a parent?

2. How should node ¢ compute the message it must send to a child?

3. How should node ¢ combine the messages it receives from its parents?
4. How should node ¢ combine the messages it receives from its children?
5. How should node ¢ combine the pairs #; and A; to yield the pair BL;?
6. When should node 7 send a message to a parent?

7. When should node 7 send a message to a child?

The first five questions are answered in Section 5.3, while the last two questions are
answered in Section 5.4. Before I move to these sections, I elaborate on the basic

justifications for the abstract polytree algorithm in the next two sections.
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5.2.3 Simulating observations

The abstract polytree algorithm assumes that observations are available only about
leaf nodes having single parents. This assumption simplifies the algorithm, but does
not affect its generality. I explain why in this section.

Given a state of belief ® over propositions N, we can simulate the observation
of proposition 2 that belongs to N by the observation of an additional proposition &
that does not belong to N. In particular, let us create a new state of belief ¥ over

propositions N U {k} such that

e UN\{i} ANiAEk)=](N\ {¢} A1)

e UN\{i} At A—k)=S(N\{i} A—0).

e UN\{i} AiA—k)=0.

e UN\{i} A—-tAKk)=0.
The new state of belief has three important properties. First, it agrees with the old
state of belief on any sentence of the form N. Second, it accepts the sentence ¢ = k.
Third, it finds proposition k independent from propositions N \ {i} given proposition
t. Hence, accepting or rejecting proposition k in the new state of belief has the same
effect as accepting or rejecting proposition :.

Therefore, we can extend a causal network that represents a state of belief, such

as ®, to a causal network that represents a new state of belief, such as ¥, by doing

the following:

1. Creating a new node k,
2. making node k a child of node ¢, and

3. quantifying the causal connection from node ¢ to node k as follows:

CSi(k) =
CSi(~k) =
CS_i(k) =
CS_i(—k) =

= o O =
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The newly created node k has the property of being a leaf node with only a single
parent 7. Therefore, we can simulate an observation about any node in a causal
network by an observation about a newly created leaf node that has a single parent.
For example, observation 0 in the causal network of Figure 7 can be simulated by
observation 65 after Node 65 is created as given in Figure 9. Similarly, Nodes 66
and 67 are added to simulate observations about Nodes 45 and 14, respectively.

The abstract polytree algorithm refers to four classes of nodes:
Root nodes, which have no parents.
Normal nodes, which have at least one parent and at least one child.
Observed leaf nodes, which have no children and are observed.
Non—observed leaf nodes, which have no children but are not observed.

Let me repeat here that observed leaf nodes are added to a causal network in order to
simulate observations about other nodes. Moreover, since observed nodes are always
leaf nodes having single parents, root, normal and leaf nodes having multiple parents
cannot be observed.

In Figure 9, Node 20 is root, Node 0 is normal, Nodes 50 and 65 are observed

leafs, and Node 21 is a non—observed leaf.

5.2.4 The independences of singly connected networks

The abstract polytree algorithm is based on four independences that are asserted by
every singly connected network. (Recall, a network is singly connected if it has at
most one undirected path between any two nodes — the network given in Figure 7 is
an example.) I state these independence assertions now to use them later in deriving

the abstract polytree algorithm.

Theorem 5.2.1 Let [ be some non—descendents of node 1, J be some descendents
of node 1, and K be a set of nodes disjoint from I and J. If K includes i, then I is
independent from J given K.
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Figure 9: A singly connected network with an observation, 22 A 30 A =39 A 50 A 54 A 65 A 66 A 67
. Nodes 22, 30, 39, 50, 54, 65, 66, and 67 are added to the network to simulate observations about
nodes 6, 9, 12, 16, 17, 0, 45 and 14, respectively.
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In Figure 9, Nodes {22, 30, 39} are independent from Nodes {50, 54, 65, 66, 67} given
Node 0. As we shall see in Section 5.3.1, Theorem 5.2.1 is the basis for breaking down

the computation of the pair BL; into the computation of the pairs 7; and A;.

Theorem 5.2.2 Let I and J be sets of nodes connected to node i via disjoint outgoing

arcs. Then I is independent from J given 1.

In Figure 9, Nodes {50, 66, 67} are independent from Nodes {54, 65} given Node 0.
As we shall see in Section 5.3.2, Theorem 5.2.2 is the basis for breaking down the

computation of the pair A; into the computation of the pairs Ag;.

Theorem 5.2.3 Let K be some parents of node i, and let J be set of nodes disjoint
from K and connected to node ¢ via nodes in K. Then t is independent from J

given K.
In Figure 9, Nodes {22, 30, 39} are independent from Node 0 given Nodes {1, 2, 3}.

Theorem 5.2.4 Let I and J be sets of nodes connected to node ¢ via disjoint incom-

ing arcs. Then I is independent from J.

In Figure 9, Nodes {1, 22, 30} are independent from Nodes {3, 39}. As we shall
see in Section 5.3.3, Theorems 5.2.3 and 5.2.4 are the basis for breaking down the
computation of the pair m; into the computation of the pairs ;.

The independence assertions discussed in this section have uses that go beyond
what I have mentioned here. In particular, these assertions can be used to show that
the message sent by a node to a neighbor can be computed form the messages received
by the node from other neighbors. This is discussed in more detail in Section 5.3.

In the next section, I discuss some notational conventions that are useful for

Section 5.3.
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5.2.5 Manipulating pairs of support

The abstract polytree algorithm maintains a number of support pairs with each node
t. The first component of each pair is related to proposition ¢ and is called the
t—component of that pair. The second component is related to the negation of propo-
sition ¢ and is called the —=i—component of that pair. These components are accessed

as follows:

(@,b)(@) = a
(a,b)(—) = b

The following operations are also defined on pairs:

au
®
“~+

{(a,b) ® (c,d) = (a®ec,b®d)
(0,0) 0 (c,d) & (a@c,bod)
c®(a,b) ¥ (c®a,c®b)
(a,b) @ c f (a@c,bQc).
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5.3 The abstract polytree algorithm

I present the abstract polytree algorithm in this section by showing how to compute
and combine the messages exchanged between nodes in a causal network. I also
give concrete examples of message computation and combination with respect to

computing the belief in Node 0, which appears in Figure 9, given the observation

d=22A30A-39A50A54A65A66A6T7.

5.3.1 Belief

The pair BL; is called the belief in node ¢. The following theorem shows how to

compute this pair.

Theorem 5.3.1 Let i be a non—observed node in a singly connected causal network.

If BL “(3(iA6),8(—iN6)),

m EA®(i AL, ®(—i A SL)),
def
A = (®i(6i), 2-i(di)),
then BL, =m;Q®\;.
According to this theorem, the belief in Node 0 is given by

(@(0 A dos), B(20 A bos)) (@0(b0s ), D-0(0s)) 5,5

o

where

doa = 22N 30N 39,
do. = B0 AD4AG65AG6AGT.

Computing the belief in Node 0 can be viewed as the aggregate of two computa-
tions. First, the computation of the pair my, which depends only on nodes connected
to Node 0 via incoming arcs. And second, the computation of the pair Ao, which
depends only on nodes that are connected to Node 0 via outgoing arcs. These sets of
nodes are shown in Figure 10.

In the following sections, I show how to compute the pairs w9 and A¢, which

completes the computation of belief in Node 0.
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Figure 10: Computing the belief in Node 0 can be viewed as the aggregate of two computations
involving the subnetworks shown above.
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5.3.2 Diagnostic support

The pair A; is called the diagnostic support for node i. It is computed as follows.

Notation 20 denotes the children of node .

Theorem 5.3.2 Let ¢ be a non—observed node in a singly connected network.

I A & (8:(600), Boi(6:n))s

then )\z = ® )\kz

k€io

According to Theorem 5.3.2, computing diagnostic support for a node can be broken
down into a number of computations, each of which is associated with a child of that
node. In Section 5.3.4, I show how to perform each of these subcomputations.

The diagnostic support for Node 0 equals

<¢0(50>4)7 ¢—|0(50>4)> ® <¢0(50>65)7 ¢—|0(50>65)> ® <¢0(50>5)7 ¢—|0(50>5)>7

As.0 X65.0 5.0

where

S0 = 50 A66A 6T,
50|>65 — 657
Ooes = D4.

Computing the diagnostic support for Node 0 can then be viewed as the aggregate
of three computations. First, the computation of the pair A4, which depends only
on Nodes {4,14-16,44-51}. Next, the computation of the pair Ag5.9, which depends
only on Node 65. Finally, the computation of the pair A5, which depends only on
Nodes {5,17-19,52-64}. These sets of nodes are shown in Figure 11.
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Figure 11: Computing diagnostic support for Node 0 can be viewed as the aggregate of three
computations. The first computes the belief in observations about nodes in the left subnetwork
given Node 0. The second computes the belief in observations about nodes in the middle subnetwork
given Node 0. The third computes the belief in observations about nodes in the right subnetwork
given Node 0.
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5.3.3 Causal support

The pair 7; is called the causal support for node ¢. It is computed as follows.

Theorem 5.3.3 Let ¢ be a non—observed node in a singly connected network.

If  m = (®(J A bij), @(—7 A diy)),s

then m;(1) = @Csi_o(i) ® ® m5.4(7)-

ioj

According to this theorem, computing the causal support for a node can be broken
down into a number of computations, each of which is associated with a parent of the
node. In Section 5.3.5, I show how to perform each of these subcomputations.

Computing the causal support for Node 0 can be viewed as the aggregate of
three computations. First, the computation of the pair 7o, which depends only on
Nodes {1,6-9,20-30}. Next, the computation of the pair 79, which depends only on
Nodes {2,10-11,31-36}. Finally, the computation of the pair 73,0, which depend only
on Nodes {3,12-13,37-43}. These sets of nodes are shown in Figure 12.

5.3.4 Diagnostic Support to a parent

The pair A; ; is called the diagnostic support form node ¢ to its parent 7. It is computed
as follows.

Notation :0j denotes the parents of node ¢ excluding parent j.

Theorem 5.3.4 Let : be a non—observed node in a singly connected network. Then
Aii(7) = D Ni(2) ® D CSjniei(1) ® Q) mi(D).
i ioj ioj L
Moreover, if 1 is an observed node, then
o — <170>7 Zf(S |: 7::'
v (0,1), ifd | 1.

According to this theorem, when node ¢ is not observed, the message it sends to its
parent j is the result of combining the messages that node i receives from all its

neighbors, except node j.
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Figure 12: Computing the causal support for Node 0 can be viewed as the aggregate of three
computations involving the subnetworks shown above.
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5.3.5 Causal support to a child

The pair 7; 1 is called the support from node ¢ to its child k. It is computed as follows.

Notation :ok denotes the children of node ¢ excluding child k.

Theorem 5.3.5 Let : be a non—observed node in a singly connected network. Then

Tik = T & ® AL

l€rok

According to this theorem, the message that node ¢ sends to its child k is the result

of combining the messages that node 2 receives from all its neighbors, except node k.

5.3.6 Summary of the abstract polytree algorithm

Following is a summary of the computations that each class of nodes performs. All

computations are based on node ¢ with parent j and child k.

Root nodes

Causal support:
T = <CStrue(7:)7CStrue(_‘7:)>-

Diagnostic support: If support from every child is available, then

A= ® Ak (4)

k€o
Belief: If diagnostic support is available, then

BL, = m; ® ;. (5)

Support to a child:
Tk = T & ® AL (6)

l€rok

Support to a parent: Not applicable.
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Normal nodes

Causal support: If support from every parent is available, then

mi(1) = D CS (1) ® Q) mial7)- (7)

iofj
Diagnostic support: Use Equation 4.
Belief: Use Equation 5.
Support to a child: Use Equation 6.

Support to a parent: If diagnostic support is available and causal support from every

parent except j is also available, then

Xii(4) = D Xi() @ D CSiniog(6) ® @ mai(l). (8)

ioj iogfEL
Non—observed leaf nodes
Causal support: Use Equation 7.
Diagnostic support: A; = (1,1).
Belief: Use Equation 5.
Support to a child: Not applicable.

Support to a parent: Use Equation 8.



5.3. THE ABSTRACT POLYTREE ALGORITHM

Observed leaf nodes

Causal support: Not applicable.

Diagnostic support: Not applicable.

Belief: Available directly from the observation.
Support to a child: Not applicable.

Support to a parent:

73
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Figure 13: A singly connected causal network.

5.4 Control flow in singly connected networks

Now that we know how to compute messages, we need to know the order in which
to propagate them. In the following two sections, I discuss two propagation schemes

that are well-known in the probabilistic literature.

5.4.1 Backward propagation

In this propagation scheme, one is interested in computing the belief in a particular
node. Backward propagation starts when such a node requests messages from its
neighbors in order to compute its belief. This sparks a chain reaction in which every
node that needs to send a message to a neighbor requests messages from all other
neighbors.

Consider the causal network depicted in Figure 13 as an example, and suppose

that we want to compute the belief in Node 5. This computation requires the messages

)\2.5, )\3.5, 7.5, 78,5,

which are depicted in Figure 14(a).
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Figure 14: The stages of backward propagation for computing the belief in Node 5.
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Figure 15: The messages exchanged in backward propagation for computing the belief in Node 5.

Node 3 is ready to send Message A5, but

e Node 2 needs Message 745 in order to compute Message A 5.

o Node 7 needs Messages 1.7 and 7177 in order to compute Message m7.5.
e Node 8 needs Message 7155 in order to compute Message 7g 5.

The required messages are depicted in Figure 14(b). Nodes 10 and 11 are ready to

send Messages 9.7 and 77,7, but
e Node 4 needs Messages ;.4 and Ag4 in order to compute Message 74.5.
e Node 12 needs Message mg 12 in order to compute Message 75 s.

The required messages are depicted in Figure 14(c). Nodes 1, 6, and 9 are ready
to compute Messages 7.4, A4, and mg 12, respectively. Figure 15 depicts all the
intra—node messages needed for computing the belief in Node 5.

Below are some observations about the backward propagation shown in Figure 15:
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1. There are 11 messages exchanged between nodes, which is the number of arcs

in the causal network.
2. Only one message is exchanged across each arc and it heads towards Node 5.

3. The propagation takes place in three stages, which is the length of the path
between Node 5 and the furthest boundary (root or leaf) node.

I now formalize backward propagation and then prove that it terminates.

The following definition says that backward propagation starts when the node
of interest requests messages from all its neighbors. This sparks a chain reaction in
which a node requests messages from its neighbors whenever one of these neighbors

requests a message from it.

Definition 5.4.1 (Backward Propagation) Let CN be a singly connected causal
network and let ¢ be a node in CN. Backward propagation with respect to (CN,1) is

a sequence of non—empty sets S1, 5, ..., where
e S; consists of the messages directed to node 1.

o S, contains a message from node j to node k if S,_1 contains a message from

node k to a node other than j.

The sets 51,55, ... are called propagation states.

The backward propagation in Figure 14 with respect to Node 5 is

S = {772.57773.5,)\7.5,)\8.5}
Sy = {)\4.27)\10.77)\11.77)\12.8}

Ss = {771.47779.12, )‘6.4}-

Theorem 5.4.2 Let CN be a singly connected causal network and let ¢ be a node in
CN. The number of states in backward propagation with respect to (CN ,1) is no more
than the length of the longest path between node ¢ and any other node in CN.
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5.4.2 Forward propagation

In forward propagation, one is interested in computing the belief in every node of a
causal network. One way to compute these beliefs is to use backward propagation on
each node of the network. The number of messages exchanged in this computation
would be the number of nodes in the network multiplied by the number of arcs.

In this section, I describe a propagation scheme for computing the belief of ev-
ery node of a causal network, which involves only twice the number of messages
exchanged in backward propagation. Again, this propagation scheme is well-known
in the probabilistic literature.

Forward propagation starts when every node having a single neighbor sends a
message to this neighbor. This sparks a chain reaction in which each node sends a
message to a neighbor after it has received messages from all other neighbors.

Consider the causal network in Figure 13 as an example. Two classes of nodes
can send messages to their neighbors immediately. These are root nodes with a single
child and leaf nodes with a single parent. In the causal network of Figure 13, Nodes
1, 3, and 9 fall into the first class, and Nodes 6, 10, and 11 fall into the second. The
messages sent by these nodes to their neighbors are depicted in Figure 16(a).

Once these messages are sent, a chain reaction is started:

1. Nodes 4, 5, and 12 send the messages depicted in Figure 16(b).

2. Nodes 2 and 8 follow by sending the messages depicted in Figure 16(c).

3. This enables Node 5 to send the four messages depicted in Figure 16(d).
4. Nodes 2, 7, and 8 follow by sending the messages depicted in Figure 16(e).

5. Finally, Nodes 4 and 12 send the messages depicted in Figure 16(f).

Figure 17 depicts the messages sent during all the previous stages. Every node has
all the information it needs to compute its belief.

The following observations are about the forward propagation in Figure 16:

1. There are 22 exchanged messages, which is twice the number of arcs in the

causal network.
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Figure 16: The stages of forward propagation.
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Figure 17: The messages exchanged in forward propagation.
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2. Only two messages are exchanged across an arc, one in each direction.

3. The propagation takes place in six stages, which is the length of a longest path

in the network.

I now formalize forward propagation and then prove that it terminates.

The following definition says that forward propagation starts when every node
having a single neighbor sends a message to its neighbor. This sparks a chain reaction
in which a node sends a message to a neighbor once it has received messages from all

other neighbors.

Definition 5.4.3 (Forward Propagation) Let CN be a singly connected causal

network. Forward propagation with respect to CN is a sequence of non—empty sets

51,8, ..., where

e S; contains the messages that could be sent by nodes with single neighbors.

o S, contains a message from node j to node k if S,_1 contains all the messages

from neighbors of node j, other than k, to node j.

The forward propagation with respect to the causal network of Figure 16(g) is

51 = {771.4,773.5,779.12,)\6.4,)\10.7,)\11.7}
Sy = {Aa2,A75, A28}

53 = {772.5, )\8.5}

54 = {775.7,775.8, )\5.2, )\5.3}

55 = {772.4,777.10,777.11,778.12}

Se = {774.67 )\4.1, )\12.9}-

The following theorem says that forward propagation must terminate.

Theorem 5.4.4 The number of states in forward propagation with respect to a singly

connected causal network CN is no more than the length of a longest path in CN.



82 CHAPTER 5. INDEPENDENCE AND BELIEF COMPUTATION

5.5 Computational complexity

In this section, I count the number of support operations performed by a normal node
during forward propagation. A normal node with n parents and m children performs

the following computations:
1. Causal support. This involves n2"*! operations.
2. Diagnostic support. This involves 2m — 2 operations.
3. Belief. This involves 2 operations.
4. Messages for all children. This involves 2m operations.
5. Messages for all parents. This involves (n — 1)n2™*! + 4n operations.

Adding up all the above costs gives n?2""! 4 4(n+m). This expression is exponential
in the number of parents and linear in the number of children.
Let me summarize what else we know about the number of messages involved in

forward propagation:

e The number of total messages exchanged is twice the number of arcs in the

network.

o The propagation of these messages takes place at a number of stages that equals

the length of a longest path in the network.

The number of arcs in a singly connected network is always one less than the number
of nodes. Therefore, computing the belief in every node in a singly connected network
is linear in the number of nodes or arcs, exponential in the number of parents per
node, and linear in the number of children per node.

In Chapter 6, I present a Common Lisp implementation of the abstract polytree

algorithm and report a number of experiments on networks of up to 15000 nodes.
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Diverging Linear Converging

Figure 18: Nodes in a loop could be diverging, linear, or converging. Observing a diverging or a
linear node 7 and deleting Arc ¢ — k breaks the loop.

5.6 Multiply connected networks

The abstract polytree algorithm is based on independences that are not necessarily
asserted by multiply connected networks. Therefore, the abstract polytree algorithm

is not applicable to multiply connected networks in general.

However, the independences justifying the abstract polytree algorithm become
asserted by a multiply connected network if a selected set of its nodes are observed.
This set of nodes is called the loop—cutset. When the loop—cutset is observed, the
abstract polytree algorithm becomes applicable. But even when the loop—cutset is
not observed, the abstract polytree algorithm can still be made applicable to multiply

connected network. There are two steps involved here.

The first step is to identify the loop—cutset, which consists of a node from each
loop (undirected cycle) in the causal network. The node chosen from each loop must

be either diverging or linear according to Figure 18. The reason for this choice is that
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after observing such a node, deleting one of its outgoing arcs does not change the
independences asserted by the network. Consider, for example, the diverging node
¢ in the left loop of Figure 18. Deleting the arc : — k eliminates the loop without
changing the independences asserted by the network. To see why, recall that the test
of d—separation detects an independence only if it cannot find certain O-active paths,
where O is the set of observed nodes (see Definition 4.4.8). When node ¢ belongs to
O, no path that includes the arc ¢ — k can be an O-active path (see Definition 4.4.7).
Therefore, deleting the arc : — k& does not affect the test of d—separation when node
t is observed.

After identifying the loop—cutset LC and deleting arcs as suggested above, the
multiply connected network becomes singly connected. Next, to justify arc deletion,
we assume a certain state LC of the loop—cutset, and apply the polytree algorithm

to compute the belief
(B(t ANSALC),®(—tASALC))

in every node of the singly connected network. If we do this for every possible state

of the loop—cutset, we obtain the beliefs we want:

(B(1A6),2(~iA8))y=ED (Bt ASALC),®(—~t AdALC)).
Lc
This technique is called the method of conditioning [Horvitz et al., 1989; Pearl,
1988; Suermondt and Cooper, 1988; Peot and Shachter, 1991]. When the loop—cutset
has n nodes, the method of conditioning requires 2" applications of the abstract
polytree algorithm. This should not be surprising, however, because the computation

of belief in probabilistic causal networks is known to be NP-hard [Cooper, 1990].



Chapter 6

Implementing the Abstract
Polytree Algorithm

In this chapter, I present a Common Lisp program that uses forward propagation to

compute the belief in every node of a singly connected causal network.

6.1 Introduction

The probabilistic polytree algorithm is based on the following message—passing ab-
straction. Each node 7 in a causal network can be viewed as a processor that has the

following properties:
1. It knows the conditional belief in node ¢ given its parents.
2. Tt is responsible for computing the belief in node 2.
3. It is responsible for sending messages to the neighbors of node «.

This abstraction is useful for describing the algorithm and for implementing it. I
shall adopt the same abstraction in implementing a forward propagation version of
the abstract polytree algorithm.

A number of components are needed to realize this implementation:

85
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o A representation of support structures. The code for this representation is given

in Section 6.2.

o A representation of causal networks. The code for this representation is given

in Section 6.3.

e A component to compute causal support, diagnostic support, and belief in a
node given the messages it receives from neighbors. The component also com-
putes the message that a node sends to each neighbor. The code for this com-

ponent is given in Section 6.4.

e A component to decide when a node should perform a particular computation

or send a message. The code for this component is given in Section 6.5.

e A component to create causal networks, declare observations, and activate for-

ward propagation. The code for this component is given in Section 6.6.

e A component that represents concrete support structures. The code for this

component is given in Section 6.7.

Section 6.8 reports a number of forward propagations in causal networks that are
generated randomly and contain between 100 and 15000 nodes.

The Lisp program I shall present is referred to as CNETS.
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6.2 Support structures

CNETS represents a support structure as a tuple of seven elements:

<®7®7®707 17 j®7:®>‘

Although one needs only the summation and scaling functions to define a support
structure, CNETS assumes that all components are provided. Moreover, as shown

below, the representation of a support structure does not explicate the set of supports.

(defstruct support-structure
support-summation
support-unscaling
support-scaling
zZero-support
full-support
support<=
support=)

The operations of a support structure are defined next.

The following function returns a @ b:

(defun support-summation (a b &optional (ss *CURRENT-SS*))

(funcall (support-structure-support-summation ss) a b))
The following function returns a ® b:

(defun support-unscaling (a b &optional (ss *CURRENT-SS*))

(funcall (support-structure-support-unscaling ss) a b))
The following function returns a @ b:

(defun support-scaling (a b &optional (ss *CURRENT-SS*))

(funcall (support-structure-support-scaling ss) a b))
The following function returns O:

(defun zero-support (&optional (ss *CURRENT-SSx))

(support-structure-zero-support ss))
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The following function returns 1:

(defun full-support (&optional (ss *CURRENT-SSx))
(support-structure-full-support ss))

The following function tests for a =g b:

(defun support<= (a b &optional (ss *CURRENT-SS*))

(funcall (support-structure-support<= ss) a b))
The following function tests for a =g b:

(defun support= (a b &optional (ss *CURRENT-SSx))

(funcall (support-structure-support= ss) a b))
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6.3 Nodes and networks

CNETS represents causal networks and nodes as CLOS (Common Lisp Object Sys-
tem) objects. This section provides the definitions of these objects and some basic
operations on them.

A causal network is an object with three slots:
1. name is an identifier of the network.
2. nodes is a list of the nodes in the network.

3. support-structureis the structure with respect to which the network is quan-

tified.

(defvar *CURRENT-NETWORK* nil)

(defclass network ()
((name :initarg :name :reader network-name)
(nodes :initform nil :accessor network-nodes)
(support-structure :initform *probability-support-structurex

:accessor network-support-structure)))

A node is an object with identifier name:

(defclass node ()

((name :initarg :name :reader node-name)))
There are two subclasses of the class of nodes, the subclass of observed nodes
and the subclass of non—observed nodes. Observed nodes are not part of the causal

network defined by a CNETS user but are added by CNETS to simulate observations.

An observed node has two slots:

1. parent is the node about which the observation is recorded.

2. observation is set to 0 if parent is observed to be false, and is set to 1 if

parent is observed to be true.

(defclass observed-node (node)
((parent :initarg :parent :accessor node-parent)

(observation :initarg :observation :accessor node-observation)))
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A non—observed node has ten slots. If the node is denoted by N, and has n parents

and m children, then

1.

parents is a list of parent nodes. In the list (P,_1P,—2... ), parent P; has
position :. That is, in counting positions, one starts from the far right and

moves to the left.

children is a list of children nodes. In the list (Cp,—1Cm—2...Cy), child C;
has position 2. That is, in counting positions, one starts from the far right and

moves to the left.

. parent-messages is a list of pairs. The pair at position : in parent-messages

represents the message from parent P; to node IV:
(mp.n(=F),7mp.n(F)) -

child-messages is a list of pairs. The pair at position ¢ in child-messages

represents the message from child C; to node N:
(Aoi.v(2N), Ao, n (N)) -

cond-supports is a list of 2” pairs. Each pair represents a conditional belief

a = (CSxo(~N),CEno(N))

where No is a state of nodes No, the parents of node N. The state No is
determined by the position of the conditional belief « in the list cond-supports.
In particular, let b,_1b,_5...by be the binary representation of the position of
o in the list cond-supports, and let (P,_1P,_3...F,) be the parents of node
N. If bit b; equals 1, then parent P; is true; otherwise, parent P; is false.

. pstatus is a bit vector b,_1b,_s...by such that b; equals 0 precisely when the

parent at position ¢ in parents has sent a message to node V.

cstatus is a bit vector b,,_1b,,_3 ...by such that b; equals 0 precisely when the

child at position ¢ in children has sent a message to node N.
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8. causal-support is a pair representing (wy(—NN),7n(N)).
9. diagnostic-support is a pair representing (Ax(—N), An(N)).
10. belief is a pair representing (BLy(—N), BLy(N)).

(defclass non-observed-node (node)
((parents :initform nil :accessor node-parents)
(children :initform nil :accessor node-children)
(parent-messages :initform nil :accessor node-parent-messages)
(child-messages :initform nil :accessor node-child-messages)
(cond-supports :initform nil :accessor node-cond-supports)
(pstatus :initform nil :accessor node-pstatus)
(cstatus :initform nil :accessor node-cstatus)
(causal-support :initform nil :accessor node-causal-support)
(diagnostic-support :initform nil :accessor node-diagnostic-support)

(belief :initform nil :accessor node-belief)))

The function add-node inserts node in network:

(defmacro add-node (node &optional (network *CURRENT-NETWORK*))

‘(push ,node (network-nodes ,network)))
The function get-node retrieves a node with identifier name from network.

(defmacro get-node (name &optional (network *CURRENT-NETWORK*))
‘(find-if #’(lambda (n) (equal ,name (node-name n)))

(network-nodes ,network)))

6.3.1 Operations on parents, children, and messages

There are two basic operations on these lists. The first is to retrieve a parent, a child,
a parent—message, or a child-message, at a given position in a list. This is achieved
by the function relt, which is like the function elt except that it counts positions
from right to left.

(defmacro relt (list position)

“(elt ,list (1- (- (length ,list) ,position))))
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For example, (relt (a b c d e) 1) is d.

The second set of operations find the position of a node with respect to one of
its neighbors. The function call (c-index c p) returns the position of child ¢ with
respect to its parent. The function call (p-index p c) returns the position of parent
p with respect to its child c.

(defmacro rposition (e list) ‘(position e (reverse list)))
(defmacro c-index (¢ p) ‘(rposition ,c (node-children ,p)))

(defmacro p-index (p c) ‘(rposition ,p (node-parents ,c)))

6.3.2 Operations on bit vectors

There are two basic operations on these vectors. The function call (clear-bit bv bi)
clears the bit at position bi in vector bv. This function assumes that bit bi is already
set.

(defmacro clear-bit (bv bi)
‘(dect ,bv (expt 2 ,bi)))

This function is used to keep track of neighbors that send messages: when a parent
sends a message, its corresponding bit in pstatus is cleared, and when a child sends

a message, its corresponding bit in cstatus is cleared.
The function call (bit-index bv) assumes that vector bv has only one bit set.
The call returns the position of the set bit in this case.

(defmacro bit-index (bv)

‘(round (log ,bv 2)))

This function is used to retrieve the position of the only parent or child that did not
yet send a message. Both functions will be put into use in Section 6.5, which deals

with controlling the flow of messages in forward propagation.
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6.3.3 Operations on pairs of support

The following are standard operations on pairs:

(defun unscale-pairs (pairl pair2)

(mapcar #’support-unscaling pairl pair2))

(defun normalize-pair (pair)
(let ((sum (apply #’support-summation pair)))
(loop for s in pair

collect (support-scaling s sum))))

6.3.4 Propagation initiators

Certain classes of nodes are of special interest because they get forward propagation
started. These are nodes that have only a single neighbor. They initiate propagation

by sending messages to their neighbors. The following functions identify these nodes:
The function parentless returns t if node n has no parents. It returns nil
otherwise. The function childless works similarly.

(defmethod parentless ((n non-observed-node))

(null (node-parents n)))

(defmethod childless ((n non-observed-node))
(null (node-children n)))

The function single-child-parentless returns the child of node n if n has no
parents and only a single child. It returns nil otherwise. The function
single-parent-childless works similarly.

(defmethod single-child-parentless ((n non-observed-node))
(let ((children (node-children n)))
(when (and (parentless n)
(= 1 (length children)))
(relt children 0))))
(defmethod single-child-parentless ((n observed-node)) nil)
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(defmethod single-parent-childless ((n non-observed-node))
(let ((parents (node-parents n)))
(when (and (childless n)
(= 1 (length parents)))
(relt parents 0))))
(defmethod single-parent-childless ((n observed-node))

(node-parent n))
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6.4 Node computations
Each node in a causal network computes five pairs of support:
1. Causal support.

2. Diagnostic support.

3. Belief.
4. Support to each child.
5. Support to each parent.

Section 6.4.2 provides one function for each computation. Each function is passed
the parameters required by the corresponding computation as suggested by the equa-
tions given in Section 5.3.6 of Chapter 5. The next section provides a construct that

is basic to the functions in Section 6.4.2.

6.4.1 Operating over

The function operate-over computes the following expression:

OP g<;<bound ©Xpression(i),
condition(z)

where OP is a commutative and associative operation that has an identity element

identity. If condition is nil, then operate-over computes

OPo<i<bound ©Xpression().

(defun operate-over
(OP identity bound expression &optional (condition nil))
(reduce OP
(loop for state from 0 below bound
when (or (not condition) (funcall condition state))
collect (funcall expression state))

:initial-value identity))
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The function sum-over computes the following expression:

&  expression(d),
0<:<bound
condition(z)

where the value of expression(7) is a degree of support.

(defmacro sum-over (bound expression &optional (condition nil))
‘(operate-over #’support-summation
(zero-support)
,bound
,expression

,condition))

The function unscale-over computes the following expression:

X  expression(i),
0<:<bound
condition(z)

where the value of expression(7) is a degree of support.

(defmacro unscale-over (bound expression &optional (condition nil))
‘ (operate-over #’support-unscaling
(full-support)
,bound
,expression

,condition))

The function unscale-pairs-over computes the following expression:

X  expression(i),
0<:<bound
condition(z)

where the value of expression(7) is a pair of supports.

(defmacro unscale-pairs-over (bound expression &optional (condition nil))

‘(operate-over #’unscale-pairs
(list (full-support) (full-support))
,bound
,expression

,condition))
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6.4.2 The computation functions

The function causal-support is a direct implementation of Equation 7 of Sec-

tion 5.3.6.

(defun causal-support (parents# p-messages cond-supports)
(flet ((state-support (i-state)
(sum-over (expt 2 parents#)
#’(lambda (p-state)
(support-unscaling
(elt (elt cond-supports p-state) i-state)
(unscale-over parents#
#’(lambda (j-index)
(elt (relt p-messages j-index)
(bit-state p-state j-index)))))))))
(list (state-support 0) (state-support 1))))
(defmacro bit-state (bv bi)
‘(1db (byte 1 ,bi) ,bv))

The function call (bit-state p-state j-index) returns the state of bit j-index

in the bit vector p-state.
The function diagnostic-support is a direct implementation of Equation 4 of

Section 5.3.6.

(defun diagnostic-support (children-no c-messages)
(unscale-pairs-over children-no

#’(lambda (k-index) (relt c-messages k-index))))

The function belief is a direct implementation of Equation 5 of Section 5.3.6.

(defun belief (causal-support diagnostic-support)

(normalize-pair (unscale-pairs causal-support diagnostic-support)))

The function support-to-childis a direct implementation of Equation 6 of Sec-
tion 5.3.6.

(defun support-to-child (children-no c-index c-messages causal-support)
(unscale-pairs
causal-support
(unscale-pairs-over children-no
#’(lambda (k-index) (relt c-messages k-index))
#’(lambda (k-index) (not (equal k-index c-index))))))
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The function support-to-parent is a direct implementation of Equation 8 of

Section 5.3.6.

(defun support-to-parent
(parents# j-index p-messages diagnostic-support cond-supports)
(flet ((state-support (j-state)
(sum-over 2
#’(lambda (i-state)
(support-unscaling
(elt diagnostic-support i-state)
(sum-over (expt 2 parents#)
#’ (lambda (state)
(support-unscaling
(elt (elt cond-supports state) i-state)
(unscale-over parents#
#’ (lambda (k-index)
(elt (relt p-messages k-index)
(bit-state state k-index)))
#’ (lambda (k-index)
(not (= k-index j-index))))))
#’ (lambda (state)
(consistent-bit state j-index j-state))))))))
(list (state-support 0) (state-support 1))))
(defmacro consistent-bit (bv bi bs)

‘(equal (bit-state ,bv ,bi) ,bs))

The function call (consistent-bit state j-index j-state) checks whether bit

j-index has the state j-state in the bit vector state.

6.4.3 The interface to computation functions

This section contains functions that interface with the functions given in the previous
section. The first three functions respond to messages that request a computation
to be performed. The functions find the data needed to perform this computation,

perform the computation, and then save the result:
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(defmethod compute-belief (n)
(setf (node-belief n)
(belief (node-causal-support n)

(node-diagnostic-support n))))

(defmethod compute-causal-support (n)
(setf (node-causal-support n)
(causal-support (length (node-parents n))
(node-parent-messages n)

(node-cond-supports n))))

(defmethod compute-diagnostic-support (n)
(setf (node-diagnostic-support n)
(diagnostic-support (length (node-children n))
(node-child-messages n))))

The next two functions respond to messages that order a node to send a message.
The functions find the data needed to send the message and then send it.

(defmethod send-support-to-child (p c)
(setf (relt (node-parent-messages c) (p-index p c))
(support-to-child (length (node-children p))
(c-index ¢ p)
(node-child-messages p)

(node-causal-support p))))

(defmethod send-support-to-—parent ((c non-observed-node) p)
(setf (relt (node-child-messages p) (c-index c p))
(support-to-parent (length (node-parents c))
(p-index p c)
(node-parent-messages c)
(node-diagnostic-support c)

(node-cond-supports ¢))))
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Finally, the next function is a direct implementation of Equation 9 of Section 5.3.6.

(defmethod send-support-to-parent ((c observed-node) p)
(setf (relt (node-child-messages p) (c-index c p))
(case (node-observation c)
((0) (list (full-support) (zero-support)))
((1) (list (zero-support) (full-support))))))
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6.5 Control flow

A node with n parents and m children is ready to send a message to a neighbor only
if it has received messages from all other neighbors. Therefore, a node with n +m
neighbors that has sent its first message must also have received n 4+ m — 1 messages.
Once the node has received its final message, it becomes ready to send the remaining
n + m — 1 messages. Therefore, each node sends its messages in two bursts only, one
message in the first and n + m — 1 in the second.

The states of the slots pstatus and cstatus of the object class node are enough

to answer the following questions:
1. When and to whom should a node send a message?
2. When should a node compute its belief, causal, and diagnostic supports?

If a node ¢ receives a message from parent p, it updates the value of pstatus by
clearing the bit corresponding to p in pstatus. Moreover, if all bits in pstatus are
clear, then ¢ has received messages from every parent and is ready to compute its
causal support. Now, depending on the state of pstatus and cstatus, the node can

take one of three actions:

1. If only one bit is set in pstatus and all bits are clear in cstatus, then the
node has received » + m — 1 messages and is ready to send its first mes-
sage. The receiver of the message is the neighbor that did not yet send a
message. This happens to be a parent and its position in parents is given by

(bit-index pstatus).

2. If only one bit is set in cstatus and all bits are clear in pstatus, then the
node has received » + m — 1 messages and is ready to send its first mes-
sage. The receiver of the message is the neighbor that did not yet send a
message. This happens to be a child and its position in children is given by

(bit-index cstatus).

3. If all bits are clear in pstatus and all bits are clear in cstatus, then the

node has received its last message and is ready to send messages ton +m — 1
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neighbors: n — 1 parents and m children. The neighbor that does not get a

message is the parent p.

The above logic is captured by the following function, which is called directly after

node p sends a message to node c:

(defmethod send-support-to-child :after (p c)
(let* ((parents (node-parents c))
(children (node-children c))
(pstatus (clear-bit (node-pstatus c) (p-index p c¢)))
(cstatus (node-cstatus c))
(pstatus-count (logcount pstatus))
(cstatus-count (logcount cstatus)))
(when (= pstatus-count 0) (compute-causal-support c))
(cond ((and (= pstatus-count 1) (= cstatus-count 0))
(send-support-to-parent ¢ (relt parents (bit-index pstatus))))
((and (= pstatus-count 0) (= cstatus-count 1))
(let ((cc (relt children (bit-index cstatus))))
(unless (typep cc ’observed-node)
(send-support-to-child ¢ cc))))
((and (= pstatus-count 0) (= cstatus-count 0))
(compute-belief c)
(loop for cc in children
unless (typep cc ’observed-node)
do (send-support-to-child ¢ cc))
(loop for pc in parents
unless (equal pc p)
do (send-support-to-parent c pc))))))



6.5. CONTROL FLOW 103

The following function is called directly after node c sends a message to its par-
ent p. The function implements a logic that is similar to the one implemented by

send-support-to-child given above.

(defmethod send-support-to-parent :after ((c node) p)
(let* ((parents (node-parents p))
(children (node-children p))
(pstatus (node-pstatus p))
(cstatus (clear-bit (node-cstatus p) (c-index c p)))
(pstatus-count (logcount pstatus))
(cstatus-count (logcount cstatus)))
(when (= cstatus-count 0) (compute-diagnostic-support p))
(cond ((and (= pstatus-count 1) (= cstatus-count 0))
(send-support-to-parent p (relt parents (bit-index pstatus))))
((and (= pstatus-count 0) (= cstatus-count 1))
(let ((pc (relt children (bit-index cstatus))))
(unless (typep pc ’observed-node)
(send-support-to-child p pc))))
((and (= pstatus-count 0) (= cstatus-count 0))
(compute-belief p)
(loop for pc in children
unless (or (typep pc ’observed-node) (equal pc c))
do (send-support-to-child p pc))
(loop for pp in parents do (send-support-to-parent p pp))))))
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6.6 Interface

The user of CNETS does not need to know about the code presented so far. From the

user point of view, the following operations need to be supported by CNETS:
1. Create a causal network.
2. Declare an observation.
3. Activate forward propagation.

The following sections provide functions to support these operations. These functions

are all the user is expected to know in order to use CNETS for computing beliefs.

6.6.1 Creating a network

To create a causal network, one needs to do the following:

1. Create an empty network.
2. Add nodes to the network.

3. Declare the parents of each node and provide the node’s conditional support

function.

4. Declare observations.

The function make-network creates and returns a causal network with identifier

name:

(defun make-network (name)

(make-instance ’network :name name))

The function make-node creates and returns a node with identifier name. It also
adds the node to network.

(defun make-node (name &optional (network *CURRENT-NETWORK*))

(add—-node (make-instance ’non-observed-node :name name) network))
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The function make-parents declares that a node with identifier name has parents
p-names, which is a list of node identifiers. It also declares that cond-supports is
the conditional support function for the node with identifier name. The parameters
cond-supports and p-names are closely related because cond-supports is inter-
preted with respect to the order of parents in the list p-names.

(defun make-parents
(name p-names cond-supports &optional (network *CURRENT-NETWORK*))
(let ((node (get-node name network)))
(setf (node-parents node)
(loop for p-name in p-names collect (get-node p-—name network)))
(setf (node-cond-supports node) cond-supports)

(loop for p in (node-parents node) do (push node (node-children p)))))

The function name-observation declares that the node with identifier name is
observed to have state obs, which is either 0 (false) or 1 (true).

(defun make-observation (name obs &optional (network *CURRENT-NETWORK*))
(let* ((node (get-node name network))
(obs-name (list ’obs name))
(obs-node (make-instance ’observed-node
:name obs-name
:observation obs
:parent node)))
(push obs-node (node-children node))
(add-node obs-node network)))
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6.6.2 Propagating messages

The function activate-network activates forward propagation in network. When
this function returns, every node will have computed its belief. The function also

prints some information about the time spent in forward propagation:

(defun activate-network (&optional (network *CURRENT-NETWORK*))
(setf *CURRENT-SS* (network-support-structure network))
(initialize network)

(time (loop for n in (network-nodes network)
do (let ((p (single-parent-childless n))
(c (single-child-parentless n)))
(when p (send-support-to-parent n p))
(when ¢ (send-support-to-child n c))))))

The function activate-network does the following;:

1. Sets the current support structure with respect to which the network is quan-

tified.
2. Initializes the network (more on this later on).

3. Identifies single-neighbor nodes and asks them to send messages to their neigh-

bors.

This starts a chain reaction of exchanging messages that ends when the number of

messages exchanged is twice the number of arcs in the network.
One initializes a network by initializing its nodes:

(defmethod initialize ((nt network))

(loop for n in (network-nodes nt) do (initialize n)))
The initialization of an observed node is trivial.
(defmethod initialize ((n observed-node)))

A non-observed node is initialized as follows:

1. All the bits in pstatus are set to indicate that the node did not receive any

message from parents.
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2. All the bits in cstatus are set to indicate that the node did not receive any

message from children.
3. A list of n empty messages (nil) is created and stored at parents-messages.
4. A list of m empty messages (nil) is created and stored at children-messages.

5. If a node has no parents, it is asked to compute its causal support; otherwise,

the causal support is set to nil.

6. If a node has no children, it is asked to compute its diagnostic support; other-

wise, the diagnostic support is set to nil.
7. The belief of the node is set to nil.

(defmethod initialize ((n non-observed-node))
(let ((parents# (length (node-parents n)))
(children# (length (node-children n))))
(setf (node-pstatus n) (1- (expt 2 parents#)))
(setf (node-cstatus n) (1- (expt 2 children#)))
(setf (node-parent-messages n)
(make-list parents# :initial-element nil))
(setf (node-child-messages n)
(make-list children# :initial-element nil))
(if (parentless n)
(compute-causal-support n)
(setf (node-causal-support n) nil))
(if (childless n)
(compute-diagnostic-support n)
(setf (node-diagnostic-support n) nil))
(setf (node-belief n) nil)))
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6.7 Concrete support structures

In this section, three support structures are defined.
The first is the support structure of propositional calculus, which has only two

degrees of support nil and t, which represent the zero and full supports, respectively.

(defparameter *binary-support-structurex
(make-support-structure

:support-summation #’(lambda (x y) (or x y))
:support-unscaling #’(lambda (x y) (and x y))
:support-scaling #’(lambda (x 7) (declare (ignore 7)) x)
:zero-support nil
:full-support t
:support<= #’(lambda (x y) (unless (and x (not y))))
:support= #’(lambda (x y) (equal x y))))

The second is the support structure of probability calculus, which has the degrees of
support [0,1].

(defparameter *probability-support-structurex
(make-support-structure
:support—summation #’+
:support-unscaling #’*
:support-scaling #°/
:zero-support 0
:full-support 1
:support<= #’<=
:support= #’=))
(defvar *CURRENT-SS* *probability-support-structurex*)

The third and final is the support structure of impossibility calculus, which has the de-
grees of support {0,1,...,00}. Here, oo is represented by #.EXCL: : *INFINITY-DOUBLE*,
which behaves like infinity in Allegro CL.!

! The variable .EXCL: : *INFINITY-DOUBLE* is not part of Common Lisp, which does not have an
explicit representation of infinity.
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(defparameter *disbelief-support-structurex
(make-support-structure

:support—-summation #’min
:support-unscaling #’+
:support-scaling #’-
:zero-support #.EXCL: :*INFINITY-DOUBLE*
:full-support 0
:support<= #’<=
:support= #’=))
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6.8 Experiments

This section contains a number of experiments involving CNETS. The presented net-

works are generated randomly by a program that accepts the following as input:
1. The maximal number of parents per node.
2. The maximal number of children per node.
3. The radius of the network.

The number of arcs in a singly connected network equals the number of nodes minus
one. Therefore, it is not unreasonable to capture the size of a network by the following

parameters:

1. The number of nodes, which determines the number of messages exchanged in

forward propagation.

2. The radius of the network, which determines the number of stages in forward

propagation.
3. The number of parents per node.

The number of children per node is ignored because it is dominated by the number
of parents as suggested in Section 5.5 of Chapter 5.

Table 5 depicts a number of networks and the time it took to complete forward
propagation using CNETS. The networks have between 100 and 15000 nodes. Two
computational times are reported: user CPU time without garbage collection and
real time. All these experiments are with respect to a probabilistic support structure.

The following observations are about Table 5:

1. The CPU time per node is constant for a given number of parents per node as

suggested by Figures 19, 20, and 21.

2. The CPU time per node grows exponentially in the number of parents per node

as suggested by Figure 22.



6.8. EXPERIMENTS

Run# | Nodes# Radius Maximum Time (msec) Time (msec)/Node
parents# | CPU Real CPU
1 100 3 3 749 1267 7.5
2 164 3 4 1550 2490 9.5
3 294 3 5 3484 4473 11.9
4 402 3 6 9784 12601 24.3
5 463 3 7 20801 25756 44.9
6 348 3 8 38367 42004 110.3
7 347 4 3 2300 3462 6.6
8 218 4 4 2167 3815 9.9
9 443 4 5 6100 7314 13.8
10 2140 4 6 50066 62327 23.4
11 3707 4 7 160167 197802 43.2
12 797 4 8 82433 88823 103.4
13 1104 5 3 7334 10557 6.6
14 1834 5 4 16383 22592 8.9
15 3120 5 5 42666 56491 13.7
16 4250 5 6 104933 134615 24.7
17 15072 5 7 689567 954235 45.8
18 10469 5 8 954916 1195478 91.2

Table 5: Experiments using CNETS on randomly created probabilistic causal networks.
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3. It took approximately one second to compute the belief in every node of a

network that has 100 nodes, with 3 parents per node at most.

4. It took approximately 15 minutes to compute the belief in every node of a

network that has 15070 nodes, with 7 parents per node at most.

These observations support the formal analysis of Chapter 5.

Table 6 compares the performance of CNETS with the performance of IDEAL, a

system for Influence Diagram Evaluation and Analysis in Lisp [Srinivas and Breese,

1992]. The table shows CNETS to be at least two times faster than IDEAL on five

randomly created causal networks.
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Run# | Nodes# Radius Maximum | cNETS CPU 1DEAL CPU | IDEAL / CNETS
parents# | Time (sec)  Time (sec)

1 100 3 3 .7 1.8 2.6

2 158 3 8 13.8 35.7 2.6

3 353 4 3 2.6 6.4 2.5

4 1281 4 8 107.6 278 2.6

5 978 5 3 6.9 19.3 2.8

Table 6: Experiments using cNETS and IDEAL on randomly created probabilistic causal networks.
Each node has at most three children.

g 16 +— C=———C Max Parents# =3 C
< (OEERERE C Max Parents# = 4 -
N—’ 14 4
Q
£ 121
= 101+
8 —
6 | —
4._
2 | —
0 | | |

0 300 600 900 1200 1500 1800
Number of Nodes

CPU Time

Figure 19: Computation time in singly connected networks of up to 1800 nodes.
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Figure 20: Computation time in singly connected networks of up to 4500 nodes.
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Figure 21: Computation time in singly connected networks of up to 15000 nodes.
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Chapter 7
Objection Calculus

One way to quantify our support for a sentence is to state the most general
reason for rejecting it. The most general reason for rejecting a sentence is called
the objection to that sentence. When degrees of support are taken to be objections,
the resulting support calculus is called objection calculus. In this chapter, I introduce
objection calculus and discuss its central notions: objection—based states of belief,

their conditionalizations, and objection—based causal networks.

7.1 Introduction

Abstract states of belief, their conditionalizations, and abstract causal networks were
motivated by the need to relax the commitment to numbers while retaining the key
features of probability calculus. The main theoretical value of these notions is that
they relax the commitment to numbers. But their practical value is most appreciated
when they are instantiated with respect to concrete, non—numeric, and intuitive de-
grees of support. Such instantiations give birth to concrete calculi for reasoning under
uncertainty that could be alternatives to probability calculus in some applications.
The abstract framework developed in Chapters 2-6 mechanizes the construction
of concrete calculi for reasoning under uncertainty. Each concrete calculus is char-
acterized by a support structure (S,®, @), which consists of degrees of support S,

support summation @, and support scaling @. Therefore, a calculus is constructed
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by defining a support structure.
The process of defining a concrete support calculus usually involves the following

steps:

1. Characterizing the degrees of support S by appealing to one’s intuition about

how to quantify the support for a sentence.

2. Choosing an intuitive definition of support summation @, and then verifying

the choice by showing that (S, ®) is a partial support structure.

3. Choosing an intuitive definition of support scaling @, and then verifying the

choice by showing that (S, ®, @) is a support structure.

Defining a support structure gives birth to a concrete calculus for reasoning under
uncertainty that has the following basic elements: a definition of a state of belief, a
definition of conditionalization, and a definition of a causal network.

In this chapter, I introduce a concrete calculus, called objection calculus, which
results from taking degrees of support to be objections. The objection to a sentence
is the most general reason for rejecting that sentence.

Objections are more than just quantifiers of support. They are also reasons for
rejecting. This aspect of objections gives them a role outside uncertainty applications.
We shall see in Chapter 8 that objections play a central role in diagnosis applications.

The construction of objection calculus in this chapter follows the procedure out-
lined above. I start by characterizing the set of objections in Section 7.2. I then
provide the definition of objection summation in Section 7.3, where I also discuss the
consequent notion of objection—based state of belief. In Section 7.4, I provide the defi-
nition of objection scaling and discuss objection—based conditionalization. Objection—

based independence and causal networks are discussed in Sections 7.5 and 7.6.
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7.2 Objections

The objection to a sentence is the most general reason for rejecting that sentence.

I take objections to be sentences in a propositional language, denoted by O, called
the objection language. A sentence to which an objection is attributed is called an
objectionee. 1 take objectionees to be sentences in a propositional language, denoted
by L, called the objectionee language. Thus, an objection—based state of belief maps
each objectionee in £ to an objection in O.

I assume that the holder of an objection—based state of belief is embedded in a
world that decides the truth and falsity of objections and objectionees. Although the
holder can observe objectionees, I assume that she cannot observe objections. The
reason for this assumption is technical. According to the formalization of abstract
states of belief in Chapter 2, objections are quantities. And from the viewpoint of
this formalization, it is not meaningful to observe quantities. For the same reason, I
assume that the primitive propositions of the objectionee language are disjoint from
those of the objection language.

But how can objections play the role of quantities?

The basic intuition here is that an objectionee is rejected if its objection holds in
the world. Therefore, the strongest objections are valid sentences in O because their
objectionees are rejected in any state of the world. Moreover, the weakest objections
are unsatisfiable sentences in O, because their objectionees are not rejected in any
state of the world. Between these two extremes, there are objections that are neither
valid nor unsatisfiable. For these objections, the rejection of objectionees depends
on the state of the world embedding an objection-based state of belief. Therefore,
assuming that every state of the world is equally likely, the rejectability of objectionees
is quantified by the logical strength of their objections. For example, an objectionee
is no more rejectable than another objectionee if its objection logically entails the

objection to the other objectionee. This is how objections play the role of quantities.
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7.3 Objection summation

After choosing the degrees of support for a support calculus, we must decide on how

to sum these supports. The question to ask is the following:

If « is the support for sentence A, if 3 is the support for sentence B, and if
A and B are logically disjoint, then what would be the support for AV B?

According to the formalization of abstract states of belief, the support for AV B
should be a @ 3. Therefore, the answer to the previous question defines support
summation.

For a given pair of supports (a, ), it is not always possible to find a state of
belief that attributes a and 8 to logically disjoint sentences. For example, if degrees
of supports are frequencies in the interval [0,1], then there is no state of belief that
attributes the frequencies .6 and .9 to logically disjoint sentences. Therefore, before
we ask the above question, we need to identify the pairs of supports about which it
is meaningful to ask the question. Identifying these pairs amounts to defining the
domain of support summation.

In objection calculus, the domain of objection summation is the Cartesian prod-
uct O x O, because objections to logically disjoint objectionees are not related unless
the objectionees are also logically exhaustive. In this case, the objections must con-
tradict each other because, otherwise, the state of belief may reject the objectionees
simultaneously. For example, consider the exhaustive objectionees, “Tweety flies”
and “Tweety does not fly,” and their respective objections, “Tweety is wingless or
sick,” and “Tweety is a bird.” The two objections here do not contradict each other,
which is a problem. If “Tweety is a wingless or sick bird” holds in the world, then
“Tweety flies” and “Tweety does not fly” are both rejected.

To define objection summation, we ask the following:

If a is the most general reason for rejecting A, if B is the most general
reason for rejecting B, and if A and B are logically disjoint, then what is

the most general reason for rejecting AV B?
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The answer is clearly a A 3, because AV B should be rejected precisely when A is
rejected and B is rejected. Therefore, objection summation is logical conjunction.

The following theorem verifies this definition:
Theorem 7.3.1 The pair (O, A) is a partial support structure.

We know from Chapter 2 that every support summation function induces a partial

order on degrees of support. Objection summation induces the following order:

Definition 7.3.2 Objection a is no greater than 3 precisely when there is an objec-

tion v such that a Ay = (.

Therefore, objection a is no greater than 3 precisely when 8 | a. Moreover,
objection a equals objection 3 precisely when o = (3. Unsatisfiable sentences in O
are the minimal objections, and valid sentences are the maximal objections.

By defining objection summation, we obtain a number of results. First, we obtain
a formal definition of objection—based states of belief, which is given in Section 7.3.1.
Second, we obtain a spectrum of attitudes that these states hold towards sentences,
which is discussed in Section 7.3.2. Finally, we obtain a measure of the ignorance of

objection—based states of belief, which is discussed in Section 7.3.3.

7.3.1 States of belief

The formalization in Chapter 2 provides a definition of a state of belief with respect to

every partial support structure. In objection calculus, the definition is the following:

Definition 7.3.3 An objection—based state of belief ® with respect to (L£,0) is a
mapping from L to O satisfying the following conditions:

1. ®(A)=9®(B) if = A= B.
2. ®(AV B) = ®(A) A ®(B) if = -~(A A B).
3. ®(false) = true.

4. ®(true) = false.
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This definition imposes the following conditions on objection—based states of belief:

1. Equivalent sentences should be rejected under equivalent conditions. In prob-
ability calculus, for example, the corresponding condition is that equivalent

sentences should have equal probabilities.

2. A disjunction of disjoint sentences should be rejected precisely when the dis-
juncts are rejected. In probability calculus, the probability of a disjunction of

disjoint sentences is the summation of the probabilities of the disjuncts.

3. An unsatisfiable sentence should be rejected. In probability calculus, an unsat-

isfiable sentence should have probability zero.

4. A valid sentence should not be rejected. In probability calculus, a valid sentence

should have probability one.

Objection summation is idempotent, that is, a A @ = a. As a consequence of this
property, the objection to AV B is the objection to A conjoined with the objection
to B, even when A and B are not logically disjoint. This facilitates the computation

of objections.

7.3.2 Attitudes

Objection—based states of belief hold absolute or relative attitudes towards sentences.

There are two classes of absolute attitudes. The first has the form, “I reject A under

”

a,” or “I accept A under a,”

and is defined as follows:

Definition 7.3.4 An objection—based state of belief ® rejects A under a precisely

when a = ®(A). Moreover, ® accepts A under a precisely when it rejects - A un-

der a.

For example, if my objection to “Tweety flies” is “Tweety is an elephant,” then I
reject “Tweety flies” and accept “Tweety does not fly” under “Tweety is a white
elephant.”

The second class of absolute attitudes has the form, “I can reject A under «,” or

?

“I can accept A under a,” and is defined as follows:
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Definition 7.3.5 An objection—based state of belief ® can reject A under a precisely

when o [ —®(A). Moreover, ® can accept A under a precisely when it can reject

- A under a.

For example, if the objection to “Tweety flies” is “Tweety is wingless or sick,” then
“Tweety flies” can be rejected under “Tweety is not wingless,” but it cannot be
rejected under “Tweety is neither wingless nor sick.”

Objection—based states of belief could hold relative attitudes of the form, “I find
A no more rejectable than B,” or “I find A no more acceptable than B.” These

attitudes are defined as follows.

Definition 7.3.6 An objection—based state of belief ® finds A no more rejectable than
B precisely when ®(A) = ®(B). Moreover, ® finds A no more acceptable than B

precisely when it finds —A is no more rejectable than —B.

Therefore, sentence A is no more rejectable than B precisely when A is rejected only if
B is rejected. Similarly, A is no more acceptable than B precisely when A is accepted
only if B is accepted.

The formalization of abstract states of belief suggests definitions of the attitudes of
rejection and acceptance. Viewing objection—based states of belief as abstract states

of belief, we have the following equivalences:

Theorem 7.3.7 An objection—based state of belief rejects A according to Defini-
tion 2.4.4 precisely when it rejects A under true according to Definition 7.3.4. More-
over, it accepts A according to Definition 2.4.3 precisely when it accepts A under true

according to Definition 7.3.4. y

Therefore, rejection and acceptance of sentences by abstract states of belief are the
extreme attitudes held by objection—based states of belief.

The formalization of abstract states of belief also suggests definitions of the orders
no—more-supported and no—-more-believed. Viewing objection—based states of belief

as abstract states of belief, we have the following equivalences:
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L (@) L (@)
bird N\ fly —normal | bird  false
bird N —fly  normal | —bird false

—bird N fly  true fly —normal
—bird N —fly false -fly false

Table 7: An objection-based state of belief. Here, bird is equally acceptable to fly because the
objection to —bird is equivalent to the objection to —fly. Note, however, that fly is more rejectable
than bird because the objection to bird strictly entails the objection to fly.

Theorem 7.3.8 An objection—based state of belief ® supports A no more than it
supports B (A =g B) according to Definition 2.5.5 precisely when it finds B no more
rejectable than A. y

Theorem 7.3.9 An objection—based state of belief ® believes A no more than it be-
lieves B (A Cg B) according to Definition 2.5.6 precisely when it finds B no more
rejectable than A and finds A no more acceptable than B. y

The two conditions in this theorem may seem redundant, but they are not. For

example, A and B might be equally acceptable, but B might be more rejectable than
A (see Table 7).

7.3.3 Ignorance

By definition of a state of belief, the objection to a sentence and that to its negation

are constrained as follows:
®(A) A &(—A) = false.

This constraint says that no objection—based state of belief could reject a sentence
and its negation in some state of the world.

Although an objection—based state of belief never rejects a sentence and its nega-
tion in some state of the world, it may also reject neither (and, hence, accept neither).
As we shall see next, such states of the world are used to indicate the ignorance of a

state of belief towards the sentence.
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The states of the world in which a state of belief ® accepts either A or —A are
those that satisfy the objection ®(—A) V ®(A). Under the objection ®(—A), the
state of belief accepts A, and under the objection ®(A), it accepts = A. Therefore, it
accepts either A or = A in any state of the world that satisfies ®(—A)V ®(A). Hence,
the state of belief ® accepts neither A nor —A in any state of the world that satisfies
- ®(-A) A -®(A). When the state of belief is embedded in one of these states, we

say that it is ignorant about sentence A.

Definition 7.3.10 The degree to which an objection—based state of belief ® is igno-
rant about sentence A is given by

1G5(A) Y —3(=4) A ~®(A).

Theorem 7.3.11 IGs(A) = IGs(—A).

The degree of ignorance about a sentence characterizes the states of the world in
which neither the sentence nor its negation are accepted.

If neither a sentence nor its negation is accepted in any state of the world, then
the degree of ignorance about the sentence is true. This is the maximal degree of
ignorance and we say that the state of belief is maximally ignorant about the sentence

in this case.

Theorem 7.3.12 An objection—based state of belief is mazimally ignorant about sen-
tence A precisely when ®(A) = ®(—A) = false.

If either the sentence or its negation is accepted in each state of the world, then
the degree of ignorance about the sentence is false. This is the minimal degree of
ignorance and we say that the state of belief is minimally ignorant about the sentence

in this case.

Theorem 7.3.13 An objection—based state of belief is minimally ignorant about sen-
tence A precisely when ®(A) = -®(-A).

Objection—-based states of belief hold absolute and relative ignorance attitudes

towards sentences. The absolute attitudes have the form, “I am ignorant about A

?

under «,” and are defined as follows:
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Definition 7.3.14 An objection-based state of belief ® is ignorant about A under a

precisely when a = IGg(A).

If a state of belief is ignorant about sentence A under true, then it is maximally
ignorant about A. Moreover, if it is ignorant about sentence A only under false, then
it is minimally ignorant about A.

The relative ignorance attitudes have the form, “I am no more ignorant about A

than about B,” and are defined as follows:

Definition 7.3.15 An objection—based state of belief ® is no more ignorant about A
than about B precisely when IGs(A) = IGs(B).

This says that a state of belief is no more ignorant about A than about B precisely

when it is ignorant about A only if it is ignorant about B.
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7.4 Objection scaling

The last step in constructing a calculus for reasoning under uncertainty is defining

the support scaling function @. The question to ask is the following;:

If a is the support for A, if 3 is the support for B, and if A entails B,
then what will be the support for A after observing B?

According to Chapter 3, the support for A after observing B should be a @ 3. There-
fore, the answer to the previous question defines support scaling. This question,
however, is meaningful only if a is no greater than (3, because A entails B. Other-
wise, there will be no state of belief that satisfies the premise of the question.

To define objection scaling, we ask the following question:

If a is the most general reason for rejecting A, if B is the most general
reason for rejecting B, and if A entails B, then what is the most general

reason for rejecting A after observing B?
The answer to this question is based on the following;:
e The weakest sentence under which one rejects A is the conjunction of

— The weakest sentence under which one rejects A A B.

— The weakest sentence under which one rejects A A —B.
That is, ®(A) = ®(AA B) A ®(A A -B).
o The weakest sentence under which one rejects A A B is the disjunction of

— The weakest sentence under which one rejects B.

— The weakest sentence under which one rejects A A B but cannot reject B.

That is, (A A B) = &(B) V (8(A A B) A ~&(B)).
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o After observing B,

— The weakest sentence under which one rejects A A =B becomes true.

— The weakest sentence under which one rejects B becomes false.

That is, @5(A A 7B) = true and ®p5(B) = false.

Therefore, the weakest sentence under which one rejects A after observing B is the
weakest sentence under which one rejects AA B but cannot reject B. That is, a A3,
which says that objection scaling is logical falsification A—.

Although this seems to be an intuitive definition of objection scaling, it does not
conform to the properties of support scaling suggested in Chapter 3. As it turns out,
this definition violates Property (Y1), 0 @ a = 0, which says that observing a non-
rejected sentence retains all accepted sentences. If we modify the previous definition
of objection scaling to account for Property (Y1), we obtain a definition of objection

scaling that is given and verified by the following theorem:

Theorem 7.4.1 The triple (O, A, L) is a distributive, but non—bijective, support struc-
ture, where
def | true, if a = true;
alp =
a3, otherwise.

By defining objection scaling, we obtain a number of results. First, a definition
of conditionalized states of belief, which is given in Section 7.4.1. Next, the notion of
objection-based independence, which is discussed in Section 7.5. Finally, the notion

of objection—based causal networks, which is discussed in Section 7.6.

7.4.1 Conditionalized states of belief

Chapter 3 provides a definition of conditionalized abstract states of belief. Objection

calculus inherits this definition, which is given below.

Definition 7.4.2 Let ® be an objection-based state of belief that does not reject B.
The conditionalization of ® on B is defined as follows:

B5(A) = (AN B)LB(B).
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The following theorem is a key to the intuition behind conditional objections:

Theorem 7.4.3 When a state of belief ® in objection calculus does not reject ANB,
the conditional objection to A given B is the weakest sentence under which ® rejects

AN B but cannot reject B. y

Assessing a sentence under which A A B is rejected is usually easy, but assessing the
weakest such sentence is usually a challenging task. Moreover, ensuring that B cannot
be rejected under such a weakest sentence requires assessing the weakest sentence
under which B is rejected. This makes the assessment of conditional objections not

always a natural task. This issue is discussed further in Section 7.4.3.

7.4.2 Objection unscaling

Since every support scaling has a support unscaling, one should ask, What is objection
unscaling? The answer to this question is suggested by Figure 23, which shows the
relation between the objection to a conjunction A A B and the objection to one of
the conjuncts B.

According to Figure 23, when A A B is not rejected, the objection to A A B can
be computed by disjoining the conditional objection to A given B with the objection
to B. This is verified by the following theorem:

Theorem 7.4.4 Support unscaling of (O, A, L) is L, where
alp “hav B precisely when (a = true or a A B = false) and 8 # true.
Corollary 7.4.5 If ® is an objection—based state of belief that does not reject B, then
P(ANB) = ®5(A)US(B).a

Corollary 7.4.5 shows that a conditional objection is constrained by the objection to
its condition. In particular, when the conditional objection is not true, it must be
disjoint from the objection to its condition. Therefore, the following two statements

are not necessarily consistent in objection calculus:
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Objectionto A and B Objectionto not A and B
L »
/ /
/ / Objectionto B

\ \

Figure 23: The circle on the left represents the objection to A A B , and the one on the right
represents the objection to =A A B . The intersection of the two circles is the objection to B .
Therefore, the shaded area represents ®(A A B) A =®(B) , which is the conditional objection to 4
given B when A A B is not rejected. In this case, the conditional objection to A given B is logically
disjoint from the objection to B .
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1. The objection to B is 8 # true.
2. The objection to A given B is a.

These two statements are consistent only if a LI 8 is defined. Otherwise, there would
be no objection—based state of belief that satisfies these statements. This is contrary

to probability calculus, where the following two statements are always consistent:
1. The probability of B is g # 0.
2. The probability of A given B is p.

In probability calculus, one can always construct a probabilistic state of belief that

satisfies the statements above.

7.4.3 Sufficient objections

Assessing a condition that leads to the rejection of a conjunction A A B is relatively
easy, but assessing the weakest such condition is often a challenging task. Therefore,
assessing objections is not always trivial.

In probability calculus, a related problem is solved by appealing to conditional
probabilities. In particular, instead of assessing the probability of a conjunction
A N B directly, one can assess the conditional probability of A given B and multiply
it by the probability of B:

Pr(ANB)=Pr(A|B) x Pr(B).

This indirect assessment of probabilities is useful because assessing the conditional
probability of A given B is usually easier than assessing the probability of the con-
junction A A B.

In objection calculus, the objection to a conjunction A A B can be also be assessed
indirectly. One can assess the conditional objection to A given B and disjoin it with
the objection to B:

®(ANB)=2p(A)U &(B).
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But, as it turns out, assessing the conditional objection to A given B is usually as hard
as assessing the objection to A A B. Assessing conditional objections is not always
a natural task because one must ensure the consistency of a conditional objection
with the objection to its condition. This defeats the expected role of conditional
objections, namely, to make the assessment of objections easier.

Fortunately though, there is an alternative solution to making the assessment
of objections easier. The solution hinges on the notion of sufficient objections. A
sufficient objection to A given B is an objection to A A B that when disjoined with
the objection to B becomes the objection to A A B.

Definition 7.4.6 A sufficient objection to A given B, written éB(A), s any sentence
a such that (AN B) = a V ®(B).

Notation éB(A) := a means that « is a sufficient objection to A given B.
Assessing a sufficient objection éB(A) is usually easier than assessing the objection

®(A A B). But why? The following theorem suggests the answer.
Theorem 7.4.7 Fuvery sufficient objection i)B(A) satisfies the following:
-~&(B) = ®(A A B) = $5(A). y

According to Theorem 7.4.7, a sufficient objection to A given B is equivalent to the
objection to A A B when the objection to B is assumed to be false. Therefore, to
assess a sufficient objection to A given B, one asks, What would be the objection to
A A B in the absence of an objection to B?

Consider the circuit in Figure 24 as an example. Let the objectionee language be
over primitive propositions Py, P;, P,, P3, P;, which assert the state of wires in the cir-
cuit. And let the objection language be over primitive propositions ok(X), ok(Y), ok(Z),
which assert the statuses of gates in the circuit. To assess a sufficient objection to
- P, given P3 A\ P,, one asks, What would be the objection to =P, A P; A P; in the
absence of an objection to P; A Py? The answer would usually be ok(Z) in this case.

Although there is only one conditional objection to A given B, there is usually
more than one sufficient objection to A given B. For example, the conditional objec-
tion ®5(A) and the objection ®(A A B) are both sufficient objections to A given B.

However, people rarely provide these objections when asked for a sufficient objection.
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PO

P1 z P4

P3

Figure 24: A digital circuit.

Consider again the circuit in Figure 24. When asked for a sufficient objection to
- P, given P3 A Py, people usually give ok(Z). Curiously enough, ok(Z) is not the

conditional objection to =P, given P; A Ps:
e The objection to =Py A P3 A Py is ok(Z) V (0k(X) A 0k(Y)).
e The objection to P3 A Py is ok(X) A ok(Y).

e The conditional objection to =P, given P3 A Py is ok(Z) A (—ok(X) V —0k(Y)).
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7.5 Objection—based independence

Chapter 4 provides a definition of independence in abstract states of belief. Objec-
tion calculus inherits this definition, which is discussed in Section 7.5.1. However,
there is a weaker notion of independence in objection calculus, which seems to be
more appropriate for certain applications. The notion of independence is discussed

in Section 7.5.2.

7.5.1 Strong independence

In probability calculus, the notion of independence is closely related to the notion of
probability change. In particular, we say that a set of propositions [ is independent
from J given K if the conditional probability of I given K equals the conditional
probability of I given J A K. That is, once K is observed, the probability of I does
not change when J is observed.

In Chapter 4, this notion of independence was generalized to abstract states of
belief. Since states of belief in objection calculus are instances of abstract states of

belief, they inherit this definition.

Definition 7.5.1 A state of belief ® finds I strongly independent from J given K,
written SINg(I,K,J), precisely when the conditional objection to I given J A K is

equivalent to the conditional objection to I given K.

I refer to this as “strong” independence because objection calculus has a weaker notion
of independence. Interestingly enough, weak independence in objection calculus seems
to be more appropriate for certain applications. The definition of weak independence
is given in the next section. In the rest of this section, I identify an application for
which strong independence seems inappropriate.

Consider a state of belief ® about the digital circuit in Figure 25, where the

objection language O is constructed from the following primitive propositions:

ok(X) = “Inverter X is functioning normally,”

ok(Y) = “Inverter Y is functioning normally,”
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PO P1 P2

Figure 25: A digital circuit.

and the objectionee language L is constructed from the following primitive proposi-

tions:

P, = “Wire P is on,”
P, = “Wire P; is on,”
P, = “Wire P, is on.”

We expect the state of belief ® to be such that
e The objection to =Py A P; is false.
e The objection to Py A P; is ok(X).
e The objection to =Py A P; A Py is ok(Y).
e The objection to Py A P A Py is ok(X) V ok(Y) .

Moreover, we expect the state of belief ® to find P, “intuitively” independent from
Py given P;. As we shall see, however, P, is not strongly independent from Py, given
P;. In particular, the conditional objection to P, given =Py A P; is not equivalent to

the conditional objection to P, given Py A P;. After observing =Py A P;, the objection
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to P, becomes

¢—|P0/\P1(P2) = Q(_‘PO/\Pl/\P2)[@(_‘P0/\P1)
= ok(Y)/false
= ok(Y).

Therefore, ok(Y) is the weakest condition under which ® rejects ~Py A Py A P; but
cannot reject =Py A P;. But after observing Py A Py, the objection to P, becomes

QPo/\Pl(PZ) = Q(PO/\P]_/\P2)£¢(P0/\P1)

= (ok(X)V ok(Y)) Lok(X)
= ok(Y) A —ok(X).

Therefore, ok(Y ) A—0k(X) is the weakest condition under which ® rejects Py APy A Ps
but cannot reject Py A Py.

This example demonstrates that strong independence in objection calculus does
not correspond to “independence” as we know it in digital circuits. But what does?

This question is answered in the next section.

7.5.2 Weak independence

Strong independence in objection calculus appeals to conditional objections. The
weaker notion of independence appeals to sufficient objections. Specifically, if propo-
sitions [ are weakly independent from K given J, then assessing a sufficient objection

to I given JA K does not depend on the state J. The formal definition is given below.

Definition 7.5.2 A state of belief ® finds I weakly independent from J given K,

written WINg(I, K, J), precisely when every sufficient objection to I given K is also
a sufficient objection to I given J N K.

Corollary 7.5.3 If WINg(I,K,J), then ®(INJ ANK) = i’g(l) Ve(JAK).

The following is a characterization of weak independence that does not mention

sufficient objections:
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Theorem 7.5.4 WINg(I, K, J) precisely when ®(INJANK) = S(IANK)VE(JAK).
Considering the digital circuit in Figure 25, one can show that

(P AN PLABy) = (P APV S(PLA Bo).
For example,

B(P,AP, APy = ok(Y)V ok(X),
B(P,AP) = ok(Y),
B(PLAP) = ok(X).

.

Therefore, one can show that P, is weakly independent from P, given P;.
Weak independence satisfies a number of properties that have major consequences.
For example, the following property shows that sufficient objections can be decom-

posed into simpler sufficient objections in the presence of weak independence:

Theorem 7.5.5 If WINg(I,K,J), then $x(I A J) := Sx(I)V Sk (J).

Among the most important properties of weak independence are the graphoid

axioms [Pearl, 1988].
Theorem 7.5.6 (Symmetry) WINg(I,K,J) precisely when WINg(J,K,I).
Theorem 7.5.7 (Decomposition) If WINg(I,K,J U L), then WINs(I,K,J).

Theorem 7.5.8 (Weak Union) If WINg(I,K,JU L), then WINg(I[,K U J,L).

Theorem 7.5.9 (Contraction)
If WINs(I,K,J) and WINg(I,K U J,L), then WINg(I,K,JUL).
Together, Decomposition, Weak Union, and Contraction give

WINg(I,K,J) and WINg(I,K U J,L) precisely when WINg(I,K,J U L).
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7.6 Objection—based causal networks

Chapter 4 provides a definition of abstract causal networks. Objection calculus inher-
its this definition, which is discussed in Section 7.6.1. However, objection calculus has
a weaker notion of causal networks, which seems to be more appropriate for certain

applications. This notion is discussed in Section 7.6.2.

7.6.1 Strong causal networks

When degrees of support are objections, I refer to an abstract causal network as a
strong objection-based (sob) causal network. The topology of a sob causal network
encodes strong independence assertions, and its tables contain conditional objections.

Below is the formal definition.

Definition 7.6.1 A sob causal network is a tuple (£,0,G,CO), where

o L and O are propositional languages over disjoint primitive propositions.
e G is a directed acyclic graph over the primitive propositions of L.
o CO is a partial function L x L — O such that

— CO,(1) is defined, and

— N\ CO;s(i) = false for every primitive proposition i in L.

The function CO s called a conditional objection function.

Definition 7.6.2 A state of belief ® satisfies a sob causal network (L,0,G,CO)

precisely when
SIN 5(1,10,1<) and ®(i0) # true only if ®,,(1) = CO,0(7).

Sob causal networks are based on strong independence and on conditional objec-

tions. As I mentioned earlier, conditional objections are not easy to assess, which
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makes the quantification of a sob causal network unnatural. Moreover, strong inde-
pendence is not appropriate for certain applications, which makes sob causal networks
inappropriate for these applications.

It is also possible to construct a sob causal network that is not satisfied by any
state of belief. This should not be surprising because the definition of a sob causal
network does not guarantee a conditional objection CO;, to be consistent with the
objection to its condition zo.

A solution to all these problems is given in the next section.

7.6.2 Weak causal networks

Weak objection-based (wob) causal networks have the same syntax as sob causal
networks, but their semantics are different. The topology of a wob causal network
encodes weak independence assertions, and its tables contain sufficient objections.

Below is the formal definition.

Definition 7.6.3 A wob causal network is a tuple (£,0,G,S0), where

o L and O are propositional languages over disjoint primitive propositions.
e G is a directed acyclic graph over the primitive propositions of L.
o SO is a partial function L x L — O such that

— 8§0,,(1) is defined, and

— N\ 8Oi(i) = false for every primitive proposition 1 in L.

The function SO is called a sufficient objection function.

Figure 26 depicts a wob causal network. This network could also be a sob causal
network, but the given quantification makes it inconsistent. For example, if one
viewed Figure 26 as a sob causal network, the objection to A A B would be ok(X),
and the conditional objection to C given AA B would be 0k(Y'). These two objections

are inconsistent.
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not B ‘ ok(Y) false Q
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Figure 26: A digital circuit and its corresponding wob causal network.

Definition 7.6.4 A state of belief ® satisfies a wob causal network (L,0,G,S50)

precisely when

WIN3(3,i0,i<) and $(3 A i0) := SO, (3).

Unlike sob causal networks, every wob causal network is consistent.

Theorem 7.6.5 Fuvery wob causal network is satisfied by exactly one objection—based

state of belief.

Moreover, wob causal networks are rich enough to represent any state of belief.

Theorem 7.6.6 Fuvery objection—based state of belief satisfies some wob causal net-

work.

Many of the weak independences that hold in a wob causal network can be re-

trieved by applying d-separation to the topology of the network.

Theorem 7.6.7 Let ® be the state of belief satisfying a wob causal network (L,0,G,SO).
If INg(I,K,J), then WINg(I,K,J).
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7.7 The wob algorithm

In this section, I present an algorithm for the following computation. Given
e (£,0,G,50), a wob causal network, and
e 4, an observation about some nodes in G,

compute the following pair of objections for every node ¢ in G:

BL; = (®(i A §), B(—i A ).

The pair BL; contains much information. For example, it can be used to compute:
1. The objection to the observation é: ®(: A §) A &(—3 A §).

2. The conditional objection to i given d: ®(¢ A §)2®(9).

3. The objection to i: ®(: A §) when § = true.

The algorithm I am about to present assumes that the causal network is singly
connected. But similar to the generalized polytree algorithm, it can be extended to
handle multiply connected networks.

The algorithm also assumes that the observation ¢ is about leaf nodes only, but
this assumption does not affect the generality of the algorithm. I show in Chapter 5
that an observation about any node can be simulated by another observation about
a leaf auxiliary node.

The algorithm is based on breaking down the computation of the pair BL; into a
number of smaller computations that are performed by the neighbors of node 2. The

result of each computation is passed on to node ¢ as a message:
— The message sent by parent j to node ¢ is denoted by ;.
— The message sent by child k to node ¢ is denoted by vy ;.

The messages that node ¢ receives from its parents are combined to form a pair of

objections denoted by p;, while the messages that node ¢ receives from its children
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are combined to form a pair of objections denoted by v;. The target pair, BL; is the
result of combining the pairs u; and v;.
Now that I have outlined the algorithm, let me explain what the passed messages

are, how they are computed, and how they are combined.

7.7.1 Messages from parents

The message that node ¢ receives from its parent j is defined as follows:
def . .
pii = ((J A biei)s ®(7 A b))

The messages that node ¢ receives from its parents combine to yield the pair,

i E (@ A6, B(—i A SL)).

These messages are combined as follows:

Theorem 7.7.1 y;(i) = ASOu(i) VvV \ ws(j)-
iokj

Parent j computes the message that it sends to node ¢ as follows:

Theorem 7.7.2 Hji = Hj \% v Vij.

lejoi
That is, the message p;; is the result of combining all the messages that node j

receives from its neighbors, except node 1.

7.7.2 Messages from children

The message that node ¢ receives from its child & is defined as follows:
Vs L (&i(6in)s Boi(Gin)).
The messages that node 7 receives from its children combine to yield the pair,
vi D (8:(0..), B-4(6.))-

These messages are combined as follows:
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Theorem 7.7.3 v; = \/ Vii.
kecio

Child k computes the message that it sends to node ¢ as follows:

Theorem 7.7.4 If node k is not observed, then

ri(2) = A\ ve(E) V \ SOroini(k) V /(D).

k koi koill

But if node k is observed, then

(false,true), ifd = k;
Vii —
¢ (true,false), ifd = k.

When node k is observed, the observation § decides how the message 14 ; is computed.
But when k is not observed, the message vy ; is the result of combining all the messages

that node k receives from its neighbors, except node z.

After node ¢ has received all messages from its parents, it uses them to compute
the pair p;. Similarly, node ¢ uses the messages it has received from its children to
compute the pair v;. The target pair BL; is computed by combining the pairs p; and

V.

Theorem 7.7.5 BL;, = u; V v;.

7.7.3 Computational complexity

The algorithm I have given involves passing 2n messages, where n is the number of
arcs in the network. The computation performed by each node is exponential in the
number of its parents, but linear in the number of its children. These complexities also
apply to the probabilistic version of this algorithm. Note, however, that although it
is reasonable to assume that numeric addition and multiplication are operations that
take constant time, it does not seem reasonable to assume that logical conjunction

and disjunction—which in objection calculus play the role played by addition and
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Figure 27: Messages exchanged in a forward propagation.

multiplication in probability calculus—are operations that take constant time. In fact,
when objections are represented using disjunctive normal forms, experimental results
show that in causal networks with a few hundred nodes, about 99% of the algorithm
time is spent in conjoining and disjoining objections. Moreover, this time seems to

vary significantly depending on the number and nature of available observations.

7.7.4 An example

Consider Figure 26, which depicts a wob causal network. Given the observation
(S - P3 A _|P4,

let us compute the belief in every node of the network using forward propagation.

This computation requires the messages,

V3,05 Ho.15 H1.25 V4.2, V2.1, V1.0,



7.7. THE WOB ALGORITHM 143

which are depicted in Figure 27. These messages are computed as follows:

V3.0

Ho.1

H1.2

Va2

V21

.0

(false,true)

Ho V V3o
(false,false) V (false,true), because Node 0 is root

(false,true).

1
([8Op, (P1) V po.1(Fo)] A [SO-p,(P1) V pros(=Fo)],
[SOp,(~F1) V pro1(Fo)] A [SO-p, (- F1) V pro.1(—Fo)])
([ok(X) V false] A [false V true],

[false V false| A [ok(X) V true))

(ok(X),false).

(true, false).

([v2(P2) V SOp (R)] A [va(—F2) V SOp, (- P)],
[va(P2) V SO-p, (P)] A [va(~P2) V SO-p, (- P2)]),
([true V ok(Y)] A [false V false],

[true V false] A [false V 0k(Y')]), because v2 = vy
(false, ok(Y)).

(((P) V SOp(P)] A [vi(=P1) V SOp, (1),
1(P) V SO-p, (P)] A 1 (= 1) V SO-p, (= P1)])
([false V ok(X)] A [ok(Y) V false],

[false V false]| A [ok(Y) V ok(X)]), because 11 = 5,
(ok(X) A ok(Y),false).
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We must now compute the pair v; for each node ¢:

Vo = V3oV
= (false,true) V (ok(X) A ok(Y),false)
= (ok(X) A ok(Y),true).

v1 = vy = (false, 0k(Y)).

Vo = Uaa = (true,false).

And compute the pair y; for each node 2:

Ho
M1
H2

(false,false).

(false, ok(X)).

([SOp,(P2) V pa2(PL)] A [SO-p, (P2) V p12(=P1)],
[SOp, (= P2) V p1.2(P1)] A [SO-p, (= P2) V pra(—F1)])
([ok(Y) V ok(X)] A [false V false],

[false V ok(X)] A [ok(Y) V false])

(false, ok(X) A ok(Y)).

Finally, we compute the pair BL; for every node :

BL, = (false,false)V (ok(X) A ok(Y),true)

= (ok(X) A ok(Y),true).

BL, = (ok(X),false) V (false, ok(Y))

— (oh(X), ok(Y)).

BL, = (false,ok(X) A ok(Y)) V (true,false)

= (true, ok(X) A ok(Y)).
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7.8 Justification and consequence calculi

In objection calculus, one quantifies the support for a sentence by assessing the ob-
jection to the sentence; that is, the most general reason for rejecting it.

The following question arises usually in connection with objection calculus, Could
one quantify the support for a sentence by assessing the justification for the sentence;
that is, the most general reason for accepting it?

The answer is yes, but the resulting calculus, justification calculus, is not an
instance of the abstract calculus formalized in Chapters 2 and 3. Let me explain why.

When a sentence is rejected, its negation is accepted. Therefore, the objection to
a sentence is the justification for its negation. Given this connection, it follows that
the justification for the disjunction AV B, when A and B are logically disjoint, cannot
be computed from the justification for A and the justification for B. This violates

one of the principles underlying abstract states of belief:

e The support for AV B is a function of the support for A and the support for
B, when A and B are logically disjoint.

Instead, we have the following in justification calculus:

o The justification for A A B is a function of the justification for A and the
justification for B.

To see why this holds in justification calculus, let J(A) denote the justification for
A, and ®(A) denote the objection to A. Using the connection between justifications

and objections, we have

J(ANB) = ®(—-AV-B)
= ®(-A)A®(-B)
= J(A)AJ(B).

Another calculus that is closely related to objection calculus is consequence calculus,

in which one quantifies the support for a sentence by assessing the consequence of the
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sentence; that is, the most specific conclusion of accepting the sentence. Consequence
calculus is an instance of the abstract calculus formalized in Chapters 2 and 3. Ob-
jection, justification, and consequence calculi are duals of one another. Their duality

is given by the following equivalent statements:
1. «a is the objection to A.
2. « is the justification for —A.
3. —a is the consequence of A.

A similar duality exists among impossibility, possibility, and necessity calculi [Dubois

and Prade, 1988].



Chapter 8

Diagnosis using Objection

Calculus

In this chapter, I explore the application of objection calculus to diagnosing faults
in physical systems. In particular, I show how to describe the behavior of a physical
system using a wob causal network, and how to use the wob algorithm to compute

diagnoses of observations about the system.

8.1 Introduction

Objections are closely related to two influential notions in Al: labels and diagnoses.

Computing labels is the job of a clause management system [Reiter and de Kleer,
1987]. In section 8.2, I discuss clause management systems and define labels formally.
In section 8.3, I study the relation between objections and labels.

Computing diagnoses is the job of a diagnosis system [de Kleer et al., 1992]. In
Section 8.4, I discuss diagnosis systems and define diagnoses formally. In Section 8.5,
I study the relation between objections and diagnoses.

Finally, in Section 8.6, I show how wob causal networks can be used to describe
the behavior of physical systems, and how the wob algorithm of Chapter 7 can be

used to compute diagnoses; I also provide some examples.
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8.2 Clause management systems

The basic task of a clause management system is to help a reasoner answer the
following general question: Given a particular database, under what condition can I
derive a particular sentence? The condition is usually required to be most general
and to be phrased using a particular language. The following example provides some
intuitive justification for this requirement.

Consider the circuit depicted in Figure 28. Let £’ be a propositional language over
primitive propositions A, B,C, D, E, F, which assert the state of wires in the circuit.
And let O’ be a propositional language over primitive propositions ok(X), ok(Y), ok(Z),
which assert the statuses of gates in the circuit. The behavior of the circuit can be

described using statements of the form
gate_input A ok(gate) D gate_output.

Let A’ denote the conjunction of all such statements:

A = (AAok(X)D—=D)A
~A A ok(X) D D) A
BAC Aok(Y) D E)A

BA-C Aok(Y) D —=E) A

o — —_— —_— p—

If a reasoner observes ¢’ = “A A B A C about the circuit, then it might ask a clause
management system the following question: Given the database A’ A ¢', under what
condition can I derive the sentence F'? The most general such condition phrased using
the language O'is (0k(X)V 0k(Y)) A ok(Z). This condition is called the O'-label for
F with respect to A’ A 4.

Definition 8.2.1 The O-label for sentence A with respect to database A, written
Label(A, A, O), is the weakest sentence in language O that when conjoined with A
entails A.
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Figure 28: A digital circuit.

Reiter and de Kleer [Reiter and de Kleer, 1987] define labels differently. To state
and analyze their definition, I need a number of notions. These are the notions of
conjunctive clause, disjunctive clause, prime implicant, prime implicate, and minimal

support clause.

Definition 8.2.2 A conjunctive clause is a conjunction of literals.

Definition 8.2.3 An implicant for A is a conjunctive clause that entails A. A

prime implicant for A is a weakest implicant for A.

Definition 8.2.4 A disjunctive clause is a disjunction of literals.

Definition 8.2.5 An implicate of A is a disjunctive clause that is entailed by A. A

prime implicate of A is a strongest implicate of A.

Definition 8.2.6 ([Reiter and de Kleer, 1987]) A support for sentence A with
respect to database A is an implicate of A N - A that is not an implicate of A.

A minimal support for sentence A with respect to database A is a strongest support

for A with respect to A.
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Reiter and de Kleer define labels as follows:

Definition 8.2.7 ([Reiter and de Kleer, 1987]) The O-label for sentence A with
respect to database A is the set of all conjunctive clauses I, such that I belongs to

language O and —I is a minimal supports for A with respect to A

At first glance, Definition 8.2.7 looks quite different from Definition 8.2.1. But a closer
look shows that for a certain class of databases the difference between the two defini-
tions is only syntactic. In particular, the O-label for A with respect to A according
to Definition 8.2.7 corresponds to the prime implicants for Label(A,A,O) that are

consistent with A. This correspondence is a corollary of the following theorem:

Theorem 8.2.8 I is a prime implicant for Label(A, A, O) and is consistent with A

precisely when —1I belongs to O and is a minimal support for A with respect to A.

The difference between Definition 8.2.7 and Definition 8.2.1 of labels is only syn-

tactic provided the database is non—committal in the following sense:

Definition 8.2.9 A database A is non—committal with respect to language O

precisely when it does not entail any invalid sentence in O.

For example, the database A’ A ¢’ given earlier with respect to the circuit of Figure 28
is non—committal with respect to the language O'. However, the database A’Aé' A D
is committal because it entails ~ok(X), which belongs to O'.

When a database A is non—committal with respect to language O, every prime
implicant for Label(A,A, Q) is consistent with A. In this case, the label for A with
respect to A according to Definition 8.2.7 corresponds to the set of prime implicants

for Label(A, A, O).

Theorem 8.2.10 Let A be a non-committal database with respect to language O.
The O-label for A with respect to A according to Reiter and de Kleer is the set of
prime implicants for Label(A, A, O).

!Reiter and de Kleer refer to the primitive propositions of the language O as assumptions.



8.2. CLAUSE MANAGEMENT SYSTEMS 151

In this chapter, I consider only databases that are non—committal with respect
to some language O of interest. But this does not affect the generality of the basic
results given in this chapter. In fact, databases in diagnosis applications are usually
non—committal with respect to some language . In these applications, the database
A is usually a description of a system behavior, and the language O is about the
statuses of the system components. Since behavioral system descriptions do not
usually imply anything about the statuses of the system components, databases in

diagnosis applications are usually non—committal.
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8.3 The relation between objections and labels

There is a correspondence between non—committal databases and states of belief in
objection calculus. For each state of belief ®, we can construct a non—committal
database A?®, where there is a one-to—one correspondence between the objections of
® and the labels of A?. Furthermore, for each non—committal database A, we can
construct a state of belief ®*, where there is a one-to—one correspondence between
the labels of A and the objections of ®2. These results are stated by the following
theorems, which assume that ® is a state of belief with respect to (£, O).

First, the database corresponding to state of belief ® is the conjunction of all

statements of the form, The objection to A implies —A.

Definition 8.3.1 The database corresponding to state of belief ® is

A* Y A B(4) D -A

AcL

The following theorem shows that the database corresponding to a state of belief is

non—committal.
Theorem 8.3.2 The database A?* is non—committal with respect to language O.

The label for sentence A with respect to database A?® is the objection attributed by

state of belief ® to sentence —A.
Theorem 8.3.3 If A is a sentence in language L, then ®(—A) = Label(A4,A%,0).

We can also construct a state of belief that corresponds to any non—committal

database.

Theorem 8.3.4 The mapping U2 : L — O such that $2(A) = Label(—A, A, O) is

an objection—based state of belief.
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8.3.1 The computational value of weak independence

Since every state of belief in objection calculus corresponds to some non—committal
database, every weak independence assertion about a state of belief ® must also be an
assertion about the database A®. But what is this assertion? The following theorem

answers this question:

Theorem 8.3.5 A state of belief ® finds propositions I weakly independent from J

given K precisely when
Label(=IV =J V ~K,A* O) = Label(=IV ~K,A* O) V Label(—~J V ~K,A* O). y
Let me explain the intuition behind this theorem. Suppose that
Label(-IV -K,A®,0)=a and Label(-~J VvV -K,A* O) = 8.

That is, a and 3 are the weakest sentences in O such that

A*Nal—-IV-K and A*ABE=-JV-K. (10)
Logically, we can deduce the following from (10):

A*A(aVp)=-IV-JV-K. (11)

But logically, we cannot deduce that a V (3 is the weakest sentence in O that sat-
isfies (11). Whether or not this holds depends on the nature of the database A®.
Therefore, deciding whether a V 3 is the O-label for -1 V -J V - K involves an
examination of the database A%,

Now, if the state of belief ® finds I weakly independent from J given K, then
a V 3 is indeed the weakest sentence in O that satisfies (11). In this case, we can
conclude that a V 3 is the O-label for =1V -J V =K without further examination
of the database A?. Avoiding this examination is the computational value of weak
independence.

Consider the circuit depicted in Figure 28 as an example. We have,

Label(D,A" A §',0") = ok(X),
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Label(E,A"N 6,0 = ok(Y),
Label(DV —F,A'A§',0") = ok(X),
Label(EV -F,A'N§',0") = ok(Y).

.

Since proposition E is weakly independent from D, we have

Label(DV E,A"N§',0") = Label(D,A"AN§',0")V Label(E,A" A &', O)
ok(X) V ok(Y).

However, E is not weakly independent from D given F'. This is verified by

Label(DV EV —F,A" AN §',0')
= ok(X)V ok(Y)V ok(Z)
£ Label(DV —F,A"A§',0")V Label(E vV =F,A" A §',O").

8.3.2 The logical meaning of wob causal networks

We know from Chapter 7 that each wob causal network corresponds to a state of
belief. Since each state of belief corresponds to a non—committal database, then each
wob causal network must correspond to a non—committal database. But what is this

database? The following theorem answers this question:

Theorem 8.3.6 If CN = (£,0,G,80) is a wob causal network, and if ® is the
state of belief satisfying CN, then

A = Nio A SO,(i) D —i.

According to Theorem 8.3.6, the database corresponding to a wob causal network is

the conjunction of statements of the form
state_of _parents N\ sufficient_objection O —state_of _node.

Also according to Theorem 8.3.6, the database corresponding to a causal network

does not depend on the causal structure of the network. That is, given the tables
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of a causal network, the independences asserted by the causal structure are logically
redundant. This is both surprising and consequential! It is surprising because it
suggests that a causal structure has no representational value. And it is consequential
because it suggests that the independences asserted by a causal structure must be
correct. This means that Theorem 8.3.6 can be used to prove that Claim 4.3.2 — of
Chapter 4 — is true with respect to objection calculus.

Although a causal structure is representationally redundant, we have seen in Sec-

tion 8.3.1 that its computational value should not be underestimated.
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8.4 Diagnosis systems

The basic task of a diagnosis system is to help a reasoner answer the following general
question: Given a particular database, what can I conclude after recording a particular
observation? The conclusion is usually required to be most specific and phrased using
a particular language. The following example provides some intuitive justification for
this requirement.

Consider the circuit depicted in Figure 28, and £',O' and A’ be as given in
Section 8.2. If a reasoner observes §' = “A A B A C A —~F about the circuit, it might
ask a diagnosis system the following question: Given the database A’, what can I
conclude after recording the observation §'? The most specific conclusion that is
phrased using the language O’ is (—0k(X) A =0k(Y)) V —0k(Z). This conclusion is
called the O'-diagnosis for §’ with respect to A’.

Definition 8.4.1 The O-diagnosis of § with respect to A, written Diagnosis(é, A, O),
is the strongest sentence in O that is entailed by A NJ.

The Al literature contains many notions of diagnosis. For example, de Kleer et
al. [de Kleer et al., 1992] discuss eight such notions, the most influential of which
are minimal, prime, and kernel diagnoses. They conclude their discussion with the

following remark:

The notions of minimal and prime diagnosis are inadequate to charac-
terize diagnoses generally. We argue that the notion of kernel diagnosis
which designates some components as normal, others abnormal, and the
reminder as being either, is a better way to characterize diagnoses. [de

Kleer et al., 1992, Page 221]

As we shall see next, the prime implicants for Diagnosis(d, A, O) correspond to
kernel diagnoses as defined by de Kleer et al.
Kernel diagnoses are defined with respect to a system, which is a triple (6, A, O),

where?

2This definition is a propositional version of a definition used by de Kleer et al.
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e 4, the system observation, is a propositional sentence.
o A, the system description, is also a propositional sentence.

o O, the system component language, is a propositional language over primitive

propositions of the form ok(C'), where C is a component of the system.

Definition 8.4.2 The kernel diagnoses of system (6,A, Q) are the prime implicants

for the conjunction of all prime implicates of A A § that belong to O.

The relation between kernel diagnoses and the notion of diagnosis as given by

Definition 8.4.1 is a corollary of the following theorem:

Theorem 8.4.3 The strongest sentence in O that is entailed by A N ¢ is equivalent
to the conjunction of all prime implicates of A N\ § that belong to O.

Corollary 8.4.4 The prime implicants for Diagnosis(d,A,O) are the kernel
diagnoses of the system (6,A,0). y
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8.5 The relation between objections and kernel

diagnoses

There is a one-to—one correspondence between the objections of a state of belief ®

and the diagnoses of its corresponding database A%.

Theorem 8.5.1 If ® is a state of belief with respect to (L,0), and if § is a sentence
in L, then
—~&(8) = Diagnosis(5, A%, 0).

According to Theorem 8.5.1, diagnoses are negated objections. This is intuitive:
if ®(4) is the most general reason for rejecting §, then —®(4) is the most specific
conclusion of accepting 4.

A corollary of Theorem 8.5.1 shows that kernel diagnoses correspond to the prime

implicants for negated objections.

Corollary 8.5.2 Let ® be a state of belief with respect to (L,0), and let § be a
sentence in L. The prime implicants for ~®(8) are the kernel diagnoses of the system

(6,A%,0). y

This corollary is the key to computing kernel diagnoses using the wob algorithm
of Chapter 7: Given a wob causal network that describes a physical system, and given

an observation 4 about the system,
1. the wob algorithm is used to compute the objection ®(§) to the observation 4,
2. the computed objection is then negated, and
3. the prime implicants for the negated objection —®(§) are computed.

These are the kernel diagnoses of the observation 4.
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8.6 Diagnosis using wob causal networks

In this section, I sketch the steps involved in diagnosing system faults using wob
causal networks. I also provide three examples of diagnosing faults in digital circuits.

The first step in constructing a wob causal network (£,0,G,S0O) is defining the
propositional language . To define this language, one must identify the system
components needed in order to describe the system behavior. The statuses of these
components constitute the primitive propositions of the language O. In particular,
primitive propositions in O usually have the form ok(C'), where C is a system com-
ponent. Alternatively, these primitive propositions can have the form ab(C), where
C is a system component. The two choices are dual. In digital circuits, for example,
the components are usually the individual gates from which the circuit is composed.

The second step in constructing a wob causal network is defining the propositional
language L. To define this language, one must identify the system aspects—other than
the statuses of its components—that are needed to describe the system behavior.
These aspects constitute the primitive propositions of the language £. For example,
the aspects of digital circuits are usually the states of wires that connect the individual
gates.

The third step in constructing a wob causal network is constructing the causal
structure G, which is a direct acyclic graph. The nodes of this graph must be the
primitive propositions in the language L, that is, the system aspects. The arcs of this

graph must respect the following principle:

Assuming that no system component is faulty, observing the state of as-
pects 2o of the system, which are the parents of aspect ¢, should be enough

to determine the state of aspect 1.

A causal structure that respects this principle is said to be quantifiable, which brings
us to the last step in constructing a wob causal network: quantifying its causal
structure.

The purpose of quantifying a causal structure is to voice objections to local be-
haviors of the system. A local behavior is a pair (g,i¢), where 7 is a state of aspect ¢

and t¢ is a state of its parent aspects 7o. The local behavior (z,i¢) means that aspect
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¢ has state ¢ when aspects 7o have state t0. In quantifying a causal structure, one
provides a sufficient objection to state ¢ given state io for each local behavior (z0,1).
These sufficient objections fill the tables of a wob causal network and, consequently,
specify the sufficient objection function SO.

To summarize, constructing a wob causal network (£,0,G,S0) involves:

1. Identifying the system components and constructing the language O.

2. Identifying the system aspects and constructing the language L.

3. Constructing the causal structure G.

4. Quantifying the structure G by providing the sufficient objection function SO.

By performing these steps, one becomes committed to a state of belief & : £L — O
about the system under consideration. Moreover, the constructed causal network and
its corresponding state of belief become the basis for diagnosing faults of the described
system.

For example, suppose that we observe ¢ about the described system. Then, given
Theorem 8.5.1, the diagnosis of § is the negated objection —®(4). This diagnosis can
be computed using the algorithm given at the end of Chapter 7 when the observation

4 is a conjunction of literals. In particular, the algorithm computes the pair
(B(INS),B(—i A D))

for each node ¢ in the causal network. But conjoining the elements of any such pair

gives the objection to the observation 4,
B(5) = B(¢ A S) A B(—I A S).

Therefore, the diagnosis of ¢ is given by = ®(¢ A §) V = ®(—i¢ A §).
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8.6.1 The first example

Figure 29 depicts a wob causal network that describes the digital circuit of Figure 28.

The given quantification assumes the following;:
o If a gate is OK, then it behaves normally.
o If a gate is faulty, then it may behave normally or abnormally.

The causal structure of a digital circuit is usually reflected by its wiring structure:
Assuming that no gate is faulty, observing the input to a gate is enough to determine
its output.

Now, suppose that we observe § = “AABAC A—F about the circuit of Figure 28.

Using the wob algorithm, we compute
BLg = (0k(Z), ok(Y) V (0k(X) A 0k(Z))).

Hence, = ®(8) = (—ok(Y) V —0k(Z)) A (—ok(X) V —0k(Z)) is the diagnosis of the

observation 4.

B | notB

fdse | fdse

L E e (ED | D | notD
C.B false ok(Y) |ok(X)| ase
C,notB | ok(Y ngse not A | false’ | ok(X)
not C, B k(Y
not C, not B OkY false
| F | notF
E,D false ok
EtngtB galse
notnlg, not D Ql(% ?Q
. J

Figure 29: A wob causal network for the digital circuit of Figure 28.
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8.6.2 The second example

Figure 30 depicts a digital circuit and the wob causal network describing it. The

given quantification assumes the following;:
o If an inverter is OK, then it behaves normally.
e If an inverter is faulty, then it shorts its output to its input.

Now, suppose that we observe § = A A =C about the circuit of Figure 30. Using the

wob algorithm, we compute
BLp = (0k(X) V —0k(Y),—0k(X) V ok(Y)).

Hence,

~(8) = (—ok(X) A ok(Y)) V (0k(X) A —ok(Y))

is the diagnosis of the observation 4.

e N
A | notA A
‘ fase fase
| not B B
B not A ‘ ok(X) not ok(X) a
A not ok(X) ok(X)
| not C C
not B ‘ ok(Y) not ok(Y) °
C B not ok(Y) ok(Y)
N\ J

Figure 30: A digital circuit and its corresponding wob causal network.
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8.6.3 The third example

Figure 31 depicts a digital circuit and the wob causal network describing it. The

given quantification assumes the following;:
o If an inverter is OK, then it behaves normally.

o If an inverter is faulty, then it shorts its output to its input, or gets stuck at 0.

Now, suppose that we observe § = A A =C about the circuit of Figure 31. Using the

wob algorithm, we compute
BLg = (0ok(X), ok(Y)).

Hence,

~(8) = —0k(X) V ~0k(Y)

is the diagnosis of the observation 4.

e N
A |  notA A
‘ false false
| not B B
B not A ‘ ok(X) not ok(X) e
A false ok(X)
| not C C
not B ‘ ok(Y) not ok(Y) °
C B false ok(Y)
N\ J

Figure 31: A digital circuit and its corresponding wob causal network.
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Chapter 9
Commonly Asked Questions

In this chapter, I answer a number of questions about the relation between the work I
presented here and other work in the AI, philosophical, and probabilistic literatures.
In each of the following sections, I state one of these questions and answer it.

Notation ABC stands for the Abstract Belief Calculus of Chapters 2 and 3.

9.1 Many—valued logic

Question: Can one view ABC as a many—valued logic?

The answer is no. Let me first explain what a many—valued logic is, and then show
why ABC cannot be viewed as such.

A many—valued logic is usually characterized by a choice of truth values and a
choice of truth value functions F;. Truth value functions are used as follows: If the
truth values t¢y,...,t, are attributed to sentences ay,...,a,, then the truth value
Fi(t1,...,t,) is attributed to the sentence C;(au,...,a,), where C; is a logical con-
nective [Rosser and Turquette, 1952]. Therefore, in a many-valued logic, the truth
value of a sentence is determined by the truth values of its constituent sentences.
This is called the “truth functionality” of many—valued logic.

If we view degrees of support as truth values, then ABC is not truth functional.

We know, for example, that the support for a conjunction is not determined by the

165
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supports for its conjuncts. Therefore, ABC is not a many—valued logic. If it were,

then it would not subsume probability calculus:

Most of the Polish logicians ...regarded the non—truth—functional char-
acter of probability assignments as a decisive obstacle against viewing a

probabilistic system as a many—valued logic. K. Ajdukiewicz, S. Mazurkiewicz,

and A. Tarski were of this mind. [Rescher, 1969, Page 14]

This also explains the basic difference between ABC and some existing many—valued
logics in the Al literature [Bonissone, 1987).

Ginsberg proposes a many—valued logic that deviates from the tradition of being
completely truth functional [Ginsberg, 1988]. But he still assumes that the truth
value of a sentence determines the truth value of its negation. Ginsberg also assumes
that the truth functions corresponding to the disjunction and conjunction connectives

are idempotent, which precludes probabilities as truth values.
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9.2 Fuzzy logic

Question: What is the relation between ABC and fuzzy logic?

Before I answer this question, I shall digress on a fundamental notion in fuzzy set
theory on which I later base my answer. It is the notion of a linguistic variable [Zadeh,

1975]. Roughly speaking, a linguistic variable consists of the following elements:

e V, a variable.
e U, the exact values of the variable V.

o (G, the linguistic values of the variable V.

These are linguistic descriptions of the value of V.

e M, a meaning function.

This function maps each linguistic value in G into a fuzzy set on U.

Consider for example the linguistic variable consisting of the variable Age, the exact
values [0,100], and the linguistic values old, very old, more or less old, and so on.
Figure 32 depicts the meaning of two linguistic values of the variable Age.

Armed with the concept of a linguistic variable, one can take almost any formalism

that deals with variables and construct a fuzzy version of this formalism in which

1 Young old

50

Figure 32: The meanings of two linguistic values.
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1 In

variables can take on linguistic values. This process is called “fuzzification.”
particular, consider a many—-valued logic with truth values §. The truth value of a
sentence A, Truth_Value(A), is a variable with an exact value in §. One can fuzzify
this logic by allowing the variable Truth_Value(A) to take on linguistic values. That
is, for each sentence A, one can introduce a linguistic variable with the following

elements:

o Truth_Value(A), the variable.

e S, the exact values of Truth_Value(A).

o True, very true, almost false, ..., the linguistic values of Truth_Value(A).
e A meaning function that maps each linguistic value into a fuzzy set on S.

The fuzzy logic proposed by Zadeh is constructed this way [Zadeh, 1975].

Now back to the question that motivated the above discussion: What is the rela-
tion between ABC and fuzzy logic? As it turns out, any concrete instance of ABC can
be fuzzified in the same way that a many-valued logic can be fuzzified.

Consider the fuzzification of probability calculus for example. For each sentence

A, one can introduces a linguistic variable with the following elements:
e Pr(A), the variable.
e [0,1], the exact values of Pr(A).
o Likely, very likely, almost unlikely, ..., the linguistic values of Pr(A).
e A meaning function that maps each linguistic value into a fuzzy set on [0, 1].

This fuzzification of probability calculus was introduced by Zadeh [Zadeh, 1976],
but was not completely developed. I have recently constructed fuzzy probability
calculus as an instance of a weaker version of ABC by constructing its support structure

[Darwiche, 1993]. Other fuzzy instances of ABC can be constructed similarly.

! Fuzzification is useful because people most often use linguistic values as opposed to exact ones.
For example, when asked about the age of a person, one is more likely to hear something like very
old as opposed to eighty—five.
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9.3 The Dempster—Shafer theory

Question: Does ABC subsume the Dempster—Shafer belief functions?

The answer is no. Let me first state what a belief function is and then explain my
answer. A belief function with respect to a propositional language £ is a mapping

from L to the interval [0, 1] satisfying the following properties [Shafer, 1976]:
e Bel(false) = 0.
e Bel(true) = 1.

e Bel(A) = Bel(B) when = A = B.

k

o Bel(\/ 4)> Y (=) Bei(\ 4)).

i=1 OAIC{1,...,k} el

Each belief function is associated with a plausibility function PI, where
Pl(A) =1 — Bel(—A).
Belief functions violate a basic property of abstract states of belief:

e The support for a disjunction A V B is determined by the support for A and
the support for B when A and B are logically disjoint.

The definition of a belief function does not entail this property. Therefore, belief
functions are not instances of abstract states of belief.

This is a limitation of ABC. The interpretation of belief functions, however, is too
controversial for us to know precisely the nature of this limitation. Nonetheless, there
is a recent interpretation of belief functions that is formal and intuitive enough to
deserve attention here [Halpern and Fagin, 1990; Fagin and Halpern, 1989]. Specif-
ically, a belief function Bel can be viewed as representing all probabilistic states of

belief Pr that satisfy the following property:

Bel(A) < Pr(A4) < PI(A).
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That is, belief and plausibility are lower and upper bounds on probability.

A major attraction of this view is that belief functions relax the commitment to
point probabilities, which are usually hard to assess. In particular, instead of having
to attribute a point probability to each sentence, one attributes a probability interval
[Bel(A), PI(A)]. Given this view, and given that belief functions are not instances
of abstract states of belief, one is then tempted to conclude that degrees of support
in ABC cannot be probability intervals. However, this conclusion is not correct. For
example, degrees of support in fuzzy probability calculus are fuzzy sets on the interval
[0,1]. Such fuzzy sets are rich enough to represent probability intervals [Darwiche,

1993]. In particular, the interval [a,b] is represented by the following fuzzy set f:

1, if p belongs to [a, b];
flp) = {

0, otherwise.
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9.4 Valuation—based systems

Question: Parkash P. Shenoy and Glenn Shafer have a recent paper titled, “Az-
toms for Probability and Belief-Function Propagation,” where they suggest an abstract
framework and axioms under which exact local computation of probabilities is possible.

How does your abstract framework relate to theirs?

Let me first describe the essence of their framework and then discuss the relation
between the two frameworks. Shenoy and Shafer suggest an abstract model of
computation, as opposed to an abstract belief calculus [Shenoy and Shafer, 1990;

Shenoy, 1989]. Their model of a computation can be roughly described thus:

e Global information is represented as a collection of local pieces of information.

These pieces are called valuations.

e Each valuation V provides information about some variables . The valuation

VY is said to be on variables H in this case.

e A valuation V; on variables H; and another valuation Vs on variables H, can
be aggregated to produce a valuation on the variables H; U H,. This resulting
valuation is called the combination of V; and V, and is denoted by V,;®V,.2

e A valuation )V that provides information about variables H; can be restricted
to provide information about only a subset H, of these variables. The result
of this restriction is a smaller valuation on the variables Hs,. This valuation is

called the marginalization of V to H, and is denoted by V+*z,

o A computation is a process of finding out what some global information V' has
to say about a set of variables H. That is, given a collection of valuations
V1, V2, ..., a computation is a process in which one combines these valuations to
produce the global valuation V and then restricts this valuation to the variables

‘H. Formally, the computation is (V1®@V2® .. .)“{.

ZShenoy and Shafer use the symbol ® to denote combination. I use the symbol ® instead to
avoid confusion with support unscaling in ABC.
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These are the basic concepts in the framework of Shenoy and Shafer [Shenoy and
Shafer, 1990]. Their basic result is an algorithm for performing the above compu-
tation under certain conditions. The conditions concern the variables about which
valuations provide information, the properties of combination, and the properties of
marginalization. Shenoy and Shafer have also shown that computation in a number
of concrete belief calculi can be viewed as a process of combining and marginalizing

valuations.

Now that I have briefly described the framework of Shenoy and Shafer, let me

explain how it relates to my framework.

Although both frameworks “abstract away” from numbers, the scope and style
of their abstractions are different. 1 am abstracting away from numbers because I
am concerned with a belief calculus that is not committed to numbers and yet has
the key features of probability calculus—the computational features being only one
example. Shenoy and Shafer are abstracting away from numbers because, apparently,
they are concerned with a model of computation that is not committed to numbers.
More concisely, I am suggesting an abstract belief calculus, while Shenoy and Shafer

are suggesting an abstract model of computation.

The difference between these types of abstractions is usually blurred when em-
phasizing their common concrete instances. But the difference is highlighted when

considering the following questions:

1. What are the consequences of showing that a concrete belief calculus is an in-
stance of one of the abstractions?
If a belief calculus is shown to be an instance of ABC, then we conclude, for
example, that states of belief in this calculus satisfy the properties given in
Chapter 2 and their conditionalizations satisfy the properties given in Chap-
ter 3. Most of these properties cannot even be phrased within the framework
of Shenoy and Shafer. Polya’s patterns of plausible reasoning are one example.
To phrase these patterns, one needs the notion of a degree of belief and the
notion of an ordering on degrees of belief. These notions are absent from the

framework of Shenoy and Shafer.
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2. To what extent does each abstraction mechanize and guide the creation of con-
crete belief calculi?
We have seen how ABC has guided, for example, the creation of objection cal-
culus in Chapter 7. The framework of Shenoy and Shafer appears too weak
to guide such a creation. (This weakness, however, becomes a virtue when the

framework is viewed as an abstract model of computation.)

The other difference between my framework and that of Shenoy and Shafer is
the style of abstraction. Specifically, the basic notions that constitute my framework
and the properties of these notions follow from a set of axioms. For example, the
existence of support summation, scaling, and unscaling and the properties of these
operations are all shown to be consequences of axioms about states of belief and their
conditionalizations. I am not aware of a similar justification for the basic notions

underlying the framework of Shenoy and Shafer.
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9.5 Abstract theories of probability

Question: Abstracting away from numeric probability is an old tradition. There is a
long history of such attempts in the probabilistic literature, and this history is reviewed

in a book by Terrence Fine. How does your work relate to these attempts?

There have been many attempts indeed to abstract away from numeric probability

[Fine, 1973]. I am aware of three classes of such attempts, which I discuss below.

9.5.1 Modal probability

In the first class of attempts, statements of the form “The probability of A is p” are
replaced by statements of the form “A is probable,” which are called unconditional
modal statements [Walley, 1973]. There are also conditional modal statements, which
have the form “A is probable given B.” Below are two major questions asked with

respect to modal probability.

1. What azioms should the notion “probable” satisfy?
Some suggested axioms are [Walley, 1973]

e false is not probable.
e Either A is probable or —A is probable.

e If A is probable, and if A entails B, then B is probable.

2. What is the relation between modal probability and numeric probability?
This question is usually addressed by appealing to the notion of agreement,
which is inspired by the theory of measurement [Krantz et al., 1971]. For
example, a modal-probability state of belief is said to agree with a numeric—
probability state of belief if A is probable precisely when the probability of A
is no less than 1/2.
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9.5.2 Comparative probability

In the second class of attempts, statements of the form “The probability of A is p”
are replaced by statements of the form “A is no more probable than B,” which are
called unconditional comparative statements [Walley, 1973]. There are also condi-
tional comparative statements, which have the form “A given B is no more probable
than C given D.” Below are two major questions asked with respect to comparative

probability.

1. What azioms should the notion “no more probable than” satisfy?

Some suggested axioms are [Koopman, 1940; Fine, 1973; Walley, 1973]

e false is no more probable than any A.
e If A is no more probable than B, then =B is no more probable than —A.

o If A given B is no more probable than C given D, and if C' given D is no
more probable than E given F', then A given B is no more probable than
E given F'.

2. What is the relation between comparative probability and numeric probability?
This question is again addressed by appealing to the notion of agreement.
For example, a comparative—probability state of belief is said to agree with
a numeric—probability state of belief if A is no more probable than B precisely

when the probability of A is no greater than the probability of B.

The notion of agreement seems to be central in the study of modal and comparative
probability. In fact, many of the axioms suggested for these notions seem to have been

motivated by agreement results.

9.5.3 Quantitative probability

In the third class of attempts, statements of the form “The probability of A is p,”
where p is a number in [0, 1], are replaced by statements of the form “The probability

of A is a,” where a is not necessarily a number. The only attempt in this class that
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I am aware of (beyond mine) is that of Romas Aleliunas [Aleliunas, 1988]. In the
remainder of this section, I discuss the work of Aleliunas in some detail.

Aleliunas suggests what he calls a “normative theory of belief,” which explains how
a body of evidence affects one’s degree of belief in a possible hypothesis. According
to Aleliunas, a probabilistic logic is a scheme for relating a body of evidence to a
potential hypothesis in a rational way. Degrees of belief, or probabilities, are assigned
to the possible relationships between hypotheses and pieces of evidence, where the
relationships are called conditionals. The expression “f(P|Q)” is used to denote the
conditional probability of P given () as given by the probability assignment f, where
P and @) are sentences in some language L. If the set of probabilities is P, then the
goal of a probabilistic logic, according to Aleliunas, is to identify the characteristics of
a family F of functions from £ x £ to P. Here, F is the set of permissible probability
assignments from which a rational agent is permitted to choose.

Aleliunas provides a number of axioms to constrain the set F, which he divides into
three groups: (1) axioms about the domain and range of the probability assignment
fin F, (2) axioms stating consistency constraints that each individual f in F must

obey, and (3) axioms about the set F. The axioms are given below.
1. Azioms about the domain and range of each f in F.
(a) The set of probabilities P is a partially ordered set, where the ordering

relation is <.

(b) The sentences in £ are finite propositional sentences over a countable set

of primitive propositions.
(¢) f P=X and Q@ =Y, then f(P|Q) = f(X|Y).

2. Azioms that hold for all f in F, and for any P,Q,R in L. (From here on,
f(P|true) is abbreviated by f(P).

(a) f(Plfalse) = f(P|P).

(b) fF(PAQIQ) = f(P|Q) < £(QIQ).
(¢c) For any g € F, f(P|P) = g(P|P).
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(d) There is a monotone non—increasing total function, ¢, from P into P such
that f(=P|Q) = «(f(P|Q)).

(e) There is an order—preserving total function, h, from P x P into P such
that f(P A Q|R) = h(f(P|Q A R), f(Q|R)). Moreover, if f(P AQ|R) =0,
then either f(P|Q A R) = 0, or f(Q|R) = 0, where 0 is defined to be
f(=P|P).

(f) If /(P|R) < f(P|-R), then f(P|R) < f(P) < f(P|-R).

3. Azioms about the set F.
For any distinct primitive propositions A, B and C in £, and for any probabil-
ities a,b and c in P, there is f in F such that

(a) f(A)=a, f(B|A)=b,and f(C|AAB)=c.
(b) F(AIB) = (Al~B) = a and f(B|A) = f(BI-A) = b
(c) f(A) = a and f(A A B) = b whenever b < a.

Below are some basic differences between the above axioms and those underlying

ABC. First, Aleliunas does not require the existence of a function A* such that for

any fapaQa and R7

f(PVQ|R) = h*(f(P|R), f(Q|R)) when |= (P A Q).

The function h* would correspond to support summation in ABC if it existed. There-
fore, Aleliunas does not require a probability summation function. Moreover, since
probability summation A* does not exist, the partial order on the set of probabilities
had to be assumed, as opposed to being derived as in ABC.

Second, Aleliunas remarks that his axioms imply the existence of a probability r
that satisfies a = h(r,b) whenever a < b. But he also remarks that » need not be
unique. Since h corresponds to support unscaling in ABC, this means that Aleliunas
does not require the existence of a unique support scaling function. Therefore, the

conditionalization of a state of belief is not well defined.
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Third, Aleliunas requires the function A to be total. In ABC, however, support
unscaling in not necessarily a total function. The significance of this issue is discussed
at length in Section 3.4.1.

Fourth and finally, Axiom (2d) of Aleliunas does not hold in ABC. That is, the
support for a sentence does not determine the support for the negation of that sentence
in general. If this axiom held in ABC, then ABC would not have subsumed possibility

and objection calculi.



Chapter 10
Concluding Remarks

The basic result of this thesis has been that the commitment to numbers is not
needed for obtaining the key features of probability calculus: Multiple degrees of
belief, conditionalization, independence, causal networks, and local computation. In
this chapter, I shall briefly summarize this basic result and then discuss some questions

that remain to be answered.

10.1 Summary of the thesis

In Chapter 1, I pointed out that many people have mixed feelings about probability
calculus. On the one hand, people are usually impressed by the key features of this
calculus. On the other hand, they find the commitment to numbers a very high price
to pay for these features.

In Chapter 2, I formalized the notion of an abstract state of belief, which is an
attribution of abstract degrees of belief to propositional sentences. Abstract states
of belief subsume their probabilistic counterparts but are not committed to either
numeric or symbolic degrees of belief.

In Chapter 3, I formalized the notion of abstract conditionalization, which is
a process for changing an abstract state of belief to accommodate an observation.
Abstract conditionalization subsumes its probabilistic counterpart and leads to some

celebrated patterns of plausible reasoning.
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In Chapter 4, I formalized the notion of an abstract causal network, which is
a graphical construct used in communicating an abstract state of belief. Abstract
causal networks subsume probabilistic causal networks.

In Chapter 5, I presented the abstract polytree algorithm for computing beliefs
in abstract causal networks, and, in Chapter 6, I implemented the algorithm using
Common Lisp. This algorithm subsumes its probabilistic counterpart.

Chapters 2-6, therefore, comprise a comprehensive, abstract belief calculus that
looks very much like probability calculus but is not committed to numbers.

In Chapter 7, I presented objection calculus, which is a symbolic instance of the
abstract belief calculus. Objection calculus concretely demonstrates that multiple
degrees of belief, conditionalization, independence, causal networks, and local com-
putation are not features exclusive to probability calculus.

In Chapter 8, I explored some practical ramifications of the suggested theory
of uncertain states of belief. In particular, I showed that clause management and
diagnosis systems can be viewed as instances of the abstract belief calculus. This
made the tools of the abstract calculus available to clause management and diagnosis

applications, and I gave examples of this availability.
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10.2 Technical limitations

I have made some assumptions while developing the theory of uncertain states of
belief. Some of these assumptions were intended to simplify the presentation and can
be relaxed in a straightforward manner. Other assumptions are more involved, and
can be relaxed only if more research is conducted. In this section, I discuss some of

the assumptions I have made.

Primitive propositions are binary. I assumed that primitive propositions can
have only two values, true and false. In the probabilistic literature, however, primitive
propositions are usually multi—valued. For example, Todays Weather is a multi-
valued primitive proposition that may have the values Cloudy, Rainy, and Sunny. My
assumption here can be relaxed without losing any of the established results. This is
true because every state of belief over multi—valued propositions can be represented

by a state of belief over binary propositions.

The domain of a state of belief is a propositional language. This assump-
tion can be relaxed in principle: An abstract state of belief can be an attribution
of degrees of support to first—order sentences. Relaxing this assumption, however,
leads to representational complexity. In particular, a state of belief can no longer be
characterized by the degrees of support that it attributes to complete sentences—a
property that is assumed by a number of proofs. Moreover, it is not clear how to
extend the definition of abstract causal networks when this assumption is relaxed

without compromising the usefulness of such networks.

Objections cannot be observed. As I mentioned in Chapter 7, this assumption
is there because objections are degrees of support. In the theory of uncertain states of
belief, it is not meaningful to observe quantities. Relaxing this assumption takes us,
therefore, beyond the realm of the current theory. Moreover, relaxing this assumption
undermines some of the results that I established in Chapters 7 and 8. For example,
the database corresponding to an objection—based state of belief would no longer be

non—committal in general (see Theorem 8.3.2).
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10.3 Current and future work

Below are some research areas that, I believe, deserve immediate attention.

Uncertain observations The conditionalization on uncertain observations — that
is, changing a state of belief such that a sentence becomes supported to some degree
— needs to be explored. The uncertainty literature contains a number of proposals
for conditionalizing concrete states of belief on uncertain observations. One can adopt
some of these proposals to conditionalize abstract states of belief on uncertain obser-
vations. But most interesting will be characterizing these proposals in the same way
I have characterized states of belief and their conditionalizations in Chapters 2 and 3.
That is, identifying and formalizing properties of belief change that are equivalent to

the proposals under consideration.

Sufficient supports We have seen in objection calculus, for example, that suf-
ficient objections play an important role in extracting objections. In fact, sufficient
objections are more important than conditional objections in this regard. The ques-
tion is, Can we define the notion of sufficient supports in the abstract calculus? 1
believe so. And will this notion be as important as the notion of sufficient objections?
Again, I believe so. This line of questioning about sufficient supports may also lead

to a weak notion of independence in the abstract calculus.

Theoretical questions Finally, there are some theoretical questions whose an-
swers would enhance our understanding of the current theory of uncertain states of
belief. For example, What additional properties of belief change would guarantee the
uniqueness of support scaling? Are the properties of belief change independent? Can

they be reduced, simplified, or even beautified?



Appendix A
Propositional Logic

Abstract states of belief are among the most fundamental notions in this thesis. An
abstract state of belief maps a standard propositional language into a set containing
degrees of belief. By a standard propositional language I mean a language with the

following syntax and semantics.

Syntax
The propositional language £ with respect to primitive propositions Py,..., P, is

constructed as follows:
1. P,e L.
2. If Aisin L, then so is - A.

3. If Aand B arein £, then sois AV B.

Other logical connectives are defined as usual:

def

ANB % ~(-Av-B)
A>B % -AvB
A=B % (AAB)V(-AA-B).
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Semantics

A truth assignment with respect to primitive propositions Py, ..., P, is a mapping
w from {Py,..., P} to {true, false}. The notion of satisfaction by a truth assignment

is defined as follows:
1. w | P; if w(P;) = true.
2. wgE-Aifw jE A
3. wEAVBifwEAorw = B.

The satisfaction relation induces a meaning function M on sentences, where the
meaning of a sentence is the set of truth assignments that satisfy it. That is, M(A)

contains all truth assignments that satisfy A.

Complete sentences

A complete sentence over a set of primitive propositions I is a sentence of the form

A Li,

i€l

where L; is the literal 7 or —¢. For example, if [ = {A, B}, then
AANB, AN-B, —AANB, -ANA-B,

are all the complete sentences over I. In general, there are 2™ complete sentences over
a set of n propositions.

A complete sentence over primitive propositions I is denoted by I. By definition,
true is the complete sentence over the empty set of propositions, (.

A complete sentence over primitive propositions I is also called a state of propo-
sitions I because it fixes the truth of each proposition in I. There is a one-to—one
correspondence between complete sentences over a set of primitive propositions and

truth assignments over the same set of propositions.
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Logical falsification
The falsification of sentence A given sentence B is the sentence A A =B. The
notion of falsification plays an important role in Chapter 7. Its importance stems

from the following characterization of falsification:
(B = a =false and =B |= a = A) precisely when Fa= AA-B.

That is, the falsification of A given B is false if B holds and A if B does not hold.
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I adopt the following terminologies and definitions:

o A is unsatisfiable, written = —A, if M(A) is the empty set.

A is satisfiable if M(A) is not the empty set.

A is valid, written |= A, if M(A) is the set of all truth assignments.

true denotes a valid sentence.

false denotes an unsatisfiable sentence.

A and B are equal if £ A = B.

A and B are logically disjoint if = —(A A B).

e A and B are logically exhaustive if = AV B.

e A entails, or implies, B, written A = B, if M(A) C M(B).
o A is stronger than B precisely when A entails B.

o A is weaker than B precisely when B entails A.

A world is a truth assignment.

A database is a sentence.

Database A is consistent if M(A) is not the empty set.

Database A entails sentence A if M(A) C M(A).



Appendix B
Notational Conventions

| N| The cardinality of set V.
L(N) A propositional language with respect to primitive propositions N.
I A complete sentence over (or state of) primitive propositions I.
J — k Node j is a parent of node k.
1o Parents of node :.
10j Parents of node : excluding parent j.
to Children of node 2.
tok Children of node ¢ excluding child k.
1> Descendants of node .
t > k Descendants of node ¢ that are connected to it via arc ¢ — k.
t > k Descendants of node : that are connected to it via any arc except ¢ — k.
1< Non—descendants of node «.
t <j Non-descendants of node ¢ that are connected to it via arc 7 — «.

i <7 Non-descendants of node 7 that are connected to it via any arc except 7 — 1.
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Appendix C

Proofs of Chapter 2

Below are the formal statements of Axioms 1-5. Each state of belief ® : £L — S

satisfies the following;:

Axiom 1 ®(A) = ®(B) when = A= B.

Axiom 2 ®(AV B) = ®(A) ® ®(B) when |= —(AA B), where & is some function.
Axiom 3 ®(A) = ®(C) only if ®(A) = ®(B) when A= B EC.

Axiom 4 ®(false) = 0, where 0 is some degree of support.

Axiom 5 ®(true) = 1, where 1 is some degree of support and 1 # 0.

Axiom 1 says that syntax does not matter but meaning does. As a result of this,
in the following proofs and in others, I view a state of belief as a mapping from 2%
into §, where W is the set of all truth assignments of the language £. That is, I make
no distinction between a sentence and its meaning, although I occasionally refer to

the meaning as a proposition.
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Proof of Theorem 2.2.1
Using Axiom 3 and taking C to be A, we get

AE B E Aonlyif ®(A) = ®(B).

Therefore,
= A= B only if ®(A) = ®(B).,

Proof of Theorem 2.3.5 Assume Axioms 1 and 2.

(X0): Let a and b be two supports where a @ b is meaningful. There must exist a
“state of belief” ®, and logically disjoint propositions A and B, such that ®(4) = a
and ®(B) = b. It follows that #(A U B) = a ® b and ®(BU A) = b & a. Since
(AUB)=(BUA),we have a®b=0b@ a.

(X1): Let a,b and c be three supports where (a @ b) @ ¢ is meaningful. There
must exist a “state of belief” ®, and logically disjoint propositions A, B and C, such
that ®(A) = a,®(B) = b and ®(C) = c. It follows that #((AUB)UC) = (a® b) D c
and (AU (BUC)) =ad® (bDc). Since (AUB)UC) = (AU (BUC)), we have
(a@b)Dc=a®(bDc).

Proof of Theorem 2.3.6 Assume Axioms 1 and 2.

Assume Axiom 3. Let a,b, and ¢ be three supports such that a®bd c is meaningful
and a ® b @® ¢ = a. There must exist a “state of belief” ®, and logically disjoint
propositions A, B and C, such that ®(A) = a,®(B) = b and ®(C) = c. It follows
that ®(4) = a = (AU B UC(C). Since A C AUB C AU B U C, we must have
®(A U B) = a. Therefore, a ® b = a.

Assume (X2). Suppose that A C B C (' and ®(A) = ®(C). There must exist B’
and C' such that B= AU B’, and ¢ = BUC'. Moreover, ®(C) = ¢(AUB'UC") =
(A)p®(B')®®(C'). By supposition, we have (A)d (B )d®(C') = ®(A), and by
assumption, we have ®(A) ® ®(B') = ¢(A). But ®(A) ® ®(B') = (AU B') = ®(B).
Therefore, ®(A) = ®(B). y
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Proof of Theorem 2.3.7 Assume Axioms 1, 4, and 2.

Let a be any support, and choose a “state of belief” ® and proposition A, such
that ®(A) = a. It follows that a = ®(A4) = #(AU0) = &(A) ® ®(0) = a ® 0.
Therefore, 0 is an identity element for support summation. Now, suppose there was
another identity element 0’. Then 0 = 0 & 0’ = 0', and the identity element O is

unique. g

Proof of Theorem 2.3.8 Assume Axioms 1, 5, 2, and 3.

Let a be any support and choose a “state of belief” ® and a proposition A such
that ®(A) = a. We have that ®(A4) ® @(Z) =&(A UZ), and therefore a @ @(Z) =1.
Now, suppose there was another support 1’ such that for any support a there is a
support b and a @ b = 1'. Then there exists a support ¢ where 1 @ ¢ = 1'. Moreover,
there should exist a support d where 1'@d = 1. That is, (1®c)®dd =1and 1Pc = 1.
Therefore, 1 = (1@ ¢) =1’ and 1 is unique. g
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Proof of Theorem 2.5.2

o Reflexive. From a @ 0 = a, we conclude that a <4 a.

o Antisymmetric. Suppose a =g b and b =g a. Then

de: a®c = b bydefof <4
dd: bdd = a Dby defof =g
(a@c)®dd = a by substituting for b
adc = a by (X2)
b = a.

o Transitive. Suppose a =g b and b =g c. Then

dd: a®dd = b by def of =g
de: bpe = ¢ by def of =g
(add)de = ¢ by substituting for b
a®d(dde) = ¢ by (X1)
a =g c¢ bydefof <g4.

e 0<gaforallacs.

For all a, we have 0 ® a = a. Thus, 0 =4 a.

e a=glforallacs.

For all a, there is b, a® b= 1. Thus, a =g 1.3
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Proof of Theorem 2.5.4

o Reflezive. From s; =g s; and sy =g $3, we conclude that (s1,82) Cg (s1,82).

o Antisymmetric. Suppose (S1,82) Cg (83,84) and (s3,s4) Cg (S1,82). Then
81 2g 83, 84 2g S2, 83 =g S1, and sy =g s4. By antisymmetry of =g, we

have s; = s3 and sy = s4. Therefore, (s3,54) = (s1,83).

o Transitive. Suppose (s1,32) Cg (83,84) and (s3,84) Cg (S5, 86). Then s; =g 3 =g 5
and sg =g S4 =g S$2. By transitivity of =g, we have s; <g s5 and s¢ =g ss.
Therefore, (s1,52) Cg (85, S6)-

e (0,1) Cg (s1,52) for every degree of belief (s, s2).

For all degrees of support s; and s, we have 0 <g s; and s; =g 1. Thus,
<071> E@ <31732>'

o (s1,82) Cg (1,0) for every degree of belief (s, s2).

For all degrees of support s; and s;, we have s; =g 1 and 0 <4 s;. Thus,
<31732> E@ <170>'
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Proof of Theorem 2.5.7
1. Cg is a partial ordering:

o Reflexzive: By reflexivity of <3, we have A <3 A and A <3 —A. Hence
ALs A.

o Transitive: Suppose that A T Band B Cg C. Thatis, A < B, - B <g A,
B <3 C, -C < —B. By transitivity of —<s, we have A <3 C and
- < —A. Hence A C5C.

o Antisymmetric: Suppose that ACs B and B Cg A. That is, A <4 B,
-B <3 A, B=<s A, -C <5 —A. By antisymmetry of —<g, we have
P(A) =g ®(C) and (~C) =g ®(—~A). Hence A =5 C.

2. AE Bonly if ACsB: Suppose A = B. Then C = —A A B is such that
E (AAC)and = (AV C) = B. It follows that ®(A4) @ ®(C) = ®(B) and
A <3 B. Since =B | —A, then C = A A B is such that = -(—-B A C) and
E (-BV () = -A. It follows that ®(—~B) @ ®(C) = ®(—A) and -B < -A.

3. false Cg A Cgtrue: Follows from false = A |= true.

4. A is minimal under Cg if and only if A is rejected: Suppose that A is minimal
under Cg. Then A Cg false and A <3 false. That is, $(A4) <4 ®(false) = 0.
Hence ®(A) = 0 and A is rejected. Now suppose that #(4) = 0. Then
$(-A) =1, P(A) =g P®(false), (—~A) =g ®(true), and A Cp false. Hence A

is minimal under Cg.

5. A is maximal under Cg if and only if A is accepted: Suppose that A is max-
imal under Cg. Then true Cg A, true <3 A, and - A <3 false. That is,
$(-A) <g ®(false) = 0, &(—~A) = 0, A is rejected, and A is accepted. Now
suppose that A is accepted by ®. Then ®(—A) = 0 and ®(A) = 1. That is,
$(—A) =g ®(false), ®(true) <4 ®(A), ®(true) Ty ®(A). Hence A is maxi-
mally supported. g



195

Proof of Theorem 2.6.3

Theorem 2.6.3 is a special case of Theorem 2.6.13, which is proved later. States
of belief with respect to ({0, 00}, min) . are a special case of Spohnian states of belief,
and are isomorphic to propositional states of belief. That is, a state of belief ® with
respect to ({0,000}, min), accepts A precisely when ®(—A) = oo, which is precisely
when ®(—A) # 0. y

Proof of Theorem 2.6.4 Numeric addition is commutative and associative. If
a+b+c=athen b+ c =0 and b =0, since a,b,c € [0,1]. Therefore, a + b = a.
a =gb iff there is ¢ € [0,1] such that a + ¢ = b, that is, iff a < b. For all a € [0,1],
a+0=aand a+ (1 —a)=1—0and 1 are the only members in [0,1] that satisfy
this property. g

Proof of Theorem 2.6.5 The function (A (ab)a+ b— 1) is clearly commutative
and associative. If (a+b—1)+c—1 = a then b+¢ =2 and b = 1, since a,b,c € [0, 1].
Therefore, a + b — 1 = a. a <gb iff there is ¢ € [0,1] such that a + ¢ — 1 = b, that is,
iffa>b. Forallac[0,1],a+1—1=aanda+(1—a)—1=0—1and 0 are the
only members in [0,1] that satisfy this property. y

Proof of Theorem 2.6.6 The function max is commutative and associative. If
max(max(a,b),c) = a, then a > b and a > ¢. And if max(a,b) # a, then b > a.
Thus, we cannot have max(max(a,b),c) = a and max(a,bd) # a. a <gb iff there is
¢ such that max(a,c) = b, that is, iff a < b. For all a € [0,1], max(a,0) = a and
max(a,1) = 1— 1 and 0 are the only members in [0,1] that satisfy these properties. g

Proof of Theorem 2.6.8 The function min is commutative and associative. If
min(min(a,b),c) = a, then a < b and a < c¢. And if min(a,b) # a, then b < a. Thus,
we cannot have min(min(a,b),c) = a and min(a,b) # a. a <gb iff there is ¢ such that
min(a,c) = b, that is, iff @ > b. For all a € [0, 1], min(a,1) = a and min(a,0) = 0—
0 and 1 are the only members in [0,1] that satisfy these properties. g
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Proof of Theorem 2.6.13

Let M, (A) = M(A)NW, be the preferred meaning of A. Note that k is the least
integer such that M(A) N Wj is not empty. Now, consider the following Spohnian
state of belief:

(I)A(w):{i—k, if w e M(A) N W;;

00, otherwise.

By definition, ®2 (w) = 0 if and only if w is in M,(A). I will now show that for
all A, A preferentially entails A precisely when ®2 accepts A, or accepts A by default

(22(4) # 0).

e Suppose that A preferentially entails A. It follows that M ,(A) C A, and there
is no world w in A such that ®*(w) = 0. Therefore, 4(4) = min, 4 $*(w)
cannot be 0. Hence ®2(A) > 0 and ® either accepts A, or accepts it by default.

e Suppose that ®2(A) = min, 5z ®*(w) # 0. Then for all w in A, ®(w) # 0.
Also, if ®(w) = 0, then w € A. Hence M, (A) C A and A preferentially entails
Ay



Appendix D

Proofs of Chapter 3

Below are the formal statements of Axioms 6-12.

Axiom 6 ®,,5(A) = ®(A) @ ®(AV B) for some function @.
Axiom 7 ®,4(B) =0 when ®(A) # 0 and ®(B) = 0.
Axiom 8 ¢, = & when ®(4) = 1.

Axiom 9 ®(A) # ( Ag) ®'(A) only if ®4v5(A) # ( Ag) ®4yp(A) when
®(AV B)=9%'(AV B).

Axiom 10 ®(A) <5®4v5(A) when ®(AV B) # 0.
Axiom 11 @B/\(;(A) = @C(A) only if @A/\(;(B) = @C(B) when @(A ABA O) 7£ 0.

Axiom 12 For all &¢ and ¢ # 0, there is ® such that ®(C) = c.

197
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Three lemmas for Theorem 3.1.4

Lemma D.0.1 If e® f = 0, then e = 0.

Proof Assumee® f=0. Thened 0P f =0,e®0=0,and e = 0.,

Lemma D.0.2 If W is not rejected by @, then ®w(w) =0 for all w ¢ W.

Proof By Definition 3.1.2, we have ®w (W) = 0. Therefore, @, ®(w) = 0. And
by Lemma D.0.1, we have that ®(w) = 0 for all w € W.,

Lemma D.0.3 If W is not rejected by @, then &y (W) = 1.

Proof From ®w (W) = 0 and &w (W) @ &w (W) = 1, we have (W) D0 = 1.
Therefore, ®&w (W) = 1.,
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Proof of Theorem 3.1.4

=—> Assume Axiom 6. We have
®4(B) =®4(BNA)® E4(BNA).
Given Axiom 6, and since AN B C A, we have
P4(BNA)=®BNA) @24,
for some function @ : § x § —+ §. Moreover, by Lemma D.0.2, we have

@A(B N _|A) = @ @A(w)

weEBN—-A

= EB 0
weEBN—-A
= 0.

Therefore,

$4(B) = ®4(BNA)®O
= ®,4(BNA)
= ®BNA)QIA).

<= Assume Equation 1. Then

®,405(4) = ®(AN(AUB)) 0 ®(AUB)
= ®(A) 0 ®(AUB).y
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Proof of Theorem 3.1.5 Assume Axiom 6.

—> Assume Axiom 7. For any a # 0, choose ® as given below, where a @ o’ = 1.

w; (I){wl w2}
w |0 | 0Qa
wy |a |a@a
ws || a |0

Note that ®(w;) = 0 and ®({w;,ws}) # 0. Since proposition {ws,ws} is accepted by

®, {w,, w3} must also be accepted by @y, w,1: Pl w,}(w1) = 0. Therefore 0@a = 0.

<= Assume (Y1). Suppose A is accepted and B is not rejected by ®. Then ®(A4) = 0
and ®(B) # 0. Also, ®(B N A) = 0 by Lemma D.0.1. We have

Sp(A) =

That is, A is accepted by®p. y

&(Bn4A) o 3(B)
00 &(B)

0.
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Proof of Theorem 3.1.6 Assume Axioms 6-7.

—> Assume Axiom 8. For any a, choose ® as given below, where a ® a' = 1.

w; | @ ‘ D fwy )
w |la a1
wy || a'|d @1

Since {wy,ws} is accepted by ®, we have @y, w,1(w1) = ®(w;). Therefore a @1 = a.

<= Assume (Y2). Suppose B is accepted by ®. Then ®(B) = 0 and ®(B) = 1.

Moreover,

®(4) = ¥BNA
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Proof of Theorem 3.1.7 Assume Axioms 6-8.
—> Assume Axiom 9. Let a,b,c be three supports such that a,b <g ¢ # 0 and
a# ( Ag) b. We want to show that a @ ¢ # ( Ag) b c.

Choose @, and ®' as given below, where a®a' =bP b =cand cd ' = 1.

wi || D | Pruy s} w; || 9 f{wl .
w; ||a |[aQc wy |b | bOc
wy || ad | a'"@c wy || B |V Oc
ws|[c |0 ws || |0

wye |0 |0 wye |0 |0

Note that ®({wy,ws}) = ®'({wi,w2}) = ¢, and ®(w1) = a # ( Ag) b = @' (wy).
By Axiom 9, we have @y, u,}(w1) # ( Ag) Pluywpi(wi) and a @ ¢ # (Ag) b0 e
That is, if @ # ( Ag) b then a @ ¢ # ( A4) b @ ¢ which is equivalent to a @ ¢ =
(=g)b@conlyifa=/(=g)b.

<= Assume (Y3) and (Y8). Suppose there exists ® and &' such that ®(AU B) =
®'(AU B) and ®(A) # (ZAy) ®(A). Then ®4up(A4) = ®(4) @ (AU B) and
@', 5(A) = ®'(A) @ (AU B). Therefore, ®p(A) # ( Ag) ®5(A). 1
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Proof of Theorem 3.1.8 Assume Axioms 6-9.

—> Assume Axiom 10. Let a and b be such that a <g b # 0. Choose ® as given
below, where a @ o' = b and b@ b’ = 1. We have @, .1 (w1) =g®(w;1). Therefore
aQbrga.

w; @ @{wl a2}

w |la |a@b
wy || a | d @b

w3 b, 0

<= Assume (Y5). Suppose A C B. Then ®5(A4) = ®(4A) @ ®(B) =¢®(A4). 1
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Proof of Theorem 3.1.9 Assume Axioms 6-10.

=—> Assume Axiom 11. Suppose that a @ b = ¢ © d, and let ® be a state of belief
such that ®(ANBNC)=a, ®(ANC)=c, ®(BNC)=band ®(C) = d.! It follows
that

®prc(A) = ®(ANBNC)®(BNC)
= aQb
= cod
= ®(ANC)o e(C)
= B(A).

Given Axiom 11, we should also have ® 4~¢(B) = ®¢(B). This leads to
P(ANBNC)o®(ANC)=®(BNC) ®(C)
a@Qc=bod.
Therefore a @ b=c@donlyifa@c=5b0d.
<= Assume (Y4). If ®5c(A) = ®¢(A), then
P(ANBNC)o®BNC)=%(ANC)0 ®(C)
®(ANBNC)Q®(ANC)=®(BNC) ().

Therefore, ® snc(B) = ®c(B). 1

!The proof assumes the existence of the state ®, and this is why I say “usefully equivalent.”
Note, however, that if @ is either idempotent or has an inverse, then ® can be shown to exist.
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Proof of Theorem 3.1.10 Assume Axioms 6 and 7.
—> (Y0): Assume a <g b and b # 0. There must exist ¢ and d such that a®c =5
and b ® d = 1. Construct a state of belief ® as given below.

w; || P <I>{w1 jwa}
w |la |a@b
ws | c |c@b
ws || d |0

Since ®({w1,ws}) # 0, By, w,} must exist. Given Axiom 6, we have

Q{wl swa } (wl)

Therefore, a @ b must be defined. y

®(w1) @ ®({w1,ws})
a@b.

—> (Y6a): Assume a®b <g ¢ # 0. There must exist d and e such that a®bdd = ¢

and ¢ ® e = 1. Choose ® as given below.

Wi || D | Pru; wsws)
w ||a |a@c

we | b |bQc

ws | d |dQc

wy || € |0

Since ®({w;,ws,w3}) exists, then (a @ ¢) ® (b © ¢) must be defined.
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=—> (Y7): Choose ® and &' as given below, where d and e are such that a®bdd = ¢
and cPe=1.

Wi || R | Pruy waws} w; || ® f{wl waws}
w ||la |aQc w; | a®b|(a®b)Oc
wy || b |[bODc wy || O 0

ws ||d |dOc ws || d doc

wy || | 0 wy || e 0

Observe that:
®({wi,wa}) = ®'({wi,wr}) =a b

®({w1,ws,ws}) = ®'({wy, w2, w3}) =a®bdd=c#0.
Therefore, by Axiom 6, we have
‘I’{wl,wz,ws}({wl,wz}) = Qg:wl,w%wg}({wl?wZ})

(a@c)®(boc)=[(adb)@c]®dO

(a@c)®(b0c)=(adb)@c.y
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Proof of Theorem 3.1.12

(Y10) a@a =1.

Given (Y4) and a@1 =a @1, we havea@a =10 1. And given (Y2), we have
a@a=1.4

(Y11) a @ (a@b) =b.

Assume a <g b # 0. We have that a <¢ a © b by (Y4).

a®b = (a@b ol by (Y2)
aQ(a@b) = bO1 by (Y4)
aQ(a@b) = b by (Y2).

(Y12) a@b=conlyifa®c=b.

Assume a =g b # 0, and ¢ # 0. We have that a <¢ a @ b by (Y4). Assuming
that a @ b = ¢, we also have that a <4 c.

a@b = c@1 assumption
a®c = b@1 by(Y4)
a@c = b by (Y2).

(Y13) a g bonlyif a@ c <g b@ c. Assume a <g b <g c# 0 and b # 0.

a =g b assumption
da':a®d = b by definition of =g
(a@ad)c = b@c by definition of Qc

(a@c)®(d@c) = boc by (YT)

a@Qc =g b@c Dby definition of <.

(Y14) (a@c)@(b@c)=a@b.
Assume a =g b <g ¢ # 0, and b # 0. We also have (a@c) 2¢ (b@c) by (Y13).

aQ(a®c) = b (b0 by (Y11)
aQb = (a@c)0(boc) by (Y4).
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(Y15) (a@b) @ (a@c) =c@b.

Assume a =g ¢ < b# 0, and ¢ # 0.

(a@b)@(cob) = a@c by (Y14)
(a@b)@(adc) = c@b by (Y12).,

Proof of Theorem 3.1.13

[@4]5(C) = @4(BNC) 2 24(B)
— [®(ANBNC)@®(A) @ [®(ANB)o &(A)
= ®ANBNC)o ®(ANB) by (Y14)
= ®4n8(C). 0



209

Proof of Theorem 3.2.3

=—> Assume Axiom 12.

(Y9) Suppose that we are given b # 0 and c. We want to find a such that a <g b
and a @ b = c. Let &5 be a state of belief such that ®5(C) = ¢. By Axiom 12,
there must exist ® such that ®(B) = b. Moreover,

d5(C) = ®(BAC)Q ®(B)
c = ®BAC)OD

Therefore, if we take a to be ®(B A C), then a <g band a@ b =c.

(Y6b) Suppose that a,b <g ¢ # 0, and a @ c P b c is defined. We want to show
that a @ b <g c. Let A, B,®¢ be such that = (A A B), ®¢(4) = a @ c and
®c(B) = boc. By Axiom 12, there must exist ® such that ®(C') = ¢. Moreover,

(ANC)0®(C) = a0c

®BANC)Q®(C) = bOc
®(ANC) = a
®BAC) = b

Since ®(ANC) @ ®(B A C) =g ®(C), we also have a ® b <4 c.
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<= Assume (Y9) and (Y6D).
Given ®¢ and ¢ # 0, we need to construct a state of belief ¥ such that ¥(C) = ¢
and Yo = ®,.
By (Y9), there is an a for each b such that a <g c and a @ ¢ = b. Let us denote
this a by b ® c. Note that
Po(w) ®c =g <,

and

D (2c(w) ®c)@c= P ®o(w),

wel wel

which is defined. Therefore, by (Y6b),

(@ P (w) ®c) ~g C.

wel

Now, construct ¥ such that ¥(w) = ®¢(w) ® ¢ when w € C. And can complete the
definition of ¥ such that ¥(~C) @ ¥(C) = 1. We have,

V(C)oc = (ED <I>C(w)®c) Qc

wel

= @(@C(w) ®c)oc

wel

= G}(j@c(w)
.

Hence, ¥(C) =c.
When w ¢ C, we have U (w) = ®¢(w) = 0. But when w € C, we have
Uo(w) = PY(w)o ¥(C)
— (Bo(w) @) 0
== @C(’w)

Therefore, ¥ = $¢. y
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Proof of Theorem 3.3.2

The proof of this theorem is a special case of the proof of Theorem 3.3.6. States
of belief with respect to ({0, 00}, min) . are a special case of Spohnian states of belief,
and are isomorphic to propositional states of belief. That is, a state of belief ® with
respect to ({0,000}, min), accepts A precisely when ®(—A) = oo, which is precisely
when ®(—A) # 0. y

Proof of Theorem 3.3.6
We want to show that if ®2 corresponds to A, then <<I>A>A corresponds to AU{A}.

That is, we want to show that if

i — g, ifwe M(A)NW;

00, otherwise,

o2 (w) = {
then
(84) , (w) =

where M(A)NW; and M(AU{A})NW, are the preferred meanings of A and AU{A},

respectively.

{ i—k, ifwe M(AU{A})NW;;

00, otherwise,

We need the following result to carry out the proof:

@A(A) = min @A(w)

weEA

= min
wEA

i—j, ifwe M(A)NW;
00, otherwise,

= min
wEA

i—7, fwe M(AYNANW;
00, otherwise,

= min
wEA

= k—j

{i—j, if we M(AU{A}) N W;;

00, otherwise,

Recall that k is the least integer such that M(A U {A}) N W} is not empty. This
follows from M(A U {A}) N Wy, being the preferred meaning of M(A U {A}).
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Now suppose that

00, otherwise,

@A(w):{ i—j, ifwe M(A)NW;

and let us expand <<I>A>A (w). We have

(2%), () = @*({w}n 4) - 84(4)
{ 5 (w) — BA(A), fw € A

otherwise.

—7), ifwe A4;

otherwise.
(t—7) —7j), fwe AN M(A)NW;

otherwise.

k, if we M(AU{A})NW;
1

00, otherwise.

Proof of Theorem 3.4.4

Given (Y9), for all a and b # 0, there is ¢ such that ¢ <gb and ¢ @ b = a. This
makes a ® b defined and equal c. g

Proof of Theorem 3.4.5

Given (Y6b), we have: a <gc, b Zgc, and (a @ ¢) ® (b @ ¢) is defined only if
a® b =g c. Therefore, (a ® c) 2gc, (b®c) Zgc, and ((a®c)@c) P ((b®c) @ c) is
defined only if (a ® ¢) ® (b®¢c) =g c. That is, (e ®¢c) @¢) D ((b® ¢) @ c) is defined
only if (a ® ¢) ® (b ® c) 2¢ c. Further simplification gives: a @ b is defined only if
(a®c)®(b®c) =g c.n
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Proof of Theorem 3.4.6

(Z1) (a @ b) ® b = a. Suppose that a @ b is defined and equals c¢. By definition of ®,
we have that ¢ ® b = qa, that is, (e @ b) ® b = a.

(Z2) (a ® b) @ b = a. Suppose that a ® b is defined and equals c¢. By definition of ®,
we have that ¢ @ b = qa, that is, (e ® b) © b = a.

(Z3) 0®a = 0.
0 =g a bydefof =g
0Qa = 0 by (Y1)
0Ra = 0 by definition of ®.
(Z4) a®1 = a.
a =g 1 bydefof =<4
a@l = a by (Y2)
a®1 = a by definition of ®.

(Z5) a ® b =g b. Follows easily from the definition of ®.

(Z6) (a®b)®c=(a®c)® (b®c).

Assume (a®c¢) ® (b® ¢) <gc and ¢ # 0.

(a®c)®(b®c) = X
(a®c)®(b®c)]@c = X @c by definition of @
a®b = X©@c by (YT7)and (Z2)
(adb)®c = X by definition of ®.

(Z7) a Zg bonly if a® ¢ 2 bQ c.

a =g b assumption
(a®c)0c =g (b®c)Vc defsof ® and @
a®c =g b®c by (Y8).
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(Z8a) a®b=b®a.

bR a

(Z8b) Follows from the proof of (Z8a).

(Y16) (a@b)@c=(a@c)@b.

a®b
cQb
c@a

APPENDIX D. PROOFS OF CHAPTER 3

assumption
by def of ®
by (Y12)
by (Z1).

Assume a =g (b®c) # 0. By (Z5) and (Y13), we havea =g b, a =g ¢, aQc =g b,

and a © b =g c. Moreover,

a®(a@b) =
aQ(b®c) =

a®(a®c) =
a®(c®b) =

(a@b)oc =

(Z92) a®@ (b®c) = (a®b) ] c.

by (Y11) and (Z2)
by (Y4)

by (Y11) and (Z2)
by (Y4)

by (Z8a).

We know that b # 0 and ¢ # 0 because one of a ® (b® ¢) and (a ® b) @ ¢ is
defined. If a = 0, the proof is trivial. Assume a # 0. We know that (b®c) <g ¢
by (Z5). We also know a ® (b® ¢) =g a ® ¢ by (Z7) and (Z8a).

X

X

X0Qa
(X0a)oc
(X0c)0a
XQc

a® (b®c)
bR®c)®a
bR c

b

b

bR a
(bRa)®c
(a®b)®c

assumption
by (Z8a)
72)
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(Z9b) Follows from the proof of (Z9a).

(Z10) a®b=aifa=0o0r b=1.

a®b = a assumption

a # 0 assumption
bRa = a by (Z8a)

b = a®a by (Z2)

b = 1 by (Y2)

a = 0 assumption
a®b = 0 by (Z3)

b = 1 assumption

a®b = a®l=a by (Z4).

(Z11) (a®b)@c=a® (b0 c).
Assume a ® b and b @ ¢ are defined.

a® ((b@c)®c) = a®b by (Z1)
(a®(b0c))®c = a®b by (Z9a)
a®(boc) = (a®b)@c by (Z2).
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(Z12) (a®c)@ (b®c)=aQb.

Assume a ® ¢ 2¢ b Q@ ¢ # 0. It follows that ¢ 2 0 and b # 0. If a ® ¢ = 0,
thena=0,(a®c) @ (b®c) =0, and a @ b = 0. Suppose that a ® ¢ # 0. It
follows, by (Z5), (Z7), (Z8a), and (Y13), that b® ¢ <gc, a ® (b® ¢) < a ® ¢,

and a <g (a®c) 0 (b® ¢).

(080 (bae)
(a®c)@X
(c®a)@ X
c® (a0 X)
(a0 X)®c

a@® X
aQb

Proof of Theorem 3.4.7

bR c
bR c
bR c
bR c

assumption
by (Y12)
by (Z8a)
by (Z11)
by (Z8a)
by def of ®
by (Y12). g

Suppose S is finite and has more than two elements. Then for some b such that
b+ 0 and b # 1, the set {a : a <gb} is also finite and its cardinality is less than
the cardinality of S because 1 ¢ {a : a <gb}. Since @b is injective, which follows
from (Y3), the cardinality of {a @ b : a <gb} equals the cardinality of {a : a <gb}.
Therefore, the cardinality of {a @ b : a <gb} is less than the cardinality of S and
S\{a@b:a =gb} is not empty. It follows that there is some ¢ for which there is no
a such that a <gb and a @ b = ¢, that is, ¢ ® b is not defined. y
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Proof of Theorem 3.5.1
Suppose that A D B is accepted by ®. Then AN B is rejected, ®(A N B) = 0,
P(A)=S(ANB)d (AN F) = ®(A N B). Moreover, we have

B5(4) = &(ANB)o&(B)
=  (4) o &(B)
o ®(A) by (Y5).

Note also that ®(A4) @ ®(B) = ®(A) iff ®(A) = ®(4) @ ®(B) iff #(4) = 0 or
®(B) = 1. Therefore, ®5(A) ~¢P(A) unless $(A) =0 or &(B) = 1.4

Proof of Theorem 3.5.2
If A D B is accepted, then B D A is also accepted. And since A is not rejected,

then, by Theorem 3.5.1, we have ®4(B) >~¢®(B) unless ®(B) =0 or ®(A4) = 1.y

Proof of Theorem 3.5.3

If AN B is rejected, then AU B is accepted, and so is B O A. And since A is
not rejected, then, by Theorem 3.5.1, we have ®4(B) ~®(B) unless ®(B) = 0 or
®(A) =1.y
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Lemma for Theorem 3.5.4
Lemma D.0.4 If AN BN C is not rejected by &, then
®c(A) ® Panc(B) = @c(B) ® ®nc(4).

Proof Assume that AN BN (C is not rejected by . We have that

B(ANBNC) = [8c(ANB)®3(C)
= [®Bnc(4) ® 2c(B)] ® ¢(C)
= [®anc(B) ® ®c(A4)] ® 2(C).

Since ®®(C) is a bijection, we have ®5nc(A)RPc(B) = Panc(B)®®c(A). Moreover,
by (Z8a), we have

®c(B) ® ®rc(A) = ®c(A) @ Panc(B). »
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Suppose that A D C; is accepted by ®, for i = 1,...,n. Then ®(ANC;) = 0, and

we have
PA(C1N...NC) = S(ANCIN...NC;) @ B(A)
= ®(ANCU...U(ANC;)) @ ®(A)
= [3(ANTH®...0 (ANT)| 0 8(4)
= 0.
Therefore,

(I)A(Clﬂ...ﬂci) =1,
B(ANCIN...NCi) = B(A),
D ancin..n0,_ (Cn) = 1.

Moreover, we have

Poin..nc._1(A) ® Pancin..nc,_, (Crn) = ®cin..nc,_,(Cr)® by Lemma D.0.4
®0in..n0.(A)
®c,nnc,, (A)®1 = ®0in..000_1 (Crn)®
®0in..n0.(A)
®oin.n0._i (A) = ®cin.ncn, (Cn)® by (Z4)
®0in..n0.(A)
®oin.ncni(A) 2o @cin.nc.(4) by (Z5)

Now, assume that ®¢,n..nc,._;(4) = ®c;n..nc.(A). Then

(I)Amclm...mcn_l(cn) = (I)Cm...mcn_l(cn) by (Y4)
1 - chﬂ...ﬂcn_l(c‘n')

Therefore, if ®¢,n..nc,_,(Cn) # 1, then ®¢,n.nc,_, (A) # Pcin.nc.(4). 0
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Appendix E

Proofs of Chapter 4

Proof of Theorem 4.3.5

The proof is by induction on the number of nodes in a causal network.
Base case. The network has only one node. Trivial.

Inductive step. Suppose that the causal network (IV,G,CS) is satisfied by exactly
one state of belief ®. Let (N U {k},G',CS’) be a causal network that results from
augmenting (N,G,CS) by a childless node k such that CS’ is consistent. We want to
show that the causal network (N U {k},G’,CS’) is satisfied by exactly one state of
belief.

I will show this in three steps:
I. Constructing a state of belief ®'.
II. Showing that ®’ satisfies (N U {k},G',CS").

ITI. Showing that @' is the only state of belief that satisfies (N U {k},G’,CS’).

221
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I. Constructing a state of belief &' over propositions N U {k}.
Construct ®' over propositions N U {k} as follows:

e P (NAE)=

0, it (V) = 0;
CSio(k) @ B(IN), otherwise.

e ¥'(AV B)=%'(A)® ¢'(B) when = ~(A A B).
o &'(false) = 0.
To show that ®' is a state of belief, it suffices to show that ®'(true) = 1:

®'(true) = P ¥ (NAk)
NAk
= D CSio(k) ® B(N), where N |= ko
NAk

= DDCSk(k)® B(N)

N

3(N) ® D CSie(k)

=
E

I
S =@ = =P |
iy
=
®

Therefore, ®' is a state of belief over N U {k}. Moreover, it is easy to show that for
any sentence A such that A [~ k, we have that ®(A4) = &'(A).
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I1. Showing that &' satisfies the causal network (N U {k},G’,CS’).
We need to show that

IN3 (7,130,390 \ 10) and @ (i) = CSy (1) for every i in N U {k}.
Consider the following cases:
Case ¢ € N. Then Condition 12 follows from the induction hypothesis.
Case ¢ = k. First, we have
B(0) = ¥(kAke) O ¥ (ke)

- | ® @'(@Am) @ ¥ (ko)

NEko

= | D CSL.(k) ®<I>(M)) @ ®(ko)

NEko

= |CSL(k)® ( D @(M))) 0 (ko)

NEko
= (CSis(k) ® B(ko)) @ B (ko)
= CSpo(k).

Moreover, the non—descendants of ¢ are N in this case. Hence,
¢ (i) = ®n(k)
= W(EAN) 0T ()

= (€81 (k) ® B(N)) @ B(IV)
= CSp. (k).
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ITI. Showing that &' is the only state of belief that satisfies the causal
network (N U {k},G',CS").
Suppose that W is another state of belief over N U {k} such that

IN g (7,10,1a\ 20) and U,;,(7) = CS;6(2) for every ¢ in N U {k}.

It suffices to show that ®' and ¥ are equal.
e From the induction hypothesis, we know that ® is the only state of belief over

N that satisfies:
IN g(3,10,1<\ 10) and ®,,(7) = CS;(2) for every ¢ in N.

Therefore, ' and ¥ cannot disagree on any complete sentence N.
e To show that ®' and ® are equal, we need to show that they cannot disagree on
any complete sentence NV A k.

The non—descendants of k are N. Hence,

Moreover,

Therefore, ' and ¥ are equal. g
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Proof of Theorem 4.4.1
Assume INg(I,K,J) and let I U K be such that ®(I U K) # 0.
Case I. #(JU K) = 0:

PJUK)o®(K) = 00 P(K) by case
¢k(J) = O by (Y1) and Definition 3.1.11
PIUJUK) = 0 by case and Lemma D.0.1
PIUJUK)o®IUK) = 00®({UK) by above
®uk(J) = 0 by (Y1) and Definition 3.1.11
Suk(J) = Cx(J) by above

Case II. ®(J U K) +# 0:

®uk (L
PLIUJUK) ®(JU
PLUJUK)Q ®(1U

Sk (J

I) assumption

)
) = ®IUK)Q ®(K) by Definition 3.1.11
)
)

= $(JUK)Q®(K) by (Y4)
= ®x(J) by Definition 3.1.11

Therefore, INg(J, K, I). y
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Proof of Theorem 4.4.2

APPENDIX E. PROOFS OF CHAPTER 4

Assume INg(I,0,J U L) and let J be such that ®(J) # 0. Then for some L, we

have &(J A L) # 0.

KA
~ S Ny
[SH
I~

~
c > > > >
SRS S sy

iy
~

e’ e e e e e e e

o
=
=

KA
I
—

I~

&
D
e~

A

~ N
I~~~
R g

The applicability of (Z6) requires that

which follows from

assumption

by Corollary 3.4.3

by summing equals
by (Z8a)

by (26)

by def of & and (Z8a)
by def of ®

by Definition 3.1.11

D e(LAL)® (L) 26 2(I),

De(LAL) @ 2(L) = 2(LUT) 26 2(I).

Therefore, IN(1,0,J).

The same proof can be carried out with respect to ®k, hence, by Corollary 4.2.4,

IN(I,K,J).a
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Proof of Theorem 4.4.3
Assume INg(JUL,K,I)andlet I U K U L be such that ®(/ U K U L) # 0. By the

above assumption, Symmetry, and Decomposition, it follows that INg(I, K,J U L),
INg(I,K,L), INs(L,K,I), and

@k (L) = @k (L)

Moreover:

$(JULUIUK)@®(IUK) = ®JULUK)®®(K) by Definition 3.1.11
[@rorox(J) @ R(LUIUK)| = [®px(J) ® ®(LUK)| by Corollary 3.4.3
0P(LUK)  0®(K)
Crunuk(J)® = @ruk(J)® by (Z11)
@S(LUIUK) 0 3(IUK)  [®(LUK)® ®(K)|
@roruk(J) ® rux(L) = @ruk(J) ® k(L) by Definition 3.1.11
®rork(d) = Pruk(J) by above

Therefore, INg(J,K U L,I).y
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Proof of Theorem 4.4.4
Assume INg(I,K,J) and INg(I,K UJ,L). Let K UJ UL be such that
®(KUJUL)#O.

Crui(l) = @x(I) assumption
®rusur(l) = ®xus(l) assumption
Prosur(l) = @x(I) by above

Therefore, INg(I,K,JUL).y
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Proof of Theorem 4.4.5
Assume INg(I,L,J) and INg(I,J,L) and consider J A L where &(J A L) # O:

®nn(l) = @L(I) assumption
Sia(l) = @4(I) assumption
¢L(I) = @;5(1) by above
®(LANL)O ®(L) = @,(I) by Definition 3.1.11
S(INL)© ®y(1) $(L) by (Y12)
®£ (I)(l A L) © (I)i(l) @L(I)(L) by summing equals
[EB_‘I’(l A L)] Q®;(I) = 1 by (Y7)
®(I) = ®;(I) by (Y3)and (Y10)
®(I) = @;.(I) by above.

Property (Y12) requires that ®;(I) # 0, which holds since ® attributes 0 to false
only.

The same proof can be carried out with respect to ®k, hence, by Corollary 4.2.4,
INg(I,K,JUL).y
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Proof of Theorem 4.4.6
Verma [Verma, 1986] has shown that if

1. G is constructed such that INg(¢,t0,7< \ 70) for each node ¢, and if

2. IN 3 satisfies the graphoid axioms,

then INg(I,K,J) only if INg(I,K,J). y



Appendix F

Proofs of Chapter 5

Proof of Theorem 5.2.1 Any path between a node in I and another in J must
have — ¢ — as part of it. That is, on any such path, ¢ is a node with linear arrows

and ¢ belongs to K. Therefore, K d-separates [ from J. y

Proof of Theorem 5.2.2 Any path between a node in I and another in J must
have < ¢ — as part of it. That is, on any such path, ¢ is a node with diverging

arrows. Therefore, ¢ d—separates I from J.

Proof of Theorem 5.2.3 Any path between a node in J and node ¢ must have
either — k — ¢ or < k — ¢ as part of it, where k belongs to K. That is, on any
such path, k is a node with either linear or diverging arrows and k belongs to K.

Therefore, K d—separates J from 1. g

Proof of Theorem 5.2.4 Any path between a node in I and another in J must
have — ¢ < as part of it. That is, on any such path, ¢ is a node with converging
arrows, 7 does not belong to (), and neither does any of its descendents. Therefore, )

d—-separates [ from J. y

231
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Proof of Theorem 5.3.1

P(ioNd) = B(EAS NS
= Pins (0i) ® R(i N )
— ®;(5.) ® ®(i A §..), by Theorem 5.2.1
= A7) ® mi(2). n

Proof of Theorem 5.3.2

®;(d.) = (A )

k€io

= ®<I> 1) by Theorem 5.2.2

k€io

Proof of Theorem 5.3.3

P(iNG) = EBMA&m_o)
= @ @514/\10 ® @(CSN N ’L<>)

= @ ®,.(1) @ (4. A t0), by Theorem 5.2.3

= @@w )R ®( N\ 6 N J)

kg

= @‘I)w ® ) ®(6:,; Aj), by Theorem 5.2.4
kg

— @6810 ®®ﬂ-]l

tol=j
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Proof of Theorem 5.3.4
In this proof, §,; is the observation about nodes connected to node 7 via incoming
arcs, other than arc j — s.

If ¢ is not observed, then

®;(6;.:)

= DD ;6. NiNioj)
iodoj

= @@ ®;(d:. A big AL A1o]), because §;,; = 4, A bz
iodoj

= @ @ (I)j/\é. —,/\g/\ﬂ(é‘») ® (I)l'/\ém—,/\ﬂ( ) (5141 A 1,<>j)
L]

= @@@ ») ® ®;ns, —/\wa( ) ® (5“,] Ai07), by Theorem 5.2.1
L]

= @@@ ») ® (I)J/\wa( ) ® (5“,] A toj), by Theorem 5.2.3
L]

= @@@ ») ® (I)J/\wa( ) ® ®(d,.; Aioj), by Theorem 5.2.4
L]

— @@Q i> ®¢J/\z<>‘7( ® @ /\ 514! A )
] zog':l

= @@@ ») ® (I)J/\wa ® ® ®(5,, A1), by Theorem 5.2.4
] zog':l

— @@)\ ®CSJ/\1<>J ® ® 7le
iodog tojf=L

If ¢ is an observed node, then §,,; is either ¢ or —i. Therefore, ®;(4,.;) = 1 and
®_;(4;..) = 0 when §,,; = ¢. Moreover, ®;(;,,) = 0and ®_;(—4,.;) = 1 when §,,, =

This follows from the way auxiliary nodes are created. Therefore,

. <170>7 if & |: 3
Nsld) =
(2) {<o,1>, it 6= i "
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Proof of Theorem 5.3.5

The observations ¢ can be decomposed into two observations:
® J,.., the observation about nodes connected to 7 via arc 7 — k.
® .., the observation about nodes connected to k via arc k <« 1.

Moreover, the updated support BL; is closely related to parental support:
BL, = (®(tA6),®(—1Ad))
== <@(’L /\ 51:l>k /\ 5k<1i)7 Q(_'/L /\ 5i|>k /\ 5k<1i)>
ik = (P(EA Ga), B(2 A b))
Therefore, ; ; equals BL; when §,,, = true. Hence,

Tie =m ® & Aui-

l€rok
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Proof Theorem 5.4.2

I will show that if 7,, € S, or A, 4 € S,, then ois connected to ¢ via an undirected
path of length n. This implies that the number of non-empty states in a backward
propagation cannot be more than the maximal length of a path between node ¢ and

some other node. The proof is by induction on n.

Case n = 1:
Sl = {ﬂ'j‘i ] — l}U {)\kz 1k 7,}
It is clear that each of 7 and k is connected to ¢ via a path of length 1.

Case n > 1: Suppose that if 7,, € S,_1 or A,y € S,—1, then o is connected to ¢ via

an undirected path of length n — 1. Consider the members of 5,:

Sn — {7Tj.k ] — kazlp ‘ Tkp € Sn—l or 3‘] 7&] : )\k.q € Sn—l} U
{Akjik<J,Fp:Ajp € Spmror Ig#k 1m0 € Suo1}.

Case 7,1, € Sp: Then j — k and either 7y, € S,—1 or Mgy € S,_1. Therefore,
k is connected to ¢ via a path of length n — 1, hence, j is connected to ¢

via a path of length n.

Case A ; € S,: Then k < j and either A;, € S,_; or 7, € S,_1. Therefore,
J is connected to z via a path of length n — 1, hence, k is connected to 2

via a path of length n.

Therefore, if 7,, € S, or Apq € Sy, then o is connected to ¢ via an undirected

path of length n. g
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Proof Theorem 5.4.4

I will show that if 7,, € S, or Ay, € S,, then o is connected to some boundary
node via an undirected path of length n. This implies that the number of non—empty
states in a forward propagation cannot be more than the maximal length of a path

in the causal network. The proof is by induction on n.
Case n = 1:

S1 = {mjr:Jis aroot node with only one child £} U
{Ak.; : k is a leaf node with only one parent j}.

If 7;, € 51, then k is connected to a boundary node j via an undirected path
of length 1. Furthermore, if A¢; € 51, then 7 is connected to a boundary node
k via an undirected path of length 1.

Case n > 1: Suppose that if 7,, € S,_1 or Ay, € S,_1, then o is connected to some

boundary node via an undirected path of length n — 1. Consider the members

of S,:

Sn — {7Tj.k Tk Q S<n7j — kavp _>] ‘T € S<n7Vk 7£ q %] : )‘q.j € S<n} U
{)\k.j : )\k.j Q/ S<n,k — j,Vp — k: )\p.k € S<n,Vj 7£ q— k: Tqk € S<n}.

Case 7, € Spt Then w4 & Scpny, j — k,for all p— 7 : 7, ; € Scp, and for all
k#q < j:Ag; € Scpn. Therefore, some 7, ; or some Ay ; belongs to S,_1;
otherwise, 7;, € Sc,. Hence, j is connected to a boundary node via a
path of length n — 1 and k is connected to a boundary node via a path of
length n.

Case A\, ; € S,t Then A\ ; & Scn, kg, forall p< k: A, € Sy, and for all
J#q— k:mgr € Scpp. Therefore, some A, ; or some 7, belongs to S,_1;
otherwise, Ax; € Sc,. Hence, k is connected to a boundary node via a
path of length » — 1 and 7 is connected to a boundary node via a path of
length n.

Therefore, if m,, € S, or A\go € Sp, then ois connected to a boundary node via

an undirected path of length n. g
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Proofs of Chapter 7

Proof of Theorem 7.3.1

Logical conjunction is commutative and associative.

If (aNb)Ac=a,
thena =bAcand a = b.

Hence, a Ab = a.

a =gb precisely when there is ¢ such that a A ¢ = b.

Hence, a <gb precisely when b | a.

For all a € O,
true is the only member of O satisfying a A true = a, and

false is the only member of O satisfying a A false = false.

If we represent sentences using their models, then objection summation would be
set intersection, objection order would be D; the zero objection would be the set of all
models; and the full objection would be the empty set. These observations simplify
the following proofs.

237
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Proof of Theorem 7.4.1

We know that (O, A) is a partial support structure. Therefore, we need to show
that / is a support scaling function.

If we represent objections using their models, then objection scaling would be set
difference when the first argument is not the full set 0. In this and the following

proof, I assume that objections are represented using their models.

(Y1) 0/a =0 when a # 0.
Follows directly from definition of /.

(Y2) a/1 =a.
Follows directly from definition of /.

(Y3) alc=blconly if a=>b when a,b =<4 c+#0.

Assume a/c = b/c only if a = b.

If a = 0, then
alc =0,

b/c =0, and
b must be O.

And vice versa if b = 0.
If neither a nor b are 0, then
/ is set difference,

which satisfies a \ ¢ = b\ c only if a = b when a,b D c.

(Y4) atb=cl/d only if alc = b/d when a =g b,c <g d and b,c,d # 0.
Since b,c,d # 0, it follows that a # 0.

Therefore, / is set difference,

which satisfies a \b=c\ d only if a\c =0\ d when d C b,c C a.
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(Y5) alb>g a when a <4 b+# 0.

Case a = 0:
a=alb.
Case a # 0:

/ is set difference,

which satisfies a \ b C a.

(Y6a) aAb=g conlyif (alc) A (bLc) is defined when ¢ # 0.

This is trivial since A is defined everywhere in objection calculus.

(Y7) (anb)lc = (alc) A (blc) whenaAb =g c#0.
Trivial if either a = 0 or b = 0.
If neither is O, then

/ is set difference,

which satisfies (aUb) \c=(aUc)\ (bUc) when ¢ CaUb.

(Y8) alc =g blconly if a g b when a,b <g c # 0.
Trivial if either a = 0 or b = 0.
If neither is O, then

/ is set difference,

which satisfies a \ ¢ D b\ c only if a O b when a,b D c.

(Y6b) a <gc, b <gc, and (a @ ¢c) @ (b@ c) is defined only if a ® b <g ¢ when ¢ # 0.

Since a D cand b D ¢, we have aN b C c.

Since the set of supports O is finite, it follows by Theorem 3.4.7 that the support

structure is not bijective. g
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Proof of Theorem 7.4.4

We want to show that a U b = ¢ precisely when ¢/b = a and ¢ <g b # 0. Suppose

that objections are represented by their models. We want to show that

aUb=cand [aNnb=0ora=0]and b+#0

precisely when

Case

Case

Case

Case

c/b=aand c D b#0.

Assume ¢/b=a and ¢ D b# 0.

c=0:

a=0.

Hence,0 Ub=0 = ¢,
a=0and b#0.

c#0:
clb=c\b=a.
Hence,a Ub = ¢,

anb=10, and b # 0.

Assume aUb=cand [aNb=10 or a =0] and b # 0.

a=0:

c=0.

Hence, ¢c/b =0 = a, and
c2Dband b+#0.

a#0:

aUb=c, and
anNb=10.

Hence, c/b=c\ b = a,
cDOband b#£0.y
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Proof of Theorem 7.5.4
—> Assume WINg(I[,K,J):

SUNK)=aV&K)onlyif ®IAJAK)=aV &JAK).

Since ®(INK) =®(INK)V ®(K),
PUINJANK)=PIANK)V E(JAK).

<= Assume

BUINJAK)=dIANEK)VIJIAK).

Suppose ®(IANK) =aV &(K).

We need to show that ®(IAJAK)=aV ®(JAK).

This is equivalent to ®(IANJAK)=aV ®(K)V &(J A K),
which is equivalent to ®(IAJAK)=®(INK)V ®(J A K),

which is true by supposition. g

Proof of Theorem 7.5.5
Assume WINg(I,K,J):

BUINJAK)=dIANEK)VIJIAK).

From q)(l/\K) K( )V @&(K), and
S(LAK) = dx(]) V(K

SUINK)VBJIAK)=9
Hence, ®(I AN J AN K) = <i>
Si(LAJ) =Sk (I)V ¢k

), we conclude
k(D) V g (J) v &(K).
k(I)V ®x(J) V &(K), and

() n



242 APPENDIX G. PROOFS OF CHAPTER 7

Proof of Theorem 7.5.7
Assume WINg(I,K,JUL):

&~

ASININLAK)=S(IAK)Y \SJALAK), and
L L

SUINJANK)=®(IANK)V&JAK).
Hence, WINg(I,K,J).

Proof of Theorem 7.5.8
Assume WINg(I,K,JUL):

SINJANLANK)=SINK)V &JALAK).

Since ®(JANK) = ®(J A LANK),
SUINJANLANK)=SINK)VE(JANK)VSJALANK).
By Decomposition, WINg(I, K, J):
PUINJANK)=PIANK)V E(JAK).

Hence, (INJANLANK)=®(INJANK)VS(JANLAK),and
WINg(I,K U J,L). s

Proof of Theorem 7.5.9
Assume WINg(I,K,J)and WINg(I,K U J,L):

BINJAK) = SUIAK)VIJAK)
SINJALANK) = SINIANK)V S(JALAK).

Substituting for ®(I A J A K) in the second equation,
SUINJANLANK)=SINK)VE(JANK)VSJALANK).
Since ®(JANK) = ®(J A LANK),
SUINJANLANK)=S(INK)VE®JALANK).

Hence, WINg(I,K,J U L).
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Proof of Theorem 7.6.5

The proof is by induction on the number of nodes in a causal network.
Base case. The network has one node. Trivial.

Inductive step. The network has more than one node. Suppose that

1. (£,0,G,80) is obtained by adding a childless node k to another causal network
(c',o,g,s0.

2. The network (£',0',G',S0') is satisfied by exactly one state of belief ®'.
I will show that the network (£,0,G,S0O) is satisfied by exactly one state of belief.
Showing that (£,0,G,S0) is satisfied by some state of belief.

Let N and N’ be the primitive propositions in languages £ and L', respectively.
Construct a mapping ® from £ to O such that

1. ®(N'ANE) = ®'(N') V SOo(k), where N' = ko.
2. ®(AV B) = ®(A) A ®(B) when = -(A A B).
3. ®(false) = true.

I first show that @ is a state of belief and then show that it satisfies (£,0,G,S50).
To show that ® is a state of belief, all I need to show is that ®(true) = false.

d(true) = {V\tI)(N)
~ A SR

= (') V SOu(k)
N'AkEko

= A BV SOw(k)] A [#(N') V SOu(-k)]
N'kko

= A F(N)V[SOu(k) A SOus(~k)]
N'kko
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= A ()
N'
= false.

We can also show that ® and @' agree on any sentence that does not entail k.

To show that ® satisfies (£,0,G,S0O), we need to show
WINg(t,10,1< \ 20) and ®(i A 10) = SO;(2) V &(20). (12)
Consider the following cases:

Case @ # k:
Then ¢ € N' and Condition 12 is equivalent to

WIN@I(’I:, iO, 1< \ ’L<>) and @I(Q A &) = 801_0(2) \% @I(&),
which follows from the induction hypothesis.

Case 1 = k:
Then i< = N’ and Condition 12 is equivalent to

WIN 5(k, ko, N' \ ko) and ®(k A ko) = SO (k) V & (ko).

I first show that ®(k A ko) = SOo(k) V ®(ko):

B(knke) = A 2(kAN)
N'Eko

= N\ SOw(k)V @' (N
N'kko

= SOL(E)V A (N
N'Eko
= SO(k) vV ¥(ko)

— 504(k) v B(ke).
To show WINg(k,ko, N'\ ko), it suffices to show that

B(k A ko A N') = B(k A ko) V B(N),
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when N' | ko.

Sk Ake AN') = SOk(k)V &'(N)
= SOo(k) V B(ke) V B(N')
= ®(kAko)V O(N).

Showing that (£,0,G,S0) is satisfied by exactly one state of belief.
Suppose that a state of belief ¥ over N satisfies (£,0,G,50). Then ¥ must

agree with ® and ®' on any sentence that does not entail k. This follows because

1. @' is the only state of belief that satisfies the portion of (£,0,G,S80) not

including node k.
2. U must agree with ®' on sentences that do not entail k.
3. ® agrees with ®' on sentences that do not entail k.

To show that ¥ completely agrees with ®, we must show that

U(N'Ak)=®(N' ANE).

B(N'NE) = SOk(k)V ®'(N'), where N' | ko
= SOk(E) VvV ¥(N)
— SOu(k) V ¥ (ko) V U(N')
= U(kAko)V ()
= Y(kAN).

(
(

Therefore, ¥ and ® are equal. 3
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Proof of Theorem 7.6.6
Let @ : £L — O be an objection—based state of belief, where N are the primitive

propositions of L. Let 1,...,n be a total order of the propositions in N. Construct

a wob causal network (£,0,G,S50) such that

e The parents of node 7 in G are nodes 1,...,7 — 1.

{ (i), if B(io) # true;

true, otherwise.

o SO,;(1) =

It is clear that (£,0,G,S80) is a wob causal network. Therefore, it is satisfied by
exactly one state of belief. I will now show that & satisfies (£,0,G,S0O). First, by
definition of SO, we have

Blio A i) = SO(i) V B(io).

Second, by definition of G, the non—descendents of a node are also its parents, 1o = <.

Therefore,

®(iNia) = B(Aiq)V (i

A

)

= ®(zAi0)V ®(i), where 10 = iq.

Hence, WIN3(2,10,1< \ 70), and @ satisfies (£,0,G,50). 4

Proof of Theorem 7.6.7
Verma [Verma, 1986] has shown that if

1. G is constructed such that WINg(¢,170,:<) for each node 7, and if

2. WIN 4 satisfies the graphoid axioms,

then INg(I,K,J) only if WINg(I,K,J). s
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Proof of Theorem 7.7.1

This proof is based on the following observations:

1. The observation 4;, can be decomposed into n observations when ¢ has n par-
ents. The observation associated with parent j, denoted by §,.;, is about nodes

connected to ¢ via arc 7 « j.

2. According to Theorem 5.2.3, once the parents of node ¢ are observed, node

becomes weakly independent from nodes connected to it via incoming arcs.

3. According to Theorem 5.2.4, nodes connected to ¢ via one incoming arc are

weakly independent from nodes connected to ¢ via another incoming arc.

B(iAb.) = /\<I>(1A §:0 N 10)
= /\ <I>z<> )V ®(4;, Aie), by Theorem 5.2.3

= /\<I>w Y)VeE( A 6N J)
kg

= /\(I)z<> vV \/ ®(8..; Aj), by Theorem 5.2.4
kg

— /\8010 \/ v l’l’Jl
iof=g



248 APPENDIX G. PROOFS OF CHAPTER 7

Proof of Theorem 7.7.2
®(j A J) equals ®(j A d,,; A J;.;). Moreover, if 6,,; = true, then ®(j A §) equals
®(j A b..;). Therefore, pj; equals BL; when 4;,; is suppressed:

pii=p; vV w

I€joi

BL; is proved later to be

wi v\ v,
lejo

but the proof does not depend on this one. g

Proof of Theorem 7.7.3

This proof is based on the following observations:

1. The observation § can be decomposed into m observations when ¢ has m chil-
dren. The observation associated with child k, denoted by §,,,, is about nodes

connected to ¢ via the arc 1 — k.

2. According to Theorem 5.2.2, once node ¢ is observed, nodes connected to ¢ via
one outgoing arc become weakly independent from nodes connected to ¢ via

another outgoing arc.

$i(8.) = ®i( A i)

k€io

= v ‘i)i(fswk), by Theorem 7.5.5

k€io

=V v

k€io
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Proof of Theorem 7.7.4

This proof is based on the following observations:

1.

When node k is not observed the observation §,,, can be decomposed into two
observations. The first observation, denoted by 4,,, is about nodes below k. The
second observation, denoted by §,;, is about nodes connected to k via incoming

arcs other than 1 — k.

. When node k is not observed, the observation 4, can be decomposed into n —1

observations when k has n parents. The observation associated with parent [,

denoted by d,., is about nodes connected to k via arc k < [.

According to Theorem 5.2.1, once node k is observed, nodes above k become

weakly independent from nodes below k.

According to Theorem 5.2.3, once the parents of node k are observed, node k

weakly becomes independent from nodes connected to k£ via incoming arcs.

According to Theorem 5.2.4, nodes connected to k via one incoming arc are

weakly independent of nodes connected to k via another incoming arc.
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If node k is not observed, then

(I)(E /\ (Sibk)

= A®(EANIAGSLL)
k

= N®(ENIAS. A

k

_= /\é&(é‘lw) \/ @(E/\E/\é‘qu)7
k

by Theorem 5.2.1

= A@u(du) VA B(kAkoi AiAbus)
k koi
= A ®u(6) V A Phoins(k) V @ (koi A i A 8i),
k koi
by Theorem 5.2.3
= A ®(di) VA Broini(k) V (koi A 6,) V B(3),
k koi
by Theorem 5.2.4
= A2u(6) VA Broini(B) VE( A LA 8a) V B(0)
k kot kotl=l
= A®(d) VA Broins(k) V ) B(LA 84a) V (d),
k koi koi=l

by Theorem 5.2.4

(/\I/z \//\S(l)koﬂ\z \/ v ,ulk ) (7.)

kot koi=l

Hence,

u>k . /\Vz \//\SOkm/\z \ v ,u'lk
k

koj kojFl

If node k is observed, then é,,, is either k£ or —k. Therefore,

®;(k) =false, ifd=k

&;(8.n) == Bi(6:0) = .
®;(—k) = true, if § = k.
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Proof of Theorem 7.7.5

This proof is based on two observations:

1. The observation é can be decomposed into two observations. The first obser-
vation, denoted by 4,., is about nodes above ¢, while the second observation,
denoted by 4,,, is about nodes below 7. This decomposition is possible because

node ¢ is not observed.

2. According to Theorem 5.2.1, once the state of node 2 is observed, nodes above

t become weakly independent of nodes below 1.

B(iAS) = B(EALAGL)

= ®;(4;) V ®(i A i), by Theorem 7.5.5. y
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Appendix H

Proofs of Chapter 8

Notational conventions

The languages £ and O are constructed from disjoint sets of propositional symbols:
Y and 2. Members of ¥ are denoted by o, 04, 03,..., while members of ) are denoted
by w,w;,ws,... Sentences in L are denoted by A, B, and C, while sentences in O
are denoted by a,3, and . A denotes a sentences in a propositional language over
YU, ¥ and Q induce two sets of truth assignments: Ty and Tj,. Members of Ty, are
denoted by LT, LT, LT, ..., while members of Ty are denoted by OT, 0T, OT,, ...
A composite truth assignment is a pair (LT;, OT;). Finally, I overload the symbols
LT and OT: LT denotes a sentence in L that is satisfied only by LT, and OT denotes
a sentence in O that is satisfied only by OT.

253
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Proof of Theorem 8.2.8
—> Assume that [ is a prime implicant for Label(A,A,O) and is consistent with
A:

1. T = Label(A, A, O).
2. I' = Label(A,A,O) only if = I'or I = I'.
3. A £ I

Then

1. Suppose I ¢ O, and let I' be the result of removing from I those literals that
are not in O. Then I' |= Label(A,A,O) and I |= I', which is a contradiction
with the assumption. Hence, I € O and -1 € O.

2. Since I |= Label(A,A,O), then AANT = A. Hence, A =1 D A.

3. Let I' be a conjunctive clause such that A = I' D A, I' # I, and -I' E 1.
Then AANI' = A and I = I'. Moreover, I' € O because I € O. Hence,
I' = Label(A, A, O), which is a contradiction with the assumption. Hence,

there is no such I'.
4. A B I
Therefore, =1 belongs to O and is a minimal support for A with respect to A.

<= Assume that —I belongs to O and is a minimal support for A with respect to

A:

1. ~-I€O.
2. AEIDA.
3. AEI'DAonlyif -I'=-Tor -I' E 1.

B

NS
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Then
1. I € O.

2. Since, A =1 D A, then AANT | A. Hence, I |= Label(A, A, O), which follows
from the definition of Label(A, A, O).

3. Let I' be a conjunctive clause I' such that I' = Label(A,A,0), I # I', and
I'=1. Then ANI'|E A, # I' 2 I, and —I' | —I, which is a contradiction

with the assumption. Hence, there is no such I'.
4. A B I

Therefore, I is a prime implicant for Label(A, A, O) and is consistent with A. g
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Lemma H.0.5 For any satisfiable A, there exists LT such that
1. LT | A.

2. ®(—~A) A ~®(LT) is satisfiable.

Proof of Lemma H.0.5
Suppose otherwise:
For all LT such that LT |= A, we have ®(—A) = ®(LT).

Then ®(~A) =\ ®(LT) = ®(A).
LTEA
A contradiction with the definition of ®: ®(—A) A ®(A) = false.



Lemma H.0.6 (LT,O0T) = A? precisely when OT | -&(LT).

Proof of Lemma H.0.6

—> Suppose (LT, OT) = A®.

Since ®(LT) D —LT € A®, we have
(LT, OT) |= ®(LT) > —LT.

That is, (LT, OT) = ~&(LT) V ~LT.
Hence, OT = ~®(LT).

<= Suppose (LT, O0T) = -®(LT).
Must show that (LT, OT) = ®(A4) D -A
for all ®(A4) D —A € A%,

Case LT = —A:
Then (LT, OT) = ®(A) D —A.

Case LT = A:
By definition of ®,
®(A) = ®(LT), and
—®(LT) = ~®(A).

Since OT | —~®(LT), we have OT = -®(A), and

(LT, OT) £ ®(A) D ~A. y
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Lemma H.0.7 If OT |= —-®(A), then there exists LT such that
1. LT = A, and

2. OT |= ~®(LT).

Proof of Lemma H.0.7

Suppose that OT = -®(A).

Then A is satisfiable.

If A is unsatisfiable, then by definition of ®,
$(A) = true, and

-®(A) = false.

A contradiction with supposition.

Suppose that for all LT such that LT = A, we have OT |= ®(LT).

Then OT = A\ &(LT) = &(A).
LTEA
A contradiction with premise of lemma: OT |= —®(A). g



Proof of Theorem 8.3.3
By definition of A%,

A® = ®(-A4) D A, and
A% A B (-A) | A.

Suppose A% A a |= A.
Must show that o |= ®(—A).
Suppose a = ®(—A).

Must establish a contradiction.

Case

Case

o = false:
al=®(-A).

A contradiction.

a # false:

By supposition, a A =®(—A) is satisfiable:
There exists OT such that OT = a A —-®(-A).
Given Lemma H.0.7 and OT = -®(—A4),

there must exist LT such that LT = -A and OT | —®(LT).

Given Lemma H.0.6 and OT = -®(LT),
(LT, OT) | A®.

Hence, (LT,O0T) = A® Aa A -4, and
A% Aa A

A contradiction. g
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Proof of Theorem 8.3.2

It suffices to show that if a # false and a € O, then A® A « is satisfiable.
Suppose a # false and a € O.

There must exist some LT such that -®(LT) A a is satisfiable.

To see why, suppose that o |= ®(LT) for all LT.

Then o | /\ ®(LT) = false.
LT
A contradiction.

Let OT be a model of =®(LT) A a.
By Lemma H.0.6, (LT, OT) |= A®.
Hence, (LT,0T) = A® Aa.y
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Proof of Theorem 8.3.4
Must show the following:

1. Label(true, A, O) = true.

The weakest sentence a in O such that A A a |= true is clearly true.

2. Label(false, A, O) = false.
Note that A is non—committal about 0. That is, the only sentences in O
that are entailed by A are valid. Hence, the only sentences in O that are
contradictory with A are unsatisfiable. Therefore, the weakest sentence a in O

such that A A a |- false is clearly false.

3. Label(AN B,A,0) = Label(A,A,O) A Label(B, A, O).
Let a and 3 be the weakest sentences in O such that

ANaEAand ANSB = B.
Must show that a A 3 is the weakest sentence in O such that
AANaABE ANB.

It suffices to show that if
ANy =ANAB,

then v = a A 3. Suppose
ANy =ANAB.

Then
ANyl=Aand ANy =B.

Therefore, v E a, v E B, and v = a A S.

4. Label(A,A,O) = Label(B,A,O) when = A = B. Follows because the defini-
tion of Label(A,A,O) does not depend on the syntax of A.
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Proof of Theorem 8.4.3
Suppose that a is the conjunction of all disjunctive clauses I, such that I belongs

to O and [ is a prime implicate of A. We must show that
1. A Ea.
2.fAEaAnpBand 8 €O, then a | 3.

A | «a follows easily from the definition of a. Now suppose that A = a A 8 and

B € O. Let us express 3 in terms of its prime implicates,
8= /\ J, where J is a prime implicate of 3.

Since A = 3, each J is an implicate of A. Therefore, for each J, there is some [ such

that
1. I is a prime implicate of A.
2. I belongs to O.
3. TEJ.

Therefore, a entails each J and also entails 3. g

Proof of Theorem 8.5.1
Must show that —~®(A) is the strongest sentence in O such that

AT A A= -8(A).

By Theorem 8.3.3, the sentence ®(A) is logically the weakest in O such that
A% A ®(A) | -A.

Therefore, - ®(A) is logically the strongest in O such that

AP AAE B(A).
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Proof of Theorem 8.3.6
Let ® be the state of belief satisfying CN = (£,0,G,S50). We must show that

A* = A ®(4)D> -4
AcL

is equivalent to
AN = A io ASOH(1) D .
1EN
It suffices to show the following;:
A? & ioANSOu(1) D i
AY = $(4) D -A.

By definition of ®, ®(i0 A1) = SO;,(2) V ®(i¢). Therefore,

AT | SO4(i) V B(io) > (i Aio)
= io A (SOw(E) V B(io)) O i
= io ASOL(E) D —i.

Suppose that A is a complete sentence. Then

And by definition of ®,

Moreover,

AN E o AiD ~SO0.4(5)
E A enid A ~80u(i)
AFioni AFioni

= A deAiD- ) SOu(i)

Afions Afioni

= AD-®(A)
= @(A) D -A.
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Suppose that A is not a complete sentence. There must exist complete sentences {A4;}

such that A is equivalent to V; A;. Then
AN = @A) DA
= /\@(Ai) D /\ﬂAi
= BV 4)0-V A
|: @(A) D Ay
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