
A SYMBOLIC GENERALIZATION OFPROBABILITY THEORY
a dissertationsubmitted to the department of computer scienceand the committee on graduate studiesof stanford universityin partial fulfillment of the requirementsfor the degree ofdoctor of philosophy

ByAdnan Y. DarwicheJanuary 1993

c
 Copyright 1993byAdnan Y. Darwiche
ii

I certify that I have read this thesis and that in my opin-ion it is fully adequate, in scope and in quality, as adissertation for the degree of Doctor of Philosophy.Matthew L. Ginsberg(Principal Adviser)I certify that I have read this thesis and that in my opin-ion it is fully adequate, in scope and in quality, as adissertation for the degree of Doctor of Philosophy.Yoav ShohamI certify that I have read this thesis and that in my opin-ion it is fully adequate, in scope and in quality, as adissertation for the degree of Doctor of Philosophy.Ross ShachterApproved for the University Committeeon Graduate Studies: iii

iv

AbstractThree questions motivate much work in AI. How should an agent's state of beliefbe represented? How should an agent change its state of belief upon recording anobservation? And what is a practical way for domain experts to convey their statesof belief to agents?Probability calculus provides answers to these questions: A state of belief shouldbe (1) represented by a probability function over some language, (2) changed usingprobabilistic conditionalization, and (3) conveyed using a probabilistic causal network.Despite the popularity of these answers, domain experts have often complained abouttheir commitment to numeric degrees of belief. In this thesis, I attempt to address thiscomplaint by suggesting an abstract belief calculus that is not committed to numbers(nor to any speci�c set of degrees of belief) and yet has the key features of probabilitycalculus. The abstract calculus has three components: (1) Abstract states of belief,(2) abstract conditionalization, and (3) abstract causal networks. The calculus is alsoequipped with an algorithm for computing degrees of belief, which corresponds to apopular algorithm in the probabilistic literature.I present many concrete instances of the proposed abstract belief calculus. Someof these instances are well known, such as proposition, possibility, and probabilitycalculi. But other instances are novel, such as objection calculus. I also show thatobjection calculus is closely related to clause management and diagnosis systems |which are in
uential in AI | and study the rami�cations of this relation.v

vi

AcknowledgementsI am grateful to my advisor, Matthew Ginsberg, for motivating this thesis, for teachingme how to do and communicate research, and for being very critical. Thanks Matt!I would also like to thank the other members of my thesis committee, Yoav Shohamand Ross Shachter.The principia group at Stanford has been both stimulative and educative. Spe-cial thanks to Will Harvey, Don Geddis, Ari J�onsson, Scott Roy, and Narinder Singh.I would also like thank Gidi Avrahami, Aaron Goldberg, Alon Levy, and Adam Grove,who contributed in their own ways to my stay at Stanford.I was introduced to AI while I was obtaining a Bachelor of Science in Civil En-gineering. Since then, I have started a journey towards computer science that hasbeen made possible by the help and support of Nabil Qaddumi, Amr Azzouz, MervatGeith, Barbara Hayes{Roth, and, especially, Raymond Levitt. Thanks to you all.I am deeply indebted to my brother Ahmad and my friend Nouria for their crucialsupport during my most di�cult times at Stanford.My parents, brothers, and sisters, have been giving meaning to my life. This thesisis dedicated to them.To my wife, Jinan, I shall plainly say: Thanks for everything . . .
vii

viii

ContentsAbstract vAcknowledgements vii1 Introduction 12 Abstract States of Belief 52.1 What is a state of belief? : 52.2 Coherence and normality : 72.3 De�ning abstract states of belief : 82.4 Absolute attitudes : 112.5 Comparative attitudes : 132.6 Concrete states of belief : 152.6.1 Propositional : 152.6.2 Probabilistic and improbabilistic : : : : : : : : : : : : : : : : 162.6.3 Possibilistic and impossibilistic : : : : : : : : : : : : : : : : : 163 Abstract Conditionalization 193.1 Observing : 193.2 Extracting states of belief : 243.3 Concrete conditionalizations : 253.3.1 Augmenting databases in classical logic : : : : : : : : : : : : : 253.3.2 Bayes conditionalization : 263.3.3 Augmenting databases in RPM logic : : : : : : : : : : : : : : 26ix

3.4 Conditional and unconditional supports : : : : : : : : : : : : : : : : : 283.4.1 Concrete support unscalings : : : : : : : : : : : : : : : : : : : 313.4.2 Support scaling versus support unscaling : : : : : : : : : : : : 333.5 Patterns of plausible reasoning : 344 Independence and Belief Extraction 374.1 The intuition : 374.2 Independence among propositions : 394.3 Extracting a state of belief : 414.4 More on independence : 474.4.1 Properties of independence : 474.4.2 Retrieving independence assertions : : : : : : : : : : : : : : : 495 Independence and Belief Computation 535.1 Introduction : 535.2 Introducing the abstract polytree algorithm : : : : : : : : : : : : : : 555.2.1 Breaking down the computation : : : : : : : : : : : : : : : : : 555.2.2 The message{passing paradigm : : : : : : : : : : : : : : : : : 595.2.3 Simulating observations : 605.2.4 The independences of singly connected networks : : : : : : : : 615.2.5 Manipulating pairs of support : : : : : : : : : : : : : : : : : : 645.3 The abstract polytree algorithm : 655.3.1 Belief : 655.3.2 Diagnostic support : 675.3.3 Causal support : 695.3.4 Diagnostic Support to a parent : : : : : : : : : : : : : : : : : 695.3.5 Causal support to a child : 715.3.6 Summary of the abstract polytree algorithm : : : : : : : : : : 715.4 Control
ow in singly connected networks : : : : : : : : : : : : : : : 745.4.1 Backward propagation : 745.4.2 Forward propagation : 785.5 Computational complexity : 82x

5.6 Multiply connected networks : 836 Implementing the Abstract Polytree Algorithm 856.1 Introduction : 856.2 Support structures : 876.3 Nodes and networks : 896.3.1 Operations on parents, children, and messages : : : : : : : : : 916.3.2 Operations on bit vectors : 926.3.3 Operations on pairs of support : : : : : : : : : : : : : : : : : : 936.3.4 Propagation initiators : 936.4 Node computations : 956.4.1 Operating over : 956.4.2 The computation functions : 976.4.3 The interface to computation functions : : : : : : : : : : : : : 986.5 Control
ow : 1016.6 Interface : 1046.6.1 Creating a network : 1046.6.2 Propagating messages : 1066.7 Concrete support structures : 1086.8 Experiments : 1107 Objection Calculus 1157.1 Introduction : 1157.2 Objections : 1177.3 Objection summation : 1187.3.1 States of belief : 1197.3.2 Attitudes : 1207.3.3 Ignorance : 1227.4 Objection scaling : 1257.4.1 Conditionalized states of belief : : : : : : : : : : : : : : : : : : 1267.4.2 Objection unscaling : 1277.4.3 Su�cient objections : 129xi

7.5 Objection{based independence : 1327.5.1 Strong independence : 1327.5.2 Weak independence : 1347.6 Objection{based causal networks : 1367.6.1 Strong causal networks : 1367.6.2 Weak causal networks : 1377.7 The wob algorithm : 1397.7.1 Messages from parents : 1407.7.2 Messages from children : 1407.7.3 Computational complexity : 1417.7.4 An example : 1427.8 Justi�cation and consequence calculi : : : : : : : : : : : : : : : : : : 1458 Diagnosis using Objection Calculus 1478.1 Introduction : 1478.2 Clause management systems : 1488.3 The relation between objections and labels : : : : : : : : : : : : : : : 1528.3.1 The computational value of weak independence : : : : : : : : 1538.3.2 The logical meaning of wob causal networks : : : : : : : : : : 1548.4 Diagnosis systems : 1568.5 The relation between objections and kernel diagnoses : : : : : : : : : 1588.6 Diagnosis using wob causal networks : : : : : : : : : : : : : : : : : : 1598.6.1 The �rst example : 1618.6.2 The second example : 1628.6.3 The third example : 1639 Commonly Asked Questions 1659.1 Many{valued logic : 1659.2 Fuzzy logic : 1679.3 The Dempster{Shafer theory : 1699.4 Valuation{based systems : 1719.5 Abstract theories of probability : 174xii

9.5.1 Modal probability : 1749.5.2 Comparative probability : 1759.5.3 Quantitative probability : 17510 Concluding Remarks 17910.1 Summary of the thesis : 17910.2 Technical limitations : 18110.3 Current and future work : 182A Propositional Logic 183B Notational Conventions 187C Proofs of Chapter 2 189D Proofs of Chapter 3 197E Proofs of Chapter 4 221F Proofs of Chapter 5 231G Proofs of Chapter 7 237H Proofs of Chapter 8 253
xiii

xiv

List of Tables1 Examples of partial support structures : : : : : : : : : : : : : : : : : 82 Examples of support orders : 133 Examples of support scaling : 214 Examples of support unscaling : 295 Experiments using cnets : 1116 Experiments using cnets and ideal : : : : : : : : : : : : : : : : : : 1127 An objection{based state of belief : 122

xv

xvi

List of Figures1 Independence in nonmonotonic : 402 A graphical representation of a causal structure : : : : : : : : : : : : 423 A probabilistic causal network : 444 A Spohnian causal network : 455 Diverging, linear, and converging nodes : : : : : : : : : : : : : : : : : 506 A probabilistic causal network : 517 A singly connected causal network : 548 Computation breakdown in singly connected networks : : : : : : : : : 579 Simulating observations in a singly connected network : : : : : : : : : 6210 Aggregating the subcomputations of belief : : : : : : : : : : : : : : : 6611 Aggregating the subcomputations of diagnostic support : : : : : : : : 6812 Aggregating the subcomputations of causal support : : : : : : : : : : 7013 A singly connected causal network : 7414 Stages of a backward propagation : 7515 Messages exchanged in a backward propagation : : : : : : : : : : : : 7616 Stages of a forward propagation : 7917 Messages exchanged in a forward propagation : : : : : : : : : : : : : 8018 Node types in a loop : 8319 Computation time in causal networks of up to 1800 nodes : : : : : : 11220 Computation time in causal networks of up to 4500 nodes : : : : : : 11321 Computation time in causal networks of up to 15000 nodes : : : : : : 11322 Computation time in causal networks of up to eight parents per node 11423 Conditional objections and objections to conditions : : : : : : : : : : 128xvii

24 A digital circuit : 13125 A digital circuit : 13326 A wob causal network : 13827 Messages exchanged in a forward propagation : : : : : : : : : : : : : 14228 A digital circuit : 14929 A wob causal network : 16130 A wob causal network : 16231 A wob causal network : 16332 Meanings of linguistic values : 167

xviii

Chapter 1IntroductionThe basic question underlying this thesis was motivated by two personal experiences.In this chapter, I introduce these experiences and the question they have motivated.|||{I was at the Knowledge Systems Laboratory at Stanford University during the aca-demic year of 1989, taking part in an e�ort to build an intelligent agent for real{timemonitoring and control. The agent was called GUARDIAN because its goal was toguard patients in Intensive Care Units (ICUs). My initial task was to maintain andimprove a component of GUARDIAN called REACT. This component had the fol-lowing responsibilities: possess a state of belief about a patient in the ICU, changethis state of belief as more information became available, and react when the patientwas thought to be in danger.Given these responsibilities, it was clear to me that a number of questions neededto be addressed: How should REACT's state of belief be represented? How shouldREACT change its state of belief as it recorded new observations? And how shoulda domain expert convey her own state of belief to REACT?Following up on work that was done by another student, I referred to the proba-bilistic literature for answers:1. A state of belief is a probability function over a propositional language.1

2 CHAPTER 1. INTRODUCTION2. A state of belief is changed using probabilistic conditionalization.3. A state of belief is conveyed using a probabilistic causal network.These answers turned out to have a number of desirable features.First, a probabilistic state of belief admits uncertain propositions, which is a cele-brated feature in real{world applications. Classical logic, by comparison, allows onlytrue and false propositions. Second, probabilistic conditionalization as a commitmentfor changing a state of belief leads to plausible patterns of belief change [Polya, 1954;Pearl, 1988]. Third, and probably most important, constructing a consistent prob-abilistic causal network is straightforward. An additional attraction of probabilisticcausal networks is that they lay the foundation for a number of e�cient algorithmsfor computing conditional and unconditional probabilities.In spite of all the desirable features I just mentioned, I did face a major challengewhen using probability calculus to support the functionality of REACT. Speci�cally,on more than one occasion, the domain expert refused to give me the probabilitiesI wanted: \I don't have these numbers" was a common reply! And even when Idid manage to get them, other members of the project felt uncomfortable using someprobabilities that REACT computed: \I don't want to base this decision on numbers,"is one statement that I still remember vividly. This does not seem to have been anisolated experience. Other researchers have pointed to similar di�culties in usingprobability calculus and other numerical approaches:One di�culty is that while it is relatively easy to elicit tentative propo-sitional rules from experts and from people in general, it is considerablyharder to get the commitment to particular grades of certainty . . .Worsestill, individual informants frequently vary in their answers to a repeatedquestion depending on the day of the week, their emotional state, thepreceding questions, and other extraneous factors. [Doyle, 1990]To be fair though, the people I worked with had mixed feelings about probabilitycalculus. On the one hand, they were very impressed by its features that I havediscussed above. On the other hand, they found the commitment to numbers to be

3a very high price for these features. But I did continue using probability calculusto support the functionality of REACT, not by choice, but for lack of a satisfactoryalternative. Again, this does not seem to have been an isolated experience:Understandably, expert system designers have di�culty justifying theiruse of the numerical judgements in face of these indications of psycho-logical and pragmatic unreality. Unfortunately, they have had to stick totheir guns, since no satisfactory alternative has been apparent. [Doyle,1990] |||{I joined the Ph.D. program at Stanford University in the fall of 1989. In the springof 1990, I decided to write a thesis on probabilistic temporal reasoning under thesupervision of Dr. Matthew Ginsberg. Although I was able to convince Dr. Ginsbergthat \uncertain" temporal reasoning is important to AI, it was hard to convincehim that \probabilistic" temporal reasoning was the way to go. His argument wassimple, \The desirable features of probability calculus do not justify the commitmentto numbers." I tried hard to change his mind, but with no success.During my attempt to convince Dr. Ginsberg, I was puzzled by the followingquestions: If numbers were intrinsic to the features of probability calculus, then whywas there no proof of this? And if they were not, then why was there no symbolicbelief calculus that has the desirable features of probability calculus?Having no answers to these questions, my determination to convince Dr. Ginsbergto adopt probability calculus was gradually replaced by an occupation with the fol-lowing question: Is it possible to relax the commitment to numbers while retainingthe desirable features of probability calculus? The answer to this question and itsrami�cations are what this thesis is about.|||{As I shall demonstrate, it is possible to relax the commitment to numbers withoutlosing the key features responsible for the success of probability calculus.

4 CHAPTER 1. INTRODUCTIONThe demonstration is constructive. I shall present in Chapters 2{5 a belief calculusthat is not committed to numbers and yet has the key features of probability calculus.The calculus is abstract in the sense that it is not committed to either numeric orsymbolic degrees of belief. It is comprehensive and has three major components:Abstract states of belief, abstract conditionalization, and abstract causal networks.These components subsume their probabilistic counterparts, and they are discussedin Chapters 2, 3, and 4.Similar to their probabilistic counterparts, abstract causal networks lay the foun-dation for algorithms that compute conditional and unconditional abstract degreesof belief. Chapter 5 presents such an algorithm and Chapter 6 presents a CommonLisp implementation.Beyond demonstrating that numbers are not strictly needed, the abstract calculusuni�es a number of concrete calculi that exist in the uncertainty literature. This roleshall be evident from instances of the calculus that are given in Chapters 2 and 3.All of these calculi, however, employ numeric degrees of belief. This observationhas motivated the creation of objection calculus, which employs symbolic degrees ofbelief. Objection calculus is discussed in Chapter 7.Being symbolic, objection calculus enhances the unifying role of the abstract cal-culus. Moreover, and probably more important, objection calculus is closely relatedto clause management and diagnosis systems, which are in
uential in AI. This relationand its rami�cations are studied in Chapter 8.The results in this thesis have sparked a number of important questions. I tryto answer some of these questions in Chapter 9. Finally, I conclude the thesis inChapter 10 by a summary of results, a review of some technical limitations, and adiscussion on future work.

Chapter 2Abstract States of BeliefIn this chapter, I formalize the notion of abstract states of belief and show that someAI representations can be viewed as instances of abstract states of belief.2.1 What is a state of belief?In probability calculus, a state of belief is usually de�ned as a mapping from a lan-guage L into the interval [0; 1]. This representation is restrictive because of its com-mitment to numbers as degrees of belief. I adopt a more general representation of astate of belief that is not committed to numeric degrees of belief:Assumption 2.1.1 An state of belief is a mapping from a propositional language Linto a set of quantities S.In principle, requiring that L be a propositional language is not necessary. Butrelaxing this requirement leads to states of belief that are outside the scope of thisthesis.The quantities in S are called degrees of support. They are neither strictly numericnor strictly symbolic. Degrees of support can be integers, rationals, and even logicalsentences. A degree of support is a primitive concept that derives its meaning fromthe operations and relations that are de�ned on degrees of support.5

6 CHAPTER 2. ABSTRACT STATES OF BELIEFDegrees of support could be positive or negative. Positive degrees of supportquantify the support for a sentence, while negative degrees of support quantify thesupport against a sentence. Positive and negative degrees of support are dual: Thepositive support for a sentence is the negative support for its negation, and vice versa.I shall consider concrete states of belief that use positive degrees of support. I shallalso consider concrete states of belief that use negative degrees of support.There is a di�erence between degrees of support and degrees of belief. AlthoughI did not introduce degrees of belief yet, we shall see later that the degree of belief ina sentence is determined by the degree of support for the sentence and the degree ofsupport for the negation of that sentence.I assume that degrees of support are useful in the following sense.De�nition 2.1.2 A degree of support is useful precisely when it is attributed to asentence by some state of belief.Notation a, b, c, and s denote degrees of support in S.

2.2. COHERENCE AND NORMALITY 72.2 Coherence and normalityThe notion of a state of belief as embodied by Assumption 2.1.1 fails to capture someintuitions about \coherent" states of belief. For example, let the degrees of supportbe fpossible, impossibleg, and consider a state of belief that� attributes possible to sentence A,� attributes impossible to sentence B, and� attributes impossible to sentence A _B.Intuition says that this state of belief is incoherent because we expect the supportfor A _ B to be possible in this case. To exclude such incoherent states of belief, weneed to impose more constraints on the notion of a state of belief. Below are someconstraints that I have identi�ed.Axiom 1 The support for A equals the support for B when A and B are logicallyequivalent.Axiom 2 The support for A_B is determined by the support for A and the supportfor B when A and B are logically disjoint.Axiom 3 If A entails B, if B entails C, and if A has the same support as C, thenB has the same support as A and C.Theorem 2.2.1 Axiom 3 implies Axiom 1.It is common to compare the degree to which a sentence is supported by di�erentstates of belief. Such a comparison is meaningful only if di�erent states of belief usethe same support scale. Below are two constraints that unify the support scales usedby di�erent state of belief.Axiom 4 Unsatis�able sentences have the same support across all states of belief.Axiom 5 Valid sentences have the same support across all states of belief, which isdi�erent from the support for unsatis�able sentences.A formal statement of Axioms 1{5 is given in Appendix C.

8 CHAPTER 2. ABSTRACT STATES OF BELIEF2.3 De�ning abstract states of beliefAxioms 2{5 lead to a number of formal properties. First, they lead to the existenceof an algebraic structure given by the following de�nition:De�nition 2.3.1 A partial support structure is a pair hS;�i, where1. S is a set containing at least two elements.2. � is a partial function from S � S to S that satis�es the following properties:(X0) a� b = b� a.(X1) (a� b)� c = a� (b� c).(X2) If (a� b)� c = a, then also a� b = a.(X3) There is a unique element 0 in S that satis�es the following property:for all a in S, a� 0 = a.(X4) There is a unique element 1 6= 0 in S that satis�es the following property:for all a in S, there exists b in S, such that a� b = 1.The function � is called support summation, 0 is called zero support, and 1 is calledfull support. Table 1 lists some partial support structures.Axioms 2{5 also lead to properties of states of belief that are embodied by thefollowing de�nition: S a� b 0 1Proposition f0; 1g max(a; b) 0 1Probability [0; 1] a+ b 0 1Improbability [0; 1] a+ b� 1 1 0Possibility [0; 1] max(a; b) 0 1Impossibility f0; 1; . . . ;1g min(a; b) 1 0Table 1: Examples of partial support structures.

2.3. DEFINING ABSTRACT STATES OF BELIEF 9De�nition 2.3.2 Let hS;�i be a partial support structure and L be a propositionallanguage. A state of belief � with respect to hS;�iL is a mapping from L to S thatsatis�es the following properties:1. �(A) = �(B) when j= A � B.2. �(A _B) = �(A)� �(B) when j= :(A ^B).3. �(false) = 0.4. �(true) = 1.De�nition 2.3.1 of a partial support structure and De�nition 2.3.2 of a state ofbelief are consequences of four theorems. These theorems refer to the notion of ameaningful sum, which I did not introduce yet. Therefore, I shall introduce thisnotion �rst, and then state the theorems.The de�nition of a partial support structure does not specify the domain of supportsummation|the de�nition only says that support summation is a partial function.The domain of support summation is not speci�ed because the de�nition of a partialsupport structure is a consequence of Axioms 2{5, which do not entail the de�nitionof support summation. This raises the question, \Where should support summationbe de�ned?"If a partial support structure is to be used for modeling states of belief as suggestedby De�nition 2.3.2, then a� b should be de�ned precisely when a� b is a meaningfulsum. Let me �rst state what a meaningful sum is and then justify the previousstatement.De�nition 2.3.3 A sum over S is de�ned as follows:� a� b is a sum over S if a and b are in S.� a� b is a sum over S if a and b are sums over S.De�nition 2.3.4 A sum over S is meaningful precisely when there exists an intuitivestate of belief that attributes the supports appearing in the sum to logically disjointsentences.11Intuitive states of belief are states of belief that De�nition 2.3.2 attempts to formalize.

10 CHAPTER 2. ABSTRACT STATES OF BELIEFFor example, suppose that the partial support structure is h[0; 1];+i and degrees ofsupport are frequencies. Then :4 + :9 is not a meaningful sum, because there is nostate of belief that attributes .4 and .9 to logically disjoint sentences. However, :2+ :3is a meaningful sum, because there is a state of belief that attributes .2 and .3 tologically disjoint sentences.Depending on the domain of support summation, mappings from L into S may ormay not qualify as states of belief. If a� b is meaningful but not de�ned, then someintuitive states of belief may not be captured by De�nition 2.3.2. Moreover, if a� bis de�ned but not meaningful, then De�nition 2.3.2 may admit mappings that do notcorrespond to intuitive states of belief. This is why a� b should be de�ned preciselywhen a� b is a meaningful sum.The existence of a partial support structure and the properties of states of beliefgiven by De�nition 2.3.2 are consequences of the following theorems:Theorem 2.3.5 Assume Axiom 1. If Axiom 2 holds, then Properties (X0) and (X1)hold over meaningful sums.The above theorem proves that support summation is commutative and associative.Theorem 2.3.6 Assume Axioms 1{2. Axiom 3 holds precisely when Property (X2)holds over meaningful sums.The next two theorems prove the existence of zero and full supports, respectively.Theorem 2.3.7 Axiom 4 implies Property (X3) given Axioms 1{2.Theorem 2.3.8 Axiom 5 implies Property (X4) given Axioms 1{3.

2.4. ABSOLUTE ATTITUDES 112.4 Absolute attitudesAbstract states of belief hold absolute and comparative attitudes towards sentences.I discuss absolute attitudes in this section and comparative attitudes in Section 2.5.There are two types of absolute attitudes towards sentences. The �rst type hasthe form, \I support A to degree s," while the second type has the form \I believe Ato degree d."De�nition 2.4.1 The degree to which a state of belief � supports sentence A is �(A).The support for a sentence does not determine the support for its negation in general.For example, if degrees of support are fpossible, impossibleg, and if possible is thesupport for A, then the support for :A could be either possible or impossible.De�nition 2.4.2 The degree to which a state of belief � believes sentence A, written��(A), is h�(A);�(:A)i.On the other hand, the belief in a sentence does determine the belief in its negation.Moreover, degrees of belief are closer to truth values in many{valued logics [Rosserand Turquette, 1952; Rescher, 1969; Ginsberg, 1988] than are degrees of support. Forexample, if degrees of support are fpossible, impossibleg, then1. hpossible; impossiblei represents the truth value true.2. himpossible; possiblei represents the truth value false.3. hpossible; possiblei represents the truth value unknown.In general, every abstract state of belief has two extreme belief attitudes thatcorrespond to truth and falsity. These are the attitudes of acceptance and rejection.De�nition 2.4.3 A state of belief � accepts sentence A precisely when ��(A) = h1;0i.De�nition 2.4.4 A state of belief � rejects sentence A precisely when ��(A) = h0;1i.

12 CHAPTER 2. ABSTRACT STATES OF BELIEFThe correspondence between acceptance and truth and between rejection and falsitybecomes evident when we discuss the process of observing in Chapter 3. As we shallsee, acceptance and rejection are attitudes that can never be given up as a result ofrecording more observations.A sentence is rejected precisely when it is supported to degree 0. And a sentenceis accepted only if it is supported to degree 1. But if the sentence is supported todegree 1, it is not necessarily accepted. For example, when degrees of support arefpossible, impossibleg, a sentence and its negation could be possible. Here, both thesentence and its negation are supported to degree possible, but neither is accepted.

2.5. COMPARATIVE ATTITUDES 132.5 Comparative attitudesAbstract states of belief hold two types of comparative attitudes towards sentences.The �rst type has the form, \I support A no more than I support B," while thesecond type has the form, \I believe A no more than I believe B."Comparative attitudes are based on ordering degrees of support and belief. De-grees of support can be ordered using support summation. The intuition here is thatthe sum of two supports is at least as great as each of the summands.De�nition 2.5.1 Support a is no greater than b, written a �� b, precisely when thereis a support c such that a� c = b. The relation �� is called a support order.Table 2 lists some support orders. The following theorem shows that every supportorder is a partial order with minimal and maximal elements:Theorem 2.5.2 The relation �� is a partial support order under which 0 is minimaland 1 is maximal.Degrees of belief can also be ordered.De�nition 2.5.3 Degree of belief hs1; s2i is no greater than degree of belief hs3; s4i,written hs1; s2i v� hs3; s4i, precisely when s1 �� s3 and s2 �� s4. The relation v�is called a belief order.The belief order is also a partial support order with minimal and maximal elements:hS;�i a �� bProposition hf0; 1g;maxi a � bProbability h[0; 1];+i a � bImprobability h[0; 1]; (� (a b) a+ b� 1)i b � aPossibility h[0; 1];maxi a � bImpossibility hf0; 1; . . . ;1g;mini b � aTable 2: Examples of support orders.

14 CHAPTER 2. ABSTRACT STATES OF BELIEFTheorem 2.5.4 The relation v� is a partial order under which h0;1i is minimaland h1;0i is maximal.Now that we have ordered degrees of support and belief, we can de�ne the com-parative attitudes held by abstract states of belief.De�nition 2.5.5 Sentence A is no more supported than B by a state of belief �,written A �� B, precisely when �(A) �� �(B).De�nition 2.5.6 Sentence A is no more believed than B by a state of belief �, writ-ten A v� B, precisely when ��(A) v� ��(B).If two sentences are equally believed, then they are also equally supported. But theconverse is not true. For example, when degrees of support are possible, impossible,a state of belief � may be such that �(:Bird) = impossible and �(Bird) = �(Fly) =�(:Fly) = possible. Although Bird and Fly are equally supported by �, Bird is morebelieved than Fly.Rejected sentences are always minimally supported, and accepted sentences arealways maximally supported. But although minimally supported sentences are re-jected, maximally supported sentences are not necessarily accepted. A sentence andits negation may be maximally supported at the same time, while neither of themmay be accepted.Rejected sentences are always minimally believed and accepted sentences are al-ways maximally believed. The converse is true as shown by the following theorem:Theorem 2.5.7 The relation v� satis�es the following properties:1. v� is a partial order.2. A j= B only if A v�B.3. For all A, false v� A v� true.4. A is rejected precisely when A is minimal under v�.5. A is accepted precisely when A is maximal under v�.

2.6. CONCRETE STATES OF BELIEF 152.6 Concrete states of beliefIn this section, I present a number of concrete partial support structures that inducestates of belief in propositional logic, probability calculus, and nonmonotonic logicbased on preferential models [Kraus et al., 1990]. In Chapter 7, I present a partialsupport structure that has symbolic degrees of support.2.6.1 PropositionalBelow is the simplest partial support structure.Theorem 2.6.1 The pair hf0; 1g;maxi is a partial support structure.A state of belief with respect to this structure is called a propositional state ofbelief. A propositional state of belief � places a sentence A into one of three classes:1. A is rejected: �(A) = 0.2. A is accepted: �(:A) = 0.3. A is undetermined: �(A) = 1 and �(:A) = 1.This is the classi�cation of a propositional logic database: A sentence A is entailed bythe database (A is true), its negation :A is entailed by the database (A is false), orneither is entailed by the database (A is unknown). Next I show formally that everypropositional state of belief corresponds to a consistent database in propositionallogic.De�nition 2.6.2 A propositional state of belief � corresponds to database � inpropositional logic precisely when for all A: � accepts A precisely when � entails A.The correspondence between propositional states of belief and consistent databasesin propositional logic is stated by the following theorem:Theorem 2.6.3 For every consistent database � in propositional logic there is apropositional state of belief that corresponds to �.What can be represented by a database in propositional logic can be also representedby a propositional state of belief.

16 CHAPTER 2. ABSTRACT STATES OF BELIEF2.6.2 Probabilistic and improbabilisticThe following theorem shows that probabilistic states of belief are instances of ab-stract states of belief as de�ned in this chapter.Theorem 2.6.4 The pair h[0; 1];+i is a partial support structure and its supportorder is �.A state of belief may attribute improbabilities, as opposed to probabilities, tosentences. The following theorem shows that these states are also instances of abstractstates of belief.Theorem 2.6.5 The pair h[0; 1]; � (a b) a+ b� 1i is a partial support structure andits support order is �.2.6.3 Possibilistic and impossibilisticA state of belief may attribute degrees of possibility to sentences. There is morethan one choice of degrees of possibility; the following theorems identify two of thesechoices.Theorem 2.6.6 The pair h[0; 1];maxi is a partial support structure and its supportorder is �.Theorem 2.6.7 The pair hf0; 1; . . . ;1g;maxi is a partial support structure and itssupport order is �.A state of belief may also attribute degrees of impossibility to sentences. Again,there is more than one choice of degrees of possibility, and the following theoremsidentify two of these choices.Theorem 2.6.8 The pair h[0; 1];mini is a partial support structure and its supportorder is �.Theorem 2.6.9 The pair hf0; 1; . . . ;1g;mini is a partial support structure and itssupport order is �.

2.6. CONCRETE STATES OF BELIEF 17A state of belief with respect to the structure hf0; 1; . . . ;1g;mini is a variantof Spohn's natural conditional function [Spohn, 1987; Spohn, 1990] | the majordi�erence being the existence of 1, which Spohn does not allow. I therefore referto states of belief with respect to this structure as Spohnian states of belief. Thesestates place a sentence A into one of the following classes:1. A is rejected: �(A) =1.2. A is accepted: �(:A) =1.3. A is rejected by default: �(A) 6=1 > 0. �(A) is the default's strength.4. A is accepted by default: �(:A) 6=1 > 0. �(:A) is the default's strength.5. A is undetermined: �(A) = 0 and �(:A) = 0.This classi�cation is more re�ned than the one given by propositional states of belief.Its value becomes more evident when I discuss belief change in Chapter 3 wheresentences may change classes when new observations are recorded.The notion of acceptance by default is central to the work on nonmonotonic rea-soning. Indeed, I show next that each Spohnian state of belief corresponds to adatabase in nonmonotonic logic based on ranked preferential models (RPM) [Krauset al., 1990].The nonmonotonic logic I am referring to is very much like classical propositionallogic. We have a language L, truth assignments W , and the usual meaning func-tion M that maps each sentence to the truth assignments that satisfy it. The onlyadditional construct that we have in RPM logic is a partitioning of the truth assign-ments W into a well ordered set of classes � = W0;W1; . . . The intuition is that truthassignments in Wi are preferred to those in Wj when i < j.Given this preference over truth assignments, one can de�ne the notions of pre-ferred meaning and preferred entailment, both of which can be shown to subsumetheir classical counterparts.De�nition 2.6.10 The preferred meaning of database � in RPM logic, writtenM�(�),is the set of the most preferred truth assignments in �'s classical meaning.

18 CHAPTER 2. ABSTRACT STATES OF BELIEFDe�nition 2.6.11 Database � in RPM logic preferentially entails sentence A,written � j=� A, precisely when the preferred meaning of � is included in the classicalmeaning of A.The above entailment is nonmonotonic because, as we shall see in Chapter 3, it ispossible that A is preferentially entailed by � but not by � ^B.I am now ready to state the correspondence result.De�nition 2.6.12 A Spohnian state of belief � corresponds to database � in RPMlogic precisely when the following holds: For all sentences A, � accepts A, or acceptsA by default, precisely when � preferentially entails A.Theorem 2.6.13 For every consistent database � in RPM logic there is a Spohnianstate of belief that corresponds to �.According to Theorem 2.6.13, what can be represented by a database in RPM logiccan also be represented by a Spohnian state of belief. The reader is referred elsewherefor a study of some other relations between Spohnian states of belief and databasesin RPM logic [Hunter, 1991].

Chapter 3Abstract ConditionalizationNow that we know what an abstract state of belief is, we may ask, How shouldan abstract state of belief change as a result of recording an observation? In thischapter, I address this question when the observation is a non{rejected sentence.This leads to the notion of abstract conditionalization, which generalizes probabilisticconditionalization and enjoys its most desirable properties.3.1 ObservingThe treatment in this chapter is based on the following assumption:Assumption 3.1.1 When a state of belief observes a non{rejected sentence it changesinto another state of belief.We say that the new state of belief is the result of conditionalizing the initial stateof belief on the observation. The basic goal of this chapter is to formalize this condi-tionalization process.De�nition 3.1.2 Let � be a state of belief with respect to hS;�iL. If A is a sentencein L that is not rejected by �, then a conditionalization of � on A, written �A, is astate of belief with respect to hS;�iL that accepts A.According to this de�nition, the conditionalization of a state of belief on an ob-servation is the state of belief resulting from accepting the observation. However,19

20 CHAPTER 3. ABSTRACT CONDITIONALIZATIONfor a given state of belief and a given observation, there is usually more than oneconditionalized state of belief. Some of these conditionalized states of belief resultfrom plausible changes to the initial state of belief, but others do not. To excludeimplausible changes to a state of belief, we need to impose more constrains on con-ditionalized states of belief. Below are some constraints that I have identi�ed aboutstates of belief as formalized by De�nition 2.3.2 and conditionalized states of beliefas formalized by De�nition 3.1.2.Axiom 6 The support for A after observing A_B is determined by the initial supportfor A and the initial support for A _B.Axiom 7 Observing a non{rejected sentence retains all accepted sentences.Axiom 8 Observing an accepted sentence leads to no change in a state of belief.Axiom 9 When A _ B is equally supported by two states of belief, the observationof A _ B by each state does not introduce equality or order between the respectivesupports for A.Axiom 10 The support for a sentence either increases or does not change afterobserving one of its logical consequences.Axiom 11 If A's support after observing C equals its support after observing B ^C,then B's support after observing C equals its support after observing A ^ C.A formal statement of Axioms 6{11 is given in Appendix D.By accepting the above axioms, one is committed to (1) the existence of anotherfunction on degrees of support | let us denoted it by � | that has a number ofproperties given later, and (2) a de�nition of a conditionalized state of belief in termsof this function. The properties of � interact with the partial support structurehS;�i with respect to which a state of belief is de�ned. The resulting triple hS;�;�iis called a support structure and is de�ned below.

3.1. OBSERVING 21S a � b a� bProposition f0; 1g max(a; b) min(a; b)Probability [0; 1] a + b a=bImprobability [0; 1] a + b� 1 (a� b)=(1� b)Possibility [0; 1] max(a; b) a=bImpossibility f0; 1; . . . ;1g min(a; b) a� bTable 3: Examples of support scaling.De�nition 3.1.3 A support structure is a triple hS;�;�i, where1. hS;�i is a partial support structure.2. � is a partial function from S � S to S such that(Y0) a� b is de�ned if a �� b 6= 0.3. The function � satis�es the following properties:(Y1) 0� a = 0 when a 6= 0.(Y2) a� 1 = a.(Y3) a� c = b� c only if a = b when a; b �� c 6= 0.(Y4) a� b = c� d only if a� c = b� d when a �� b; c �� d and b; c; d 6= 0.4. The functions � and � satisfy the following properties:(Y5) a� b �� a when a �� b 6= 0.(Y6a) a� b �� c only if (a� c)� (b� c) is de�ned when c 6= 0.(Y7) (a� b)� c = (a� c)� (b� c) when a� b �� c 6= 0.(Y8) a� c �� b� c only if a �� b when a; b �� c 6= 0.The function � is called support scaling, and Table 3 provides some examples.Let me iterate here that the existence of support scaling and its properties, asgiven by De�nition 3.1.3, are consequences of Axioms 6{11.In particular, the existence of support scaling is a consequence of Axiom 6 assuggested by the following theorem.

22 CHAPTER 3. ABSTRACT CONDITIONALIZATIONTheorem 3.1.4 Axiom 6 holds precisely when�A(B) = �(A ^B)� �(A) when �(A) 6= 0 (1)for some function �.The relation between the properties of support scaling and the axioms of belief changeis given by a sequence of theorems.Theorem 3.1.5 Axiom 7 is equivalent to Property (Y1) given Axiom 6.Theorem 3.1.6 Axiom 8 is equivalent to Property (Y2) given Axioms 6{7.Theorem 3.1.7 Axiom 9 is equivalent to Properties (Y3) and (Y8) given Axioms 6{8.Theorem 3.1.8 Axiom 10 is equivalent to Property (Y5) given Axioms 6{9.Theorem 3.1.9 Axiom 11 is usefully equivalent to Property (Y4) given Axioms 6{10.Theorem 3.1.10 Assumption 3.1.1, Axiom 6, and Axiom 7 imply Properties (Y0),(Y6a), and (Y7).According to Theorem 3.1.4, accepting Axiom 6commit us to the following de�-nition of conditionalization.De�nition 3.1.11 Let � be a state of belief with respect to hS;�iL, and let A be asentence in L that is not rejected by �. The conditionalization of � on A with respectto hS;�;�iL is de�ned as follows:�A(B) = �(A ^B)� �(A): (2)Support scaling satis�es a number of other properties that could be very useful inproving statements that describe how a state of belief changes. The following theoremlists some of these properties:

3.1. OBSERVING 23Theorem 3.1.12 If hS;�;�i is a support structure, then(Y10) a� a = 1 when a 6= 0.(Y11) a� (a� b) = b when a �� b and a 6= 0.(Y12) a� b = c only if a� c = b when a �� b 6= 0, and c 6= 0.(Y13) a �� b only if a� c �� b� c when a �� b �� c 6= 0 and b 6= 0.(Y14) (a� c)� (b� c) = a� b when a �� b �� c 6= 0, and b 6= 0.(Y15) (a� b)� (a� c) = c� b when a �� c �� b 6= 0, and c 6= 0.For example, Property (Y14) can be used to prove the following result about condi-tionalization:Theorem 3.1.13 If A ^B is not rejected by a state of belief �, then(�A)B (C) = �A^B(C):This says that the order in which observations are recorded is not important.

24 CHAPTER 3. ABSTRACT CONDITIONALIZATION3.2 Extracting states of beliefChapter 4 is devoted to the problem of extracting a state of belief from a domainexpert, which, as we shall see, is a constraint satisfaction problem. In particular, adomain expert gives us constraints about her state of belief from which we try torecover that state of belief. This process usually raises the following questions:1. Is there a state of belief satisfying all the constraints? That is, are theconstraints consistent?2. Is there only one state of belief satisfying these constraints? That is, are theconstraints complete?The di�culty of these questions depends greatly on the support structure with respectto which states of belief are de�ned. Below are two classes of support structures thatmake these questions easier to answer.De�nition 3.2.1 A support structure hS;�;�i is bijective precisely when(Y9) For all b 6= 0 and c, there is an a such that a ��b and a� b = c.When extracting a state of belief from a domain expert, it is common to ask,What is your support for B and what is your support for A after you have observedB? If the expert's state of belief and its conditionalizations are with respect to abijective support structure, then the answers will always be consistent.1Let me now present another class of support structures that facilitates the extrac-tion of a state of belief.De�nition 3.2.2 A support structure hS;�;�i is distributive precisely when(Y6b) (a� c)� (b� c) is de�ned only if a� b �� c when a; b ��c 6= 0.The value of the above support structures is most evident given the following theorem.Axiom 12 Given a state of belief that is conditionalized on sentence C, there isnothing we can conclude about the support for C before it was observed.Theorem 3.2.3 Axiom 12 is equivalent to Properties (Y9) and (Y6b).1I am assuming here that A and B are not logically disjoint.

3.3. CONCRETE CONDITIONALIZATIONS 253.3 Concrete conditionalizationsIn this section, I provide some concrete support scalings, which give rise to condi-tionalization rules that can be used to (1) augment databases in classical logic, (2)conditionalize probabilistic states of belief, and (3) augment databases in RPM logic.3.3.1 Augmenting databases in classical logicAs I mentioned in Chapter 2, the simplest partial support structure is hf0; 1g;maxi.So let us look at a support scaling function for this structure.Property (Y1) says that 0 � 1 should be 0, and Property (Y2) says that 1 � 1should be 1. If we consider the de�nition of a� b only when a ��b 6= 0, then thereis only one scaling function with the previous properties.Theorem 3.3.1 hf0; 1g;max;mini is a bijective, distributive support structure.Instantiating Equation 2 of De�nition 3.1.11 with respect to the previous structuregives �A(B) = min(�(A ^B);�(A)):And since we can only conditionalize on non{rejected sentences, it follows that �(A)must always be 1. We can then simplify the above equation to�A(B) = �(A ^B):Conditionalizing a propositional state of belief is closely related to augmentinga database in propositional logic. In particular, if a propositional state of belief isviewed as a database in propositional logic, then conditionalizing a propositional stateof belief on a sentence amounts to augmenting the corresponding database with thatsentence. This is stated by the following theorem:Theorem 3.3.2 Let � be a consistent database in propositional logic, and let � beits corresponding propositional state of belief. If � ^ A is also consistent, then itscorresponding propositional state of belief is �A.

26 CHAPTER 3. ABSTRACT CONDITIONALIZATION3.3.2 Bayes conditionalizationThe following theorem provides a support scaling function for probabilistic states ofbelief.Theorem 3.3.3 h[0; 1];+; =i is a bijective, distributive support structure.Instantiating Equation 2 with respect to this structure gives us Bayes conditionaliza-tion: �A(B) = �(A ^B)�(A) :The following theorem provides a support scaling function for improbabilisticstates of belief.Theorem 3.3.4 h[0; 1]; � (a b) a+b�1; � (a b) (a�b)=(1�b)i is a bijective, distributivesupport structure.Instantiating Equation 2 with respect to this structure gives�A(B) = �(A ^B)� �(A)1 ��(A) :3.3.3 Augmenting databases in RPM logicThe following theorem provides a support scaling function for impossibilistic statesof belief.Theorem 3.3.5 hf0; 1; . . . ;1g;min;�i is a bijective, distributive support structure.Instantiating Equation 2 with respect to the previous structure gives�A(B) = �(A ^B)� �(A):Moreover, if a Spohnian state of belief is viewed as a database in RPM logic, thenconditionalizing a Spohnian state of belief on a sentence amounts to augmenting thecorresponding database with that sentence. This is stated by the following theorem:Theorem 3.3.6 Let � be a consistent database in RPM logic, and let � be its cor-responding Spohnian state of belief. If the database � ^A is also consistent, then itscorresponding Spohnian state of belief is �A.

3.3. CONCRETE CONDITIONALIZATIONS 27The above theorem is important for the following reason: Preferential entailmentis nonmonotonic in the sense that a sentence may be preferentially entailed by adatabase � but may not be preferentially entailed by an augmentation of �, say� ^A.2 This property causes an implementation problem in AI applications.In particular, suppose that we have modeled the state of belief of some agent bya database �. A sentence that is preferentially entailed by � is considered a defaultbelief of that agent. Moreover, some default beliefs must be retracted when new sen-tences are added to the agent's database because they may cease to be preferentiallyentailed by the augmented database. Note, however, that detecting default beliefsthat need to be retracted has proven to be a real problem from an implementationalviewpoint.In the light of De�nition 2.6.12, Theorem 3.3.6 is an important step towards imple-menting this detection. Speci�cally, if � is the Spohnian state of belief correspondingto database �, then a sentence B is not preferentially entailed by an augmenteddatabase � ^A unless �A(:B) > 0.Chapter 5 is concerned with the computation of conditional supports in abstractstates of belief, which, together with De�nition 2.6.12 and Theorem 3.3.6, provides acomplete implementation of detecting beliefs that need to be retracted.|||{The following theorem provides a support scaling function for possibilistic states ofbelief.Theorem 3.3.7 h[0; 1];max; =i is a distributive, bijective support structure.Instantiating Equation 2 with respect to this structure gives us the following condi-tionalization rule: �A(B) = �(A ^B)�(A) :2The technical reason for this is that preferential entailment is de�ned in terms of preferredmeaning, which does not necessarily get smaller as the database gets bigger.

28 CHAPTER 3. ABSTRACT CONDITIONALIZATION3.4 Conditional and unconditional supportsFor a theory of states of belief to be useful in building arti�cial agents, the speci�cationof a state of belief must be made intuitive enough so that a domain expert cannaturally map a state of belief onto an arti�cial agent. This section discusses afunction on degrees of support that helps in achieving this goal.A basic observation about human reasoning, claimed by Bayesian philosophers,is that it is more intuitive for people to specify their support for a sentence A (e.g.,\The grass is wet") conditioned on accepting a relevant sentence B (e.g., \It rained")than to specify their unconditional support for A. It is therefore natural for domainexperts to specify their states of belief by providing conditional supports. This isindeed the approach taken by most probabilistic representations where a domainexpert provides statements of the form \P (AjB) = p," which reads as \If I accept B,then my probabilistic support for A becomes p."One should note, however, that conditional supports are most useful when they cantell us something about unconditional supports. For example, conditional probabili-ties can be easily mapped into unconditional probabilities: P (A^B) = P (AjB)P (B).It is then important to ask whether the previous equality is an instance of a moregeneral one that holds for abstract states of belief. This question is answered posi-tively by the following theorem, which states that for every support structure there isa function on degrees of support that plays the same role as that played by numericmultiplication in probability calculus:Theorem 3.4.1 Let hS;�;�i be a support structure. There is a partial function ffrom S � S to S such thata� b = c and a ��b 6= 0 only if f(c; b) = a:This theorem says that support scaling has an inverse, but only over a subset of itsdomain. This subset consists of the pairs (a; b) such that a �� b 6= 0. But why is theexistence of an inverse restricted to this subset? The answer lies in Property (Y3),which says indirectly that support scaling has an inverse:a� c = b� c only if a = b:

3.4. CONDITIONAL AND UNCONDITIONAL SUPPORTS 29S a
 bProposition f0; 1g min(a; b)Probability [0; 1] a� bImprobability [0; 1] a+ b� abPossibility [0; 1] a� bImpossibility f0; 1; . . . ;1g a+ bTable 4: Examples of support unscaling.Note, however, that this property is conditional on a; b �� c 6= 0. Therefore, wecan prove the existence of an inverse only when this condition is met. In fact, thede�nition of a support structure requires support scaling to be de�ned only if thiscondition is met. This is to be expected because in the context of conditionalization,which has led to support scaling, it is meaningful to scale support a with respect tosupport b only when a ��b 6= 0.De�nition 3.4.2 Support unscaling is a partial function
 from S � S to S suchthat c
 b def= a precisely when a� b = c and a ��b 6= 0:Table 4 lists some examples of support unscaling. Support unscaling is used in map-ping conditional supports onto unconditional supports.Corollary 3.4.3 If the state of belief � does not reject A, then�(A ^B) = �A(B)
 �(A): (3)We have looked before at two classes of support structures that facilitate the ex-traction of states of belief. Each of these classes suggests an additional property thatsupport scaling should satisfy. Given the relation between support scaling and un-scaling, these two classes of support structures can be characterized by the propertiesthat support unscaling needs to satisfy. The following two theorems identify theseproperties:Theorem 3.4.4 Let hS;�;�i be a bijective support structure and let
 be its supportunscaling function. Then a
 b is de�ned precisely when b 6= 0.

30 CHAPTER 3. ABSTRACT CONDITIONALIZATIONThis theorem says that if the support structure is bijective, then the following twostatements are always consistent:1. My support for B is b 6= 0.2. My support for A given B is a.In particular, the state of belief � such that �(A^B) = a
 b and �(B) = b satis�esthese statements. In general, however, the two statements are consistent only if a
 bis de�ned. Therefore, the domain of support unscaling is crucial in the process ofbelief extraction. We shall see an example of this in Chapter 7.Theorem 3.4.5 Let hS;�;�i be a distributive support structure and let
 be itssupport unscaling function. Then(a
 c)� (b
 c) �� c when a� b, a
 c and b
 c are de�ned.

3.4. CONDITIONAL AND UNCONDITIONAL SUPPORTS 31Theorem 3.4.6 The following properties hold for support scaling and unscaling:(Z1) (a� b)
 b = a.(Z2) (a
 b)� b = a.(Z3) 0
 a = 0.(Z4) a
 1 = a.(Z5) a
 b �� b.(Z6) (a� b)
 c = (a
 c)� (b
 c) when (a
 c)� (b
 c) �� c 6= 0.(Z7) a �� b only if a
 c �� b
 c.(Z8a) a
 b = b
 a.(Z8b) a
 b is de�ned precisely when b
 a is de�ned when a 6= 0 and b 6= 0.(Y16) (a� b)� c = a� (b
 c) = (a� c)� b when a �� b
 c 6= 0.(This is a property of support scaling, but its proof is based on the above results).(Z9a) (a
 b)
 c = a
 (b
 c).(Z9b) (a
 b)
 c is de�ned precisely when a
 (b
 c) is de�ned.(Z10) a
 b = a precisely when a = 0 or b = 1.(Z11) (a
 b)� c = a
 (b� c).(Z12) (a
 c)� (b
 c) = a� b when a
 c �� b
 c 6= 0.3.4.1 Concrete support unscalingsIn this section, I will consider a number of support unscaling functions. But let me�rst stress that unscaling functions are in general not total functions. I will show thetechnical reason for this and then provide the intuition behind it.

32 CHAPTER 3. ABSTRACT CONDITIONALIZATIONBy de�nition, a
0 is not de�ned for any a. And unless the function �b : S ! S isbijective, there will be other places where support unscaling
 is not de�ned. Recallthat the function �b is bijective precisely when for any support c, there is anothersupport a such that a ��b and a � b = c. Recall also that the formalization ofSection 3.1 does not require the function �b to be bijective.3Intuitively, it is very helpful to think of support unscaling in the context of Equa-tion 3 of De�nition 3.4.3, which can be viewed as de�ning the following inferencerule: If � is some information about a state of belief � (�(A) = a), and � issome information about a conditionalization of � (�A(B) = b), then wecan infer more information about the state of belief � (�(A^B) = b
a).As it turns out, however, not all pieces of information (�; �) are consistent. That is,it is possible that � is true about a state of belief, but � is not true about any ofits conditionalizations. These are precisely the places where support unscaling is notde�ned. In other words, cases where support unscaling is unde�ned correspond toillegitimate scenarios of belief change.The following theorem provides a class of partial support structures that is knownto induce states of belief with non{trivial illegitimate scenarios of belief change.Theorem 3.4.7 If the set of supports S is �nite and has more than two elements,then there are supports a and b 6= 0 where a
 b is not de�ned.In the remainder of this section, I provide the support unscaling functions of somesupport structures that I have introduced earlier.Theorem 3.4.8 Support unscaling of hf0; 1g;max;mini is max.Theorem 3.4.9 Support unscaling of h[0; 1];+; =i is �.Theorem 3.4.10 Support unscaling of h[0; 1]; � (a b) a+ b� 1; � (a b) (a� b)=(1� b)iis � (a b) a+ b� ab.3Axiom 9 requires the function �b be an injection only.

3.4. CONDITIONAL AND UNCONDITIONAL SUPPORTS 33Theorem 3.4.11 Support unscaling of hf0; 1; . . . ;1g;min;�i is +.Theorem 3.4.12 Support unscaling of h[0; 1];max; =i is �.3.4.2 Support scaling versus support unscalingThe way I have presented belief change seems to indicate that support scaling isthe primitive concept, and support unscaling is just a convenient side e�ect of thatconcept. In fact, the existence of support unscaling is only a consequence of Axiom 9discussed in Section 3.1. That is, had we not accepted Axiom 9, we would not havehad a support unscaling function in general. But we would still have had a legitimateaccount of belief change that agrees partially with our intuition.Surprisingly enough, it seems to be more customary in the literature to take avariant of support unscaling as the primitive concept in formalizing belief change thanto choose support scaling. For example, in his work on Probabilistic Logic [Aleliunas,1988], Aleliunas suggests a primitive operator called product, which is closely relatedto support unscaling. And in their work on valuation{based systems [Shenoy, 1989;Shenoy and Shafer, 1990], Shenoy and Shafer suggest a primitive operator calledcombination that is also related to support unscaling.The choice between support scaling and unscaling as a primitive in formalizingbelief change is a choice between one of the following two ways of asking questions:1. Given an initial state of belief and an observation, what can we say about thestate of belief that results from accepting this observation?2. Given a new state of belief and the observation that has led to it, what can wesay about the initial state of belief?That is, the choice between support scaling and unscaling is a choice between pre-dicting belief changes and explaining them. I �nd the �rst more intuitive as a toolfor formalizing belief change. I believe it is more natural for people to predict howtheir beliefs would change as they obtain more information than to explain why theirbeliefs could have changed in a particular way.

34 CHAPTER 3. ABSTRACT CONDITIONALIZATION3.5 Patterns of plausible reasoningThe ultimate objective of much work in AI|most notably on nonmonotonic logics|is to capture patterns of plausible reasoning in nonnumerical terms. George Polya(1887{1985) was one of the �rst mathematicians to attempt a formal characteriza-tion of qualitative human reasoning. Polya identi�ed �ve main patterns of plausiblereasoning and demonstrated that they can be formalized using probability theory[Polya, 1954, Chapter XV]. Pearl highlighted these patterns in his recent book [Pearl,1988] and took them|along with other patterns such as nonmonotonicity, abduction,explaining{away, and the law of the hypothetical middle [Pearl, 1988, Page 19]|asevidence for the indispensability of probability theory in formalizing plausible reason-ing. In his own words:We take for granted that probability calculus is unique in the way ithandles context{dependent information and that no competing calculusexists that closely covers so many aspects of plausible reasoning [Pearl,1988, Page 20].I show in this section that four of Polya's patterns of plausible reasoning hold withrespect to abstract states of belief and their conditionalizations. But �rst, I need toformally de�ne certain terms that Polya used in stating his patterns:� To \verify," or \prove," a proposition is to accept it.� To \explode" a proposition is to reject it.� The \credibility of," or \con�dence in," a proposition is its degree of support.Four of Polya's patterns of plausible reasoning follow. These patterns have theform, If something holds about a state of belief, then something else holds aboutits conditionalizations. The statement of each pattern is followed by a theorem thatproves the pattern with respect to abstract states of belief and their conditionaliza-tions.

3.5. PATTERNS OF PLAUSIBLE REASONING 35Polya's �rst pattern:Pattern 1 (Examining a consequence) The veri�cation of a consequence ren-ders a conjecture more credible. [Polya, 1954, Page 120]Theorem 3.5.1 If A � B is accepted and B is not rejected by a state of belief �,then �B(A) ���(A) unless �(A) = 0 or �(B) = 1.Polya's second pattern:Pattern 2 (Examining a possible ground) Our con�dence in a conjecture canonly diminish when a possible ground for the conjecture has been exploded. [Polya,1954, Page 123]Theorem 3.5.2 If A � B is accepted and :A is not rejected by a state of belief �,then �:A(:B) ���(:B) unless �(:B) = 0 or �(:A) = 1.Polya's third pattern:Pattern 3 (Examining a con
icting conjecture) Our con�dence in a conjecturecan only increase when an incompatible rival conjecture has been exploded. [Polya,1954, Page 124]Theorem 3.5.3 If A ^ B is rejected and :A is not rejected by a state of belief �,then �:A(B) ���(B) unless �(B) = 0 or �(:A) = 1.Polya's fourth pattern:Pattern 4 (Examining several consequences in succession) The veri�cation ofa new consequence enhances our con�dence in the conjecture, unless the new conse-quence is implied by formerly veri�ed consequences [Polya, 1954, Page 125].The condition, \the new consequence is implied by formerly veri�ed consequences,"means that the conditional probability of the new consequence given the formerlyveri�ed consequences is one [Polya, 1954]. With respect to abstract states of belief andtheir conditionalizations, this condition becomes, \the new consequence is maximallysupported given formerly veri�ed consequences."Theorem 3.5.4 If A � C1; . . . ; A � Cn is accepted and C1^. . .^Cn is not rejected bya state of belief �, then �C1^...^Cn�1(A) �� �C1^...^Cn(A) unless �C1^...^Cn�1(Cn) = 1.

36 CHAPTER 3. ABSTRACT CONDITIONALIZATION

Chapter 4Independence and BeliefExtractionTo specify an abstract state of belief over n primitive propositions, one needs to specify2n degrees of support. This is unrealistic and counterintuitive: Specifying a state ofbelief over 100 propositions should not require 1267650600228229401496703205376degrees of support! In this chapter, I present a solution to this problem that is adirect generalization of a similar solution for specifying probabilistic states of belief.4.1 The intuitionThis chapter is based on a key observation in the probabilistic literature [Pearl, 1988].Observation 4.1.1 Assertions of the form, Observing A does not change the beliefin B, reduces the exponential number of supports required to specify a state of belief.In particular, when an expert says that observing A does not change her belief in B,this statement can be viewed as a constraint on the expert's state of belief �:�A(B) = �(B) and �A(:B) = �(:B):The more constraints of the above form, the lower the number of supports requiredto specify a state of belief. Indeed, it is possible to reduce the exponential number ofrequired supports to a linear number. 37

38 CHAPTER 4. INDEPENDENCE AND BELIEF EXTRACTIONFor example, an expert might tell us that for every proposition i, observing propo-sitions 1; . . . ; i�1 does not change her belief in i. This information, together with theexpert's belief in proposition i, speci�es her state of belief completely. To see why,note that a state of belief over propositions 1; . . . ; n is determined by the supportfor each sentence of the form [:]1 ^ . . .^ . . . [:]n, where [:] means that the negationsign may or may not appear. The support for sentences of this form are computed asfollows: �([:]1 ^ . . . ^ . . . [:]n)= �[:]1^...̂ ...[:]n�1([:]n)
�[:]1^...̂ ...[:]n�2([:]n�1)
 . . .
 �([:]1)= �([:]n)
 �([:]n�1)
 . . .
 �([:]1):That is, using Observation 4.1.1, the number of supports required to specify a state ofbelief over n propositions could be reduced from 2n to 2n, an exponential reduction.If observing A does not change the belief in B, we say that A is independentfrom B. Observation 4.1.1 can then be rephrased as follows: Independence assertionsreduce the exponential number of supports required to specify a state of belief.What makes Observation 4.1.1 so powerful in extracting states of belief is thatit sets the basis for a claim and a result to be discussed in Section 4.3. The claimconcerns inducing independence assertions from the causal structure underlying adomain of interest. The result concerns the number of degrees of support required tocomplete the speci�cation of a state of belief that is partially speci�ed by a causalstructure. The following section explores the notion of independence in more detail,which paves the way for Section 4.3.

4.2. INDEPENDENCE AMONG PROPOSITIONS 394.2 Independence among propositionsSection 4.1 talked about the independence of one sentence from another. Anothermeaningful and very useful notion, as we shall see, is the independence of one setof propositions from another. The intuition here is that a set of propositions J isindependent from another set I if observing any state of propositions J does notchange the support for any state of propositions I. The notion of a state is de�nedmore formally as follows.De�nition 4.2.1 A state of a primitive proposition i, written i, is either i or :i. Astate of a set of primitive propositions I, written I, is î2I i.For example, D and :D are the states of proposition D, while D^E, D^:E, :D^E,and :D ^ :E are the states of propositions fD;Eg.De�nition 4.2.2 A state of belief � �nds I independent from J , written IN �(I; J),precisely when �J(I) = �(I) for all I and every J that is not rejected by �.Independence is nonmonotonic. It is possible for a state of belief to �nd one setof propositions independent from another, but then �nd it dependent after recordingan observation. It is also possible for dependent propositions to become independentwhen more observations are recorded. Below are some examples.1. i is dependent on j initially, but it becomes independent from j once k is ob-served. In Figure 1, the outputs of the AND gates are dependent on each other,but they become independent once input k is observed. This is an example ofconditional independence.2. i is independent from j initially, but it becomes dependent on j once k is ob-served. In Figure 1, the inputs to the XOR gate are independent from eachother, but they become dependent once output k is observed. This is an exam-ple of conditional dependence.

40 CHAPTER 4. INDEPENDENCE AND BELIEF EXTRACTION
AND AND

k

i j k

i j

XORFigure 1: On the left, i is dependent on j initially, but it becomes independent from j once k isobserved. On the right, i is independent from j initially, but it becomes dependent on j once k isobserved.In general, a set of propositions I is conditionally independent from another setJ given a third set of propositions K if I is unconditionally independent from J oncethe state of propositions K is observed. Therefore, conditional independence couldbe de�ned in terms of unconditional independence as given below.De�nition 4.2.3 A state of belief � �nds I independent from J given K, writtenIN �(I;K; J), precisely when IN �K (I; J) for every K that is not rejected by �.It is more customary to de�ne conditional independence without appealing tounconditional independence. Although I �nd De�nition 4.2.3 more intuitive, I providethe following result for the sake of completeness.Corollary 4.2.4 A state of belief � �nds I independent from J given K preciselywhen �J^K(I) = �K(I)for all I and every J ^K that is not rejected by �.

4.3. EXTRACTING A STATE OF BELIEF 414.3 Extracting a state of beliefObservation 4.1.1 is powerful in extracting states of belief because of a claim thatindependence assertions are induced by the \causal structure" underlying the domainof interest. Let me �rst de�ne the notion of a causal structure and then state theclaim.De�nition 4.3.1 A causal structure over primitive propositions N is a binary rela-tion DC � N �N , where i DC j reads as i directly causes j. We say that i causesj (or, j is an e�ect of i) precisely when1. i directly causes j, or2. i causes k and k directly causes j.In a causal structure, a proposition cannot cause itself.It is common to represent a causal structure using a directed acyclic graph. Forexample, the causal structureRain directly causes Slippery RoadRain directly causes Wet GrassSprinkler On directly causes Wet Grassis depicted graphically in Figure 2. We simply create a node for each primitiveproposition, and then add an arc from node i to node j precisely when i directly causesj. By de�nition of a causal structure, the resulting directed graph is guaranteed tobe acyclic.Below is a key claim that underlies the way independence assertions are inducedin many practical applications.Claim 4.3.2 The expert who identi�es a causal structure �nds a propositionindependent from its non{e�ects given its direct causes.

42 CHAPTER 4. INDEPENDENCE AND BELIEF EXTRACTION
Slippery Road

Sprinkler On

Wet Grass

Rain

Figure 2: A graphical representation of a causal structure.The intuition here is that information about the non{e�ects of a proposition is rele-vant to the proposition only because it conveys information about its direct causes.Therefore, the information becomes useless once the state of direct causes is known.For example, in Figure 2, information about Slippery Road is relevant to Wet Grassonly because it conveys information about Rain. However, once the state of Rain isknown, information about Slippery Road is no longer relevant to Wet Grass.In practical applications, it is common to ask a domain expert to identify a causalstructure, and then use Claim 4.3.2 to induce constraints on the state of belief held bythe expert. The soundness of this practice hinges on the correctness of Claim 4.3.2,which must be relative to some formal de�nition of causation. However, due to thelack of a universally accepted de�nition of causation, we are in no position to providea satisfactory proof of Claim 4.3.2. Nevertheless, the role played by Claim 4.3.2 inpractical applications is not minor.Given the discussion of Section 4.1, and Claim 4.3.2, an expert who identi�es acausal structure is in fact supplying us with constraints on her state of belief. We haveseen in Section 4.1 how these constraints reduce the exponential number of supportsrequired to specify a state of belief. This section focuses on the supports needed tocomplete the speci�cation of a state of belief.One completes the speci�cation of a state of belief by quantifying a causal struc-ture. Quanti�cation is the process in which an expert assesses her support for each

4.3. EXTRACTING A STATE OF BELIEF 43primitive proposition given a particular state of its direct causes. For example, thenode Slippery Road in Figure 2 is quanti�ed by providing four conditional supports:1. The conditional support for Slippery Road given Rain.2. The conditional support for Slippery Road given :Rain.3. The conditional support for :Slippery Road given Rain.4. The conditional support for :Slippery Road given :Rain.These supports constitute the quanti�cation of node Slippery Road. The quanti�ca-tion of node Wet Grass, however, consists of eight conditional supports because thereare four possible states of the direct causes of Wet Grass.A quanti�ed causal structure is called a causal network and is usually depictedgraphically using two components:� A direct acyclic graph, which speci�es a causal structure.� A set of tables, which contain node quanti�cations. Each node has a tableassociated with it. The table has two columns corresponding to the states ofthe node. It has one row for each state of the node's direct causes. Each entryin the table is a support for some state of the node conditioned on a particularstate of its direct causes. The entries of each row must sum up to the fullsupport.Figure 3 depicts a causal network with respect to the support structure h[0; 1];+; =i.Figure 4 depicts another causal network but with respect to the support structurehf0; 1; . . . ;1g;min;�i. The causal networks in Figures 3 and 4 share the same causalstructure, but they di�er in the way they are quanti�ed. We shall look at moremethods of quanti�cation in the following chapters.The formal de�nition of a causal network is given below.

44 CHAPTER 4. INDEPENDENCE AND BELIEF EXTRACTION
Not SlipperySlippery

.8 .2

.05 .95No Rain

Rain

Dry

.99

.85

.98

.01

.01

.15

.99

.02

Wet

Rain and On

Rain and Off

No Rain and On

No Rain and Off

Probabilistic Causal Network

On

.5.5

OffRain No Rain

01

Rain Sprinkler On

Wet GrassSlippery Road

Figure 3: A probabilistic causal network. The top left entry of the bottom left table reads, Theprobability of Rain given Slippery Road is .8.Notation i� denotes the parents of node i. L(N) denotes a propositional languageconstructed from primitive propositions N .De�nition 4.3.3 A causal network with respect to a support structure hS;�;�i is atriple hN;G; CSi, where� N is a set of primitive propositions.� G is a directed acyclic graph over N .� CS is a partial function L(N)� L(N)! S such that{ CS i�(i) is de�ned, and{ CS i�(i)� CS i�(:i) = 1,for every node i.CS is called a conditional support function.

4.3. EXTRACTING A STATE OF BELIEF 45
On OffRain No Rain

Not SlipperySlippery

No Rain

Rain

DryWet

Rain and On

Rain and Off

No Rain and On

No Rain and Off

0 17

44 0

0 63

20

0

63 0

57

0

0 0 0

Spohnian Causal Network

infinity

Rain Sprinkler On

Wet GrassSlippery Road

Figure 4: A Spohnian causal network. The top left entry of the bottom left table reads, Theimpossibility of Rain given Slippery Road is 0.A causal network consists of two sets of constraints on a state of belief. The �rstset is about independence assertions, while the second is about conditional supports.Since the goal of constructing a causal network is to specify a state of belief, it is mostimportant to know whether a given state of belief satis�es the constraints imposedby a causal network.Notation i/ denotes the non{descendents of node i.De�nition 4.3.4 A state of belief � over propositions N satis�es a causal networkhN;G; CSi precisely whenIN�(i; i�; i/ n i�) and �i�(i) = CS i�(i) for every node i.If we view a causal network as a set of constraints, then the de�nition of a causalnetwork does not always guarantee the consistency of these constraints. Althoughwe can �nd a state of belief that satis�es the independences asserted by a causalstructure, it is not always possible to �nd a state of belief that satis�es the conditionalsupports quantifying the causal structure. However, causal networks with respect to

46 CHAPTER 4. INDEPENDENCE AND BELIEF EXTRACTIONa distributive and bijective support structure are always consistent.Theorem 4.3.5 An abstract causal network that is induced with respect to a distribu-tive and bijective support structure is satis�ed by exactly one state of belief.Probabilistic and Sphonian causal networks are induced with respect to distributiveand bijective support structures.

4.4. MORE ON INDEPENDENCE 474.4 More on independenceLet me summarize what I have done so far.I started with the problem of having to provide too many degrees of support inorder to specify a state of belief. I then observed that the number of supports canbe reduced if one utilizes independence assertions. I followed this observation by theclaim that independence assertions are induced by the causal structure of the domainof interest. I concluded, therefore, that by appealing to causal structures, one canreduce the number of degrees of support required to specify a state of belief.In addition to this representational role, independence assertions play a majorcomputational role, as we shall see in Chapter 5. But to utilize independence asser-tions computationally, we need to know more about their properties. Some of theseproperties are discussed in Section 4.4.1. We also need to retrieve the independencesasserted by a causal network without having to reconstruct the state of belief satis-fying the network. A retrieval method, which examines only the topology of a causalnetwork, is discussed in Section 4.4.2.4.4.1 Properties of independenceIn this section, I discuss �ve properties of independence. The �rst four are knownas the graphoid axioms [Pearl, 1988] and hold with respect to any support structure.The �fth property, however, is shown to hold with respect to a restricted class ofsupport structures.Independence 1 (Symmetry) If I is independent from J , then J is alsoindependent from I.Theorem 4.4.1 IN �(I;K; J) precisely when IN�(J;K; I).By examining the proof of Theorem 4.4.1, we see that Symmetry of independencehinges on Property (Y4) of support scaling.Independence 2 (Decomposition) If I is independent from J , then it is also in-dependent from any subset of J .

48 CHAPTER 4. INDEPENDENCE AND BELIEF EXTRACTIONTheorem 4.4.2 If IN �(I;K; J [L); then IN�(I;K; J).To see why this property holds, recall that if I is independent from J [L, thenJ [L is also independent from I. Hence, observing any sentence I does not changethe support for any sentence J ^ L. But this also means that observing any sentenceI does not change the support for any sentence L. This follows from�(L) =MJ �(J ^ L):Independence 3 (Weak Union) If I is independent from J [L, then I is inde-pendent from J given L.Theorem 4.4.3 If IN �(I;K; J [L), then IN �(I;K [J;L).If I is independent from J [L, then Decomposition and Symmetry tell us thatJ and L are also independent from I. Therefore, in the context of these properties,Weak Union says: If I is independent from J , then it remains independent given anindependent L.To see why Weak Union holds, suppose that observing some L makes I dependenton J . That is, observing L and then observing some J changes the support for someI. Therefore, observing L ^ J changes the support for I. But this is a contradictionbecause I is independent from J [L .The above proof of Weak Union assumes that consecutive observations have thesame e�ect on a state of belief as simultaneous observations. This assumption issatis�ed by De�nition 3.1.11: The states �A^B and (�A)B are equivalent if either isde�ned. This result is stated by Theorem 3.1.13.Independence 4 (Contraction) If I is independent from J , and if I is independentfrom L given J , then I is also independent from J [L .Theorem 4.4.4 If IN �(I;K; J) and IN �(I;K [J;L), then IN �(I;K; J [L).Contraction holds because simultaneous observations have the same e�ect on astate of belief as consecutive observations. That is, observing J followed by observing

4.4. MORE ON INDEPENDENCE 49L leads to the same state of belief as observing J ^ L. The premise of Theorem 4.4.4says that observing J does not change the support for I and neither does observingL consequently. It follows that observing J ^ L does not change the support for I,which is the consequence of Theorem 4.4.4.Together, Decomposition, Weak Union, and Contraction, say thatIN �(I;K; J) and IN�(I;K [J;L) precisely when IN �(I;K; J [L):That is, I is independent from J [L precisely when I is independent from J and Iis independent from L given J .Independence 5 (Intersection) If I is independent from J given L, and if I isindependent from L given J , then I is also independent from J [L.Theorem 4.4.5 If the state of belief � is with respect to a distributive support struc-ture, and if false is the only sentence rejected by �, thenIN �(I;K [L; J) and IN �(I;K [J;L) only if IN �(I;K; J [L).4.4.2 Retrieving independence assertionsThere is a topological test on directed acyclic graphs, called d{separation, that tellsus whether two sets of nodes are d{separated by a third set [Pearl, 1988]. The d{separation test could be viewed as a relation IN G � N �N �N where IN G(I;K; J)holds precisely when K d{separates I from J in the directed acyclic graph G. Theimportance of d{separation stems from the following result [Verma, 1986]:Theorem 4.4.6 Let � be the state of belief satisfying a causal network hN;G; CSi.If K d{separates I from J in the graph, then the state of belief � �nds I independentfrom J given K. That is, IfIN G(I;K; J), then IN �(I;K; J).That is, d{separation allows us to infer many of the independences in a state of beliefby examining the topology of the corresponding causal network. These independenceswill be very useful in deriving an algorithm for computing degrees of support, whichis presented in Chapter 5.The following de�nition is required to state d{separation:

50 CHAPTER 4. INDEPENDENCE AND BELIEF EXTRACTION
Linear ConvergingDiverging

i

j

k

i

j k

j

i

k

Figure 5: There are three types of intermediate nodes on a given path. The type of a node isdetermined by its relation to its neighbors. A node is diverging if both neighbors are children. Anode is linear if one neighbor is a parent and the other is a child. A node is converging if bothneighbors are parents.De�nition 4.4.7 Let G be a directed acyclic graph and let I, J , and K be threedisjoint sets of nodes in G. A path between I and J is K{active precisely when itsnodes satisfy the following conditions:1. A converging node belongs to K or has a descendent in K.2. A diverging or linear node is outside K.See Figure 5 for the de�nition of converging, diverging, and linear nodes.De�nition 4.4.8 ([Pearl, 1988]) In a directed acyclic graph G, nodes K d{separateI from J , written IN G(I;K; J), precisely when there is no K{active path between Iand J in G.I conclude this chapter by the following observation: Applying the test of d{separation to a causal network is sound but not complete in terms of retrieving theindependences in the corresponding state of belief. That is, some of the independencesin a state of belief cannot be discovered by applying d{separation to the corresponding

4.4. MORE ON INDEPENDENCE 51
Wet Grass Not Wet Grass

No Rain

Rain .8

.3

.2

.7

Wet Shoes Not Wet Shoes

Wet Grass
Not Wet Grass

.5

.5

.5

.5.1 .9

Rain No Rain

Rain Wet Grass Wet Shoes

Figure 6: A probabilistic causal network.causal network. The causal network given in Figure 6 is such an example. There, d{separation tells us that Wet Grass is not d{separated from Wet Shoes , which meansthat Wet Grass is dependent on Wet Shoes. However, the state of belief speci�ed bythis causal network �nds Wet Shoes independent from Wet Grass.

52 CHAPTER 4. INDEPENDENCE AND BELIEF EXTRACTION

Chapter 5Independence and BeliefComputationIn this chapter, I present an algorithm for computing the belief in every node ofan abstract causal network. The algorithm is a direct generalization of the polytreealgorithm, which is well{known in the probabilistic literature.5.1 IntroductionConsider the causal network given in Figure 7, and suppose that we want to computethe belief in Node 0 given the observation 22 ^ 30 ^ :39. This is an instance of thecomputational problem I address in this chapter.The probabilistic literature provides a number of algorithms for performing thiscomputation with respect to probabilistic causal networks. For example, when thecausal network is singly connected, the belief in a node can be computed using thepopular polytree algorithm [Pearl, 1988; Peot and Shachter, 1991].1 The probabilisticliterature also provides a number of methods for extending the polytree algorithm tomultiply connected networks.In this chapter, I show that a direct generalization of the probabilistic polytree1A network is singly connected if every two nodes are connected by at most one undirected path.The causal network given in Figure 7 is singly connected.53

54 CHAPTER 5. INDEPENDENCE AND BELIEF COMPUTATION
0

1 2 3

4 5

6 8

9

10 11 12

13

14 15 17

18 19

20

21 22

23

24

25

26 27

28 29

30

31

33

34

35 36

37 38

39

40 41

42 43

44 45 46 47

48

50 51

52 53

54 55

56

57

60 61

62 63 64

32

5949

16

7

58Figure 7: A singly connected causal network. There is at most one undirected path between anytwo nodes.algorithm can be used to compute beliefs in abstract causal networks. I also showhow the method of conditioning, which is well{known in the probabilistic literature,can be used to extend the abstract polytree algorithm to multiply connected causalnetworks.The abstract polytree algorithm is introduced in Section 5.2 and given in Sec-tion 5.3. Control
ow in this algorithm is discussed in Section 5.4, while its computa-tional complexity is discussed in Section 5.5. The method of conditioning is discussedin Section 5.6. In Chapter 6, I present a Common Lisp implementation of the abstractpolytree algorithm.

5.2. INTRODUCING THE ABSTRACT POLYTREE ALGORITHM 555.2 Introducing the abstract polytree algorithmThe probabilistic polytree algorithm computes a pair of probabilities,hPr(i j �);Pr(:i j �)i;for each node i in a causal network. Here, Pr is the probabilistic state of beliefsatisfying the given causal network, and � is an observed state of some nodes inthe network [Pearl, 1988]. A modi�cation to this algorithm, suggested by Peot andShachter, computes a di�erent pair of probabilities,hPr(i ^ �);Pr(:i ^ �)i;for each node in the network [Peot and Shachter, 1991]. The �rst pair of probabilitiescan be obtained easily from the second pair because of the following equalities:Pr(�) = Pr(i ^ �) + Pr(:i ^ �);Pr(i j �) = Pr(i ^ �)=Pr(�):Although both algorithms can be used to compute the conditional probability ofsome node given an observation, the modi�ed polytree algorithm is preferred if theprobability of the observation is desired. I shall, therefore, generalize the modi�edpolytree algorithm.5.2.1 Breaking down the computationThe input to the abstract polytree algorithm is� hN;G; CSi, an abstract causal network, and� �; a state of some nodes in N .The output of the algorithm is a pair of supports for each node i,� h�(i ^ �);�(:i ^ �)i; which is denoted by BLi,

56 CHAPTER 5. INDEPENDENCE AND BELIEF COMPUTATIONwhere � is the state of belief satisfying the causal network hN;G; CSi.When node i has n parents and m children, the abstract polytree algorithm breaksdown the computation of the pair BLi into n + m computations involving n + msubnetworks. Each of the �rst n subnetworks consists of nodes connected to nodei via an incoming arc, while each of the following m subnetworks consists of nodesconnected to node i via an outgoing arc. Since the causal network is singly connected,these subnetworks are guaranteed to be disjoint. For example, the computation ofBL0 is broken down into �ve computations involving the �ve subnetworks in Figure 8.I show next the elements of this breakdown of computation in three stages.The �rst stageIn the �rst stage, the computation of the pair BLi is broken down into two com-putations:� h�(i ^ �i/);�(:i ^ �i/)i, which is denoted by �i.� h�i(�i.);�:i(�i.)i, which is denoted by �i.Here, �i/ is the observation about non{descendents of node i, and �i. is the observationabout descendents of node i. When node i is not observed, the observation � isequivalent to the conjunction of observations �i/ and �i..For example, the computation of BL0 in Figure 8 is broken down into two com-putations:� h�(0 ^ �0/);�(:0 ^ �0/)i, denoted by �0.� h�0(�0.);�:0(�0.)i, denoted by �0.Here, �0/ is 22 ^ 30 ^ :39 and �0. is 50 ^ 54.The second stageIn the second stage, the computation of the pair �i is broken down into a numberof computations, each of which is associated with a parent j of node i:� h�(j ^ �i/j);�(:j ^ �i/j)i, which is denoted by �j:i.

5.2. INTRODUCING THE ABSTRACT POLYTREE ALGORITHM 57

0

1 2 3

4 5

6 8

9

10 11 12

13

14 15 17

18 19

20

21 22

23

24

25

26 27

28 29

30

31

33

34

35 36

37 38

39

40 41

42 43

44 45 46 47

48

50 51

52 53

54 55

56

57

60 61

62 63 64

32

5949

16

7

58Figure 8: The computation breakdown for belief in Node 0 given the observation 22 ^ 30 ^ :39^50 ^ 54 .

58 CHAPTER 5. INDEPENDENCE AND BELIEF COMPUTATIONHere, �i/j is the observation about nodes connected to node i via the incoming arcj ! i.For example, the computation of �0 in Figure 8 is broken down into three com-putations:� h�(1 ^ �0/1);�(:1 ^ �0/1)i, denoted by �1:0.� h�(2 ^ �0/2);�(:2 ^ �0/2)i, denoted by �2:0.� h�(3 ^ �0/3);�(:3 ^ �0/3)i, denoted by �3:0.Here, �0/1 is 22 ^ 30, �0/2 is true and �0/3 is :39.The third stageIn the third stage, the computation of the pair �i is broken down into a numberof computations, each of which is associated with a child k of node i:� h�i(�i.k);�:i(�i.k)i, which is denoted by �k:i.Here, �i.k is the observation about nodes connected to node i via the outgoing arci! k.For example, the computation of �0 in Figure 8 is broken down into two compu-tations:� h�0(�0.4);�:0(�0.4)i, denoted by �4:0.� h�0(�0.5);�:0(�0.5)i, denoted by �5:0.Here, �0.4 is 50 and �0.5 is 54.Justifying the breakdownThe justi�cation for the above computational breakdowns is based on:1. An assumption that only leaf nodes having single parents could be observed ina causal network. As we shall see in Section 5.2.3, this assumption does notcompromise the generality of the abstract polytree algorithm: Every observationabout a node in a causal network can be simulated by an observation about anauxiliary leaf node having only one parent.

5.2. INTRODUCING THE ABSTRACT POLYTREE ALGORITHM 592. The independences asserted by a causal network. These independences arediscussed in Section 5.2.4.5.2.2 The message{passing paradigmWhen each node i in a causal network stores its conditional belief given every state ofits parents, that is, hCS i�(i); CSi�(:i)i, the abstract polytree algorithm can be viewedas a process involving the following steps:1. Node j computes the pair �j:i and sends it as a message to its child i.2. Node k computes the pair �k:i and sends it as a message to its parent i.3. Node i combines the messages �j:i it receives from its parents to yield the pair �i.4. Node i combines the messages �k:i it receives from its children to yield thepair �i.5. Node i combines the pairs �i and �i to yield the pair BLi.Given this view, the abstract polytree algorithm is speci�ed by answering the followingquestions:1. How should node i compute the message it must send to a parent?2. How should node i compute the message it must send to a child?3. How should node i combine the messages it receives from its parents?4. How should node i combine the messages it receives from its children?5. How should node i combine the pairs �i and �i to yield the pair BLi?6. When should node i send a message to a parent?7. When should node i send a message to a child?The �rst �ve questions are answered in Section 5.3, while the last two questions areanswered in Section 5.4. Before I move to these sections, I elaborate on the basicjusti�cations for the abstract polytree algorithm in the next two sections.

60 CHAPTER 5. INDEPENDENCE AND BELIEF COMPUTATION5.2.3 Simulating observationsThe abstract polytree algorithm assumes that observations are available only aboutleaf nodes having single parents. This assumption simpli�es the algorithm, but doesnot a�ect its generality. I explain why in this section.Given a state of belief � over propositions N , we can simulate the observationof proposition i that belongs to N by the observation of an additional proposition kthat does not belong to N . In particular, let us create a new state of belief 	 overpropositions N [fkg such that� 	(N n fig ^ i ^ k) = �(N n fig ^ i).� 	(N n fig ^ :i ^ :k) = �(N n fig ^ :i).� 	(N n fig ^ i ^ :k) = 0.� 	(N n fig ^ :i ^ k) = 0.The new state of belief has three important properties. First, it agrees with the oldstate of belief on any sentence of the form N . Second, it accepts the sentence i � k.Third, it �nds proposition k independent from propositions N n fig given propositioni. Hence, accepting or rejecting proposition k in the new state of belief has the samee�ect as accepting or rejecting proposition i.Therefore, we can extend a causal network that represents a state of belief, suchas �, to a causal network that represents a new state of belief, such as 	, by doingthe following:1. Creating a new node k,2. making node k a child of node i, and3. quantifying the causal connection from node i to node k as follows:CS i(k) = 1CS i(:k) = 0CS:i(k) = 0CS:i(:k) = 1:

5.2. INTRODUCING THE ABSTRACT POLYTREE ALGORITHM 61The newly created node k has the property of being a leaf node with only a singleparent i. Therefore, we can simulate an observation about any node in a causalnetwork by an observation about a newly created leaf node that has a single parent.For example, observation 0 in the causal network of Figure 7 can be simulated byobservation 65 after Node 65 is created as given in Figure 9. Similarly, Nodes 66and 67 are added to simulate observations about Nodes 45 and 14, respectively.The abstract polytree algorithm refers to four classes of nodes:Root nodes, which have no parents.Normal nodes, which have at least one parent and at least one child.Observed leaf nodes, which have no children and are observed.Non{observed leaf nodes, which have no children but are not observed.Let me repeat here that observed leaf nodes are added to a causal network in order tosimulate observations about other nodes. Moreover, since observed nodes are alwaysleaf nodes having single parents, root, normal and leaf nodes having multiple parentscannot be observed.In Figure 9, Node 20 is root, Node 0 is normal, Nodes 50 and 65 are observedleafs, and Node 21 is a non{observed leaf.5.2.4 The independences of singly connected networksThe abstract polytree algorithm is based on four independences that are asserted byevery singly connected network. (Recall, a network is singly connected if it has atmost one undirected path between any two nodes | the network given in Figure 7 isan example.) I state these independence assertions now to use them later in derivingthe abstract polytree algorithm.Theorem 5.2.1 Let I be some non{descendents of node i, J be some descendentsof node i, and K be a set of nodes disjoint from I and J . If K includes i, then I isindependent from J given K.

62 CHAPTER 5. INDEPENDENCE AND BELIEF COMPUTATION

58

67

0

1 2 3

4 5

6 7 8

9

10 11 12

13

14 15

16

17

18 19

20

21 22

23

24

25

26 27

28 29

30

31

32 33

34

35 36

37 38

39

40 41

42 43

44 45 46 47

48

49 50 51

52 53

54 55

56

57 59

60 61

62 63 64

65

P65 not P65

1

1

0

0not P0

P0

66

Figure 9: A singly connected network with an observation, 22^ 30 ^ :39 ^ 50 ^ 54 ^ 65 ^ 66^ 67. Nodes 22, 30, 39, 50, 54, 65, 66, and 67 are added to the network to simulate observations aboutnodes 6, 9, 12, 16, 17, 0, 45 and 14, respectively.

5.2. INTRODUCING THE ABSTRACT POLYTREE ALGORITHM 63In Figure 9, Nodes f22, 30, 39g are independent from Nodes f50, 54, 65, 66, 67g givenNode 0. As we shall see in Section 5.3.1, Theorem 5.2.1 is the basis for breaking downthe computation of the pair BLi into the computation of the pairs �i and �i.Theorem 5.2.2 Let I and J be sets of nodes connected to node i via disjoint outgoingarcs. Then I is independent from J given i.In Figure 9, Nodes f50, 66, 67g are independent from Nodes f54, 65g given Node 0.As we shall see in Section 5.3.2, Theorem 5.2.2 is the basis for breaking down thecomputation of the pair �i into the computation of the pairs �k:i.Theorem 5.2.3 Let K be some parents of node i, and let J be set of nodes disjointfrom K and connected to node i via nodes in K. Then i is independent from Jgiven K.In Figure 9, Nodes f22, 30, 39g are independent from Node 0 given Nodes f1, 2, 3g.Theorem 5.2.4 Let I and J be sets of nodes connected to node i via disjoint incom-ing arcs. Then I is independent from J .In Figure 9, Nodes f1, 22, 30g are independent from Nodes f3, 39g. As we shallsee in Section 5.3.3, Theorems 5.2.3 and 5.2.4 are the basis for breaking down thecomputation of the pair �i into the computation of the pairs �j:i.The independence assertions discussed in this section have uses that go beyondwhat I have mentioned here. In particular, these assertions can be used to show thatthe message sent by a node to a neighbor can be computed form the messages receivedby the node from other neighbors. This is discussed in more detail in Section 5.3.In the next section, I discuss some notational conventions that are useful forSection 5.3.

64 CHAPTER 5. INDEPENDENCE AND BELIEF COMPUTATION5.2.5 Manipulating pairs of supportThe abstract polytree algorithm maintains a number of support pairs with each nodei. The �rst component of each pair is related to proposition i and is called thei{component of that pair. The second component is related to the negation of propo-sition i and is called the :i{component of that pair. These components are accessedas follows: ha; bi(i) def= aha; bi(:i) def= b:The following operations are also de�ned on pairs:ha; bi
 hc; di def= ha
 c; b
 diha; bi � hc; di def= ha� c; b� dic
 ha; bi def= hc
 a; c
 biha; bi � c def= ha� c; b� ci:

5.3. THE ABSTRACT POLYTREE ALGORITHM 655.3 The abstract polytree algorithmI present the abstract polytree algorithm in this section by showing how to computeand combine the messages exchanged between nodes in a causal network. I alsogive concrete examples of message computation and combination with respect tocomputing the belief in Node 0, which appears in Figure 9, given the observation� = 22 ^ 30 ^ :39 ^ 50 ^ 54 ^ 65 ^ 66 ^ 67:5.3.1 BeliefThe pair BLi is called the belief in node i. The following theorem shows how tocompute this pair.Theorem 5.3.1 Let i be a non{observed node in a singly connected causal network.If BLi def= h�(i ^ �);�(:i ^ �)i;�i def= h�(i ^ �i/);�(:i ^ �i/)i;�i def= h�i(�i.);�:i(�i.)i;then BLi = �i
 �i:According to this theorem, the belief in Node 0 is given byh�(0 ^ �0/);�(:0 ^ �0/)i| {z }�0 h�0(�0.);�:0(�0.)i�0;where �0/ = 22 ^ 30 ^ :39;�0. = 50 ^ 54 ^ 65 ^ 66 ^ 67:Computing the belief in Node 0 can be viewed as the aggregate of two computa-tions. First, the computation of the pair �0, which depends only on nodes connectedto Node 0 via incoming arcs. And second, the computation of the pair �0, whichdepends only on nodes that are connected to Node 0 via outgoing arcs. These sets ofnodes are shown in Figure 10.In the following sections, I show how to compute the pairs �0 and �0, whichcompletes the computation of belief in Node 0.

66 CHAPTER 5. INDEPENDENCE AND BELIEF COMPUTATION

67

0

1 2 3

4 5

6 7 8

9

10 11 12

13

14 15

16

17

18 19

20

21 22

23

24

25

26 27

28 29

30

31

32 33

34

35 36

37 38

39

40 41

42 43

44 45 46 47

48

49 50 51

52 53

54 55

56

57 58 59

60 61

62 63 64

66 65

Figure 10: Computing the belief in Node 0 can be viewed as the aggregate of two computationsinvolving the subnetworks shown above.

5.3. THE ABSTRACT POLYTREE ALGORITHM 675.3.2 Diagnostic supportThe pair �i is called the diagnostic support for node i. It is computed as follows.Notation i� denotes the children of node i.Theorem 5.3.2 Let i be a non{observed node in a singly connected network.If �k:i def= h�i(�i.k);�:i(�i.k)i;then �i = Ok2i��k:i:According to Theorem 5.3.2, computing diagnostic support for a node can be brokendown into a number of computations, each of which is associated with a child of thatnode. In Section 5.3.4, I show how to perform each of these subcomputations.The diagnostic support for Node 0 equalsh�0(�0.4);�:0(�0.4)i| {z }�4:0
h�0(�0.65);�:0(�0.65)i| {z }�65:0
h�0(�0.5);�:0(�0.5)i| {z }�5:0 ;where �0.4 = 50 ^ 66 ^ 67;�0.65 = 65;�0.5 = 54:Computing the diagnostic support for Node 0 can then be viewed as the aggregateof three computations. First, the computation of the pair �4:0, which depends onlyon Nodes f4,14-16,44-51g. Next, the computation of the pair �65:0, which dependsonly on Node 65. Finally, the computation of the pair �5:0, which depends only onNodes f5,17-19,52-64g. These sets of nodes are shown in Figure 11.

68 CHAPTER 5. INDEPENDENCE AND BELIEF COMPUTATION

67

66

0

1 2 3

4 5

6 7 8

9

10 11 12

13

14 15

16

17

18 19

20

21 22

23

24

25

26 27

28 29

30

31

32 33

34

35 36

37 38

39

40 41

42 43

44 45 46 47

48

49 50 51

52 53

54 55

56

57 58 59

60 61

62 63 64

65

Figure 11: Computing diagnostic support for Node 0 can be viewed as the aggregate of threecomputations. The �rst computes the belief in observations about nodes in the left subnetworkgiven Node 0. The second computes the belief in observations about nodes in the middle subnetworkgiven Node 0. The third computes the belief in observations about nodes in the right subnetworkgiven Node 0.

5.3. THE ABSTRACT POLYTREE ALGORITHM 695.3.3 Causal supportThe pair �i is called the causal support for node i. It is computed as follows.Theorem 5.3.3 Let i be a non{observed node in a singly connected network.If �j:i def= h�(j ^ �i/j);�(:j ^ �i/j)i;then �i(i) =Mi� CS i�(i)
Oi�j=j �j:i(j):According to this theorem, computing the causal support for a node can be brokendown into a number of computations, each of which is associated with a parent of thenode. In Section 5.3.5, I show how to perform each of these subcomputations.Computing the causal support for Node 0 can be viewed as the aggregate ofthree computations. First, the computation of the pair �1:0, which depends only onNodes f1,6-9,20-30g. Next, the computation of the pair �2:0, which depends only onNodes f2,10-11,31-36g. Finally, the computation of the pair �3:0, which depend onlyon Nodes f3,12-13,37-43g. These sets of nodes are shown in Figure 12.5.3.4 Diagnostic Support to a parentThe pair �i:j is called the diagnostic support form node i to its parent j. It is computedas follows.Notation i�j denotes the parents of node i excluding parent j.Theorem 5.3.4 Let i be a non{observed node in a singly connected network. Then�i:j(j) =Mi �i(i)
Mi�j CS j^i�j(i)
 Oi�jj=l �l:i(l):Moreover, if i is an observed node, then�i:j = 8<: h1;0i; if � j= i;h0;1i; if � j= :i.According to this theorem, when node i is not observed, the message it sends to itsparent j is the result of combining the messages that node i receives from all itsneighbors, except node j.

70 CHAPTER 5. INDEPENDENCE AND BELIEF COMPUTATION

67

66

34

0

1 2 3

4 5

6 7 8

9

10 11 12

13

14 15

16

17

18 19

20

21 22

23

24

25

26 27

28 29

30

31

32 33 35 36

37 38

39

40 41

42

44 45 46 47

48

49 50 51

52 53

54 55

56

57 58 59

60 61

62 63 64

65

43

Figure 12: Computing the causal support for Node 0 can be viewed as the aggregate of threecomputations involving the subnetworks shown above.

5.3. THE ABSTRACT POLYTREE ALGORITHM 715.3.5 Causal support to a childThe pair �i:k is called the support from node i to its child k. It is computed as follows.Notation i�k denotes the children of node i excluding child k.Theorem 5.3.5 Let i be a non{observed node in a singly connected network. Then�i:k = �i
 Ol2i�k �l:i:According to this theorem, the message that node i sends to its child k is the resultof combining the messages that node i receives from all its neighbors, except node k.5.3.6 Summary of the abstract polytree algorithmFollowing is a summary of the computations that each class of nodes performs. Allcomputations are based on node i with parent j and child k.Root nodesCausal support: �i = hCStrue(i); CStrue(:i)i:Diagnostic support: If support from every child is available, then�i = Ok2i��k:i: (4)Belief: If diagnostic support is available, thenBLi = �i
 �i: (5)Support to a child: �i:k = �i
 Ol2i�k �l:i: (6)Support to a parent: Not applicable.

72 CHAPTER 5. INDEPENDENCE AND BELIEF COMPUTATIONNormal nodesCausal support: If support from every parent is available, then�i(i) =Mi� CS i�(i)
Oi�j=j �j:i(j): (7)Diagnostic support: Use Equation 4.Belief: Use Equation 5.Support to a child: Use Equation 6.Support to a parent: If diagnostic support is available and causal support from everyparent except j is also available, then�i:j(j) =Mi �i(i)
Mi�j CSj^i�j(i)
 Oi�jj=l �l:i(l): (8)Non{observed leaf nodesCausal support: Use Equation 7.Diagnostic support: �i = h1;1i.Belief: Use Equation 5.Support to a child: Not applicable.Support to a parent: Use Equation 8.

5.3. THE ABSTRACT POLYTREE ALGORITHM 73Observed leaf nodesCausal support: Not applicable.Diagnostic support: Not applicable.Belief: Available directly from the observation.Support to a child: Not applicable.Support to a parent: �i:j = 8<: h1;0i; if � j= i;h0;1i; if � j= :i. (9)

74 CHAPTER 5. INDEPENDENCE AND BELIEF COMPUTATION
1 2 3

4 5

6 7 8 9

10 11 12Figure 13: A singly connected causal network.5.4 Control
ow in singly connected networksNow that we know how to compute messages, we need to know the order in whichto propagate them. In the following two sections, I discuss two propagation schemesthat are well{known in the probabilistic literature.5.4.1 Backward propagationIn this propagation scheme, one is interested in computing the belief in a particularnode. Backward propagation starts when such a node requests messages from itsneighbors in order to compute its belief. This sparks a chain reaction in which everynode that needs to send a message to a neighbor requests messages from all otherneighbors.Consider the causal network depicted in Figure 13 as an example, and supposethat we want to compute the belief in Node 5. This computation requires the messages�2:5; �3:5; �7:5; �8:5;which are depicted in Figure 14(a).

5.4. CONTROL FLOW IN SINGLY CONNECTED NETWORKS 75

1 2 3

4 5

6 7 8 9

10 11 12

(c)

1 2 3

4 5

7 8 9

10 11 12

6

(a)

1 2 3

4 5

6 7 8 9

10 11 12

(b)

Figure 14: The stages of backward propagation for computing the belief in Node 5.

76 CHAPTER 5. INDEPENDENCE AND BELIEF COMPUTATION
1 2 3

4 5

6 7 8 9

10 11 12Figure 15: The messages exchanged in backward propagation for computing the belief in Node 5.Node 3 is ready to send Message �3:5, but� Node 2 needs Message �4:2 in order to compute Message �2:5.� Node 7 needs Messages �10:7 and �11:7 in order to compute Message �7:5.� Node 8 needs Message �12:8 in order to compute Message �8:5.The required messages are depicted in Figure 14(b). Nodes 10 and 11 are ready tosend Messages �10:7 and �11:7, but� Node 4 needs Messages �1:4 and �6:4 in order to compute Message �4:2.� Node 12 needs Message �9:12 in order to compute Message �12:8.The required messages are depicted in Figure 14(c). Nodes 1, 6, and 9 are readyto compute Messages �1:4, �6:4, and �9:12, respectively. Figure 15 depicts all theintra{node messages needed for computing the belief in Node 5.Below are some observations about the backward propagation shown in Figure 15:

5.4. CONTROL FLOW IN SINGLY CONNECTED NETWORKS 771. There are 11 messages exchanged between nodes, which is the number of arcsin the causal network.2. Only one message is exchanged across each arc and it heads towards Node 5.3. The propagation takes place in three stages, which is the length of the pathbetween Node 5 and the furthest boundary (root or leaf) node.I now formalize backward propagation and then prove that it terminates.The following de�nition says that backward propagation starts when the nodeof interest requests messages from all its neighbors. This sparks a chain reaction inwhich a node requests messages from its neighbors whenever one of these neighborsrequests a message from it.De�nition 5.4.1 (Backward Propagation) Let CN be a singly connected causalnetwork and let i be a node in CN . Backward propagation with respect to hCN ; ii isa sequence of non{empty sets S1; S2; . . ., where� S1 consists of the messages directed to node i.� Sn contains a message from node j to node k if Sn�1 contains a message fromnode k to a node other than j.The sets S1; S2; . . . are called propagation states.The backward propagation in Figure 14 with respect to Node 5 isS1 = f�2:5; �3:5; �7:5; �8:5gS2 = f�4:2; �10:7; �11:7; �12:8gS3 = f�1:4; �9:12; �6:4g:Theorem 5.4.2 Let CN be a singly connected causal network and let i be a node inCN . The number of states in backward propagation with respect to hCN ; ii is no morethan the length of the longest path between node i and any other node in CN .

78 CHAPTER 5. INDEPENDENCE AND BELIEF COMPUTATION5.4.2 Forward propagationIn forward propagation, one is interested in computing the belief in every node of acausal network. One way to compute these beliefs is to use backward propagation oneach node of the network. The number of messages exchanged in this computationwould be the number of nodes in the network multiplied by the number of arcs.In this section, I describe a propagation scheme for computing the belief of ev-ery node of a causal network, which involves only twice the number of messagesexchanged in backward propagation. Again, this propagation scheme is well{knownin the probabilistic literature.Forward propagation starts when every node having a single neighbor sends amessage to this neighbor. This sparks a chain reaction in which each node sends amessage to a neighbor after it has received messages from all other neighbors.Consider the causal network in Figure 13 as an example. Two classes of nodescan send messages to their neighbors immediately. These are root nodes with a singlechild and leaf nodes with a single parent. In the causal network of Figure 13, Nodes1, 3, and 9 fall into the �rst class, and Nodes 6, 10, and 11 fall into the second. Themessages sent by these nodes to their neighbors are depicted in Figure 16(a).Once these messages are sent, a chain reaction is started:1. Nodes 4, 5, and 12 send the messages depicted in Figure 16(b).2. Nodes 2 and 8 follow by sending the messages depicted in Figure 16(c).3. This enables Node 5 to send the four messages depicted in Figure 16(d).4. Nodes 2, 7, and 8 follow by sending the messages depicted in Figure 16(e).5. Finally, Nodes 4 and 12 send the messages depicted in Figure 16(f).Figure 17 depicts the messages sent during all the previous stages. Every node hasall the information it needs to compute its belief.The following observations are about the forward propagation in Figure 16:1. There are 22 exchanged messages, which is twice the number of arcs in thecausal network.

5.4. CONTROL FLOW IN SINGLY CONNECTED NETWORKS 79
1 2 3

4 5

6 7 8 9

10 11 12

(b)

1 2 3

4 5

7 8 9

10 11 12

6

(a)

1 2 3

4 5

7 8 9

10 11 12

6

(d)

1 2 3

4 5

6 7 8 9

10 11 12

(f)

1 2 3

4 5

6 7 8 9

10 11 12

(c)

1 2 3

4 5

6 7 8 9

10 11 12

(e)Figure 16: The stages of forward propagation.

80 CHAPTER 5. INDEPENDENCE AND BELIEF COMPUTATION
1 2 3

4 5

6 7 8 9

10 11 12Figure 17: The messages exchanged in forward propagation.

5.4. CONTROL FLOW IN SINGLY CONNECTED NETWORKS 812. Only two messages are exchanged across an arc, one in each direction.3. The propagation takes place in six stages, which is the length of a longest pathin the network.I now formalize forward propagation and then prove that it terminates.The following de�nition says that forward propagation starts when every nodehaving a single neighbor sends a message to its neighbor. This sparks a chain reactionin which a node sends a message to a neighbor once it has received messages from allother neighbors.De�nition 5.4.3 (Forward Propagation) Let CN be a singly connected causalnetwork. Forward propagation with respect to CN is a sequence of non{empty setsS1; S2; . . ., where� S1 contains the messages that could be sent by nodes with single neighbors.� Sn contains a message from node j to node k if Sn�1 contains all the messagesfrom neighbors of node j, other than k, to node j.The forward propagation with respect to the causal network of Figure 16(g) isS1 = f�1:4; �3:5; �9:12; �6:4; �10:7; �11:7gS2 = f�4:2; �7:5; �12:8gS3 = f�2:5; �8:5gS4 = f�5:7; �5:8; �5:2; �5:3gS5 = f�2:4; �7:10; �7:11; �8:12gS6 = f�4:6; �4:1; �12:9g:The following theorem says that forward propagation must terminate.Theorem 5.4.4 The number of states in forward propagation with respect to a singlyconnected causal network CN is no more than the length of a longest path in CN .

82 CHAPTER 5. INDEPENDENCE AND BELIEF COMPUTATION5.5 Computational complexityIn this section, I count the number of support operations performed by a normal nodeduring forward propagation. A normal node with n parents and m children performsthe following computations:1. Causal support. This involves n2n+1 operations.2. Diagnostic support. This involves 2m� 2 operations.3. Belief. This involves 2 operations.4. Messages for all children. This involves 2m operations.5. Messages for all parents. This involves (n� 1)n2n+1 + 4n operations.Adding up all the above costs gives n22n+1+4(n+m). This expression is exponentialin the number of parents and linear in the number of children.Let me summarize what else we know about the number of messages involved inforward propagation:� The number of total messages exchanged is twice the number of arcs in thenetwork.� The propagation of these messages takes place at a number of stages that equalsthe length of a longest path in the network.The number of arcs in a singly connected network is always one less than the numberof nodes. Therefore, computing the belief in every node in a singly connected networkis linear in the number of nodes or arcs, exponential in the number of parents pernode, and linear in the number of children per node.In Chapter 6, I present a Common Lisp implementation of the abstract polytreealgorithm and report a number of experiments on networks of up to 15000 nodes.

5.6. MULTIPLY CONNECTED NETWORKS 83
j k i

j

k

j k

i

Diverging Linear Converging

i

Figure 18: Nodes in a loop could be diverging, linear, or converging. Observing a diverging or alinear node i and deleting Arc i! k breaks the loop.5.6 Multiply connected networksThe abstract polytree algorithm is based on independences that are not necessarilyasserted by multiply connected networks. Therefore, the abstract polytree algorithmis not applicable to multiply connected networks in general.However, the independences justifying the abstract polytree algorithm becomeasserted by a multiply connected network if a selected set of its nodes are observed.This set of nodes is called the loop{cutset. When the loop{cutset is observed, theabstract polytree algorithm becomes applicable. But even when the loop{cutset isnot observed, the abstract polytree algorithm can still be made applicable to multiplyconnected network. There are two steps involved here.The �rst step is to identify the loop{cutset, which consists of a node from eachloop (undirected cycle) in the causal network. The node chosen from each loop mustbe either diverging or linear according to Figure 18. The reason for this choice is that

84 CHAPTER 5. INDEPENDENCE AND BELIEF COMPUTATIONafter observing such a node, deleting one of its outgoing arcs does not change theindependences asserted by the network. Consider, for example, the diverging nodei in the left loop of Figure 18. Deleting the arc i! k eliminates the loop withoutchanging the independences asserted by the network. To see why, recall that the testof d{separation detects an independence only if it cannot �nd certain O{active paths,where O is the set of observed nodes (see De�nition 4.4.8). When node i belongs toO, no path that includes the arc i! k can be an O{active path (see De�nition 4.4.7).Therefore, deleting the arc i! k does not a�ect the test of d{separation when nodei is observed.After identifying the loop{cutset LC and deleting arcs as suggested above, themultiply connected network becomes singly connected. Next, to justify arc deletion,we assume a certain state LC of the loop{cutset, and apply the polytree algorithmto compute the belief h�(i ^ � ^ LC);�(:i ^ � ^ LC)iin every node of the singly connected network. If we do this for every possible stateof the loop{cutset, we obtain the beliefs we want:h�(i ^ �);�(:i ^ �)i =MLC h�(i ^ � ^ LC);�(:i ^ � ^ LC)i:This technique is called the method of conditioning [Horvitz et al., 1989; Pearl,1988; Suermondt and Cooper, 1988; Peot and Shachter, 1991]. When the loop{cutsethas n nodes, the method of conditioning requires 2n applications of the abstractpolytree algorithm. This should not be surprising, however, because the computationof belief in probabilistic causal networks is known to be NP{hard [Cooper, 1990].

Chapter 6Implementing the AbstractPolytree AlgorithmIn this chapter, I present a Common Lisp program that uses forward propagation tocompute the belief in every node of a singly connected causal network.6.1 IntroductionThe probabilistic polytree algorithm is based on the following message{passing ab-straction. Each node i in a causal network can be viewed as a processor that has thefollowing properties:1. It knows the conditional belief in node i given its parents.2. It is responsible for computing the belief in node i.3. It is responsible for sending messages to the neighbors of node i.This abstraction is useful for describing the algorithm and for implementing it. Ishall adopt the same abstraction in implementing a forward propagation version ofthe abstract polytree algorithm.A number of components are needed to realize this implementation:85

86CHAPTER 6. IMPLEMENTING THE ABSTRACT POLYTREE ALGORITHM� A representation of support structures. The code for this representation is givenin Section 6.2.� A representation of causal networks. The code for this representation is givenin Section 6.3.� A component to compute causal support, diagnostic support, and belief in anode given the messages it receives from neighbors. The component also com-putes the message that a node sends to each neighbor. The code for this com-ponent is given in Section 6.4.� A component to decide when a node should perform a particular computationor send a message. The code for this component is given in Section 6.5.� A component to create causal networks, declare observations, and activate for-ward propagation. The code for this component is given in Section 6.6.� A component that represents concrete support structures. The code for thiscomponent is given in Section 6.7.Section 6.8 reports a number of forward propagations in causal networks that aregenerated randomly and contain between 100 and 15000 nodes.The Lisp program I shall present is referred to as cnets.

6.2. SUPPORT STRUCTURES 876.2 Support structurescnets represents a support structure as a tuple of seven elements:h�;
;�;0;1; ��;=�i:Although one needs only the summation and scaling functions to de�ne a supportstructure, cnets assumes that all components are provided. Moreover, as shownbelow, the representation of a support structure does not explicate the set of supports.(defstruct support-structuresupport-summationsupport-unscalingsupport-scalingzero-supportfull-supportsupport<=support=)The operations of a support structure are de�ned next.The following function returns a � b:(defun support-summation (a b &optional (ss *CURRENT-SS*))(funcall (support-structure-support-summation ss) a b))The following function returns a
 b:(defun support-unscaling (a b &optional (ss *CURRENT-SS*))(funcall (support-structure-support-unscaling ss) a b))The following function returns a � b:(defun support-scaling (a b &optional (ss *CURRENT-SS*))(funcall (support-structure-support-scaling ss) a b))The following function returns 0:(defun zero-support (&optional (ss *CURRENT-SS*))(support-structure-zero-support ss))

88CHAPTER 6. IMPLEMENTING THE ABSTRACT POLYTREE ALGORITHMThe following function returns 1:(defun full-support (&optional (ss *CURRENT-SS*))(support-structure-full-support ss))The following function tests for a �� b:(defun support<= (a b &optional (ss *CURRENT-SS*))(funcall (support-structure-support<= ss) a b))The following function tests for a =� b:(defun support= (a b &optional (ss *CURRENT-SS*))(funcall (support-structure-support= ss) a b))

6.3. NODES AND NETWORKS 896.3 Nodes and networkscnets represents causal networks and nodes as CLOS (Common Lisp Object Sys-tem) objects. This section provides the de�nitions of these objects and some basicoperations on them.A causal network is an object with three slots:1. name is an identi�er of the network.2. nodes is a list of the nodes in the network.3. support-structure is the structure with respect to which the network is quan-ti�ed.(defvar *CURRENT-NETWORK* nil)(defclass network ()((name :initarg :name :reader network-name)(nodes :initform nil :accessor network-nodes)(support-structure :initform *probability-support-structure*:accessor network-support-structure)))A node is an object with identi�er name:(defclass node ()((name :initarg :name :reader node-name)))There are two subclasses of the class of nodes, the subclass of observed nodesand the subclass of non{observed nodes. Observed nodes are not part of the causalnetwork de�ned by a cnets user but are added by cnets to simulate observations.An observed node has two slots:1. parent is the node about which the observation is recorded.2. observation is set to 0 if parent is observed to be false, and is set to 1 ifparent is observed to be true.(defclass observed-node (node)((parent :initarg :parent :accessor node-parent)(observation :initarg :observation :accessor node-observation)))

90CHAPTER 6. IMPLEMENTING THE ABSTRACT POLYTREE ALGORITHMA non{observed node has ten slots. If the node is denoted by N , and has n parentsand m children, then1. parents is a list of parent nodes. In the list (Pn�1Pn�2 . . .P0), parent Pi hasposition i. That is, in counting positions, one starts from the far right andmoves to the left.2. children is a list of children nodes. In the list (Cm�1Cm�2 . . .C0), child Cihas position i. That is, in counting positions, one starts from the far right andmoves to the left.3. parent-messages is a list of pairs. The pair at position i in parent-messagesrepresents the message from parent Pi to node N :h�Pi :N(:Pi); �Pi:N(Pi)i :4. child-messages is a list of pairs. The pair at position i in child-messagesrepresents the message from child Ci to node N :h�Ci:N(:N); �Ci :N (N)i :5. cond-supports is a list of 2n pairs. Each pair represents a conditional belief� = DCSN�(:N); CSN�(N)E ;where N� is a state of nodes N�, the parents of node N . The state N� isdetermined by the position of the conditional belief � in the list cond-supports.In particular, let bn�1bn�2 . . . b0 be the binary representation of the position of� in the list cond-supports, and let (Pn�1Pn�2 . . .P0) be the parents of nodeN . If bit bi equals 1, then parent Pi is true; otherwise, parent Pi is false.6. pstatus is a bit vector bn�1bn�2 . . . b0 such that bi equals 0 precisely when theparent at position i in parents has sent a message to node N .7. cstatus is a bit vector bm�1bm�2 . . . b0 such that bi equals 0 precisely when thechild at position i in children has sent a message to node N .

6.3. NODES AND NETWORKS 918. causal-support is a pair representing h�N(:N); �N (N)i.9. diagnostic-support is a pair representing h�N (:N); �N (N)i.10. belief is a pair representing hBLN (:N);BLN (N)i.(defclass non-observed-node (node)((parents :initform nil :accessor node-parents)(children :initform nil :accessor node-children)(parent-messages :initform nil :accessor node-parent-messages)(child-messages :initform nil :accessor node-child-messages)(cond-supports :initform nil :accessor node-cond-supports)(pstatus :initform nil :accessor node-pstatus)(cstatus :initform nil :accessor node-cstatus)(causal-support :initform nil :accessor node-causal-support)(diagnostic-support :initform nil :accessor node-diagnostic-support)(belief :initform nil :accessor node-belief)))The function add-node inserts node in network:(defmacro add-node (node &optional (network *CURRENT-NETWORK*))`(push ,node (network-nodes ,network)))The function get-node retrieves a node with identi�er name from network.(defmacro get-node (name &optional (network *CURRENT-NETWORK*))`(find-if #'(lambda (n) (equal ,name (node-name n)))(network-nodes ,network)))6.3.1 Operations on parents, children, and messagesThere are two basic operations on these lists. The �rst is to retrieve a parent, a child,a parent{message, or a child{message, at a given position in a list. This is achievedby the function relt, which is like the function elt except that it counts positionsfrom right to left.(defmacro relt (list position)`(elt ,list (1- (- (length ,list) ,position))))

92CHAPTER 6. IMPLEMENTING THE ABSTRACT POLYTREE ALGORITHMFor example, (relt '(a b c d e) 1) is d.The second set of operations �nd the position of a node with respect to one ofits neighbors. The function call (c-index c p) returns the position of child c withrespect to its parent. The function call (p-index p c) returns the position of parentp with respect to its child c.(defmacro rposition (e list) `(position e (reverse list)))(defmacro c-index (c p) `(rposition ,c (node-children ,p)))(defmacro p-index (p c) `(rposition ,p (node-parents ,c)))6.3.2 Operations on bit vectorsThere are two basic operations on these vectors. The function call (clear-bit bv bi)clears the bit at position bi in vector bv. This function assumes that bit bi is alreadyset.(defmacro clear-bit (bv bi)`(decf ,bv (expt 2 ,bi)))This function is used to keep track of neighbors that send messages: when a parentsends a message, its corresponding bit in pstatus is cleared, and when a child sendsa message, its corresponding bit in cstatus is cleared.The function call (bit-index bv) assumes that vector bv has only one bit set.The call returns the position of the set bit in this case.(defmacro bit-index (bv)`(round (log ,bv 2)))This function is used to retrieve the position of the only parent or child that did notyet send a message. Both functions will be put into use in Section 6.5, which dealswith controlling the
ow of messages in forward propagation.

6.3. NODES AND NETWORKS 936.3.3 Operations on pairs of supportThe following are standard operations on pairs:(defun unscale-pairs (pair1 pair2)(mapcar #'support-unscaling pair1 pair2))(defun normalize-pair (pair)(let ((sum (apply #'support-summation pair)))(loop for s in paircollect (support-scaling s sum))))6.3.4 Propagation initiatorsCertain classes of nodes are of special interest because they get forward propagationstarted. These are nodes that have only a single neighbor. They initiate propagationby sending messages to their neighbors. The following functions identify these nodes:The function parentless returns t if node n has no parents. It returns nilotherwise. The function childless works similarly.(defmethod parentless ((n non-observed-node))(null (node-parents n)))(defmethod childless ((n non-observed-node))(null (node-children n)))The function single-child-parentless returns the child of node n if n has noparents and only a single child. It returns nil otherwise. The functionsingle-parent-childless works similarly.(defmethod single-child-parentless ((n non-observed-node))(let ((children (node-children n)))(when (and (parentless n)(= 1 (length children)))(relt children 0))))(defmethod single-child-parentless ((n observed-node)) nil)

94CHAPTER 6. IMPLEMENTING THE ABSTRACT POLYTREE ALGORITHM(defmethod single-parent-childless ((n non-observed-node))(let ((parents (node-parents n)))(when (and (childless n)(= 1 (length parents)))(relt parents 0))))(defmethod single-parent-childless ((n observed-node))(node-parent n))

6.4. NODE COMPUTATIONS 956.4 Node computationsEach node in a causal network computes �ve pairs of support:1. Causal support.2. Diagnostic support.3. Belief.4. Support to each child.5. Support to each parent.Section 6.4.2 provides one function for each computation. Each function is passedthe parameters required by the corresponding computation as suggested by the equa-tions given in Section 5.3.6 of Chapter 5. The next section provides a construct thatis basic to the functions in Section 6.4.2.6.4.1 Operating overThe function operate-over computes the following expression:OP 0�i<boundcondition(i)expression(i);where OP is a commutative and associative operation that has an identity elementidentity. If condition is nil, then operate-over computesOP0�i<bound expression(i):(defun operate-over(OP identity bound expression &optional (condition nil))(reduce OP(loop for state from 0 below boundwhen (or (not condition) (funcall condition state))collect (funcall expression state)):initial-value identity))

96CHAPTER 6. IMPLEMENTING THE ABSTRACT POLYTREE ALGORITHMThe function sum-over computes the following expression:M0�i<boundcondition(i) expression(i);where the value of expression(i) is a degree of support.(defmacro sum-over (bound expression &optional (condition nil))`(operate-over #'support-summation(zero-support),bound,expression,condition))The function unscale-over computes the following expression:O0�i<boundcondition(i) expression(i);where the value of expression(i) is a degree of support.(defmacro unscale-over (bound expression &optional (condition nil))`(operate-over #'support-unscaling(full-support),bound,expression,condition))The function unscale-pairs-over computes the following expression:O0�i<boundcondition(i) expression(i);where the value of expression(i) is a pair of supports.(defmacro unscale-pairs-over (bound expression &optional (condition nil))`(operate-over #'unscale-pairs(list (full-support) (full-support)),bound,expression,condition))

6.4. NODE COMPUTATIONS 976.4.2 The computation functionsThe function causal-support is a direct implementation of Equation 7 of Sec-tion 5.3.6.(defun causal-support (parents# p-messages cond-supports)(flet ((state-support (i-state)(sum-over (expt 2 parents#)#'(lambda (p-state)(support-unscaling(elt (elt cond-supports p-state) i-state)(unscale-over parents##'(lambda (j-index)(elt (relt p-messages j-index)(bit-state p-state j-index)))))))))(list (state-support 0) (state-support 1))))(defmacro bit-state (bv bi)`(ldb (byte 1 ,bi) ,bv))The function call (bit-state p-state j-index) returns the state of bit j-indexin the bit vector p-state.The function diagnostic-support is a direct implementation of Equation 4 ofSection 5.3.6.(defun diagnostic-support (children-no c-messages)(unscale-pairs-over children-no#'(lambda (k-index) (relt c-messages k-index))))The function belief is a direct implementation of Equation 5 of Section 5.3.6.(defun belief (causal-support diagnostic-support)(normalize-pair (unscale-pairs causal-support diagnostic-support)))The function support-to-child is a direct implementation of Equation 6 of Sec-tion 5.3.6.(defun support-to-child (children-no c-index c-messages causal-support)(unscale-pairscausal-support(unscale-pairs-over children-no#'(lambda (k-index) (relt c-messages k-index))#'(lambda (k-index) (not (equal k-index c-index))))))

98CHAPTER 6. IMPLEMENTING THE ABSTRACT POLYTREE ALGORITHMThe function support-to-parent is a direct implementation of Equation 8 ofSection 5.3.6.(defun support-to-parent(parents# j-index p-messages diagnostic-support cond-supports)(flet ((state-support (j-state)(sum-over 2#'(lambda (i-state)(support-unscaling(elt diagnostic-support i-state)(sum-over (expt 2 parents#)#'(lambda (state)(support-unscaling(elt (elt cond-supports state) i-state)(unscale-over parents##'(lambda (k-index)(elt (relt p-messages k-index)(bit-state state k-index)))#'(lambda (k-index)(not (= k-index j-index))))))#'(lambda (state)(consistent-bit state j-index j-state))))))))(list (state-support 0) (state-support 1))))(defmacro consistent-bit (bv bi bs)`(equal (bit-state ,bv ,bi) ,bs))The function call (consistent-bit state j-index j-state) checks whether bitj-index has the state j-state in the bit vector state.6.4.3 The interface to computation functionsThis section contains functions that interface with the functions given in the previoussection. The �rst three functions respond to messages that request a computationto be performed. The functions �nd the data needed to perform this computation,perform the computation, and then save the result:

6.4. NODE COMPUTATIONS 99(defmethod compute-belief (n)(setf (node-belief n)(belief (node-causal-support n)(node-diagnostic-support n))))(defmethod compute-causal-support (n)(setf (node-causal-support n)(causal-support (length (node-parents n))(node-parent-messages n)(node-cond-supports n))))(defmethod compute-diagnostic-support (n)(setf (node-diagnostic-support n)(diagnostic-support (length (node-children n))(node-child-messages n))))The next two functions respond to messages that order a node to send a message.The functions �nd the data needed to send the message and then send it.(defmethod send-support-to-child (p c)(setf (relt (node-parent-messages c) (p-index p c))(support-to-child (length (node-children p))(c-index c p)(node-child-messages p)(node-causal-support p))))(defmethod send-support-to-parent ((c non-observed-node) p)(setf (relt (node-child-messages p) (c-index c p))(support-to-parent (length (node-parents c))(p-index p c)(node-parent-messages c)(node-diagnostic-support c)(node-cond-supports c))))

100CHAPTER 6. IMPLEMENTING THEABSTRACTPOLYTREE ALGORITHMFinally, the next function is a direct implementation of Equation 9 of Section 5.3.6.(defmethod send-support-to-parent ((c observed-node) p)(setf (relt (node-child-messages p) (c-index c p))(case (node-observation c)((0) (list (full-support) (zero-support)))((1) (list (zero-support) (full-support))))))

6.5. CONTROL FLOW 1016.5 Control
owA node with n parents and m children is ready to send a message to a neighbor onlyif it has received messages from all other neighbors. Therefore, a node with n +mneighbors that has sent its �rst message must also have received n+m� 1 messages.Once the node has received its �nal message, it becomes ready to send the remainingn+m� 1 messages. Therefore, each node sends its messages in two bursts only, onemessage in the �rst and n+m� 1 in the second.The states of the slots pstatus and cstatus of the object class node are enoughto answer the following questions:1. When and to whom should a node send a message?2. When should a node compute its belief, causal, and diagnostic supports?If a node c receives a message from parent p, it updates the value of pstatus byclearing the bit corresponding to p in pstatus. Moreover, if all bits in pstatus areclear, then c has received messages from every parent and is ready to compute itscausal support. Now, depending on the state of pstatus and cstatus, the node cantake one of three actions:1. If only one bit is set in pstatus and all bits are clear in cstatus, then thenode has received n + m � 1 messages and is ready to send its �rst mes-sage. The receiver of the message is the neighbor that did not yet send amessage. This happens to be a parent and its position in parents is given by(bit-index pstatus).2. If only one bit is set in cstatus and all bits are clear in pstatus, then thenode has received n + m � 1 messages and is ready to send its �rst mes-sage. The receiver of the message is the neighbor that did not yet send amessage. This happens to be a child and its position in children is given by(bit-index cstatus).3. If all bits are clear in pstatus and all bits are clear in cstatus, then thenode has received its last message and is ready to send messages to n+m� 1

102CHAPTER 6. IMPLEMENTING THEABSTRACTPOLYTREE ALGORITHMneighbors: n � 1 parents and m children. The neighbor that does not get amessage is the parent p.The above logic is captured by the following function, which is called directly afternode p sends a message to node c:(defmethod send-support-to-child :after (p c)(let* ((parents (node-parents c))(children (node-children c))(pstatus (clear-bit (node-pstatus c) (p-index p c)))(cstatus (node-cstatus c))(pstatus-count (logcount pstatus))(cstatus-count (logcount cstatus)))(when (= pstatus-count 0) (compute-causal-support c))(cond ((and (= pstatus-count 1) (= cstatus-count 0))(send-support-to-parent c (relt parents (bit-index pstatus))))((and (= pstatus-count 0) (= cstatus-count 1))(let ((cc (relt children (bit-index cstatus))))(unless (typep cc 'observed-node)(send-support-to-child c cc))))((and (= pstatus-count 0) (= cstatus-count 0))(compute-belief c)(loop for cc in childrenunless (typep cc 'observed-node)do (send-support-to-child c cc))(loop for pc in parentsunless (equal pc p)do (send-support-to-parent c pc))))))

6.5. CONTROL FLOW 103The following function is called directly after node c sends a message to its par-ent p. The function implements a logic that is similar to the one implemented bysend-support-to-child given above.(defmethod send-support-to-parent :after ((c node) p)(let* ((parents (node-parents p))(children (node-children p))(pstatus (node-pstatus p))(cstatus (clear-bit (node-cstatus p) (c-index c p)))(pstatus-count (logcount pstatus))(cstatus-count (logcount cstatus)))(when (= cstatus-count 0) (compute-diagnostic-support p))(cond ((and (= pstatus-count 1) (= cstatus-count 0))(send-support-to-parent p (relt parents (bit-index pstatus))))((and (= pstatus-count 0) (= cstatus-count 1))(let ((pc (relt children (bit-index cstatus))))(unless (typep pc 'observed-node)(send-support-to-child p pc))))((and (= pstatus-count 0) (= cstatus-count 0))(compute-belief p)(loop for pc in childrenunless (or (typep pc 'observed-node) (equal pc c))do (send-support-to-child p pc))(loop for pp in parents do (send-support-to-parent p pp))))))

104CHAPTER 6. IMPLEMENTING THEABSTRACTPOLYTREE ALGORITHM6.6 InterfaceThe user of cnets does not need to know about the code presented so far. From theuser point of view, the following operations need to be supported by cnets:1. Create a causal network.2. Declare an observation.3. Activate forward propagation.The following sections provide functions to support these operations. These functionsare all the user is expected to know in order to use cnets for computing beliefs.6.6.1 Creating a networkTo create a causal network, one needs to do the following:1. Create an empty network.2. Add nodes to the network.3. Declare the parents of each node and provide the node's conditional supportfunction.4. Declare observations.The function make-network creates and returns a causal network with identi�ername:(defun make-network (name)(make-instance 'network :name name))The function make-node creates and returns a node with identi�er name. It alsoadds the node to network.(defun make-node (name &optional (network *CURRENT-NETWORK*))(add-node (make-instance 'non-observed-node :name name) network))

6.6. INTERFACE 105The function make-parents declares that a node with identi�er name has parentsp-names, which is a list of node identi�ers. It also declares that cond-supports isthe conditional support function for the node with identi�er name. The parameterscond-supports and p-names are closely related because cond-supports is inter-preted with respect to the order of parents in the list p-names.(defun make-parents(name p-names cond-supports &optional (network *CURRENT-NETWORK*))(let ((node (get-node name network)))(setf (node-parents node)(loop for p-name in p-names collect (get-node p-name network)))(setf (node-cond-supports node) cond-supports)(loop for p in (node-parents node) do (push node (node-children p)))))The function name-observation declares that the node with identi�er name isobserved to have state obs, which is either 0 (false) or 1 (true).(defun make-observation (name obs &optional (network *CURRENT-NETWORK*))(let* ((node (get-node name network))(obs-name (list 'obs name))(obs-node (make-instance 'observed-node:name obs-name:observation obs:parent node)))(push obs-node (node-children node))(add-node obs-node network)))

106CHAPTER 6. IMPLEMENTING THEABSTRACTPOLYTREE ALGORITHM6.6.2 Propagating messagesThe function activate-network activates forward propagation in network. Whenthis function returns, every node will have computed its belief. The function alsoprints some information about the time spent in forward propagation:(defun activate-network (&optional (network *CURRENT-NETWORK*))(setf *CURRENT-SS* (network-support-structure network))(initialize network)(time (loop for n in (network-nodes network)do (let ((p (single-parent-childless n))(c (single-child-parentless n)))(when p (send-support-to-parent n p))(when c (send-support-to-child n c))))))The function activate-network does the following:1. Sets the current support structure with respect to which the network is quan-ti�ed.2. Initializes the network (more on this later on).3. Identi�es single{neighbor nodes and asks them to send messages to their neigh-bors.This starts a chain reaction of exchanging messages that ends when the number ofmessages exchanged is twice the number of arcs in the network.One initializes a network by initializing its nodes:(defmethod initialize ((nt network))(loop for n in (network-nodes nt) do (initialize n)))The initialization of an observed node is trivial.(defmethod initialize ((n observed-node)))A non{observed node is initialized as follows:1. All the bits in pstatus are set to indicate that the node did not receive anymessage from parents.

6.6. INTERFACE 1072. All the bits in cstatus are set to indicate that the node did not receive anymessage from children.3. A list of n empty messages (nil) is created and stored at parents-messages.4. A list of m empty messages (nil) is created and stored at children-messages.5. If a node has no parents, it is asked to compute its causal support; otherwise,the causal support is set to nil.6. If a node has no children, it is asked to compute its diagnostic support; other-wise, the diagnostic support is set to nil.7. The belief of the node is set to nil.(defmethod initialize ((n non-observed-node))(let ((parents# (length (node-parents n)))(children# (length (node-children n))))(setf (node-pstatus n) (1- (expt 2 parents#)))(setf (node-cstatus n) (1- (expt 2 children#)))(setf (node-parent-messages n)(make-list parents# :initial-element nil))(setf (node-child-messages n)(make-list children# :initial-element nil))(if (parentless n)(compute-causal-support n)(setf (node-causal-support n) nil))(if (childless n)(compute-diagnostic-support n)(setf (node-diagnostic-support n) nil))(setf (node-belief n) nil)))

108CHAPTER 6. IMPLEMENTING THEABSTRACTPOLYTREE ALGORITHM6.7 Concrete support structuresIn this section, three support structures are de�ned.The �rst is the support structure of propositional calculus, which has only twodegrees of support nil and t, which represent the zero and full supports, respectively.(defparameter *binary-support-structure*(make-support-structure:support-summation #'(lambda (x y) (or x y)):support-unscaling #'(lambda (x y) (and x y)):support-scaling #'(lambda (x ?) (declare (ignore ?)) x):zero-support nil:full-support t:support<= #'(lambda (x y) (unless (and x (not y)))):support= #'(lambda (x y) (equal x y))))The second is the support structure of probability calculus, which has the degrees ofsupport [0; 1].(defparameter *probability-support-structure*(make-support-structure:support-summation #'+:support-unscaling #'*:support-scaling #'/:zero-support 0:full-support 1:support<= #'<=:support= #'=))(defvar *CURRENT-SS* *probability-support-structure*)The third and �nal is the support structure of impossibility calculus, which has the de-grees of support f0; 1; . . . ;1g. Here,1 is represented by #.EXCL::*INFINITY-DOUBLE*,which behaves like in�nity in Allegro CL.11The variable .EXCL::*INFINITY-DOUBLE* is not part of Common Lisp, which does not have anexplicit representation of in�nity.

6.7. CONCRETE SUPPORT STRUCTURES 109(defparameter *disbelief-support-structure*(make-support-structure:support-summation #'min:support-unscaling #'+:support-scaling #'-:zero-support #.EXCL::*INFINITY-DOUBLE*:full-support 0:support<= #'<=:support= #'=))

110CHAPTER 6. IMPLEMENTING THEABSTRACTPOLYTREE ALGORITHM6.8 ExperimentsThis section contains a number of experiments involving cnets. The presented net-works are generated randomly by a program that accepts the following as input:1. The maximal number of parents per node.2. The maximal number of children per node.3. The radius of the network.The number of arcs in a singly connected network equals the number of nodes minusone. Therefore, it is not unreasonable to capture the size of a network by the followingparameters:1. The number of nodes, which determines the number of messages exchanged inforward propagation.2. The radius of the network, which determines the number of stages in forwardpropagation.3. The number of parents per node.The number of children per node is ignored because it is dominated by the numberof parents as suggested in Section 5.5 of Chapter 5.Table 5 depicts a number of networks and the time it took to complete forwardpropagation using cnets. The networks have between 100 and 15000 nodes. Twocomputational times are reported: user CPU time without garbage collection andreal time. All these experiments are with respect to a probabilistic support structure.The following observations are about Table 5:1. The CPU time per node is constant for a given number of parents per node assuggested by Figures 19, 20, and 21.2. The CPU time per node grows exponentially in the number of parents per nodeas suggested by Figure 22.

6.8. EXPERIMENTS 111Run# Nodes# Radius Maximum Time (msec) Time (msec)/Nodeparents# CPU Real CPU1 100 3 3 749 1267 7.52 164 3 4 1550 2490 9.53 294 3 5 3484 4473 11.94 402 3 6 9784 12601 24.35 463 3 7 20801 25756 44.96 348 3 8 38367 42004 110.37 347 4 3 2300 3462 6.68 218 4 4 2167 3815 9.99 443 4 5 6100 7314 13.810 2140 4 6 50066 62327 23.411 3707 4 7 160167 197802 43.212 797 4 8 82433 88823 103.413 1104 5 3 7334 10557 6.614 1834 5 4 16383 22592 8.915 3120 5 5 42666 56491 13.716 4250 5 6 104933 134615 24.717 15072 5 7 689567 954235 45.818 10469 5 8 954916 1195478 91.2Table 5: Experiments using cnets on randomly created probabilistic causal networks.3. It took approximately one second to compute the belief in every node of anetwork that has 100 nodes, with 3 parents per node at most.4. It took approximately 15 minutes to compute the belief in every node of anetwork that has 15070 nodes, with 7 parents per node at most.These observations support the formal analysis of Chapter 5.Table 6 compares the performance of cnets with the performance of ideal, asystem for In
uence Diagram Evaluation and Analysis in Lisp [Srinivas and Breese,1992]. The table shows cnets to be at least two times faster than ideal on �verandomly created causal networks.

112CHAPTER 6. IMPLEMENTING THEABSTRACTPOLYTREE ALGORITHMRun# Nodes# Radius Maximum cnets CPU ideal CPU ideal / cnetsparents# Time (sec) Time (sec)1 100 3 3 .7 1.8 2.62 158 3 8 13.8 35.7 2.63 353 4 3 2.6 6.4 2.54 1281 4 8 107.6 278 2.65 978 5 3 6.9 19.3 2.8Table 6: Experiments using cnets and ideal on randomly created probabilistic causal networks.Each node has at most three children.

 Max Parents# = 3

 Max Parents# = 4

|
0

|
300

|
600

|
900

|
1200

|
1500

|
1800

|0

|2

|4

|6

|8

|10

|12

|14
|16

 CPU Time

 Number of Nodes

 T
im

e
(s

ec
)

Figure 19: Computation time in singly connected networks of up to 1800 nodes.

6.8. EXPERIMENTS 113

 Max Parents# = 5

 Max Parents# = 6

|
0

|
500

|
1000

|
1500

|
2000

|
2500

|
3000

|
3500

|
4000

|
4500

|0

|20

|40

|60

|80

|100

 CPU Time

 Number of Nodes

 T
im

e
(s

ec
)

Figure 20: Computation time in singly connected networks of up to 4500 nodes.

 Max Parents# = 7

 Max Parents# = 8

|
0

|
2000

|
4000

|
6000

|
8000

|
10000

|
12000

|
14000

|
16000

|0

|200

|400

|600

|800

|1000

 CPU Time

 Number of Nodes

 T
im

e
(s

ec
)

Figure 21: Computation time in singly connected networks of up to 15000 nodes.

114CHAPTER 6. IMPLEMENTING THEABSTRACTPOLYTREE ALGORITHM

 2^Parents#

 Radius = 3

 Radius = 4

 Radius = 5

|
2

|
3

|
4

|
4

|
5

|
6

|
7

|
8

|
8

|0
|30

|60

|90

|120

|150

|180

|210

|240

|270

 CPU Time per Node

 Maximum Parents#

 T
im

e
(m

se
c)

Figure 22: Computation time in singly connected networks of up to eight parents per node.

Chapter 7Objection CalculusOne way to quantify our support for a sentence is to state the most generalreason for rejecting it. The most general reason for rejecting a sentence is calledthe objection to that sentence. When degrees of support are taken to be objections,the resulting support calculus is called objection calculus. In this chapter, I introduceobjection calculus and discuss its central notions: objection{based states of belief,their conditionalizations, and objection{based causal networks.7.1 IntroductionAbstract states of belief, their conditionalizations, and abstract causal networks weremotivated by the need to relax the commitment to numbers while retaining the keyfeatures of probability calculus. The main theoretical value of these notions is thatthey relax the commitment to numbers. But their practical value is most appreciatedwhen they are instantiated with respect to concrete, non{numeric, and intuitive de-grees of support. Such instantiations give birth to concrete calculi for reasoning underuncertainty that could be alternatives to probability calculus in some applications.The abstract framework developed in Chapters 2{6 mechanizes the constructionof concrete calculi for reasoning under uncertainty. Each concrete calculus is char-acterized by a support structure hS;�;�i, which consists of degrees of support S,support summation �, and support scaling �. Therefore, a calculus is constructed115

116 CHAPTER 7. OBJECTION CALCULUSby de�ning a support structure.The process of de�ning a concrete support calculus usually involves the followingsteps:1. Characterizing the degrees of support S by appealing to one's intuition abouthow to quantify the support for a sentence.2. Choosing an intuitive de�nition of support summation �, and then verifyingthe choice by showing that hS;�i is a partial support structure.3. Choosing an intuitive de�nition of support scaling �, and then verifying thechoice by showing that hS;�;�i is a support structure.De�ning a support structure gives birth to a concrete calculus for reasoning underuncertainty that has the following basic elements: a de�nition of a state of belief, ade�nition of conditionalization, and a de�nition of a causal network.In this chapter, I introduce a concrete calculus, called objection calculus, whichresults from taking degrees of support to be objections. The objection to a sentenceis the most general reason for rejecting that sentence.Objections are more than just quanti�ers of support. They are also reasons forrejecting. This aspect of objections gives them a role outside uncertainty applications.We shall see in Chapter 8 that objections play a central role in diagnosis applications.The construction of objection calculus in this chapter follows the procedure out-lined above. I start by characterizing the set of objections in Section 7.2. I thenprovide the de�nition of objection summation in Section 7.3, where I also discuss theconsequent notion of objection{based state of belief. In Section 7.4, I provide the de�-nition of objection scaling and discuss objection{based conditionalization. Objection{based independence and causal networks are discussed in Sections 7.5 and 7.6.

7.2. OBJECTIONS 1177.2 ObjectionsThe objection to a sentence is the most general reason for rejecting that sentence.I take objections to be sentences in a propositional language, denoted by O, calledthe objection language. A sentence to which an objection is attributed is called anobjectionee. I take objectionees to be sentences in a propositional language, denotedby L, called the objectionee language. Thus, an objection{based state of belief mapseach objectionee in L to an objection in O.I assume that the holder of an objection{based state of belief is embedded in aworld that decides the truth and falsity of objections and objectionees. Although theholder can observe objectionees, I assume that she cannot observe objections. Thereason for this assumption is technical. According to the formalization of abstractstates of belief in Chapter 2, objections are quantities. And from the viewpoint ofthis formalization, it is not meaningful to observe quantities. For the same reason, Iassume that the primitive propositions of the objectionee language are disjoint fromthose of the objection language.But how can objections play the role of quantities?The basic intuition here is that an objectionee is rejected if its objection holds inthe world. Therefore, the strongest objections are valid sentences in O because theirobjectionees are rejected in any state of the world. Moreover, the weakest objectionsare unsatis�able sentences in O, because their objectionees are not rejected in anystate of the world. Between these two extremes, there are objections that are neithervalid nor unsatis�able. For these objections, the rejection of objectionees dependson the state of the world embedding an objection{based state of belief. Therefore,assuming that every state of the world is equally likely, the rejectability of objectioneesis quanti�ed by the logical strength of their objections. For example, an objectioneeis no more rejectable than another objectionee if its objection logically entails theobjection to the other objectionee. This is how objections play the role of quantities.

118 CHAPTER 7. OBJECTION CALCULUS7.3 Objection summationAfter choosing the degrees of support for a support calculus, we must decide on howto sum these supports. The question to ask is the following:If � is the support for sentenceA, if � is the support for sentenceB, and ifA and B are logically disjoint, then what would be the support for A_B?According to the formalization of abstract states of belief, the support for A _ Bshould be � � �. Therefore, the answer to the previous question de�nes supportsummation.For a given pair of supports (�; �), it is not always possible to �nd a state ofbelief that attributes � and � to logically disjoint sentences. For example, if degreesof supports are frequencies in the interval [0; 1], then there is no state of belief thatattributes the frequencies :6 and :9 to logically disjoint sentences. Therefore, beforewe ask the above question, we need to identify the pairs of supports about which itis meaningful to ask the question. Identifying these pairs amounts to de�ning thedomain of support summation.In objection calculus, the domain of objection summation is the Cartesian prod-uct O�O, because objections to logically disjoint objectionees are not related unlessthe objectionees are also logically exhaustive. In this case, the objections must con-tradict each other because, otherwise, the state of belief may reject the objectioneessimultaneously. For example, consider the exhaustive objectionees, \Tweety
ies"and \Tweety does not
y," and their respective objections, \Tweety is wingless orsick," and \Tweety is a bird." The two objections here do not contradict each other,which is a problem. If \Tweety is a wingless or sick bird" holds in the world, then\Tweety
ies" and \Tweety does not
y" are both rejected.To de�ne objection summation, we ask the following:If � is the most general reason for rejecting A, if � is the most generalreason for rejecting B, and if A and B are logically disjoint, then what isthe most general reason for rejecting A _B?

7.3. OBJECTION SUMMATION 119The answer is clearly � ^ �, because A _ B should be rejected precisely when A isrejected and B is rejected. Therefore, objection summation is logical conjunction.The following theorem veri�es this de�nition:Theorem 7.3.1 The pair hO;^i is a partial support structure.We know from Chapter 2 that every support summation function induces a partialorder on degrees of support. Objection summation induces the following order:De�nition 7.3.2 Objection � is no greater than � precisely when there is an objec-tion
 such that � ^
 � �.Therefore, objection � is no greater than � precisely when � j= �. Moreover,objection � equals objection � precisely when � � �. Unsatis�able sentences in Oare the minimal objections, and valid sentences are the maximal objections.By de�ning objection summation, we obtain a number of results. First, we obtaina formal de�nition of objection{based states of belief, which is given in Section 7.3.1.Second, we obtain a spectrum of attitudes that these states hold towards sentences,which is discussed in Section 7.3.2. Finally, we obtain a measure of the ignorance ofobjection{based states of belief, which is discussed in Section 7.3.3.7.3.1 States of beliefThe formalization in Chapter 2 provides a de�nition of a state of belief with respect toevery partial support structure. In objection calculus, the de�nition is the following:De�nition 7.3.3 An objection{based state of belief � with respect to (L;O) is amapping from L to O satisfying the following conditions:1. �(A) = �(B) if j= A � B.2. �(A _B) = �(A) ^ �(B) if j= :(A ^B).3. �(false) = true.4. �(true) = false.

120 CHAPTER 7. OBJECTION CALCULUSThis de�nition imposes the following conditions on objection{based states of belief:1. Equivalent sentences should be rejected under equivalent conditions. In prob-ability calculus, for example, the corresponding condition is that equivalentsentences should have equal probabilities.2. A disjunction of disjoint sentences should be rejected precisely when the dis-juncts are rejected. In probability calculus, the probability of a disjunction ofdisjoint sentences is the summation of the probabilities of the disjuncts.3. An unsatis�able sentence should be rejected. In probability calculus, an unsat-is�able sentence should have probability zero.4. A valid sentence should not be rejected. In probability calculus, a valid sentenceshould have probability one.Objection summation is idempotent, that is, � ^ � = �. As a consequence of thisproperty, the objection to A _ B is the objection to A conjoined with the objectionto B, even when A and B are not logically disjoint. This facilitates the computationof objections.7.3.2 AttitudesObjection{based states of belief hold absolute or relative attitudes towards sentences.There are two classes of absolute attitudes. The �rst has the form, \I reject A under�," or \I accept A under �," and is de�ned as follows:De�nition 7.3.4 An objection{based state of belief � rejects A under � preciselywhen � j= �(A). Moreover, � accepts A under � precisely when it rejects :A un-der �.For example, if my objection to \Tweety
ies" is \Tweety is an elephant," then Ireject \Tweety
ies" and accept \Tweety does not
y" under \Tweety is a whiteelephant."The second class of absolute attitudes has the form, \I can reject A under �," or\I can accept A under �," and is de�ned as follows:

7.3. OBJECTION SUMMATION 121De�nition 7.3.5 An objection{based state of belief � can reject A under � preciselywhen � 6j= :�(A). Moreover, � can accept A under � precisely when it can reject:A under �.For example, if the objection to \Tweety
ies" is \Tweety is wingless or sick," then\Tweety
ies" can be rejected under \Tweety is not wingless," but it cannot berejected under \Tweety is neither wingless nor sick."Objection{based states of belief could hold relative attitudes of the form, \I �ndA no more rejectable than B," or \I �nd A no more acceptable than B." Theseattitudes are de�ned as follows.De�nition 7.3.6 An objection{based state of belief � �nds A no more rejectable thanB precisely when �(A) j= �(B). Moreover, � �nds A no more acceptable than Bprecisely when it �nds :A is no more rejectable than :B.Therefore, sentenceA is no more rejectable than B precisely when A is rejected only ifB is rejected. Similarly, A is no more acceptable than B precisely when A is acceptedonly if B is accepted.The formalization of abstract states of belief suggests de�nitions of the attitudes ofrejection and acceptance. Viewing objection{based states of belief as abstract statesof belief, we have the following equivalences:Theorem 7.3.7 An objection{based state of belief rejects A according to De�ni-tion 2.4.4 precisely when it rejects A under true according to De�nition 7.3.4. More-over, it accepts A according to De�nition 2.4.3 precisely when it accepts A under trueaccording to De�nition 7.3.4.Therefore, rejection and acceptance of sentences by abstract states of belief are theextreme attitudes held by objection{based states of belief.The formalization of abstract states of belief also suggests de�nitions of the ordersno{more{supported and no{more{believed. Viewing objection{based states of beliefas abstract states of belief, we have the following equivalences:

122 CHAPTER 7. OBJECTION CALCULUSL O L Obird ^
y :normal bird falsebird ^ :
y normal :bird false:bird ^
y true
y :normal:bird ^ :
y false :
y falseTable 7: An objection{based state of belief. Here, bird is equally acceptable to
y because theobjection to :bird is equivalent to the objection to :
y . Note, however, that
y is more rejectablethan bird because the objection to bird strictly entails the objection to
y.Theorem 7.3.8 An objection{based state of belief � supports A no more than itsupports B (A �� B) according to De�nition 2.5.5 precisely when it �nds B no morerejectable than A.Theorem 7.3.9 An objection{based state of belief � believes A no more than it be-lieves B (A v� B) according to De�nition 2.5.6 precisely when it �nds B no morerejectable than A and �nds A no more acceptable than B.The two conditions in this theorem may seem redundant, but they are not. Forexample, A and B might be equally acceptable, but B might be more rejectable thanA (see Table 7).7.3.3 IgnoranceBy de�nition of a state of belief, the objection to a sentence and that to its negationare constrained as follows: �(A) ^ �(:A) = false:This constraint says that no objection{based state of belief could reject a sentenceand its negation in some state of the world.Although an objection{based state of belief never rejects a sentence and its nega-tion in some state of the world, it may also reject neither (and, hence, accept neither).As we shall see next, such states of the world are used to indicate the ignorance of astate of belief towards the sentence.

7.3. OBJECTION SUMMATION 123The states of the world in which a state of belief � accepts either A or :A arethose that satisfy the objection �(:A) _ �(A). Under the objection �(:A), thestate of belief accepts A, and under the objection �(A), it accepts :A. Therefore, itaccepts either A or :A in any state of the world that satis�es �(:A)_�(A). Hence,the state of belief � accepts neither A nor :A in any state of the world that satis�es:�(:A) ^ :�(A). When the state of belief is embedded in one of these states, wesay that it is ignorant about sentence A.De�nition 7.3.10 The degree to which an objection{based state of belief � is igno-rant about sentence A is given byIG�(A) def= :�(:A) ^ :�(A):Theorem 7.3.11 IG�(A) = IG�(:A).The degree of ignorance about a sentence characterizes the states of the world inwhich neither the sentence nor its negation are accepted.If neither a sentence nor its negation is accepted in any state of the world, thenthe degree of ignorance about the sentence is true. This is the maximal degree ofignorance and we say that the state of belief is maximally ignorant about the sentencein this case.Theorem 7.3.12 An objection{based state of belief is maximally ignorant about sen-tence A precisely when �(A) = �(:A) = false.If either the sentence or its negation is accepted in each state of the world, thenthe degree of ignorance about the sentence is false. This is the minimal degree ofignorance and we say that the state of belief is minimally ignorant about the sentencein this case.Theorem 7.3.13 An objection{based state of belief is minimally ignorant about sen-tence A precisely when �(A) = :�(:A).Objection{based states of belief hold absolute and relative ignorance attitudestowards sentences. The absolute attitudes have the form, \I am ignorant about Aunder �," and are de�ned as follows:

124 CHAPTER 7. OBJECTION CALCULUSDe�nition 7.3.14 An objection{based state of belief � is ignorant about A under �precisely when � j= IG�(A).If a state of belief is ignorant about sentence A under true, then it is maximallyignorant about A. Moreover, if it is ignorant about sentence A only under false, thenit is minimally ignorant about A.The relative ignorance attitudes have the form, \I am no more ignorant about Athan about B," and are de�ned as follows:De�nition 7.3.15 An objection{based state of belief � is no more ignorant about Athan about B precisely when IG�(A) j= IG�(B).This says that a state of belief is no more ignorant about A than about B preciselywhen it is ignorant about A only if it is ignorant about B.

7.4. OBJECTION SCALING 1257.4 Objection scalingThe last step in constructing a calculus for reasoning under uncertainty is de�ningthe support scaling function �. The question to ask is the following:If � is the support for A, if � is the support for B, and if A entails B,then what will be the support for A after observing B?According to Chapter 3, the support for A after observing B should be ���. There-fore, the answer to the previous question de�nes support scaling. This question,however, is meaningful only if � is no greater than �, because A entails B. Other-wise, there will be no state of belief that satis�es the premise of the question.To de�ne objection scaling, we ask the following question:If � is the most general reason for rejecting A, if � is the most generalreason for rejecting B, and if A entails B, then what is the most generalreason for rejecting A after observing B?The answer to this question is based on the following:� The weakest sentence under which one rejects A is the conjunction of{ The weakest sentence under which one rejects A ^B.{ The weakest sentence under which one rejects A ^ :B.That is, �(A) = �(A ^B) ^ �(A ^ :B).� The weakest sentence under which one rejects A ^B is the disjunction of{ The weakest sentence under which one rejects B.{ The weakest sentence under which one rejects A ^B but cannot reject B.That is, �(A ^ B) = �(B) _ (�(A ^B) ^ :�(B)).

126 CHAPTER 7. OBJECTION CALCULUS� After observing B,{ The weakest sentence under which one rejects A ^ :B becomes true.{ The weakest sentence under which one rejects B becomes false.That is, �B(A ^ :B) = true and �B(B) = false.Therefore, the weakest sentence under which one rejects A after observing B is theweakest sentence under which one rejects A^B but cannot reject B. That is, �^:�,which says that objection scaling is logical falsi�cation ^:.Although this seems to be an intuitive de�nition of objection scaling, it does notconform to the properties of support scaling suggested in Chapter 3. As it turns out,this de�nition violates Property (Y1), 0 � a = 0, which says that observing a non{rejected sentence retains all accepted sentences. If we modify the previous de�nitionof objection scaling to account for Property (Y1), we obtain a de�nition of objectionscaling that is given and veri�ed by the following theorem:Theorem 7.4.1 The triple hO;^; 6 i is a distributive, but non{bijective, support struc-ture, where �6 � def= 8<: true; if � = true;� ^ :�; otherwise.By de�ning objection scaling, we obtain a number of results. First, a de�nitionof conditionalized states of belief, which is given in Section 7.4.1. Next, the notion ofobjection{based independence, which is discussed in Section 7.5. Finally, the notionof objection{based causal networks, which is discussed in Section 7.6.7.4.1 Conditionalized states of beliefChapter 3 provides a de�nition of conditionalized abstract states of belief. Objectioncalculus inherits this de�nition, which is given below.De�nition 7.4.2 Let � be an objection{based state of belief that does not reject B.The conditionalization of � on B is de�ned as follows:�B(A) = �(A ^ B) 6 �(B):

7.4. OBJECTION SCALING 127The following theorem is a key to the intuition behind conditional objections:Theorem 7.4.3 When a state of belief � in objection calculus does not reject A^B,the conditional objection to A given B is the weakest sentence under which � rejectsA ^B but cannot reject B.Assessing a sentence under which A ^B is rejected is usually easy, but assessing theweakest such sentence is usually a challenging task. Moreover, ensuring that B cannotbe rejected under such a weakest sentence requires assessing the weakest sentenceunder which B is rejected. This makes the assessment of conditional objections notalways a natural task. This issue is discussed further in Section 7.4.3.7.4.2 Objection unscalingSince every support scaling has a support unscaling, one should ask, What is objectionunscaling? The answer to this question is suggested by Figure 23, which shows therelation between the objection to a conjunction A ^ B and the objection to one ofthe conjuncts B.According to Figure 23, when A ^ B is not rejected, the objection to A ^ B canbe computed by disjoining the conditional objection to A given B with the objectionto B. This is veri�ed by the following theorem:Theorem 7.4.4 Support unscaling of hO;^; 6 i is t, where� t � def= � _ � precisely when (� = true or � ^ � = false) and � 6= true:Corollary 7.4.5 If � is an objection{based state of belief that does not reject B, then�(A ^ B) = �B(A) t �(B):Corollary 7.4.5 shows that a conditional objection is constrained by the objection toits condition. In particular, when the conditional objection is not true, it must bedisjoint from the objection to its condition. Therefore, the following two statementsare not necessarily consistent in objection calculus:

128 CHAPTER 7. OBJECTION CALCULUS
Objection to B

Objection to not A and BObjection to A and B

Figure 23: The circle on the left represents the objection to A ^ B , and the one on the rightrepresents the objection to :A ^ B . The intersection of the two circles is the objection to B .Therefore, the shaded area represents �(A ^B) ^ :�(B) , which is the conditional objection to Agiven B when A^B is not rejected. In this case, the conditional objection to A given B is logicallydisjoint from the objection to B .

7.4. OBJECTION SCALING 1291. The objection to B is � 6= true.2. The objection to A given B is �.These two statements are consistent only if � t � is de�ned. Otherwise, there wouldbe no objection{based state of belief that satis�es these statements. This is contraryto probability calculus, where the following two statements are always consistent:1. The probability of B is q 6= 0.2. The probability of A given B is p.In probability calculus, one can always construct a probabilistic state of belief thatsatis�es the statements above.7.4.3 Su�cient objectionsAssessing a condition that leads to the rejection of a conjunction A ^B is relativelyeasy, but assessing the weakest such condition is often a challenging task. Therefore,assessing objections is not always trivial.In probability calculus, a related problem is solved by appealing to conditionalprobabilities. In particular, instead of assessing the probability of a conjunctionA ^B directly, one can assess the conditional probability of A given B and multiplyit by the probability of B:Pr(A ^B) = Pr(A j B)� Pr(B):This indirect assessment of probabilities is useful because assessing the conditionalprobability of A given B is usually easier than assessing the probability of the con-junction A ^B.In objection calculus, the objection to a conjunction A^B can be also be assessedindirectly. One can assess the conditional objection to A given B and disjoin it withthe objection to B: �(A ^B) = �B(A) t �(B):

130 CHAPTER 7. OBJECTION CALCULUSBut, as it turns out, assessing the conditional objection to A givenB is usually as hardas assessing the objection to A ^ B. Assessing conditional objections is not alwaysa natural task because one must ensure the consistency of a conditional objectionwith the objection to its condition. This defeats the expected role of conditionalobjections, namely, to make the assessment of objections easier.Fortunately though, there is an alternative solution to making the assessmentof objections easier. The solution hinges on the notion of su�cient objections. Asu�cient objection to A given B is an objection to A ^ B that when disjoined withthe objection to B becomes the objection to A ^B.De�nition 7.4.6 A su�cient objection to A given B, written ��B(A), is any sentence� such that �(A ^B) = � _ �(B).Notation ��B(A) := � means that � is a su�cient objection to A given B.Assessing a su�cient objection ��B(A) is usually easier than assessing the objection�(A ^B). But why? The following theorem suggests the answer.Theorem 7.4.7 Every su�cient objection ��B(A) satis�es the following::�(B) j= �(A ^B) � ��B(A):According to Theorem 7.4.7, a su�cient objection to A given B is equivalent to theobjection to A ^ B when the objection to B is assumed to be false. Therefore, toassess a su�cient objection to A given B, one asks, What would be the objection toA ^B in the absence of an objection to B?Consider the circuit in Figure 24 as an example. Let the objectionee language beover primitive propositions P0; P1; P2; P3; P4; which assert the state of wires in the cir-cuit. And let the objection language be over primitive propositions ok (X); ok (Y); ok(Z),which assert the statuses of gates in the circuit. To assess a su�cient objection to:P4 given P3 ^ P2, one asks, What would be the objection to :P4 ^ P3 ^ P2 in theabsence of an objection to P3 ^ P2? The answer would usually be ok (Z) in this case.Although there is only one conditional objection to A given B, there is usuallymore than one su�cient objection to A given B. For example, the conditional objec-tion �B(A) and the objection �(A ^B) are both su�cient objections to A given B.However, people rarely provide these objections when asked for a su�cient objection.

7.4. OBJECTION SCALING 131
Y

Z

X

P3

P2

P1

P0

P4

Figure 24: A digital circuit.Consider again the circuit in Figure 24. When asked for a su�cient objection to:P4 given P3 ^ P2, people usually give ok (Z). Curiously enough, ok (Z) is not theconditional objection to :P4 given P3 ^ P2:� The objection to :P4 ^ P3 ^ P2 is ok (Z) _ (ok (X) ^ ok (Y)).� The objection to P3 ^ P2 is ok (X) ^ ok (Y).� The conditional objection to :P4 given P3 ^ P2 is ok (Z)^ (:ok (X)_ :ok(Y)).

132 CHAPTER 7. OBJECTION CALCULUS7.5 Objection{based independenceChapter 4 provides a de�nition of independence in abstract states of belief. Objec-tion calculus inherits this de�nition, which is discussed in Section 7.5.1. However,there is a weaker notion of independence in objection calculus, which seems to bemore appropriate for certain applications. The notion of independence is discussedin Section 7.5.2.7.5.1 Strong independenceIn probability calculus, the notion of independence is closely related to the notion ofprobability change. In particular, we say that a set of propositions I is independentfrom J given K if the conditional probability of I given K equals the conditionalprobability of I given J ^K. That is, once K is observed, the probability of I doesnot change when J is observed.In Chapter 4, this notion of independence was generalized to abstract states ofbelief. Since states of belief in objection calculus are instances of abstract states ofbelief, they inherit this de�nition.De�nition 7.5.1 A state of belief � �nds I strongly independent from J given K,written SIN �(I;K; J), precisely when the conditional objection to I given J ^ K isequivalent to the conditional objection to I given K.I refer to this as \strong" independence because objection calculus has a weaker notionof independence. Interestingly enough, weak independence in objection calculus seemsto be more appropriate for certain applications. The de�nition of weak independenceis given in the next section. In the rest of this section, I identify an application forwhich strong independence seems inappropriate.Consider a state of belief � about the digital circuit in Figure 25, where theobjection language O is constructed from the following primitive propositions:ok(X) = \Inverter X is functioning normally,"ok (Y) = \Inverter Y is functioning normally,"

7.5. OBJECTION{BASED INDEPENDENCE 133
P0 P1 P2

YX Figure 25: A digital circuit.and the objectionee language L is constructed from the following primitive proposi-tions: P0 = \Wire P0 is on,"P1 = \Wire P1 is on,"P2 = \Wire P2 is on."We expect the state of belief � to be such that� The objection to :P0 ^ P1 is false.� The objection to P0 ^ P1 is ok (X).� The objection to :P0 ^ P1 ^ P2 is ok (Y).� The objection to P0 ^ P1 ^ P2 is ok (X) _ ok (Y) .Moreover, we expect the state of belief � to �nd P2 \intuitively" independent fromP0 given P1. As we shall see, however, P2 is not strongly independent from P0 givenP1. In particular, the conditional objection to P2 given :P0 ^ P1 is not equivalent tothe conditional objection to P2 given P0^P1. After observing :P0^P1, the objection

134 CHAPTER 7. OBJECTION CALCULUSto P2 becomes �:P0^P1(P2) = �(:P0 ^ P1 ^ P2) 6 �(:P0 ^ P1)= ok (Y) 6 false= ok (Y):Therefore, ok (Y) is the weakest condition under which � rejects :P0 ^ P1 ^ P2 butcannot reject :P0 ^ P1. But after observing P0 ^ P1, the objection to P2 becomes�P0^P1(P2) = �(P0 ^ P1 ^ P2)6 �(P0 ^ P1)= (ok (X) _ ok(Y)) 6 ok (X)= ok (Y) ^ :ok (X):Therefore, ok(Y)^:ok (X) is the weakest condition under which � rejects P0^P1^P2but cannot reject P0 ^ P1.This example demonstrates that strong independence in objection calculus doesnot correspond to \independence" as we know it in digital circuits. But what does?This question is answered in the next section.7.5.2 Weak independenceStrong independence in objection calculus appeals to conditional objections. Theweaker notion of independence appeals to su�cient objections. Speci�cally, if propo-sitions I are weakly independent from K given J , then assessing a su�cient objectionto I given J^K does not depend on the state J . The formal de�nition is given below.De�nition 7.5.2 A state of belief � �nds I weakly independent from J given K,written WIN�(I;K; J), precisely when every su�cient objection to I given K is alsoa su�cient objection to I given J ^K.Corollary 7.5.3 If WIN�(I;K; J), then �(I ^ J ^K) = ��K(I) _ �(J ^K).The following is a characterization of weak independence that does not mentionsu�cient objections:

7.5. OBJECTION{BASED INDEPENDENCE 135Theorem 7.5.4 WIN �(I;K; J) precisely when �(I^J ^K) = �(I^K)_�(J ^K).Considering the digital circuit in Figure 25, one can show that�(P2 ^ P1 ^ P0) = �(P2 ^ P1) _ �(P1 ^ P0):For example, �(P2 ^ P1 ^ P0) = ok (Y) _ ok (X);�(P2 ^ P1) = ok (Y);�(P1 ^ P0) = ok (X):Therefore, one can show that P2 is weakly independent from P0 given P1.Weak independence satis�es a number of properties that have major consequences.For example, the following property shows that su�cient objections can be decom-posed into simpler su�cient objections in the presence of weak independence:Theorem 7.5.5 If WIN �(I;K; J), then ��K(I ^ J) := ��K(I) _ ��K(J).Among the most important properties of weak independence are the graphoidaxioms [Pearl, 1988].Theorem 7.5.6 (Symmetry) WIN �(I;K; J) precisely when WIN �(J;K; I).Theorem 7.5.7 (Decomposition) If WIN�(I;K; J [L), then WIN�(I;K; J).Theorem 7.5.8 (Weak Union) If WIN�(I;K; J [L), then WIN �(I;K [J;L).Theorem 7.5.9 (Contraction)If WIN�(I;K; J) and WIN �(I;K [J;L); then WIN �(I;K; J [L):Together, Decomposition, Weak Union, and Contraction giveWIN �(I;K; J) and WIN �(I;K [J;L) precisely when WIN�(I;K; J [L):

136 CHAPTER 7. OBJECTION CALCULUS7.6 Objection{based causal networksChapter 4 provides a de�nition of abstract causal networks. Objection calculus inher-its this de�nition, which is discussed in Section 7.6.1. However, objection calculus hasa weaker notion of causal networks, which seems to be more appropriate for certainapplications. This notion is discussed in Section 7.6.2.7.6.1 Strong causal networksWhen degrees of support are objections, I refer to an abstract causal network as astrong objection{based (sob) causal network. The topology of a sob causal networkencodes strong independence assertions, and its tables contain conditional objections.Below is the formal de�nition.De�nition 7.6.1 A sob causal network is a tuple hL;O;G; COi, where� L and O are propositional languages over disjoint primitive propositions.� G is a directed acyclic graph over the primitive propositions of L.� CO is a partial function L � L ! O such that{ COi�(i) is de�ned, and{ î COi�(i) = false for every primitive proposition i in L.The function CO is called a conditional objection function.De�nition 7.6.2 A state of belief � satis�es a sob causal network hL;O;G; COiprecisely whenSIN �(i; i�; i/) and �(i�) 6= true only if �i�(i) = COi�(i):Sob causal networks are based on strong independence and on conditional objec-tions. As I mentioned earlier, conditional objections are not easy to assess, which

7.6. OBJECTION{BASED CAUSAL NETWORKS 137makes the quanti�cation of a sob causal network unnatural. Moreover, strong inde-pendence is not appropriate for certain applications, which makes sob causal networksinappropriate for these applications.It is also possible to construct a sob causal network that is not satis�ed by anystate of belief. This should not be surprising because the de�nition of a sob causalnetwork does not guarantee a conditional objection COi� to be consistent with theobjection to its condition i�.A solution to all these problems is given in the next section.7.6.2 Weak causal networksWeak objection{based (wob) causal networks have the same syntax as sob causalnetworks, but their semantics are di�erent. The topology of a wob causal networkencodes weak independence assertions, and its tables contain su�cient objections.Below is the formal de�nition.De�nition 7.6.3 A wob causal network is a tuple hL;O;G;SOi, where� L and O are propositional languages over disjoint primitive propositions.� G is a directed acyclic graph over the primitive propositions of L.� SO is a partial function L � L ! O such that{ SOi�(i) is de�ned, and{ î SOi�(i) = false for every primitive proposition i in L.The function SO is called a su�cient objection function.Figure 26 depicts a wob causal network. This network could also be a sob causalnetwork, but the given quanti�cation makes it inconsistent. For example, if oneviewed Figure 26 as a sob causal network, the objection to A ^ B would be ok (X),and the conditional objection to C given A^B would be ok (Y). These two objectionsare inconsistent.

138 CHAPTER 7. OBJECTION CALCULUS
C

ok(Y)

not B

B

ok(Y)

not C

false
false C

B

Anot A

false false

B

A

Y

C

not B

ok(X)

A ok(X)

B

not A

false
false

X

A

Figure 26: A digital circuit and its corresponding wob causal network.De�nition 7.6.4 A state of belief � satis�es a wob causal network hL;O;G;SOiprecisely when WIN�(i; i�; i/) and ��(i ^ i�) := SOi�(i):Unlike sob causal networks, every wob causal network is consistent.Theorem 7.6.5 Every wob causal network is satis�ed by exactly one objection{basedstate of belief.Moreover, wob causal networks are rich enough to represent any state of belief.Theorem 7.6.6 Every objection{based state of belief satis�es some wob causal net-work.Many of the weak independences that hold in a wob causal network can be re-trieved by applying d{separation to the topology of the network.Theorem 7.6.7 Let � be the state of belief satisfying a wob causal network hL;O;G;SOi.If IN G(I;K; J), then WIN�(I;K; J).

7.7. THE WOB ALGORITHM 1397.7 The wob algorithmIn this section, I present an algorithm for the following computation. Given� hL;O;G;SOi, a wob causal network, and� �, an observation about some nodes in G,compute the following pair of objections for every node i in G:BLi def= h�(i ^ �);�(:i ^ �)i:The pair BLi contains much information. For example, it can be used to compute:1. The objection to the observation �: �(i ^ �) ^ �(:i ^ �).2. The conditional objection to i given �: �(i ^ �) 6 �(�).3. The objection to i: �(i ^ �) when � = true.The algorithm I am about to present assumes that the causal network is singlyconnected. But similar to the generalized polytree algorithm, it can be extended tohandle multiply connected networks.The algorithm also assumes that the observation � is about leaf nodes only, butthis assumption does not a�ect the generality of the algorithm. I show in Chapter 5that an observation about any node can be simulated by another observation abouta leaf auxiliary node.The algorithm is based on breaking down the computation of the pair BLi into anumber of smaller computations that are performed by the neighbors of node i. Theresult of each computation is passed on to node i as a message:{ The message sent by parent j to node i is denoted by �j:i.{ The message sent by child k to node i is denoted by �k:i.The messages that node i receives from its parents are combined to form a pair ofobjections denoted by �i, while the messages that node i receives from its children

140 CHAPTER 7. OBJECTION CALCULUSare combined to form a pair of objections denoted by �i. The target pair, BLi is theresult of combining the pairs �i and �i.Now that I have outlined the algorithm, let me explain what the passed messagesare, how they are computed, and how they are combined.7.7.1 Messages from parentsThe message that node i receives from its parent j is de�ned as follows:�j:i def= h�(j ^ �i/j);�(:j ^ �i/j)i:The messages that node i receives from its parents combine to yield the pair,�i def= h�(i ^ �i/);�(:i ^ �i/)i:These messages are combined as follows:Theorem 7.7.1 �i(i) = î� SOi�(i) _ _i�j=j �j:i(j).Parent j computes the message that it sends to node i as follows:Theorem 7.7.2 �j:i = �j _ _l2j�i �l:j.That is, the message �j:i is the result of combining all the messages that node jreceives from its neighbors, except node i.7.7.2 Messages from childrenThe message that node i receives from its child k is de�ned as follows:�k:i def= h��i(�i.k); ��:i(�i.k)i:The messages that node i receives from its children combine to yield the pair,�i def= h��i(�i.); ��:i(�i.)i:These messages are combined as follows:

7.7. THE WOB ALGORITHM 141Theorem 7.7.3 �i = _k2i� �k:i.Child k computes the message that it sends to node i as follows:Theorem 7.7.4 If node k is not observed, then�k:i(i) = k̂ �k(k) _ k̂�i SOk�i^i(k) _ _k�ij=l �l:k(l):But if node k is observed, then�k:i = 8<: hfalse; truei; if � j= k;htrue; falsei; if � j= :k.When node k is observed, the observation � decides how the message �k:i is computed.But when k is not observed, the message �k:i is the result of combining all the messagesthat node k receives from its neighbors, except node i.|||{After node i has received all messages from its parents, it uses them to computethe pair �i. Similarly, node i uses the messages it has received from its children tocompute the pair �i. The target pair BLi is computed by combining the pairs �i and�i:Theorem 7.7.5 BLi = �i _ �i.7.7.3 Computational complexityThe algorithm I have given involves passing 2n messages, where n is the number ofarcs in the network. The computation performed by each node is exponential in thenumber of its parents, but linear in the number of its children. These complexities alsoapply to the probabilistic version of this algorithm. Note, however, that although itis reasonable to assume that numeric addition and multiplication are operations thattake constant time, it does not seem reasonable to assume that logical conjunctionand disjunction|which in objection calculus play the role played by addition and

142 CHAPTER 7. OBJECTION CALCULUS
Y

X

P0

P2

P1

P2

P3

P1

P0

P4Figure 27: Messages exchanged in a forward propagation.multiplication in probability calculus|are operations that take constant time. In fact,when objections are represented using disjunctive normal forms, experimental resultsshow that in causal networks with a few hundred nodes, about 99% of the algorithmtime is spent in conjoining and disjoining objections. Moreover, this time seems tovary signi�cantly depending on the number and nature of available observations.7.7.4 An exampleConsider Figure 26, which depicts a wob causal network. Given the observation� = P3 ^ :P4;let us compute the belief in every node of the network using forward propagation.This computation requires the messages,�3:0; �0:1; �1:2; �4:2; �2:1; �1:0;

7.7. THE WOB ALGORITHM 143which are depicted in Figure 27. These messages are computed as follows:�3:0 = hfalse; truei�0:1 = �0 _ �3:0= hfalse; falsei _ hfalse; truei; because Node 0 is root= hfalse; truei:�1:2 = �1= h[SOP0(P1) _ �0:1(P0)] ^ [SO:P0(P1) _ �0:1(:P0)];[SOP0(:P1) _ �0:1(P0)] ^ [SO:P0(:P1) _ �0:1(:P0)]i= h[ok(X) _ false] ^ [false _ true];[false _ false] ^ [ok(X) _ true]i= hok (X); falsei:�4:2 = htrue; falsei:�2:1 = h[�2(P2) _ SOP1(P2)] ^ [�2(:P2) _ SOP1(:P2)];[�2(P2) _ SO:P1(P2)] ^ [�2(:P2) _ SO:P1(:P2)]i;= h[true _ ok (Y)] ^ [false _ false];[true _ false] ^ [false _ ok(Y)]i; because �2 = �4:2= hfalse; ok(Y)i:�1:0 = h[�1(P1) _ SOP0(P1)] ^ [�1(:P1) _ SOP0(:P1)];[�1(P1) _ SO:P0(P1)] ^ [�1(:P1) _ SO:P0(:P1)]i= h[false _ ok (X)] ^ [ok (Y) _ false];[false _ false] ^ [ok(Y) _ ok (X)]i; because �1 = �2:1= hok (X) ^ ok (Y); falsei:

144 CHAPTER 7. OBJECTION CALCULUSWe must now compute the pair �i for each node i:�0 = �3:0 _ �1:0= hfalse; truei _ hok (X) ^ ok (Y); falsei= hok (X) ^ ok (Y); truei:�1 = �2:1 = hfalse; ok(Y)i:�2 = �4:2 = htrue; falsei:And compute the pair �i for each node i:�0 = hfalse; falsei:�1 = hfalse; ok (X)i:�2 = h[SOP1(P2) _ �1:2(P1)] ^ [SO:P1(P2) _ �1:2(:P1)];[SOP1(:P2) _ �1:2(P1)] ^ [SO:P1(:P2) _ �1:2(:P1)]i= h[ok (Y) _ ok (X)] ^ [false _ false];[false _ ok(X)] ^ [ok(Y) _ false]i= hfalse; ok (X) ^ ok (Y)i:Finally, we compute the pair BLi for every node i:BL0 = hfalse; falsei _ hok (X) ^ ok (Y); truei= hok (X) ^ ok (Y); truei:BL1 = hok (X); falsei _ hfalse; ok(Y)i= hok (X); ok (Y)i:BL2 = hfalse; ok (X) ^ ok (Y)i _ htrue; falsei= htrue; ok(X) ^ ok (Y)i:

7.8. JUSTIFICATION AND CONSEQUENCE CALCULI 1457.8 Justi�cation and consequence calculiIn objection calculus, one quanti�es the support for a sentence by assessing the ob-jection to the sentence; that is, the most general reason for rejecting it.The following question arises usually in connection with objection calculus, Couldone quantify the support for a sentence by assessing the justi�cation for the sentence;that is, the most general reason for accepting it?The answer is yes, but the resulting calculus, justi�cation calculus, is not aninstance of the abstract calculus formalized in Chapters 2 and 3. Let me explain why.When a sentence is rejected, its negation is accepted. Therefore, the objection toa sentence is the justi�cation for its negation. Given this connection, it follows thatthe justi�cation for the disjunction A_B, when A and B are logically disjoint, cannotbe computed from the justi�cation for A and the justi�cation for B. This violatesone of the principles underlying abstract states of belief:� The support for A _ B is a function of the support for A and the support forB, when A and B are logically disjoint.Instead, we have the following in justi�cation calculus:� The justi�cation for A ^ B is a function of the justi�cation for A and thejusti�cation for B.To see why this holds in justi�cation calculus, let J(A) denote the justi�cation forA, and �(A) denote the objection to A. Using the connection between justi�cationsand objections, we have J(A ^B) = �(:A _ :B)= �(:A) ^ �(:B)= J(A) ^ J(B):|||{Another calculus that is closely related to objection calculus is consequence calculus,in which one quanti�es the support for a sentence by assessing the consequence of the

146 CHAPTER 7. OBJECTION CALCULUSsentence; that is, the most speci�c conclusion of accepting the sentence. Consequencecalculus is an instance of the abstract calculus formalized in Chapters 2 and 3. Ob-jection, justi�cation, and consequence calculi are duals of one another. Their dualityis given by the following equivalent statements:1. � is the objection to A.2. � is the justi�cation for :A.3. :� is the consequence of A.A similar duality exists among impossibility, possibility, and necessity calculi [Duboisand Prade, 1988].

Chapter 8Diagnosis using ObjectionCalculusIn this chapter, I explore the application of objection calculus to diagnosing faultsin physical systems. In particular, I show how to describe the behavior of a physicalsystem using a wob causal network, and how to use the wob algorithm to computediagnoses of observations about the system.8.1 IntroductionObjections are closely related to two in
uential notions in AI: labels and diagnoses.Computing labels is the job of a clause management system [Reiter and de Kleer,1987]. In section 8.2, I discuss clause management systems and de�ne labels formally.In section 8.3, I study the relation between objections and labels.Computing diagnoses is the job of a diagnosis system [de Kleer et al., 1992]. InSection 8.4, I discuss diagnosis systems and de�ne diagnoses formally. In Section 8.5,I study the relation between objections and diagnoses.Finally, in Section 8.6, I show how wob causal networks can be used to describethe behavior of physical systems, and how the wob algorithm of Chapter 7 can beused to compute diagnoses; I also provide some examples.147

148 CHAPTER 8. DIAGNOSIS USING OBJECTION CALCULUS8.2 Clause management systemsThe basic task of a clause management system is to help a reasoner answer thefollowing general question: Given a particular database, under what condition can Iderive a particular sentence? The condition is usually required to be most generaland to be phrased using a particular language. The following example provides someintuitive justi�cation for this requirement.Consider the circuit depicted in Figure 28. Let L0 be a propositional language overprimitive propositions A;B;C;D;E;F; which assert the state of wires in the circuit.And letO0 be a propositional language over primitive propositions ok (X); ok (Y); ok(Z);which assert the statuses of gates in the circuit. The behavior of the circuit can bedescribed using statements of the formgate input ^ ok (gate) � gate output :Let �0 denote the conjunction of all such statements:�0 � (A ^ ok (X) � :D) ^(:A ^ ok (X) � D) ^(B ^ C ^ ok (Y) � E) ^(B ^ :C ^ ok (Y) � :E) ^...If a reasoner observes �0 = :A ^B ^ C about the circuit, then it might ask a clausemanagement system the following question: Given the database �0 ^ �0, under whatcondition can I derive the sentence F ? The most general such condition phrased usingthe language O0 is (ok (X)_ ok (Y))^ ok(Z). This condition is called the O0{label forF with respect to �0 ^ �0.De�nition 8.2.1 The O{label for sentence A with respect to database �, writtenLabel(A;�;O), is the weakest sentence in language O that when conjoined with �entails A.

8.2. CLAUSE MANAGEMENT SYSTEMS 149
Z

D

C

B
E

F

A X

Y Figure 28: A digital circuit.Reiter and de Kleer [Reiter and de Kleer, 1987] de�ne labels di�erently. To stateand analyze their de�nition, I need a number of notions. These are the notions ofconjunctive clause, disjunctive clause, prime implicant, prime implicate, and minimalsupport clause.De�nition 8.2.2 A conjunctive clause is a conjunction of literals.De�nition 8.2.3 An implicant for A is a conjunctive clause that entails A. Aprime implicant for A is a weakest implicant for A.De�nition 8.2.4 A disjunctive clause is a disjunction of literals.De�nition 8.2.5 An implicate of A is a disjunctive clause that is entailed by A. Aprime implicate of A is a strongest implicate of A.De�nition 8.2.6 ([Reiter and de Kleer, 1987]) A support for sentence A withrespect to database � is an implicate of � ^ :A that is not an implicate of �.A minimal support for sentence A with respect to database � is a strongest supportfor A with respect to �.

150 CHAPTER 8. DIAGNOSIS USING OBJECTION CALCULUSReiter and de Kleer de�ne labels as follows:De�nition 8.2.7 ([Reiter and de Kleer, 1987]) The O{label for sentence A withrespect to database � is the set of all conjunctive clauses I, such that I belongs tolanguage O and :I is a minimal supports for A with respect to �.1At �rst glance, De�nition 8.2.7 looks quite di�erent from De�nition 8.2.1. But a closerlook shows that for a certain class of databases the di�erence between the two de�ni-tions is only syntactic. In particular, the O{label for A with respect to � accordingto De�nition 8.2.7 corresponds to the prime implicants for Label(A;�;O) that areconsistent with �. This correspondence is a corollary of the following theorem:Theorem 8.2.8 I is a prime implicant for Label(A;�;O) and is consistent with �precisely when :I belongs to O and is a minimal support for A with respect to �.The di�erence between De�nition 8.2.7 and De�nition 8.2.1 of labels is only syn-tactic provided the database is non{committal in the following sense:De�nition 8.2.9 A database � is non{committal with respect to language Oprecisely when it does not entail any invalid sentence in O.For example, the database �0^�0 given earlier with respect to the circuit of Figure 28is non{committal with respect to the language O0. However, the database �0^ �0^Dis committal because it entails :ok (X), which belongs to O0.When a database � is non{committal with respect to language O, every primeimplicant for Label(A;�;O) is consistent with �. In this case, the label for A withrespect to � according to De�nition 8.2.7 corresponds to the set of prime implicantsfor Label(A;�;O).Theorem 8.2.10 Let � be a non{committal database with respect to language O.The O{label for A with respect to � according to Reiter and de Kleer is the set ofprime implicants for Label(A;�;O).1Reiter and de Kleer refer to the primitive propositions of the language O as assumptions.

8.2. CLAUSE MANAGEMENT SYSTEMS 151In this chapter, I consider only databases that are non{committal with respectto some language O of interest. But this does not a�ect the generality of the basicresults given in this chapter. In fact, databases in diagnosis applications are usuallynon{committal with respect to some language O. In these applications, the database� is usually a description of a system behavior, and the language O is about thestatuses of the system components. Since behavioral system descriptions do notusually imply anything about the statuses of the system components, databases indiagnosis applications are usually non{committal.

152 CHAPTER 8. DIAGNOSIS USING OBJECTION CALCULUS8.3 The relation between objections and labelsThere is a correspondence between non{committal databases and states of belief inobjection calculus. For each state of belief �, we can construct a non{committaldatabase ��, where there is a one{to{one correspondence between the objections of� and the labels of ��. Furthermore, for each non{committal database �, we canconstruct a state of belief ��, where there is a one{to{one correspondence betweenthe labels of � and the objections of ��. These results are stated by the followingtheorems, which assume that � is a state of belief with respect to (L;O).First, the database corresponding to state of belief � is the conjunction of allstatements of the form, The objection to A implies :A.De�nition 8.3.1 The database corresponding to state of belief � is�� def= Â2L�(A) � :A:The following theorem shows that the database corresponding to a state of belief isnon{committal.Theorem 8.3.2 The database �� is non{committal with respect to language O.The label for sentence A with respect to database �� is the objection attributed bystate of belief � to sentence :A.Theorem 8.3.3 If A is a sentence in language L, then �(:A) � Label(A;��;O).We can also construct a state of belief that corresponds to any non{committaldatabase.Theorem 8.3.4 The mapping 	� : L ! O such that 	�(A) � Label(:A;�;O) isan objection{based state of belief.

8.3. THE RELATION BETWEEN OBJECTIONS AND LABELS 1538.3.1 The computational value of weak independenceSince every state of belief in objection calculus corresponds to some non{committaldatabase, every weak independence assertion about a state of belief � must also be anassertion about the database ��. But what is this assertion? The following theoremanswers this question:Theorem 8.3.5 A state of belief � �nds propositions I weakly independent from Jgiven K precisely whenLabel(:I _ :J _ :K;��;O) � Label(:I _ :K;��;O) _ Label(:J _ :K;��;O):Let me explain the intuition behind this theorem. Suppose thatLabel(:I _ :K;��;O) � � and Label(:J _ :K;��;O) � �:That is, � and � are the weakest sentences in O such that�� ^ � j= :I _ :K and �� ^ � j= :J _ :K: (10)Logically, we can deduce the following from (10):�� ^ (� _ �) j= :I _ :J _ :K: (11)But logically, we cannot deduce that � _ � is the weakest sentence in O that sat-is�es (11). Whether or not this holds depends on the nature of the database ��.Therefore, deciding whether � _ � is the O{label for :I _ :J _ :K involves anexamination of the database ��.Now, if the state of belief � �nds I weakly independent from J given K, then� _ � is indeed the weakest sentence in O that satis�es (11). In this case, we canconclude that � _ � is the O{label for :I _ :J _ :K without further examinationof the database ��. Avoiding this examination is the computational value of weakindependence.Consider the circuit depicted in Figure 28 as an example. We have,Label(D;�0 ^ �0;O0) � ok (X);

154 CHAPTER 8. DIAGNOSIS USING OBJECTION CALCULUSLabel(E;�0 ^ �0;O0) � ok (Y);Label(D _ :F;�0 ^ �0;O0) � ok (X);Label(E _ :F;�0 ^ �0;O0) � ok (Y):Since proposition E is weakly independent from D, we haveLabel(D _ E;�0 ^ �0;O0) � Label(D;�0 ^ �0;O0) _ Label(E;�0 ^ �0;O0)� ok (X) _ ok (Y):However, E is not weakly independent from D given F . This is veri�ed byLabel(D _ E _ :F;�0 ^ �0;O0)� ok (X) _ ok (Y) _ ok (Z)6� Label(D _ :F;�0 ^ �0;O0) _ Label(E _ :F;�0 ^ �0;O0):8.3.2 The logical meaning of wob causal networksWe know from Chapter 7 that each wob causal network corresponds to a state ofbelief. Since each state of belief corresponds to a non{committal database, then eachwob causal network must correspond to a non{committal database. But what is thisdatabase? The following theorem answers this question:Theorem 8.3.6 If CN = hL;O;G;SOi is a wob causal network, and if � is thestate of belief satisfying CN, then�� � î i� ^ SOi�(i) � :i:According to Theorem 8.3.6, the database corresponding to a wob causal network isthe conjunction of statements of the formstate of parents ^ su�cient objection � :state of node:Also according to Theorem 8.3.6, the database corresponding to a causal networkdoes not depend on the causal structure of the network. That is, given the tables

8.3. THE RELATION BETWEEN OBJECTIONS AND LABELS 155of a causal network, the independences asserted by the causal structure are logicallyredundant. This is both surprising and consequential! It is surprising because itsuggests that a causal structure has no representational value. And it is consequentialbecause it suggests that the independences asserted by a causal structure must becorrect. This means that Theorem 8.3.6 can be used to prove that Claim 4.3.2 | ofChapter 4 | is true with respect to objection calculus.Although a causal structure is representationally redundant, we have seen in Sec-tion 8.3.1 that its computational value should not be underestimated.

156 CHAPTER 8. DIAGNOSIS USING OBJECTION CALCULUS8.4 Diagnosis systemsThe basic task of a diagnosis system is to help a reasoner answer the following generalquestion: Given a particular database, what can I conclude after recording a particularobservation? The conclusion is usually required to be most speci�c and phrased usinga particular language. The following example provides some intuitive justi�cation forthis requirement.Consider the circuit depicted in Figure 28, and L0;O0 and �0 be as given inSection 8.2. If a reasoner observes �0 = :A ^B ^ C ^ :F about the circuit, it mightask a diagnosis system the following question: Given the database �0, what can Iconclude after recording the observation �0? The most speci�c conclusion that isphrased using the language O0 is (:ok (X) ^ :ok (Y)) _ :ok (Z). This conclusion iscalled the O0{diagnosis for �0 with respect to �0.De�nition 8.4.1 The O{diagnosis of � with respect to �, written Diagnosis(�;�;O),is the strongest sentence in O that is entailed by � ^ �.The AI literature contains many notions of diagnosis. For example, de Kleer etal. [de Kleer et al., 1992] discuss eight such notions, the most in
uential of whichare minimal, prime, and kernel diagnoses. They conclude their discussion with thefollowing remark:The notions of minimal and prime diagnosis are inadequate to charac-terize diagnoses generally. We argue that the notion of kernel diagnosiswhich designates some components as normal, others abnormal, and thereminder as being either, is a better way to characterize diagnoses. [deKleer et al., 1992, Page 221]As we shall see next, the prime implicants for Diagnosis(�;�;O) correspond tokernel diagnoses as de�ned by de Kleer et al.Kernel diagnoses are de�ned with respect to a system, which is a triple (�;�;O),where22This de�nition is a propositional version of a de�nition used by de Kleer et al.

8.4. DIAGNOSIS SYSTEMS 157� �, the system observation, is a propositional sentence.� �, the system description, is also a propositional sentence.� O, the system component language, is a propositional language over primitivepropositions of the form ok (C), where C is a component of the system.De�nition 8.4.2 The kernel diagnoses of system (�;�;O) are the prime implicantsfor the conjunction of all prime implicates of � ^ � that belong to O.The relation between kernel diagnoses and the notion of diagnosis as given byDe�nition 8.4.1 is a corollary of the following theorem:Theorem 8.4.3 The strongest sentence in O that is entailed by � ^ � is equivalentto the conjunction of all prime implicates of � ^ � that belong to O.Corollary 8.4.4 The prime implicants for Diagnosis(�;�;O) are the kerneldiagnoses of the system (�;�;O).

158 CHAPTER 8. DIAGNOSIS USING OBJECTION CALCULUS8.5 The relation between objections and kerneldiagnosesThere is a one{to{one correspondence between the objections of a state of belief �and the diagnoses of its corresponding database ��.Theorem 8.5.1 If � is a state of belief with respect to (L;O), and if � is a sentencein L, then :�(�) � Diagnosis(�;��;O):According to Theorem 8.5.1, diagnoses are negated objections. This is intuitive:if �(�) is the most general reason for rejecting �, then :�(�) is the most speci�cconclusion of accepting �.A corollary of Theorem 8.5.1 shows that kernel diagnoses correspond to the primeimplicants for negated objections.Corollary 8.5.2 Let � be a state of belief with respect to (L;O), and let � be asentence in L. The prime implicants for :�(�) are the kernel diagnoses of the system(�;��;O).This corollary is the key to computing kernel diagnoses using the wob algorithmof Chapter 7: Given a wob causal network that describes a physical system, and givenan observation � about the system,1. the wob algorithm is used to compute the objection �(�) to the observation �,2. the computed objection is then negated, and3. the prime implicants for the negated objection :�(�) are computed.These are the kernel diagnoses of the observation �.

8.6. DIAGNOSIS USING WOB CAUSAL NETWORKS 1598.6 Diagnosis using wob causal networksIn this section, I sketch the steps involved in diagnosing system faults using wobcausal networks. I also provide three examples of diagnosing faults in digital circuits.The �rst step in constructing a wob causal network hL;O;G;SOi is de�ning thepropositional language O. To de�ne this language, one must identify the systemcomponents needed in order to describe the system behavior. The statuses of thesecomponents constitute the primitive propositions of the language O. In particular,primitive propositions in O usually have the form ok (C), where C is a system com-ponent. Alternatively, these primitive propositions can have the form ab(C), whereC is a system component. The two choices are dual. In digital circuits, for example,the components are usually the individual gates from which the circuit is composed.The second step in constructing a wob causal network is de�ning the propositionallanguage L. To de�ne this language, one must identify the system aspects|other thanthe statuses of its components|that are needed to describe the system behavior.These aspects constitute the primitive propositions of the language L. For example,the aspects of digital circuits are usually the states of wires that connect the individualgates.The third step in constructing a wob causal network is constructing the causalstructure G, which is a direct acyclic graph. The nodes of this graph must be theprimitive propositions in the language L, that is, the system aspects. The arcs of thisgraph must respect the following principle:Assuming that no system component is faulty, observing the state of as-pects i� of the system, which are the parents of aspect i, should be enoughto determine the state of aspect i.A causal structure that respects this principle is said to be quanti�able, which bringsus to the last step in constructing a wob causal network: quantifying its causalstructure.The purpose of quantifying a causal structure is to voice objections to local be-haviors of the system. A local behavior is a pair (i; i�), where i is a state of aspect iand i� is a state of its parent aspects i�. The local behavior (i; i�) means that aspect

160 CHAPTER 8. DIAGNOSIS USING OBJECTION CALCULUSi has state i when aspects i� have state i�. In quantifying a causal structure, oneprovides a su�cient objection to state i given state i� for each local behavior (i�; i).These su�cient objections �ll the tables of a wob causal network and, consequently,specify the su�cient objection function SO.To summarize, constructing a wob causal network hL;O;G;SOi involves:1. Identifying the system components and constructing the language O.2. Identifying the system aspects and constructing the language L.3. Constructing the causal structure G.4. Quantifying the structure G by providing the su�cient objection function SO.By performing these steps, one becomes committed to a state of belief � : L ! Oabout the system under consideration. Moreover, the constructed causal network andits corresponding state of belief become the basis for diagnosing faults of the describedsystem.For example, suppose that we observe � about the described system. Then, givenTheorem 8.5.1, the diagnosis of � is the negated objection :�(�). This diagnosis canbe computed using the algorithm given at the end of Chapter 7 when the observation� is a conjunction of literals. In particular, the algorithm computes the pairh�(i ^ �);�(:i ^ �)ifor each node i in the causal network. But conjoining the elements of any such pairgives the objection to the observation �,�(�) = �(i ^ �) ^ �(:i ^ �):Therefore, the diagnosis of � is given by :�(i ^ �) _ :�(:i ^ �).

8.6. DIAGNOSIS USING WOB CAUSAL NETWORKS 1618.6.1 The �rst exampleFigure 29 depicts a wob causal network that describes the digital circuit of Figure 28.The given quanti�cation assumes the following:� If a gate is OK, then it behaves normally.� If a gate is faulty, then it may behave normally or abnormally.The causal structure of a digital circuit is usually re
ected by its wiring structure:Assuming that no gate is faulty, observing the input to a gate is enough to determineits output.Now, suppose that we observe � = :A^B^C^:F about the circuit of Figure 28.Using the wob algorithm, we computeBLE = hok (Z); ok(Y) _ (ok(X) ^ ok (Z))i:Hence, :�(�) = (:ok(Y) _ :ok (Z)) ^ (:ok (X) _ :ok (Z)) is the diagnosis of theobservation �.
not EE not DD

C B

F not F

D
not A

A
false

false
ok(X)

ok(X)

falseok(Y)not C, not B
not C, B
C, not B

C, B

ok(Y)
ok(Y)
false

false
false
ok(Y)

false
ok(Z)
ok(Z)
ok(Z)

ok(Z)
false
false
false

not E, not D
not E, D
E, not D

E, D

false false
C not C

false false

false false

B not B

A not A

E

A

FFigure 29: A wob causal network for the digital circuit of Figure 28.

162 CHAPTER 8. DIAGNOSIS USING OBJECTION CALCULUS8.6.2 The second exampleFigure 30 depicts a digital circuit and the wob causal network describing it. Thegiven quanti�cation assumes the following:� If an inverter is OK, then it behaves normally.� If an inverter is faulty, then it shorts its output to its input.Now, suppose that we observe � = A ^ :C about the circuit of Figure 30. Using thewob algorithm, we computeBLB = hok (X) _ :ok (Y);:ok(X) _ ok (Y)i:Hence, :�(�) = (:ok (X) ^ ok (Y)) _ (ok (X) ^ :ok (Y))is the diagnosis of the observation �.
Anot A

false false

not B

ok(X)

not ok(X)A

not ok(X)

ok(X)

B

not A

C

not ok(Y)

ok(Y)

not B

B not ok(Y)

ok(Y)

not C

B

A

Y

X

C
C

A

B

Figure 30: A digital circuit and its corresponding wob causal network.

8.6. DIAGNOSIS USING WOB CAUSAL NETWORKS 1638.6.3 The third exampleFigure 31 depicts a digital circuit and the wob causal network describing it. Thegiven quanti�cation assumes the following:� If an inverter is OK, then it behaves normally.� If an inverter is faulty, then it shorts its output to its input, or gets stuck at 0.Now, suppose that we observe � = A ^ :C about the circuit of Figure 31. Using thewob algorithm, we compute BLB = hok (X); ok (Y)i:Hence, :�(�) = :ok (X) _ :ok (Y)is the diagnosis of the observation �.
Anot A

false false

not B

ok(X)

A

not ok(X)

ok(X)

B

not A
false

C

not ok(Y)
ok(Y)

not B
B

ok(Y)

not C

false

A

B

Y

X

C
C

A

B

Figure 31: A digital circuit and its corresponding wob causal network.

164 CHAPTER 8. DIAGNOSIS USING OBJECTION CALCULUS

Chapter 9Commonly Asked QuestionsIn this chapter, I answer a number of questions about the relation between the work Ipresented here and other work in the AI, philosophical, and probabilistic literatures.In each of the following sections, I state one of these questions and answer it.Notation abc stands for the Abstract Belief Calculus of Chapters 2 and 3.9.1 Many{valued logicQuestion: Can one view abc as a many{valued logic?The answer is no. Let me �rst explain what a many{valued logic is, and then showwhy abc cannot be viewed as such.A many{valued logic is usually characterized by a choice of truth values and achoice of truth value functions Fi. Truth value functions are used as follows: If thetruth values t1; . . . ; tn are attributed to sentences �1; . . . ; �n, then the truth valueFi(t1; . . . ; tn) is attributed to the sentence Ci(�1; . . . ; �n), where Ci is a logical con-nective [Rosser and Turquette, 1952]. Therefore, in a many{valued logic, the truthvalue of a sentence is determined by the truth values of its constituent sentences.This is called the \truth functionality" of many{valued logic.If we view degrees of support as truth values, then abc is not truth functional.We know, for example, that the support for a conjunction is not determined by the165

166 CHAPTER 9. COMMONLY ASKED QUESTIONSsupports for its conjuncts. Therefore, abc is not a many{valued logic. If it were,then it would not subsume probability calculus:Most of the Polish logicians . . . regarded the non{truth{functional char-acter of probability assignments as a decisive obstacle against viewing aprobabilistic system as a many{valued logic. K. Ajdukiewicz, S. Mazurkiewicz,and A. Tarski were of this mind. [Rescher, 1969, Page 14]This also explains the basic di�erence between abc and some existing many{valuedlogics in the AI literature [Bonissone, 1987].Ginsberg proposes a many{valued logic that deviates from the tradition of beingcompletely truth functional [Ginsberg, 1988]. But he still assumes that the truthvalue of a sentence determines the truth value of its negation. Ginsberg also assumesthat the truth functions corresponding to the disjunction and conjunction connectivesare idempotent, which precludes probabilities as truth values.

9.2. FUZZY LOGIC 1679.2 Fuzzy logicQuestion: What is the relation between abc and fuzzy logic?Before I answer this question, I shall digress on a fundamental notion in fuzzy settheory on which I later base my answer. It is the notion of a linguistic variable [Zadeh,1975]. Roughly speaking, a linguistic variable consists of the following elements:� V , a variable.� U , the exact values of the variable V .� G, the linguistic values of the variable V .These are linguistic descriptions of the value of V .� M , a meaning function.This function maps each linguistic value in G into a fuzzy set on U .Consider for example the linguistic variable consisting of the variable Age, the exactvalues [0; 100], and the linguistic values old, very old, more or less old, and so on.Figure 32 depicts the meaning of two linguistic values of the variable Age.Armed with the concept of a linguistic variable, one can take almost any formalismthat deals with variables and construct a fuzzy version of this formalism in which
50

Young Old1

Figure 32: The meanings of two linguistic values.

168 CHAPTER 9. COMMONLY ASKED QUESTIONSvariables can take on linguistic values. This process is called \fuzzi�cation."1 Inparticular, consider a many{valued logic with truth values S. The truth value of asentence A, Truth Value(A), is a variable with an exact value in S. One can fuzzifythis logic by allowing the variable Truth Value(A) to take on linguistic values. Thatis, for each sentence A, one can introduce a linguistic variable with the followingelements:� Truth Value(A), the variable.� S, the exact values of Truth Value(A).� True, very true, almost false, . . . , the linguistic values of Truth Value(A).� A meaning function that maps each linguistic value into a fuzzy set on S.The fuzzy logic proposed by Zadeh is constructed this way [Zadeh, 1975].Now back to the question that motivated the above discussion: What is the rela-tion between abc and fuzzy logic? As it turns out, any concrete instance of abc canbe fuzzi�ed in the same way that a many{valued logic can be fuzzi�ed.Consider the fuzzi�cation of probability calculus for example. For each sentenceA, one can introduces a linguistic variable with the following elements:� Pr(A), the variable.� [0; 1], the exact values of Pr(A).� Likely, very likely, almost unlikely, . . . , the linguistic values of Pr(A).� A meaning function that maps each linguistic value into a fuzzy set on [0; 1].This fuzzi�cation of probability calculus was introduced by Zadeh [Zadeh, 1976],but was not completely developed. I have recently constructed fuzzy probabilitycalculus as an instance of a weaker version of abc by constructing its support structure[Darwiche, 1993]. Other fuzzy instances of abc can be constructed similarly.1Fuzzi�cation is useful because people most often use linguistic values as opposed to exact ones.For example, when asked about the age of a person, one is more likely to hear something like veryold as opposed to eighty{�ve.

9.3. THE DEMPSTER{SHAFER THEORY 1699.3 The Dempster{Shafer theoryQuestion: Does abc subsume the Dempster{Shafer belief functions?The answer is no. Let me �rst state what a belief function is and then explain myanswer. A belief function with respect to a propositional language L is a mappingfrom L to the interval [0; 1] satisfying the following properties [Shafer, 1976]:� Bel(false) = 0 .� Bel(true) = 1 .� Bel(A) = Bel(B) when j= A � B .� Bel(k_i=1 Ai) � X;6=I�f1 ;...;kg(�1)jI j+1Bel(î2I Ai).Each belief function is associated with a plausibility function Pl , wherePl(A) = 1 � Bel(:A):Belief functions violate a basic property of abstract states of belief:� The support for a disjunction A _ B is determined by the support for A andthe support for B when A and B are logically disjoint.The de�nition of a belief function does not entail this property. Therefore, belieffunctions are not instances of abstract states of belief.This is a limitation of abc. The interpretation of belief functions, however, is toocontroversial for us to know precisely the nature of this limitation. Nonetheless, thereis a recent interpretation of belief functions that is formal and intuitive enough todeserve attention here [Halpern and Fagin, 1990; Fagin and Halpern, 1989]. Specif-ically, a belief function Bel can be viewed as representing all probabilistic states ofbelief Pr that satisfy the following property:Bel(A) � Pr(A) � Pl(A):

170 CHAPTER 9. COMMONLY ASKED QUESTIONSThat is, belief and plausibility are lower and upper bounds on probability.A major attraction of this view is that belief functions relax the commitment topoint probabilities, which are usually hard to assess. In particular, instead of havingto attribute a point probability to each sentence, one attributes a probability interval[Bel(A);Pl(A)]. Given this view, and given that belief functions are not instancesof abstract states of belief, one is then tempted to conclude that degrees of supportin abc cannot be probability intervals. However, this conclusion is not correct. Forexample, degrees of support in fuzzy probability calculus are fuzzy sets on the interval[0; 1]. Such fuzzy sets are rich enough to represent probability intervals [Darwiche,1993]. In particular, the interval [a; b] is represented by the following fuzzy set f :f(p) = 8<: 1; if p belongs to [a; b];0; otherwise.

9.4. VALUATION{BASED SYSTEMS 1719.4 Valuation{based systemsQuestion: Parkash P. Shenoy and Glenn Shafer have a recent paper titled, \Ax-ioms for Probability and Belief{Function Propagation," where they suggest an abstractframework and axioms under which exact local computation of probabilities is possible.How does your abstract framework relate to theirs?Let me �rst describe the essence of their framework and then discuss the relationbetween the two frameworks. Shenoy and Shafer suggest an abstract model ofcomputation, as opposed to an abstract belief calculus [Shenoy and Shafer, 1990;Shenoy, 1989]. Their model of a computation can be roughly described thus:� Global information is represented as a collection of local pieces of information.These pieces are called valuations.� Each valuation V provides information about some variables H. The valuationV is said to be on variables H in this case.� A valuation V1 on variables H1 and another valuation V2 on variables H2 canbe aggregated to produce a valuation on the variables H1 [H2. This resultingvaluation is called the combination of V1 and V2 and is denoted by V1
V2.2� A valuation V that provides information about variables H1 can be restrictedto provide information about only a subset H2 of these variables. The resultof this restriction is a smaller valuation on the variables H2. This valuation iscalled the marginalization of V to H2 and is denoted by V#H2.� A computation is a process of �nding out what some global information V hasto say about a set of variables H. That is, given a collection of valuationsV1;V2; . . . ; a computation is a process in which one combines these valuations toproduce the global valuation V and then restricts this valuation to the variablesH. Formally, the computation is (V1
V2
 . . .)#H.2Shenoy and Shafer use the symbol
 to denote combination. I use the symbol
 instead toavoid confusion with support unscaling in abc.

172 CHAPTER 9. COMMONLY ASKED QUESTIONSThese are the basic concepts in the framework of Shenoy and Shafer [Shenoy andShafer, 1990]. Their basic result is an algorithm for performing the above compu-tation under certain conditions. The conditions concern the variables about whichvaluations provide information, the properties of combination, and the properties ofmarginalization. Shenoy and Shafer have also shown that computation in a numberof concrete belief calculi can be viewed as a process of combining and marginalizingvaluations.Now that I have brie
y described the framework of Shenoy and Shafer, let meexplain how it relates to my framework.Although both frameworks \abstract away" from numbers, the scope and styleof their abstractions are di�erent. I am abstracting away from numbers because Iam concerned with a belief calculus that is not committed to numbers and yet hasthe key features of probability calculus|the computational features being only oneexample. Shenoy and Shafer are abstracting away from numbers because, apparently,they are concerned with a model of computation that is not committed to numbers.More concisely, I am suggesting an abstract belief calculus, while Shenoy and Shaferare suggesting an abstract model of computation.The di�erence between these types of abstractions is usually blurred when em-phasizing their common concrete instances. But the di�erence is highlighted whenconsidering the following questions:1. What are the consequences of showing that a concrete belief calculus is an in-stance of one of the abstractions?If a belief calculus is shown to be an instance of abc, then we conclude, forexample, that states of belief in this calculus satisfy the properties given inChapter 2 and their conditionalizations satisfy the properties given in Chap-ter 3. Most of these properties cannot even be phrased within the frameworkof Shenoy and Shafer. Polya's patterns of plausible reasoning are one example.To phrase these patterns, one needs the notion of a degree of belief and thenotion of an ordering on degrees of belief. These notions are absent from theframework of Shenoy and Shafer.

9.4. VALUATION{BASED SYSTEMS 1732. To what extent does each abstraction mechanize and guide the creation of con-crete belief calculi?We have seen how abc has guided, for example, the creation of objection cal-culus in Chapter 7. The framework of Shenoy and Shafer appears too weakto guide such a creation. (This weakness, however, becomes a virtue when theframework is viewed as an abstract model of computation.)The other di�erence between my framework and that of Shenoy and Shafer isthe style of abstraction. Speci�cally, the basic notions that constitute my frameworkand the properties of these notions follow from a set of axioms. For example, theexistence of support summation, scaling, and unscaling and the properties of theseoperations are all shown to be consequences of axioms about states of belief and theirconditionalizations. I am not aware of a similar justi�cation for the basic notionsunderlying the framework of Shenoy and Shafer.

174 CHAPTER 9. COMMONLY ASKED QUESTIONS9.5 Abstract theories of probabilityQuestion: Abstracting away from numeric probability is an old tradition. There is along history of such attempts in the probabilistic literature, and this history is reviewedin a book by Terrence Fine. How does your work relate to these attempts?There have been many attempts indeed to abstract away from numeric probability[Fine, 1973]. I am aware of three classes of such attempts, which I discuss below.9.5.1 Modal probabilityIn the �rst class of attempts, statements of the form \The probability of A is p" arereplaced by statements of the form \A is probable," which are called unconditionalmodal statements [Walley, 1973]. There are also conditional modal statements, whichhave the form \A is probable given B." Below are two major questions asked withrespect to modal probability.1. What axioms should the notion \probable" satisfy?Some suggested axioms are [Walley, 1973]� false is not probable.� Either A is probable or :A is probable.� If A is probable, and if A entails B, then B is probable.2. What is the relation between modal probability and numeric probability?This question is usually addressed by appealing to the notion of agreement,which is inspired by the theory of measurement [Krantz et al., 1971]. Forexample, a modal{probability state of belief is said to agree with a numeric{probability state of belief if A is probable precisely when the probability of Ais no less than 1=2.

9.5. ABSTRACT THEORIES OF PROBABILITY 1759.5.2 Comparative probabilityIn the second class of attempts, statements of the form \The probability of A is p"are replaced by statements of the form \A is no more probable than B," which arecalled unconditional comparative statements [Walley, 1973]. There are also condi-tional comparative statements, which have the form \A given B is no more probablethan C given D." Below are two major questions asked with respect to comparativeprobability.1. What axioms should the notion \no more probable than" satisfy?Some suggested axioms are [Koopman, 1940; Fine, 1973; Walley, 1973]� false is no more probable than any A.� If A is no more probable than B, then :B is no more probable than :A.� If A given B is no more probable than C given D, and if C given D is nomore probable than E given F , then A given B is no more probable thanE given F .2. What is the relation between comparative probability and numeric probability?This question is again addressed by appealing to the notion of agreement.For example, a comparative{probability state of belief is said to agree witha numeric{probability state of belief if A is no more probable than B preciselywhen the probability of A is no greater than the probability of B.The notion of agreement seems to be central in the study of modal and comparativeprobability. In fact, many of the axioms suggested for these notions seem to have beenmotivated by agreement results.9.5.3 Quantitative probabilityIn the third class of attempts, statements of the form \The probability of A is p,"where p is a number in [0; 1], are replaced by statements of the form \The probabilityof A is a," where a is not necessarily a number. The only attempt in this class that

176 CHAPTER 9. COMMONLY ASKED QUESTIONSI am aware of (beyond mine) is that of Romas Aleliunas [Aleliunas, 1988]. In theremainder of this section, I discuss the work of Aleliunas in some detail.Aleliunas suggests what he calls a \normative theory of belief," which explains howa body of evidence a�ects one's degree of belief in a possible hypothesis. Accordingto Aleliunas, a probabilistic logic is a scheme for relating a body of evidence to apotential hypothesis in a rational way. Degrees of belief, or probabilities, are assignedto the possible relationships between hypotheses and pieces of evidence, where therelationships are called conditionals. The expression \f(P jQ)" is used to denote theconditional probability of P given Q as given by the probability assignment f , whereP and Q are sentences in some language L. If the set of probabilities is P, then thegoal of a probabilistic logic, according to Aleliunas, is to identify the characteristics ofa family F of functions from L�L to P. Here, F is the set of permissible probabilityassignments from which a rational agent is permitted to choose.Aleliunas provides a number of axioms to constrain the set F , which he divides intothree groups: (1) axioms about the domain and range of the probability assignmentf in F , (2) axioms stating consistency constraints that each individual f in F mustobey, and (3) axioms about the set F . The axioms are given below.1. Axioms about the domain and range of each f in F .(a) The set of probabilities P is a partially ordered set, where the orderingrelation is �.(b) The sentences in L are �nite propositional sentences over a countable setof primitive propositions.(c) If P � X and Q � Y , then f(P jQ) = f(XjY).2. Axioms that hold for all f in F , and for any P;Q;R in L. (From here on,f(P jtrue) is abbreviated by f(P).(a) f(P jfalse) = f(P jP).(b) f(P ^QjQ) = f(P jQ) � f(QjQ).(c) For any g 2 F , f(P jP) = g(P jP).

9.5. ABSTRACT THEORIES OF PROBABILITY 177(d) There is a monotone non{increasing total function, i, from P into P suchthat f(:P jQ) = i(f(P jQ)).(e) There is an order{preserving total function, h, from P � P into P suchthat f(P ^QjR) = h(f(P jQ^R); f(QjR)). Moreover, if f(P ^QjR) = 0;then either f(P jQ ^ R) = 0, or f(QjR) = 0, where 0 is de�ned to bef(:P jP).(f) If f(P jR) � f(P j:R), then f(P jR) � f(P) � f(P j:R).3. Axioms about the set F .For any distinct primitive propositions A;B and C in L, and for any probabil-ities a; b and c in P, there is f in F such that(a) f(A) = a, f(BjA) = b, and f(CjA ^B) = c.(b) f(AjB) = f(Aj:B) = a and f(BjA) = f(Bj:A) = b.(c) f(A) = a and f(A ^ B) = b whenever b � a.Below are some basic di�erences between the above axioms and those underlyingabc. First, Aleliunas does not require the existence of a function h� such that forany f; P;Q, and R,f(P _QjR) = h�(f(P jR); f(QjR)) when j= :(P ^Q):The function h� would correspond to support summation in abc if it existed. There-fore, Aleliunas does not require a probability summation function. Moreover, sinceprobability summation h� does not exist, the partial order on the set of probabilitieshad to be assumed, as opposed to being derived as in abc.Second, Aleliunas remarks that his axioms imply the existence of a probability rthat satis�es a = h(r; b) whenever a � b. But he also remarks that r need not beunique. Since h corresponds to support unscaling in abc, this means that Aleliunasdoes not require the existence of a unique support scaling function. Therefore, theconditionalization of a state of belief is not well de�ned.

178 CHAPTER 9. COMMONLY ASKED QUESTIONSThird, Aleliunas requires the function h to be total. In abc, however, supportunscaling in not necessarily a total function. The signi�cance of this issue is discussedat length in Section 3.4.1.Fourth and �nally, Axiom (2d) of Aleliunas does not hold in abc. That is, thesupport for a sentence does not determine the support for the negation of that sentencein general. If this axiom held in abc, then abc would not have subsumed possibilityand objection calculi.

Chapter 10Concluding RemarksThe basic result of this thesis has been that the commitment to numbers is notneeded for obtaining the key features of probability calculus: Multiple degrees ofbelief, conditionalization, independence, causal networks, and local computation. Inthis chapter, I shall brie
y summarize this basic result and then discuss some questionsthat remain to be answered.10.1 Summary of the thesisIn Chapter 1, I pointed out that many people have mixed feelings about probabilitycalculus. On the one hand, people are usually impressed by the key features of thiscalculus. On the other hand, they �nd the commitment to numbers a very high priceto pay for these features.In Chapter 2, I formalized the notion of an abstract state of belief, which is anattribution of abstract degrees of belief to propositional sentences. Abstract statesof belief subsume their probabilistic counterparts but are not committed to eithernumeric or symbolic degrees of belief.In Chapter 3, I formalized the notion of abstract conditionalization, which isa process for changing an abstract state of belief to accommodate an observation.Abstract conditionalization subsumes its probabilistic counterpart and leads to somecelebrated patterns of plausible reasoning.179

180 CHAPTER 10. CONCLUDING REMARKSIn Chapter 4, I formalized the notion of an abstract causal network, which isa graphical construct used in communicating an abstract state of belief. Abstractcausal networks subsume probabilistic causal networks.In Chapter 5, I presented the abstract polytree algorithm for computing beliefsin abstract causal networks, and, in Chapter 6, I implemented the algorithm usingCommon Lisp. This algorithm subsumes its probabilistic counterpart.Chapters 2{6, therefore, comprise a comprehensive, abstract belief calculus thatlooks very much like probability calculus but is not committed to numbers.In Chapter 7, I presented objection calculus, which is a symbolic instance of theabstract belief calculus. Objection calculus concretely demonstrates that multipledegrees of belief, conditionalization, independence, causal networks, and local com-putation are not features exclusive to probability calculus.In Chapter 8, I explored some practical rami�cations of the suggested theoryof uncertain states of belief. In particular, I showed that clause management anddiagnosis systems can be viewed as instances of the abstract belief calculus. Thismade the tools of the abstract calculus available to clause management and diagnosisapplications, and I gave examples of this availability.

10.2. TECHNICAL LIMITATIONS 18110.2 Technical limitationsI have made some assumptions while developing the theory of uncertain states ofbelief. Some of these assumptions were intended to simplify the presentation and canbe relaxed in a straightforward manner. Other assumptions are more involved, andcan be relaxed only if more research is conducted. In this section, I discuss some ofthe assumptions I have made.Primitive propositions are binary. I assumed that primitive propositions canhave only two values, true and false. In the probabilistic literature, however, primitivepropositions are usually multi{valued. For example, Todays Weather is a multi{valued primitive proposition that may have the values Cloudy, Rainy, and Sunny. Myassumption here can be relaxed without losing any of the established results. This istrue because every state of belief over multi{valued propositions can be representedby a state of belief over binary propositions.The domain of a state of belief is a propositional language. This assump-tion can be relaxed in principle: An abstract state of belief can be an attributionof degrees of support to �rst{order sentences. Relaxing this assumption, however,leads to representational complexity. In particular, a state of belief can no longer becharacterized by the degrees of support that it attributes to complete sentences|aproperty that is assumed by a number of proofs. Moreover, it is not clear how toextend the de�nition of abstract causal networks when this assumption is relaxedwithout compromising the usefulness of such networks.Objections cannot be observed. As I mentioned in Chapter 7, this assumptionis there because objections are degrees of support. In the theory of uncertain states ofbelief, it is not meaningful to observe quantities. Relaxing this assumption takes us,therefore, beyond the realm of the current theory. Moreover, relaxing this assumptionundermines some of the results that I established in Chapters 7 and 8. For example,the database corresponding to an objection{based state of belief would no longer benon{committal in general (see Theorem 8.3.2).

182 CHAPTER 10. CONCLUDING REMARKS10.3 Current and future workBelow are some research areas that, I believe, deserve immediate attention.Uncertain observations The conditionalization on uncertain observations | thatis, changing a state of belief such that a sentence becomes supported to some degree| needs to be explored. The uncertainty literature contains a number of proposalsfor conditionalizing concrete states of belief on uncertain observations. One can adoptsome of these proposals to conditionalize abstract states of belief on uncertain obser-vations. But most interesting will be characterizing these proposals in the same wayI have characterized states of belief and their conditionalizations in Chapters 2 and 3.That is, identifying and formalizing properties of belief change that are equivalent tothe proposals under consideration.Su�cient supports We have seen in objection calculus, for example, that suf-�cient objections play an important role in extracting objections. In fact, su�cientobjections are more important than conditional objections in this regard. The ques-tion is, Can we de�ne the notion of su�cient supports in the abstract calculus? Ibelieve so. And will this notion be as important as the notion of su�cient objections?Again, I believe so. This line of questioning about su�cient supports may also leadto a weak notion of independence in the abstract calculus.Theoretical questions Finally, there are some theoretical questions whose an-swers would enhance our understanding of the current theory of uncertain states ofbelief. For example, What additional properties of belief change would guarantee theuniqueness of support scaling? Are the properties of belief change independent? Canthey be reduced, simpli�ed, or even beauti�ed?

Appendix APropositional LogicAbstract states of belief are among the most fundamental notions in this thesis. Anabstract state of belief maps a standard propositional language into a set containingdegrees of belief. By a standard propositional language I mean a language with thefollowing syntax and semantics.SyntaxThe propositional language L with respect to primitive propositions P1; . . . ; Pn isconstructed as follows:1. Pi 2 L.2. If A is in L, then so is :A.3. If A and B are in L, then so is A _B.Other logical connectives are de�ned as usual:A ^ B def= :(:A _ :B)A � B def= :A _BA � B def= (A ^B) _ (:A ^ :B):183

184 APPENDIX A. PROPOSITIONAL LOGICSemanticsA truth assignment with respect to primitive propositions P1; . . . ; Pn is a mappingw from fP1; . . . ; Png to ftrue, falseg. The notion of satisfaction by a truth assignmentis de�ned as follows:1. w j= Pi if w(Pi) = true.2. w j= :A if w 6j= A.3. w j= A _B if w j= A or w j= B.The satisfaction relation induces a meaning function M on sentences, where themeaning of a sentence is the set of truth assignments that satisfy it. That is,M(A)contains all truth assignments that satisfy A.Complete sentencesA complete sentence over a set of primitive propositions I is a sentence of the formî2I Li;where Li is the literal i or :i. For example, if I = fA;Bg, thenA ^B; A ^ :B; :A ^B; :A ^ :B;are all the complete sentences over I. In general, there are 2n complete sentences overa set of n propositions.A complete sentence over primitive propositions I is denoted by I. By de�nition,true is the complete sentence over the empty set of propositions, ;.A complete sentence over primitive propositions I is also called a state of propo-sitions I because it �xes the truth of each proposition in I. There is a one{to{onecorrespondence between complete sentences over a set of primitive propositions andtruth assignments over the same set of propositions.

185Logical falsi�cationThe falsi�cation of sentence A given sentence B is the sentence A ^ :B. Thenotion of falsi�cation plays an important role in Chapter 7. Its importance stemsfrom the following characterization of falsi�cation:(B j= � � false and :B j= � � A) precisely when j= � � A ^ :B:That is, the falsi�cation of A given B is false if B holds and A if B does not hold.

186 APPENDIX A. PROPOSITIONAL LOGICI adopt the following terminologies and de�nitions:� A is unsatis�able, written j= :A, ifM(A) is the empty set.� A is satis�able ifM(A) is not the empty set.� A is valid, written j= A, ifM(A) is the set of all truth assignments.� true denotes a valid sentence.� false denotes an unsatis�able sentence.� A and B are equal if j= A � B.� A and B are logically disjoint if j= :(A ^B).� A and B are logically exhaustive if j= A _B.� A entails, or implies, B, written A j= B, ifM(A) �M(B).� A is stronger than B precisely when A entails B.� A is weaker than B precisely when B entails A.� A world is a truth assignment.� A database is a sentence.� Database � is consistent ifM(�) is not the empty set.� Database � entails sentence A ifM(�) �M(A).

Appendix BNotational ConventionsjN j The cardinality of set N .L(N) A propositional language with respect to primitive propositions N .I A complete sentence over (or state of) primitive propositions I.j ! k Node j is a parent of node k.i� Parents of node i.i�j Parents of node i excluding parent j.i� Children of node i.i�k Children of node i excluding child k.i. Descendants of node i.i . k Descendants of node i that are connected to it via arc i! k.i . k Descendants of node i that are connected to it via any arc except i! k.i/ Non{descendants of node i.i / j Non{descendants of node i that are connected to it via arc j ! i.i / j Non{descendants of node i that are connected to it via any arc except j ! i.187

188 APPENDIX B. NOTATIONAL CONVENTIONS

Appendix CProofs of Chapter 2Below are the formal statements of Axioms 1{5. Each state of belief � : L ! Ssatis�es the following:Axiom 1 �(A) = �(B) when j= A � B.Axiom 2 �(A _B) = �(A)� �(B) when j= :(A ^ B), where � is some function.Axiom 3 �(A) = �(C) only if �(A) = �(B) when A j= B j= C.Axiom 4 �(false) = 0, where 0 is some degree of support.Axiom 5 �(true) = 1, where 1 is some degree of support and 1 6= 0.Axiom 1 says that syntax does not matter but meaning does. As a result of this,in the following proofs and in others, I view a state of belief as a mapping from 2Winto S, whereW is the set of all truth assignments of the language L. That is, I makeno distinction between a sentence and its meaning, although I occasionally refer tothe meaning as a proposition.
189

190 APPENDIX C. PROOFS OF CHAPTER 2Proof of Theorem 2.2.1Using Axiom 3 and taking C to be A, we getA j= B j= A only if �(A) = �(B):Therefore, j= A � B only if �(A) = �(B):Proof of Theorem 2.3.5 Assume Axioms 1 and 2.(X0): Let a and b be two supports where a� b is meaningful. There must exist a\state of belief" �, and logically disjoint propositions A and B, such that �(A) = aand �(B) = b. It follows that �(A [B) = a � b and �(B [A) = b � a. Since(A [B) = (B [A), we have a� b = b� a.(X1): Let a; b and c be three supports where (a � b) � c is meaningful. Theremust exist a \state of belief" �, and logically disjoint propositions A;B and C, suchthat �(A) = a;�(B) = b and �(C) = c. It follows that �((A[B)[C) = (a� b)� cand �(A [(B [C)) = a � (b � c). Since ((A [B) [C) = (A [(B [C)), we have(a� b)� c = a� (b� c).Proof of Theorem 2.3.6 Assume Axioms 1 and 2.Assume Axiom 3. Let a; b, and c be three supports such that a�b�c is meaningfuland a � b � c = a. There must exist a \state of belief" �, and logically disjointpropositions A;B and C, such that �(A) = a;�(B) = b and �(C) = c. It followsthat �(A) = a = �(A [B [C). Since A � A [B � A [B [C, we must have�(A [B) = a. Therefore, a� b = a.Assume (X2). Suppose that A � B � C and �(A) = �(C). There must exist B 0and C 0 such that B = A[B 0, and C = B [C 0. Moreover, �(C) = �(A [B 0 [C 0) =�(A)��(B 0)��(C 0). By supposition, we have �(A)��(B 0)��(C 0) = �(A), and byassumption, we have �(A)��(B 0) = �(A). But �(A)��(B 0) = �(A[B 0) = �(B).Therefore, �(A) = �(B).

191Proof of Theorem 2.3.7 Assume Axioms 1, 4, and 2.Let a be any support, and choose a \state of belief" � and proposition A, suchthat �(A) = a. It follows that a = �(A) = �(A [;) = �(A) � �(;) = a � 0.Therefore, 0 is an identity element for support summation. Now, suppose there wasanother identity element 00. Then 0 = 0 � 00 = 00, and the identity element 0 isunique.Proof of Theorem 2.3.8 Assume Axioms 1, 5, 2, and 3.Let a be any support and choose a \state of belief" � and a proposition A suchthat �(A) = a. We have that �(A)��(A) = �(A[A), and therefore a��(A) = 1.Now, suppose there was another support 10 such that for any support a there is asupport b and a� b = 10. Then there exists a support c where 1� c = 10. Moreover,there should exist a support d where 10�d = 1. That is, (1�c)�d = 1 and 1�c = 1.Therefore, 1 = (1� c) = 10 and 1 is unique.

192 APPENDIX C. PROOFS OF CHAPTER 2Proof of Theorem 2.5.2� Re
exive. From a� 0 = a, we conclude that a �� a.� Antisymmetric. Suppose a �� b and b �� a. Then9c : a� c = b by def of ��9d : b� d = a by def of ��(a� c)� d = a by substituting for ba� c = a by (X2)b = a:� Transitive. Suppose a �� b and b �� c. Then9d : a� d = b by def of ��9e : b� e = c by def of ��(a� d) � e = c by substituting for ba� (d� e) = c by (X1)a �� c by def of ��.� 0 �� a for all a 2 S.For all a, we have 0� a = a. Thus, 0 �� a.� a �� 1 for all a 2 S.For all a, there is b, a� b = 1. Thus, a �� 1.

193Proof of Theorem 2.5.4� Re
exive. From s1 �� s1 and s2 �� s2, we conclude that hs1; s2i v� hs1; s2i.� Antisymmetric. Suppose hs1; s2i v� hs3; s4i and hs3; s4i v� hs1; s2i. Thens1 �� s3, s4 �� s2, s3 �� s1, and s2 �� s4. By antisymmetry of ��, wehave s1 = s3 and s2 = s4. Therefore, hs3; s4i = hs1; s2i.� Transitive. Suppose hs1; s2i v� hs3; s4i and hs3; s4i v� hs5; s6i. Then s1 �� s3 �� s5and s6 �� s4 �� s2. By transitivity of ��, we have s1 �� s5 and s6 �� s2.Therefore, hs1; s2i v� hs5; s6i.� h0;1i v� hs1; s2i for every degree of belief hs1; s2i.For all degrees of support s1 and s2, we have 0 �� s1 and s2 �� 1. Thus,h0;1i v� hs1; s2i.� hs1; s2i v� h1;0i for every degree of belief hs1; s2i.For all degrees of support s1 and s2, we have s1 �� 1 and 0 �� s2. Thus,hs1; s2i v� h1;0i.

194 APPENDIX C. PROOFS OF CHAPTER 2Proof of Theorem 2.5.71. v� is a partial ordering:� Re
exive: By re
exivity of ��, we have A �� A and :A �� :A. HenceA v� A.� Transitive: Suppose that A v� B andB v� C. That is, A �� B, :B �� :A,B �� C, :C �� :B. By transitivity of ��, we have A �� C and:C �� :A. Hence A v�C.� Antisymmetric: Suppose that A v� B and B v� A. That is, A �� B,:B �� :A, B �� A, :C �� :A. By antisymmetry of ��, we have�(A) =� �(C) and �(:C) =� �(:A). Hence A =� C.2. A j= B only if A v�B: Suppose A j= B. Then C = :A ^ B is such thatj= :(A ^ C) and j= (A _ C) � B. It follows that �(A) � �(C) = �(B) andA �� B. Since :B j= :A, then C = :A ^ B is such that j= :(:B ^ C) andj= (:B _ C) � :A. It follows that �(:B)� �(C) = �(:A) and :B �� :A.3. false v�A v�true: Follows from false j= A j= true.4. A is minimal under v� if and only if A is rejected: Suppose that A is minimalunder v�. Then A v� false and A �� false. That is, �(A) ���(false) = 0.Hence �(A) = 0 and A is rejected. Now suppose that �(A) = 0. Then�(:A) = 1, �(A) �� �(false), �(:A) �� �(true), and A v� false. Hence Ais minimal under v�.5. A is maximal under v� if and only if A is accepted: Suppose that A is max-imal under v�. Then true v� A, true �� A, and :A �� false. That is,�(:A) �� �(false) = 0, �(:A) = 0, A is rejected, and A is accepted. Nowsuppose that A is accepted by �. Then �(:A) = 0 and �(A) = 1. That is,�(:A) �� �(false), �(true) �� �(A), �(true) v� �(A). Hence A is maxi-mally supported.

195Proof of Theorem 2.6.3Theorem 2.6.3 is a special case of Theorem 2.6.13, which is proved later. Statesof belief with respect to hf0;1g;miniL are a special case of Spohnian states of belief,and are isomorphic to propositional states of belief. That is, a state of belief � withrespect to hf0;1g;miniL accepts A precisely when �(:A) = 1, which is preciselywhen �(:A) 6= 0.Proof of Theorem 2.6.4 Numeric addition is commutative and associative. Ifa + b + c = a then b + c = 0 and b = 0, since a; b; c 2 [0; 1]. Therefore, a + b = a.a ��b i� there is c 2 [0; 1] such that a + c = b, that is, i� a � b. For all a 2 [0; 1],a+ 0 = a and a+ (1 � a) = 1 | 0 and 1 are the only members in [0,1] that satisfythis property.Proof of Theorem 2.6.5 The function (� (a b) a+ b� 1) is clearly commutativeand associative. If (a+b�1)+c�1 = a then b+c = 2 and b = 1, since a; b; c 2 [0; 1].Therefore, a+ b� 1 = a. a ��b i� there is c 2 [0; 1] such that a+ c� 1 = b, that is,i� a � b. For all a 2 [0; 1], a+ 1� 1 = a and a+ (1� a)� 1 = 0 | 1 and 0 are theonly members in [0,1] that satisfy this property.Proof of Theorem 2.6.6 The function max is commutative and associative. Ifmax(max(a; b); c) = a, then a � b and a � c. And if max(a; b) 6= a, then b > a.Thus, we cannot have max(max(a; b); c) = a and max(a; b) 6= a. a ��b i� there isc such that max(a; c) = b, that is, i� a � b. For all a 2 [0; 1], max(a; 0) = a andmax(a; 1) = 1| 1 and 0 are the only members in [0,1] that satisfy these properties.Proof of Theorem 2.6.8 The function min is commutative and associative. Ifmin(min(a; b); c) = a, then a � b and a � c. And if min(a; b) 6= a, then b < a. Thus,we cannot have min(min(a; b); c) = a and min(a; b) 6= a. a ��b i� there is c such thatmin(a; c) = b, that is, i� a � b. For all a 2 [0; 1], min(a; 1) = a and min(a; 0) = 0|0 and 1 are the only members in [0,1] that satisfy these properties.

196 APPENDIX C. PROOFS OF CHAPTER 2Proof of Theorem 2.6.13LetM�(�) =M(�)\Wk be the preferred meaning of �. Note that k is the leastinteger such that M(�) \Wk is not empty. Now, consider the following Spohnianstate of belief: ��(w) = 8<: i� k; if w 2 M(�) \Wi;1; otherwise.By de�nition, ��(w) = 0 if and only if w is inM�(�). I will now show that forall A, � preferentially entails A precisely when �� accepts A, or accepts A by default(��(A) 6= 0).� Suppose that � preferentially entails A. It follows thatM�(�) � A, and thereis no world w in A such that ��(w) = 0. Therefore, ��(A) = minw2A��(w)cannot be 0. Hence ��(A) > 0 and � either accepts A, or accepts it by default.� Suppose that ��(A) = minw2A��(w) 6= 0. Then for all w in A, �(w) 6= 0.Also, if �(w) = 0, then w 2 A. HenceM�(�) � A and � preferentially entailsA.

Appendix DProofs of Chapter 3Below are the formal statements of Axioms 6{12.Axiom 6 �A_B(A) = �(A)��(A _ B) for some function �.Axiom 7 �A(B) = 0 when �(A) 6= 0 and �(B) = 0.Axiom 8 �A = � when �(A) = 1.Axiom 9 �(A) 6= (6��) �0(A) only if �A_B(A) 6= (6��) �0A_B(A) when�(A _B) = �0(A _B).Axiom 10 �(A) ���A_B(A) when �(A _B) 6= 0.Axiom 11 �B^C(A) = �C(A) only if �A^C(B) = �C(B) when �(A ^B ^ C) 6= 0.Axiom 12 For all �C and c 6= 0, there is � such that �(C) = c.
197

198 APPENDIX D. PROOFS OF CHAPTER 3Three lemmas for Theorem 3.1.4Lemma D.0.1 If e� f = 0, then e = 0.Proof Assume e� f = 0. Then e� 0� f = 0, e� 0 = 0, and e = 0.Lemma D.0.2 If W is not rejected by �, then �W (w) = 0 for all w 62 W .Proof By De�nition 3.1.2, we have �W (W) = 0. Therefore, �w2W�(w) = 0. Andby Lemma D.0.1, we have that �(w) = 0 for all w 2 W .Lemma D.0.3 If W is not rejected by �, then �W (W) = 1.Proof From �W (W) = 0 and �W (W) � �W (W) = 1, we have �W (W) � 0 = 1.Therefore, �W (W) = 1.

199Proof of Theorem 3.1.4==> Assume Axiom 6. We have�A(B) = �A(B \A)��A(B \ :A):Given Axiom 6, and since A \B � A, we have�A(B \A) = �(B \A)� �(A);for some function � : S � S ! S. Moreover, by Lemma D.0.2, we have�A(B \ :A) = Mw2B\:A�A(w)= Mw2B\:A0= 0:Therefore, �A(B) = �A(B \A)� 0= �A(B \A)= �(B \A)� �(A):<== Assume Equation 1. Then�A[B(A) = �(A \ (A [B))� �(A [B)= �(A)� �(A [B):

200 APPENDIX D. PROOFS OF CHAPTER 3Proof of Theorem 3.1.5 Assume Axiom 6.==> Assume Axiom 7. For any a 6= 0, choose � as given below, where a� a0 = 1.wi � �fw1;w2gw1 0 0� aw2 a a� aw3 a0 0Note that �(w1) = 0 and �(fw1; w2g) 6= 0. Since proposition fw2; w3g is accepted by�, fw2; w3gmust also be accepted by �fw1;w2g: �fw1;w2g(w1) = 0. Therefore 0�a = 0.<== Assume (Y1). Suppose A is accepted and B is not rejected by �. Then �(A) = 0and �(B) 6= 0. Also, �(B \A) = 0 by Lemma D.0.1. We have�B(A) = �(B \A)� �(B)= 0� �(B)= 0:That is, A is accepted by�B.

201Proof of Theorem 3.1.6 Assume Axioms 6{7.==> Assume Axiom 8. For any a, choose � as given below, where a� a0 = 1.wi � �fw1;w2gw1 a a� 1w2 a0 a0 � 1Since fw1; w2g is accepted by �, we have �fw1;w2g(w1) = �(w1): Therefore a�1 = a.<== Assume (Y2). Suppose B is accepted by �. Then �(B) = 0 and �(B) = 1.Moreover, �(A) = �(B \A)� �(B \A)= �(B \A)� 0= �(B \A)= �(B \A)� 1= �(B \A)� �(B)= �B(A):

202 APPENDIX D. PROOFS OF CHAPTER 3Proof of Theorem 3.1.7 Assume Axioms 6{8.==> Assume Axiom 9. Let a; b; c be three supports such that a; b �� c 6= 0 anda 6= (6��) b. We want to show that a� c 6= (6��) b� c.Choose �; and �0 as given below, where a� a0 = b� b0 = c and c� c0 = 1.wi � �fw1;w2gw1 a a� cw2 a0 a0 � cw3 c0 0w4 0 0 wi �0 �0fw1;w2gw1 b b� cw2 b0 b0 � cw3 c0 0w4 0 0Note that �(fw1; w2g) = �0(fw1; w2g) = c; and �(w1) = a 6= (6��) b = �0(w1):By Axiom 9, we have �fw1;w2g(w1) 6= (6��) �0fw1;w2g(w1) and a � c 6= (6��) b � c:That is, if a 6= (6��) b then a � c 6= (6��) b � c which is equivalent to a � c =(��) b� c only if a = (��) b.<== Assume (Y3) and (Y8). Suppose there exists � and �0 such that �(A [B) =�0(A [B) and �(A) 6= (6��) �0(A). Then �A[B(A) = �(A) � �(A [B) and�0A[B(A) = �0(A)� �(A [B). Therefore, �B(A) 6= (6��) �0B(A).

203Proof of Theorem 3.1.8 Assume Axioms 6{9.==> Assume Axiom 10. Let a and b be such that a �� b 6= 0. Choose � as givenbelow, where a � a0 = b and b � b0 = 1. We have �fw1;w2g(w1) ���(w1). Thereforea� b ��a. wi � �fw1;w2gw1 a a� bw2 a0 a0 � bw3 b0 0<== Assume (Y5). Suppose A � B. Then �B(A) = �(A)� �(B) ���(A).

204 APPENDIX D. PROOFS OF CHAPTER 3Proof of Theorem 3.1.9 Assume Axioms 6{10.==> Assume Axiom 11. Suppose that a � b = c � d, and let � be a state of beliefsuch that �(A\B \C) = a, �(A \C) = c, �(B \C) = b and �(C) = d.1 It followsthat �B\C(A) = �(A \B \ C)��(B \ C)= a� b= c� d= �(A \ C)��(C)= �C(A):Given Axiom 11, we should also have �A\C(B) = �C(B): This leads to�(A \B \ C)� �(A \ C) = �(B \ C)� �(C)a� c = b� d:Therefore a� b = c� d only if a� c = b� d.<== Assume (Y4). If �B\C(A) = �C(A), then�(A \B \ C)� �(B \ C) = �(A \ C)� �(C)�(A \ B \ C)� �(A \ C) = �(B \ C)��(C):Therefore, �A\C(B) = �C(B).
1The proof assumes the existence of the state �, and this is why I say \usefully equivalent."Note, however, that if � is either idempotent or has an inverse, then � can be shown to exist.

205Proof of Theorem 3.1.10 Assume Axioms 6 and 7.==> (Y0): Assume a �� b and b 6= 0. There must exist c and d such that a� c = band b� d = 1. Construct a state of belief � as given below.wi � �fw1;w2gw1 a a� bw2 c c� bw3 d 0Since �(fw1; w2g) 6= 0, �fw1;w2g must exist. Given Axiom 6, we have�fw1;w2g(w1) = �(w1)� �(fw1; w2g)= a� b:Therefore, a� b must be de�ned.==> (Y6a): Assume a�b �� c 6= 0. There must exist d and e such that a�b�d = cand c� e = 1. Choose � as given below.wi � �fw1;w2;w3gw1 a a� cw2 b b� cw3 d d� cw4 e 0Since �(fw1; w2; w3g) exists, then (a� c)� (b� c) must be de�ned.

206 APPENDIX D. PROOFS OF CHAPTER 3==> (Y7): Choose � and �0 as given below, where d and e are such that a�b�d = cand c� e = 1. wi � �fw1;w2;w3gw1 a a� cw2 b b� cw3 d d � cw4 e 0 wi �0 �0fw1;w2;w3gw1 a� b (a� b)� cw2 0 0w3 d d � cw4 e 0Observe that: �(fw1; w2g) = �0(fw1; w2g) = a� b�(fw1; w2; w3g) = �0(fw1; w2; w3g) = a� b� d = c 6= 0:Therefore, by Axiom 6, we have�fw1;w2;w3g(fw1; w2g) = �0fw1;w2;w3g(fw1; w2g)(a� c)� (b� c) = [(a� b)� c]� 0(a� c)� (b� c) = (a� b)� c:

207Proof of Theorem 3.1.12(Y10) a� a = 1.Given (Y4) and a�1 = a�1, we have a� a = 1�1. And given (Y2), we havea� a = 1.(Y11) a� (a� b) = b.Assume a �� b 6= 0. We have that a �� a� b by (Y4).a� b = (a� b)� 1 by (Y2)a� (a� b) = b� 1 by (Y4)a� (a� b) = b by (Y2).(Y12) a� b = c only if a� c = b.Assume a �� b 6= 0, and c 6= 0. We have that a �� a � b by (Y4). Assumingthat a� b = c, we also have that a �� c.a� b = c� 1 assumptiona� c = b� 1 by (Y4)a� c = b by (Y2).(Y13) a �� b only if a� c �� b� c. Assume a �� b �� c 6= 0 and b 6= 0.a �� b assumption9a0 : a� a0 = b by de�nition of ��(a� a0)� c = b� c by de�nition of �c(a� c)� (a0 � c) = b� c by (Y7)a� c �� b� c by de�nition of ��.(Y14) (a� c)� (b� c) = a� b.Assume a �� b �� c 6= 0, and b 6= 0. We also have (a� c) �� (b� c) by (Y13).a� (a� c) = b� (b� c) by (Y11)a� b = (a� c)� (b� c) by (Y4).

208 APPENDIX D. PROOFS OF CHAPTER 3(Y15) (a� b)� (a� c) = c� b.Assume a �� c �� b 6= 0, and c 6= 0.(a� b)� (c� b) = a� c by (Y14)(a� b)� (a� c) = c� b by (Y12).Proof of Theorem 3.1.13[�A]B (C) = �A(B \ C)��A(B)= [�(A \B \ C)��(A)]� [�(A \B)� �(A)]= �(A \ B \ C)� �(A \B) by (Y14)= �A\B(C):

209Proof of Theorem 3.2.3==> Assume Axiom 12.(Y9) Suppose that we are given b 6= 0 and c. We want to �nd a such that a �� band a� b = c. Let �B be a state of belief such that �B(C) = c. By Axiom 12,there must exist � such that �(B) = b. Moreover,�B(C) = �(B ^ C)� �(B)c = �(B ^ C)� b:Therefore, if we take a to be �(B ^ C), then a �� b and a� b = c.(Y6b) Suppose that a; b �� c 6= 0, and a � c � b � c is de�ned. We want to showthat a � b �� c. Let A;B;�C be such that j= :(A ^ B), �C(A) = a � c and�C(B) = b�c. By Axiom 12, there must exist � such that �(C) = c. Moreover,�(A ^ C)� �(C) = a� c�(B ^ C)� �(C) = b� c�(A ^ C) = a�(B ^ C) = b:Since �(A ^ C)� �(B ^ C) �� �(C), we also have a� b �� c.

210 APPENDIX D. PROOFS OF CHAPTER 3<== Assume (Y9) and (Y6b).Given �C and c 6= 0, we need to construct a state of belief 	 such that 	(C) = cand 	C = �C .By (Y9), there is an a for each b such that a �� c and a� c = b. Let us denotethis a by b
 c. Note that �C(w)
 c �� c;and Mw2C(�C(w)
 c)� c = Mw2C�C(w);which is de�ned. Therefore, by (Y6b), Mw2C �C(w)
 c! �� c:Now, construct 	 such that 	(w) = �C(w)
 c when w 2 C. And can complete thede�nition of 	 such that 	(:C)�	(C) = 1. We have,	(C)� c = Mw2C �C(w)
 c!� c= Mw2C(�C(w)
 c)� c= Mw2C�C(w)= 1:Hence, 	(C) = c.When w 62 C, we have 	C(w) = �C(w) = 0. But when w 2 C, we have	C(w) = 	(w)�	(C)= (�C(w)
 c)� c= �C(w):Therefore, 	C = �C.

211Proof of Theorem 3.3.2The proof of this theorem is a special case of the proof of Theorem 3.3.6. Statesof belief with respect to hf0;1g;miniL are a special case of Spohnian states of belief,and are isomorphic to propositional states of belief. That is, a state of belief � withrespect to hf0;1g;miniL accepts A precisely when �(:A) = 1, which is preciselywhen �(:A) 6= 0.Proof of Theorem 3.3.6We want to show that if �� corresponds to �, then ����A corresponds to �[fAg.That is, we want to show that if��(w) = 8<: i� j; if w 2 M(�) \Wi;1; otherwise,then ����A (w) = 8<: i� k; if w 2 M(� [fAg) \Wi;1; otherwise,whereM(�)\Wj andM(�[fAg)\Wk are the preferred meanings of � and �[fAg,respectively.We need the following result to carry out the proof:��(A) = minw2A ��(w)= minw2A8<: i� j; if w 2 M(�) \Wi;1; otherwise,= minw2A8<: i� j; if w 2 M(�) \A \Wi;1; otherwise,= minw2A8<: i� j; if w 2 M(� [fAg) \Wi;1; otherwise,= k � j:Recall that k is the least integer such that M(� [fAg) \ Wk is not empty. Thisfollows fromM(� [fAg) \Wk being the preferred meaning ofM(� [fAg).

212 APPENDIX D. PROOFS OF CHAPTER 3Now suppose that ��(w) = 8<: i� j; if w 2 M(�) \Wi;1; otherwise,and let us expand ����A (w). We have����A (w) = ��(fwg \A)� ��(A)= 8<: ��(w) ���(A); if w 2 A;1; otherwise.= 8<: ��(w) � (k � j); if w 2 A;1; otherwise.= 8<: (i� j)� (k � j); if w 2 A \M(�) \Wi;1; otherwise.= 8<: i� k; if w 2 M(� [fAg) \Wi;1; otherwise.Proof of Theorem 3.4.4Given (Y9), for all a and b 6= 0, there is c such that c ��b and c � b = a. Thismakes a
 b de�ned and equal c.Proof of Theorem 3.4.5Given (Y6b), we have: a ��c, b ��c, and (a � c) � (b � c) is de�ned only ifa� b �� c. Therefore, (a
 c) ��c, (b
 c) ��c, and ((a
 c) � c) � ((b
 c)� c) isde�ned only if (a
 c)� (b
 c) �� c. That is, ((a
 c)� c)� ((b
 c)� c) is de�nedonly if (a
 c) � (b
 c) �� c. Further simpli�cation gives: a � b is de�ned only if(a
 c)� (b
 c) �� c.

213Proof of Theorem 3.4.6(Z1) (a� b)
 b = a. Suppose that a� b is de�ned and equals c. By de�nition of
,we have that c
 b = a, that is, (a� b)
 b = a.(Z2) (a
 b)� b = a. Suppose that a
 b is de�ned and equals c. By de�nition of
,we have that c� b = a, that is, (a
 b)� b = a.(Z3) 0
 a = 0. 0 �� a by def of ��0� a = 0 by (Y1)0
 a = 0 by de�nition of
.(Z4) a
 1 = a: a �� 1 by def of ��a� 1 = a by (Y2)a
 1 = a by de�nition of
.(Z5) a
 b �� b. Follows easily from the de�nition of
.(Z6) (a� b)
 c = (a
 c)� (b
 c).Assume (a
 c)� (b
 c) ��c and c 6= 0.(a
 c)� (b
 c) = X[(a
 c)� (b
 c)]� c = X � c by de�nition of �a� b = X � c by (Y7) and (Z2)(a� b)
 c = X by de�nition of
.(Z7) a �� b only if a
 c �� b
 c.a �� b assumption(a
 c)� c �� (b
 c)� c defs of
 and �a
 c �� b
 c by (Y8).

214 APPENDIX D. PROOFS OF CHAPTER 3(Z8a) a
 b = b
 a. c = a
 b assumptiona = c � b by def of
b = c � a by (Y12)b
 a = c by (Z1).(Z8b) Follows from the proof of (Z8a).(Y16) (a� b)� c = (a� c)� b.Assume a �� (b
c) 6= 0. By (Z5) and (Y13), we have a �� b, a �� c, a�c �� b,and a� b �� c. Moreover,a� (a� b) = (b
 c)� c by (Y11) and (Z2)a� (b
 c) = (a� b)� c by (Y4)a� (a� c) = (c
 b)� b by (Y11) and (Z2)a� (c
 b) = (a� c)� b by (Y4)(a� b)� c = (a� c)� b by (Z8a).(Z9a) a
 (b
 c) = (a
 b)
 c.We know that b 6= 0 and c 6= 0 because one of a
 (b
 c) and (a
 b)
 c isde�ned. If a = 0, the proof is trivial. Assume a 6= 0. We know that (b
c) �� cby (Z5). We also know a
 (b
 c) �� a
 c by (Z7) and (Z8a).X = a
 (b
 c) assumptionX = (b
 c)
 a by (Z8a)X � a = b
 c by (Z2)(X � a)� c = b by (Z2)(X � c)� a = b by (Y16)X � c = b
 a by (Z1)X = (b
 a)
 c by (Z1)X = (a
 b)
 c by (Z8a).

215(Z9b) Follows from the proof of (Z9a).(Z10) a
 b = a i� a = 0 or b = 1.a
 b = a assumptiona 6= 0 assumptionb
 a = a by (Z8a)b = a� a by (Z2)b = 1 by (Y2)a = 0 assumptiona
 b = 0 by (Z3)b = 1 assumptiona
 b = a
 1 = a by (Z4).(Z11) (a
 b)� c = a
 (b� c).Assume a
 b and b� c are de�ned.a
 ((b� c)
 c) = a
 b by (Z1)(a
 (b� c))
 c = a
 b by (Z9a)a
 (b� c) = (a
 b)� c by (Z2).

216 APPENDIX D. PROOFS OF CHAPTER 3(Z12) (a
 c)� (b
 c) = a� b.Assume a
 c �� b
 c 6= 0. It follows that c 6= 0 and b 6= 0. If a
 c = 0,then a = 0, (a
 c) � (b
 c) = 0, and a � b = 0. Suppose that a
 c 6= 0. Itfollows, by (Z5), (Z7), (Z8a), and (Y13), that b
 c ��c, a
 (b
 c) �� a
 c,and a �� (a
 c)� (b
 c).(a
 c)� (b
 c) = X assumption(a
 c) �X = b
 c by (Y12)(c
 a)�X = b
 c by (Z8a)c
 (a�X) = b
 c by (Z11)(a�X)
 c = b
 c by (Z8a)a�X = b by def of
a� b = X by (Y12).Proof of Theorem 3.4.7Suppose S is �nite and has more than two elements. Then for some b such thatb 6= 0 and b 6= 1, the set fa : a ��bg is also �nite and its cardinality is less thanthe cardinality of S because 1 62 fa : a ��bg. Since �b is injective, which followsfrom (Y3), the cardinality of fa � b : a ��bg equals the cardinality of fa : a ��bg.Therefore, the cardinality of fa � b : a ��bg is less than the cardinality of S andS n fa� b : a ��bg is not empty. It follows that there is some c for which there is noa such that a ��b and a� b = c, that is, c
 b is not de�ned.

217Proof of Theorem 3.5.1Suppose that A � B is accepted by �. Then A \ B is rejected, �(A \ B) = 0,�(A) = �(A \B)� �(A \B) = �(A \B). Moreover, we have�B(A) = �(A \ B)� �(B)= �(A)� �(B)�� �(A) by (Y5).Note also that �(A) � �(B) = �(A) i� �(A) = �(A)
 �(B) i� �(A) = 0 or�(B) = 1. Therefore, �B(A) ���(A) unless �(A) = 0 or �(B) = 1.Proof of Theorem 3.5.2If A � B is accepted, then B � A is also accepted. And since A is not rejected,then, by Theorem 3.5.1, we have �A(B) ���(B) unless �(B) = 0 or �(A) = 1.Proof of Theorem 3.5.3If A \ B is rejected, then A [B is accepted, and so is B � A. And since A isnot rejected, then, by Theorem 3.5.1, we have �A(B) ���(B) unless �(B) = 0 or�(A) = 1.

218 APPENDIX D. PROOFS OF CHAPTER 3Lemma for Theorem 3.5.4Lemma D.0.4 If A \ B \ C is not rejected by �, then�C(A)
 �A\C(B) = �C(B)
 �B\C(A):Proof Assume that A \B \ C is not rejected by �. We have that�(A \ B \ C) = [�C(A \B)]
 �(C)= [�B\C(A)
�C(B)]
 �(C)= [�A\C(B)
 �C(A)]
�(C):Since
�(C) is a bijection, we have �B\C(A)
�C(B) = �A\C(B)
�C(A). Moreover,by (Z8a), we have �C(B)
 �B\C(A) = �C(A)
 �A\C(B):

219Proof of Theorem 3.5.4Suppose that A � Ci is accepted by �, for i = 1; . . . ; n. Then �(A\Ci) = 0, andwe have �A(C1 \ . . . \ Ci) = �(A \ C1 \ . . . \ Ci)� �(A)= �((A \ C1) [. . . [(A \ Ci))� �(A)= h�(A \ C1)� . . .� �(A \ Ci)i� �(A)= 0:Therefore, �A(C1 \ . . . \ Ci) = 1;�(A \ C1 \ . . . \ Ci) = �(A);�A\C1\...\Cn�1(Cn) = 1:Moreover, we have�C1\...\Cn�1(A)
 �A\C1\...\Cn�1(Cn) = �C1\...\Cn�1(Cn)
 by Lemma D.0.4�C1\...\Cn(A)�C1\...\Cn�1(A)
 1 = �C1\...\Cn�1(Cn)
�C1\...\Cn(A)�C1\...\Cn�1(A) = �C1\...\Cn�1(Cn)
 by (Z4)�C1\...\Cn(A)�C1\...\Cn�1(A) �� �C1\...\Cn(A) by (Z5)Now, assume that �C1\...\Cn�1(A) = �C1\...\Cn(A). Then�A\C1\...\Cn�1(Cn) = �C1\...\Cn�1(Cn) by (Y4)1 = �C1\...\Cn�1(Cn:)Therefore, if �C1\...\Cn�1(Cn) 6= 1, then �C1\...\Cn�1(A) 6= �C1\...\Cn(A).

220 APPENDIX D. PROOFS OF CHAPTER 3

Appendix EProofs of Chapter 4Proof of Theorem 4.3.5The proof is by induction on the number of nodes in a causal network.Base case. The network has only one node. Trivial.Inductive step. Suppose that the causal network hN;G; CSi is satis�ed by exactlyone state of belief �. Let hN [fkg;G 0; CS 0i be a causal network that results fromaugmenting hN;G; CSi by a childless node k such that CS 0 is consistent. We want toshow that the causal network hN [fkg;G 0; CS 0i is satis�ed by exactly one state ofbelief.I will show this in three steps:I. Constructing a state of belief �0.II. Showing that �0 satis�es hN [fkg;G 0; CS 0i.III. Showing that �0 is the only state of belief that satis�es hN [fkg;G 0; CS 0i.
221

222 APPENDIX E. PROOFS OF CHAPTER 4I. Constructing a state of belief �0 over propositions N [fkg.Construct �0 over propositions N [fkg as follows:� �0(N ^ k) = 8<: 0; if �(N) = 0;CSk�(k)
 �(N); otherwise.� �0(A _ B) = �0(A)� �0(B) when j= :(A ^B).� �0(false) = 0.To show that �0 is a state of belief, it su�ces to show that �0(true) = 1:�0(true) = MN^k�0(N ^ k)= MN^k CSk�(k)
 �(N); where N j= k�= MN Mk CSk�(k)
�(N)= MN �(N)
Mk CSk�(k)= MN �(N)
 1= MN �(N)= 1:Therefore, �0 is a state of belief over N [fkg. Moreover, it is easy to show that forany sentence A such that A 6j= k, we have that �(A) = �0(A).

223II. Showing that �0 satis�es the causal network hN [fkg;G 0; CS 0i.We need to show thatIN 0�(i; i�; i/ n i�) and �0i�(i) = CS i�(i) for every i in N [fkg.Consider the following cases:Case i 2 N . Then Condition 12 follows from the induction hypothesis.Case i = k. First, we have�0i�(i) = �0(k ^ k�)� �0(k�)= 0@ MN j=k��0(k ^ N)1A� �0(k�)= 0@ MN j=k�CS 0k�(k)
�(N)1A� �(k�)= 0@CS 0k�(k)
 0@ MNj=k��(N)1A1A � �0(k�)= �CS 0k�(k)
 �(k�)���(k�)= CS 0k�(k):Moreover, the non{descendants of i are N in this case. Hence,�0i/(i) = �0N(k)= �0(k ^N)� �0(N)= �CS 0k�(k)
 �(N)���(N)= CS 0k�(k):

224 APPENDIX E. PROOFS OF CHAPTER 4III. Showing that �0 is the only state of belief that satis�es the causalnetwork hN [fkg;G 0; CS 0i.Suppose that 	 is another state of belief over N [fkg such thatIN	(i; i�; i/ n i�) and 	i�(i) = CS i�(i) for every i in N [fkg.It su�ces to show that �0 and 	 are equal.� From the induction hypothesis, we know that � is the only state of belief overN that satis�es:IN �(i; i�; i/ n i�) and �i�(i) = CS i�(i) for every i in N .Therefore, �0 and 	 cannot disagree on any complete sentence N .� To show that �0 and � are equal, we need to show that they cannot disagree onany complete sentence N ^ k.The non{descendants of k are N . Hence,�0(N ^ k) = �0N (k)
�0(N)= CS 0k�(k)
 �(N):Moreover, 	(N ^ k) = 	N (k)
	(N)= CS 0k�(k)
 �(N):Therefore, �0 and 	 are equal.

225Proof of Theorem 4.4.1Assume IN �(I;K; J) and let I [K be such that �(I [K) 6= 0.Case I. �(J [K) = 0:�(J [K)� �(K) = 0� �(K) by case�K(J) = 0 by (Y1) and De�nition 3.1.11�(I [J [K) = 0 by case and Lemma D.0.1�(I [J [K)� �(I [K) = 0� �(I [K) by above�I[K(J) = 0 by (Y1) and De�nition 3.1.11�I[K(J) = �K(J) by aboveCase II. �(J [K) 6= 0:�J[K(I) = �K(I) assumption�(I [J [K)� �(J [K) = �(I [K)� �(K) by De�nition 3.1.11�(I [J [K)� �(I [K) = �(J [K)� �(K) by (Y4)�I[K(J) = �K(J) by De�nition 3.1.11Therefore, IN �(J;K; I).

226 APPENDIX E. PROOFS OF CHAPTER 4Proof of Theorem 4.4.2Assume IN �(I; ;; J [L) and let J be such that �(J) 6= 0. Then for some L, wehave �(J ^ L) 6= 0.�J^L(I) = �(I) assumption�(I [J ^ L) = �(I)
 �(J ^ L) by Corollary 3.4.3LL �(I [J ^ L) = LL�(I)
 �(J ^ L) by summing equalsLL �(I [J ^ L) = LL�(J ^ L)
 �(I) by (Z8a)LL �(I [J ^ L) = hLL �(J ^ L)i
�(I) by (Z6)�(I [J) = �(I)
 �(J) by def of � and (Z8a)�(I [J)� �(J) = �(I) by def of
�J(I) = �(I) by De�nition 3.1.11The applicability of (Z6) requires thatML �(J ^ L)
 �(I) �� �(I);which follows from ML �(J ^ L)
�(I) = �(I [J) �� �(I):Therefore, IN (I; ;; J).The same proof can be carried out with respect to �K, hence, by Corollary 4.2.4,IN (I;K; J).

227Proof of Theorem 4.4.3Assume IN �(J[L;K; I) and let I [K [L be such that �(I [K [L) 6= 0. By theabove assumption, Symmetry, and Decomposition, it follows that IN �(I;K; J [L),IN �(I;K;L), IN �(L;K; I), and �I[K(L) = �K(L):Moreover:�(J [L [I [K)��(I [K) = �(J [L [K)� �(K) by De�nition 3.1.11h�L[I[K(J)
�(L [I [K)i = h�L[K(J)
�(L [K)i by Corollary 3.4.3��(I [K) ��(K)�L[I[K(J)
 = �L[K(J)
 by (Z11)[�(L [I [K)� �(I [K)] [�(L [K)� �(K)]�L[I[K(J)
 �I[K(L) = �L[K(J)
 �K(L) by De�nition 3.1.11�L[I[K(J) = �L[K(J) by aboveTherefore, IN �(J;K [L; I).

228 APPENDIX E. PROOFS OF CHAPTER 4Proof of Theorem 4.4.4Assume IN �(I;K; J) and IN �(I;K [J;L). Let K [J [L be such that�(K [J [L) 6= 0. �K[J(I) = �K(I) assumption�K[J[L(I) = �K[J(I) assumption�K[J[L(I) = �K(I) by aboveTherefore, IN �(I;K; J [L).

229Proof of Theorem 4.4.5Assume IN �(I; L; J) and IN �(I; J; L) and consider J ^ L where �(J ^ L) 6= 0:�J^L(I) = �L(I) assumption�J^L(I) = �J (I) assumption�L(I) = �J (I) by above�(I ^ L)� �(L) = �J (I) by De�nition 3.1.11�(I ^ L)� �J (I) = �(L) by (Y12)LL �(I ^ L)� �J (I) = LL�(L) by summing equalshLL�(I ^ L)i� �J (I) = 1 by (Y7)�(I) = �J (I) by (Y3) and (Y10)�(I) = �J^L(I) by above.Property (Y12) requires that �J (I) 6= 0, which holds since � attributes 0 to falseonly.The same proof can be carried out with respect to �K, hence, by Corollary 4.2.4,IN �(I;K; J [L).

230 APPENDIX E. PROOFS OF CHAPTER 4Proof of Theorem 4.4.6Verma [Verma, 1986] has shown that if1. G is constructed such that IN�(i; i�; i/ n i�) for each node i, and if2. IN � satis�es the graphoid axioms,then IN G(I;K; J) only if IN �(I;K; J).

Appendix FProofs of Chapter 5Proof of Theorem 5.2.1 Any path between a node in I and another in J musthave ! i! as part of it. That is, on any such path, i is a node with linear arrowsand i belongs to K. Therefore, K d{separates I from J .Proof of Theorem 5.2.2 Any path between a node in I and another in J musthave i! as part of it. That is, on any such path, i is a node with divergingarrows. Therefore, i d{separates I from J .Proof of Theorem 5.2.3 Any path between a node in J and node i must haveeither ! k ! i or k ! i as part of it, where k belongs to K. That is, on anysuch path, k is a node with either linear or diverging arrows and k belongs to K.Therefore, K d{separates J from i.Proof of Theorem 5.2.4 Any path between a node in I and another in J musthave ! i as part of it. That is, on any such path, i is a node with convergingarrows, i does not belong to ;, and neither does any of its descendents. Therefore, ;d{separates I from J . 231

232 APPENDIX F. PROOFS OF CHAPTER 5Proof of Theorem 5.3.1�(i� ^ �) = �(i ^ �i/ ^ �i.)= �i^�i/(�i.)
 �(i ^ �i/)= �i(�i.)
 �(i ^ �i/);by Theorem 5.2.1= �i(i)
 �i(i):Proof of Theorem 5.3.2�i(�i.) = �i(k̂2i� �i.k)= Ok2i��i(�i.k); by Theorem 5.2.2= Ok2i��k:i(i):Proof of Theorem 5.3.3�(i ^ �i/) = Mi� �(i ^ �i/ ^ i�)= Mi� ��i/^i�(i)
�(�i/ ^ i�)= Mi� �i�(i)
 �(�i/ ^ i�); by Theorem 5.2.3= Mi� �i�(i)
 �(^i�j=j �i/j ^ j)= Mi� �i�(i)
Oi�j=j �(�i/j ^ j); by Theorem 5.2.4= Mi� CS i�(i)
Oi�j=j �j:i(j):

233Proof of Theorem 5.3.4In this proof, �i/j is the observation about nodes connected to node i via incomingarcs, other than arc j ! i.If i is not observed, then�j(�j.i)= Mi Mi�j �j(�j.i ^ i ^ i�j)= Mi Mi�j �j(�i. ^ �i/j ^ i ^ i�j); because �j.i � �i. ^ �i/j= Mi Mi�j �j^�i/j^i^i�j(�i.)
 �j^�i/j^i�j(i)
 �j(�i/j ^ i�j)= Mi Mi�j �i(�i.)
�j^�i/j^i�j(i)
 �j(�i/j ^ i�j); by Theorem 5.2.1= Mi Mi�j �i(�i.)
�j^i�j(i)
 �j(�i/j ^ i�j); by Theorem 5.2.3= Mi Mi�j �i(�i.)
�j^i�j(i)
 �(�i/j ^ i�j); by Theorem 5.2.4= Mi Mi�j �i(�i.)
�j^i�j(i)
 �(^i�jj=l �i/l ^ l)= Mi Mi�j �i(�i.)
�j^i�j(i)
 Oi�jj=l�(�i/l ^ l); by Theorem 5.2.4= Mi Mi�j �i(i)
 CSj^i�j(i)
 Oi�jj=l�l:i(l):If i is an observed node, then �j.i is either i or :i. Therefore, �j(�j.i) = 1 and�:j(�j.i) = 0 when �j.i � i. Moreover, �j(�j.i) = 0 and �:j(:�j.i) = 1 when �j.i � :i.This follows from the way auxiliary nodes are created. Therefore,�i:j(j) = 8<: h1;0i; if � j= i;h0;1i; if � j= :i.

234 APPENDIX F. PROOFS OF CHAPTER 5Proof of Theorem 5.3.5The observations � can be decomposed into two observations:� �i.k, the observation about nodes connected to i via arc i! k.� �k/i, the observation about nodes connected to k via arc k i.Moreover, the updated support BLi is closely related to parental support:BLi = h�(i ^ �);�(:i ^ �)i= h�(i ^ �i.k ^ �k/i);�(:i ^ �i.k ^ �k/i)i�i:k = h�(i ^ �k/i);�(:i ^ �k/i)i:Therefore, �i:k equals BLi when �i.k � true. Hence,�i:k = �i
 Ol2i�k �l:i:

235Proof Theorem 5.4.2I will show that if �o:p 2 Sn or �o:q 2 Sn, then o is connected to i via an undirectedpath of length n. This implies that the number of non{empty states in a backwardpropagation cannot be more than the maximal length of a path between node i andsome other node. The proof is by induction on n.Case n = 1: S1 = f�j:i : j ! ig [f�k:i : k ig:It is clear that each of j and k is connected to i via a path of length 1.Case n > 1: Suppose that if �o:p 2 Sn�1 or �o:q 2 Sn�1, then o is connected to i viaan undirected path of length n� 1. Consider the members of Sn:Sn = f�j:k : j ! k;9p : �k:p 2 Sn�1 or 9q 6= j : �k:q 2 Sn�1g [f�k:j : k j;9p : �j:p 2 Sn�1 or 9q 6= k : �j:q 2 Sn�1g:Case �j:k 2 Sn: Then j ! k and either �k:p 2 Sn�1 or �k:q 2 Sn�1. Therefore,k is connected to i via a path of length n � 1, hence, j is connected to ivia a path of length n.Case �k:j 2 Sn: Then k j and either �j:p 2 Sn�1 or �j:q 2 Sn�1. Therefore,j is connected to i via a path of length n � 1, hence, k is connected to ivia a path of length n.Therefore, if �o:p 2 Sn or �o:q 2 Sn, then o is connected to i via an undirectedpath of length n.

236 APPENDIX F. PROOFS OF CHAPTER 5Proof Theorem 5.4.4I will show that if �p:o 2 Sn or �q:o 2 Sn, then o is connected to some boundarynode via an undirected path of length n. This implies that the number of non{emptystates in a forward propagation cannot be more than the maximal length of a pathin the causal network. The proof is by induction on n.Case n = 1: S1 = f�j:k : j is a root node with only one child kg [f�k:j : k is a leaf node with only one parent jg:If �j:k 2 S1, then k is connected to a boundary node j via an undirected pathof length 1. Furthermore, if �k:j 2 S1, then j is connected to a boundary nodek via an undirected path of length 1.Case n > 1: Suppose that if �p:o 2 Sn�1 or �q:o 2 Sn�1, then o is connected to someboundary node via an undirected path of length n � 1. Consider the membersof Sn:Sn = f�j:k : �j:k 62 S<n; j ! k;8p! j : �p:j 2 S<n;8k 6= q j : �q:j 2 S<ng [f�k:j : �k:j 62 S<n; k j;8p k : �p:k 2 S<n;8j 6= q! k : �q:k 2 S<ng:Case �j:k 2 Sn: Then �j:k 62 S<n, j ! k, for all p! j : �p:j 2 S<n, and for allk 6= q j : �q:j 2 S<n. Therefore, some �p:j or some �q:j belongs to Sn�1;otherwise, �j:k 2 S<n. Hence, j is connected to a boundary node via apath of length n� 1 and k is connected to a boundary node via a path oflength n.Case �k:j 2 Sn: Then �k:j 62 S<n, k j, for all p k : �p:k 2 S<n, and for allj 6= q! k : �q:k 2 S<n. Therefore, some �p:k or some �q:k belongs to Sn�1;otherwise, �k:j 2 S<n. Hence, k is connected to a boundary node via apath of length n� 1 and j is connected to a boundary node via a path oflength n.Therefore, if �p:o 2 Sn or �q:o 2 Sn, then o is connected to a boundary node viaan undirected path of length n.

Appendix GProofs of Chapter 7Proof of Theorem 7.3.1Logical conjunction is commutative and associative.If (a ^ b) ^ c = a,then a j= b ^ c and a j= b.Hence, a ^ b = a.a ��b precisely when there is c such that a ^ c = b.Hence, a ��b precisely when b j= a.For all a 2 O,true is the only member of O satisfying a ^ true = a, andfalse is the only member of O satisfying a ^ false = false.If we represent sentences using their models, then objection summation would beset intersection, objection order would be �; the zero objection would be the set of allmodels; and the full objection would be the empty set. These observations simplifythe following proofs. 237

238 APPENDIX G. PROOFS OF CHAPTER 7Proof of Theorem 7.4.1We know that hO;^i is a partial support structure. Therefore, we need to showthat 6 is a support scaling function.If we represent objections using their models, then objection scaling would be setdi�erence when the �rst argument is not the full set 0. In this and the followingproof, I assume that objections are represented using their models.(Y1) 0 6 a = 0 when a 6= 0.Follows directly from de�nition of 6 .(Y2) a 6 1 = a.Follows directly from de�nition of 6 .(Y3) a 6 c = b 6 c only if a = b when a; b �� c 6= 0.Assume a 6 c = b 6 c only if a = b.If a = 0, thena 6 c = 0,b 6 c = 0, andb must be 0.And vice versa if b = 0.If neither a nor b are 0, then6 is set di�erence,which satis�es a n c = b n c only if a = b when a; b � c.(Y4) a 6 b = c 6 d only if a 6 c = b 6 d when a �� b; c �� d and b; c; d 6= 0.Since b; c; d 6= 0, it follows that a 6= 0.Therefore, 6 is set di�erence,which satis�es a n b = c n d only if a n c = b n d when d � b; c � a.

239(Y5) a 6 b �� a when a �� b 6= 0.Case a = 0:a = a 6 b.Case a 6= 0:6 is set di�erence,which satis�es a n b � a.(Y6a) a ^ b �� c only if (a 6 c) ^ (b 6 c) is de�ned when c 6= 0.This is trivial since ^ is de�ned everywhere in objection calculus.(Y7) (a ^ b) 6 c = (a 6 c) ^ (b 6 c) when a ^ b �� c 6= 0.Trivial if either a = 0 or b = 0.If neither is 0, then6 is set di�erence,which satis�es (a [b) n c = (a [c) n (b [c) when c � a [b.(Y8) a 6 c �� b6 c only if a �� b when a; b �� c 6= 0.Trivial if either a = 0 or b = 0.If neither is 0, then6 is set di�erence,which satis�es a n c � b n c only if a � b when a; b � c.(Y6b) a ��c, b ��c, and (a� c)� (b� c) is de�ned only if a� b �� c when c 6= 0.Since a � c and b � c, we have a \ b � c.Since the set of supports O is �nite, it follows by Theorem 3.4.7 that the supportstructure is not bijective.

240 APPENDIX G. PROOFS OF CHAPTER 7Proof of Theorem 7.4.4We want to show that a t b = c precisely when c 6 b = a and c �� b 6= 0. Supposethat objections are represented by their models. We want to show thata [b = c and [a \ b = ; or a = 0] and b 6= 0precisely when c 6 b = a and c � b 6= 0:==> Assume c 6 b = a and c � b 6= 0.Case c = 0:a = 0.Hence, 0 [b = 0 = c,a = 0 and b 6= 0.Case c 6= 0:c 6 b = c n b = a.Hence, a [b = c,a \ b = ;; and b 6= 0.<== Assume a [b = c and [a \ b = ; or a = 0] and b 6= 0.Case a = 0:c = 0.Hence, c 6 b = 0 = a, andc � b and b 6= 0.Case a 6= 0:a [b = c, anda \ b = ;.Hence, c 6 b = c n b = a,c � b and b 6= 0.

241Proof of Theorem 7.5.4==> Assume WIN�(I;K; J):�(I ^K) = � _ �(K) only if �(I ^ J ^K) = � _ �(J ^K):Since �(I ^K) = �(I ^K) _ �(K),�(I ^ J ^K) = �(I ^K) _ �(J ^K).<== Assume �(I ^ J ^K) = �(I ^K) _ �(J ^K):Suppose �(I ^K) = � _ �(K).We need to show that �(I ^ J ^K) = � _ �(J ^K).This is equivalent to �(I ^ J ^K) = � _ �(K) _ �(J ^K),which is equivalent to �(I ^ J ^K) = �(I ^K) _ �(J ^K),which is true by supposition.Proof of Theorem 7.5.5Assume WIN�(I;K; J):�(I ^ J ^K) = �(I ^K) _ �(J ^K):From �(I ^K) = ��K(I) _ �(K), and�(J ^K) = ��K(J) _ �(K), we conclude�(I ^K) _ �(J ^K) = ��K(I) _ ��K(J) _ �(K).Hence, �(I ^ J ^K) = ��K(I) _ ��K(J) _ �(K), and��K(I ^ J) := ��K(I) _ ��K(J).

242 APPENDIX G. PROOFS OF CHAPTER 7Proof of Theorem 7.5.7Assume WIN�(I;K; J [L):�(I ^ J ^ L ^K) = �(I ^K) _ �(J ^ L ^K):Then L̂ �(I ^ J ^ L ^K) = L̂ �(I ^K) _ �(J ^ L ^K),L̂ �(I ^ J ^ L ^K) = �(I ^K) _ L̂ �(J ^ L ^K), and�(I ^ J ^K) = �(I ^K) _ �(J ^K).Hence, WIN�(I;K; J).Proof of Theorem 7.5.8Assume WIN�(I;K; J [L):�(I ^ J ^ L ^K) = �(I ^K) _ �(J ^ L ^K):Since �(J ^K) j= �(J ^ L ^K),�(I ^ J ^ L ^K) = �(I ^K) _ �(J ^K) _ �(J ^ L ^K).By Decomposition, WIN�(I;K; J):�(I ^ J ^K) = �(I ^K) _ �(J ^K).Hence, �(I ^ J ^ L ^K) = �(I ^ J ^K) _ �(J ^ L ^K), andWIN�(I;K [J;L).Proof of Theorem 7.5.9Assume WIN�(I;K; J) and WIN �(I;K [J;L):�(I ^ J ^K) = �(I ^K) _ �(J ^K)�(I ^ J ^ L ^K) = �(I ^ J ^K) _ �(J ^ L ^K):Substituting for �(I ^ J ^K) in the second equation,�(I ^ J ^ L ^K) = �(I ^K) _ �(J ^K) _ �(J ^ L ^K).Since �(J ^K) j= �(J ^ L ^K),�(I ^ J ^ L ^K) = �(I ^K) _ �(J ^ L ^K).Hence, WIN�(I;K; J [L).

243Proof of Theorem 7.6.5The proof is by induction on the number of nodes in a causal network.Base case. The network has one node. Trivial.Inductive step. The network has more than one node. Suppose that1. hL;O;G;SOi is obtained by adding a childless node k to another causal networkhL0;O0;G 0;SO0i.2. The network hL0;O0;G 0;SO0i is satis�ed by exactly one state of belief �0.I will show that the network hL;O;G;SOi is satis�ed by exactly one state of belief.Showing that hL;O;G;SOi is satis�ed by some state of belief.Let N and N 0 be the primitive propositions in languages L and L0, respectively.Construct a mapping � from L to O such that1. �(N 0 ^ k) = �0(N 0) _ SOk�(k), where N 0 j= k�.2. �(A _B) = �(A) ^ �(B) when j= :(A ^B).3. �(false) = true.I �rst show that � is a state of belief and then show that it satis�es hL;O;G;SOi.To show that � is a state of belief, all I need to show is that �(true) = false.�(true) = N̂ �(N)= N̂ 0^k�(N 0 ^ k)= ^N 0^kj=k��0(N 0) _ SOk�(k)= ^N 0j=k�[�0(N 0) _ SOk�(k)] ^ [�0(N 0) _ SOk�(:k)]= ^N 0j=k��0(N 0) _ [SOk�(k) ^ SOk�(:k)]

244 APPENDIX G. PROOFS OF CHAPTER 7= N̂ 0 �0(N 0)= false:We can also show that � and �0 agree on any sentence that does not entail k.To show that � satis�es hL;O;G;SOi, we need to showWIN�(i; i�; i/ n i�) and �(i ^ i�) = SOi�(i) _ �(i�): (12)Consider the following cases:Case i 6= k:Then i 2 N 0 and Condition 12 is equivalent toWIN �0(i; i�; i/ n i�) and �0(i ^ i�) = SO0i�(i) _ �0(i�);which follows from the induction hypothesis.Case i = k:Then i/ = N 0 and Condition 12 is equivalent toWIN �(k; k�; N 0 n k�) and �(k ^ k�) = SOk�(k) _ �(k�):I �rst show that �(k ^ k�) = SOk�(k) _ �(k�):�(k ^ k�) = ^N 0j=k��(k ^N 0)= ^N 0j=k�SOk�(k) _ �0(N 0)= SOk�(k) _ ^N 0j=k��0(N 0)= SOk�(k) _ �0(k�)= SOk�(k) _ �(k�):To show WIN�(k; k�; N 0 n k�), it su�ces to show that�(k ^ k� ^N 0) = �(k ^ k�) _ �(N 0);

245when N 0 j= k�. �(k ^ k� ^N 0) = SOk�(k) _ �0(N 0)= SOk�(k) _ �(k�) _ �(N 0)= �(k ^ k�) _ �(N 0):Showing that hL;O;G;SOi is satis�ed by exactly one state of belief.Suppose that a state of belief 	 over N satis�es hL;O;G;SOi. Then 	 mustagree with � and �0 on any sentence that does not entail k. This follows because1. �0 is the only state of belief that satis�es the portion of hL;O;G;SOi notincluding node k.2. 	 must agree with �0 on sentences that do not entail k.3. � agrees with �0 on sentences that do not entail k.To show that 	 completely agrees with �, we must show that	(N 0 ^ k) = �(N 0 ^ k):�(N 0 ^ k) = SOk�(k) _ �0(N 0); where N 0 j= k�= SOk�(k) _	(N 0)= SOk�(k) _	(k�) _	(N 0)= 	(k ^ k�) _	(N 0)= 	(k ^N 0):Therefore, 	 and � are equal.

246 APPENDIX G. PROOFS OF CHAPTER 7Proof of Theorem 7.6.6Let � : L ! O be an objection{based state of belief, where N are the primitivepropositions of L. Let 1; . . . ; n be a total order of the propositions in N . Constructa wob causal network hL;O;G;SOi such that� The parents of node i in G are nodes 1; . . . ; i� 1.� SOi�(i) = 8<: �i�(i); if �(i�) 6= true;true; otherwise.It is clear that hL;O;G;SOi is a wob causal network. Therefore, it is satis�ed byexactly one state of belief. I will now show that � satis�es hL;O;G;SOi. First, byde�nition of SO, we have �(i� ^ i) = SOi�(i) _ �(i�):Second, by de�nition of G, the non{descendents of a node are also its parents, i� = i/.Therefore, �(i ^ i/) = �(i ^ i/) _ �(i/)= �(i ^ i�) _ �(i/); where i� = i/:Hence, WIN�(i; i�; i/ n i�), and � satis�es hL;O;G;SOi.Proof of Theorem 7.6.7Verma [Verma, 1986] has shown that if1. G is constructed such that WIN�(i; i�; i/) for each node i, and if2. WIN� satis�es the graphoid axioms,then IN G(I;K; J) only if WIN�(I;K; J).

247Proof of Theorem 7.7.1This proof is based on the following observations:1. The observation �i/ can be decomposed into n observations when i has n par-ents. The observation associated with parent j, denoted by �i/j, is about nodesconnected to i via arc i j.2. According to Theorem 5.2.3, once the parents of node i are observed, node ibecomes weakly independent from nodes connected to it via incoming arcs.3. According to Theorem 5.2.4, nodes connected to i via one incoming arc areweakly independent from nodes connected to i via another incoming arc.�(i ^ �i/) = î� �(i ^ �i/ ^ i�)= î� ��i�(i) _ �(�i/ ^ i�); by Theorem 5.2.3= î� ��i�(i) _ �(^i�j=j �i/j ^ j)= î� ��i�(i) _ _i�j=j �(�i/j ^ j); by Theorem 5.2.4= î� SOi�(i) _ _i�j=j �j:i(j):

248 APPENDIX G. PROOFS OF CHAPTER 7Proof of Theorem 7.7.2�(j ^ �) equals �(j ^ �i/j ^ �j.i). Moreover, if �j.i = true, then �(j ^ �) equals�(j ^ �i/j). Therefore, �j:i equals BLj when �j.i is suppressed:�j:i = �j _ _l2j�i �l:j:BLj is proved later to be �j _ _l2j��l:j ;but the proof does not depend on this one.Proof of Theorem 7.7.3This proof is based on the following observations:1. The observation � can be decomposed into m observations when i has m chil-dren. The observation associated with child k, denoted by �i.k, is about nodesconnected to i via the arc i! k.2. According to Theorem 5.2.2, once node i is observed, nodes connected to i viaone outgoing arc become weakly independent from nodes connected to i viaanother outgoing arc.��i(�i.) = ��i(k̂2i� �i.k)= _k2i� ��i(�i.k); by Theorem 7.5.5= _k2i��k:i:

249Proof of Theorem 7.7.4This proof is based on the following observations:1. When node k is not observed the observation �i.k can be decomposed into twoobservations. The �rst observation, denoted by �k., is about nodes below k. Thesecond observation, denoted by �k/i, is about nodes connected to k via incomingarcs other than i! k.2. When node k is not observed, the observation �k/i can be decomposed into n�1observations when k has n parents. The observation associated with parent l,denoted by �k/l, is about nodes connected to k via arc k l.3. According to Theorem 5.2.1, once node k is observed, nodes above k becomeweakly independent from nodes below k.4. According to Theorem 5.2.3, once the parents of node k are observed, node kweakly becomes independent from nodes connected to k via incoming arcs.5. According to Theorem 5.2.4, nodes connected to k via one incoming arc areweakly independent of nodes connected to k via another incoming arc.

250 APPENDIX G. PROOFS OF CHAPTER 7If node k is not observed, then�(i ^ �i.k)= k̂ �(k ^ i ^ �i.k)= k̂ �(k ^ i ^ �k. ^ �k/i)= k̂ ��k(�k.) _ �(k ^ i ^ �k/i);by Theorem 5.2.1 = k̂ ��k(�k.) _ k̂�i�(k ^ k�i ^ i ^ �k/i)= k̂ ��k(�k.) _ k̂�i ��k�i^i(k) _ �(k�i ^ i ^ �k/i);by Theorem 5.2.3 = k̂ ��k(�k.) _ k̂�i ��k�i^i(k) _ �(k�i ^ �k/i) _ �(i);by Theorem 5.2.4 = k̂ ��k(�k.) _ k̂�i ��k�i^i(k) _ �(^k�ij=l l ^ �k/l) _ �(i)= k̂ ��k(�k.) _ k̂�i ��k�i^i(k) _ _k�ij=l�(l ^ �k/l) _ �(i);by Theorem 5.2.4 = 0@ k̂ �i(k) _ k̂�iSOk�j^i(k) _ _k�ij=l �l:k(l)1A _ �(i):Hence, ��i(�i.k) := k̂ �i(k) _ k̂�j SOk�i^i(k) _ _k�jj=l �l:k(l):If node k is observed, then �i.k is either k or :k. Therefore,��i(�i.k) := �i(�i.k) = 8<: �i(k) = false; if � j= k;�i(:k) = true; if � j= :k.

251Proof of Theorem 7.7.5This proof is based on two observations:1. The observation � can be decomposed into two observations. The �rst obser-vation, denoted by �i/, is about nodes above i, while the second observation,denoted by �i., is about nodes below i. This decomposition is possible becausenode i is not observed.2. According to Theorem 5.2.1, once the state of node i is observed, nodes abovei become weakly independent of nodes below i.�(i ^ �) = �(i ^ �i. ^ �i/)= ��i(�i.) _ �(i ^ �i/); by Theorem 7.5.5.

252 APPENDIX G. PROOFS OF CHAPTER 7

Appendix HProofs of Chapter 8Notational conventionsThe languages L andO are constructed from disjoint sets of propositional symbols:� and
. Members of � are denoted by �; �1; �2; . . ., while members of
 are denotedby !; !1; !2; . . . Sentences in L are denoted by A;B; and C, while sentences in Oare denoted by �; �, and
. � denotes a sentences in a propositional language over�[
. � and
 induce two sets of truth assignments: T� and T
. Members of T� aredenoted by LT ;LT 1;LT 2; . . ., while members of T
 are denoted byOT ;OT 1;OT 2; . . .A composite truth assignment is a pair (LT i;OT j). Finally, I overload the symbolsLT and OT : LT denotes a sentence in L that is satis�ed only by LT , and OT denotesa sentence in O that is satis�ed only by OT .
253

254 APPENDIX H. PROOFS OF CHAPTER 8Proof of Theorem 8.2.8==> Assume that I is a prime implicant for Label(A;�;O) and is consistent with�:1. I j= Label(A;�;O).2. I 0 j= Label(A;�;O) only if I � I 0 or I j= I 0.3. � 6j= :I.Then1. Suppose I 62 O, and let I 0 be the result of removing from I those literals thatare not in O. Then I 0 j= Label(A;�;O) and I j= I 0, which is a contradictionwith the assumption. Hence, I 2 O and :I 2 O.2. Since I j= Label(A;�;O), then � ^ I j= A. Hence, � j= I � A.3. Let I 0 be a conjunctive clause such that � j= I 0 � A, I 0 6� I, and :I 0 j= :I.Then � ^ I 0 j= A and I j= I 0. Moreover, I 0 2 O because I 2 O. Hence,I 0 j= Label(A;�;O), which is a contradiction with the assumption. Hence,there is no such I 0.4. � 6j= :I.Therefore, :I belongs to O and is a minimal support for A with respect to �.<== Assume that :I belongs to O and is a minimal support for A with respect to�:1. :I 2 O.2. � j= I � A.3. � j= I 0 � A only if :I 0 � :I or :I 0 j= :I.4. � 6j= :I.

255Then1. I 2 O.2. Since, � j= I � A, then � ^ I j= A. Hence, I j= Label(A;�;O), which followsfrom the de�nition of Label(A;�;O).3. Let I 0 be a conjunctive clause I 0 such that I 0 j= Label(A;�;O), I 6� I 0, andI j= I 0. Then � ^ I 0 j= A, 6= I 0 6� :I, and :I 0 j= :I, which is a contradictionwith the assumption. Hence, there is no such I 0.4. � 6j= :I.Therefore, I is a prime implicant for Label(A;�;O) and is consistent with �.

256 APPENDIX H. PROOFS OF CHAPTER 8Lemma H.0.5 For any satis�able A, there exists LT such that1. LT j= A.2. �(:A) ^ :�(LT) is satis�able.Proof of Lemma H.0.5Suppose otherwise:For all LT such that LT j= A, we have �(:A) j= �(LT).Then �(:A) j= ^LT j=A�(LT) � �(A).A contradiction with the de�nition of �: �(:A) ^ �(A) � false.

257Lemma H.0.6 (LT ;OT) j= �� precisely when OT j= :�(LT).Proof of Lemma H.0.6==> Suppose (LT ;OT) j= ��.Since �(LT) � :LT 2 ��, we have(LT ;OT) j= �(LT) � :LT .That is, (LT ;OT) j= :�(LT) _ :LT .Hence, OT j= :�(LT).<== Suppose (LT ;OT) j= :�(LT).Must show that (LT ;OT) j= �(A) � :Afor all �(A) � :A 2 ��.Case LT j= :A:Then (LT ;OT) j= �(A) � :A.Case LT j= A:By de�nition of �,�(A) j= �(LT), and:�(LT) j= :�(A).Since OT j= :�(LT), we have OT j= :�(A), and(LT ;OT) j= �(A) � :A.

258 APPENDIX H. PROOFS OF CHAPTER 8Lemma H.0.7 If OT j= :�(A), then there exists LT such that1. LT j= A, and2. OT j= :�(LT).Proof of Lemma H.0.7Suppose that OT j= :�(A).Then A is satis�able.If A is unsatis�able, then by de�nition of �,�(A) = true, and:�(A) = false.A contradiction with supposition.Suppose that for all LT such that LT j= A, we have OT j= �(LT).Then OT j= ^LT j=A�(LT) � �(A).A contradiction with premise of lemma: OT j= :�(A).

259Proof of Theorem 8.3.3By de�nition of ��,�� j= �(:A) � A, and�� ^ �(:A) j= A.Suppose �� ^ � j= A.Must show that � j= �(:A).Suppose � 6j= �(:A).Must establish a contradiction.Case � = false:� j= �(:A).A contradiction.Case � 6= false:By supposition, � ^ :�(:A) is satis�able:There exists OT such that OT j= � ^ :�(:A).Given Lemma H.0.7 and OT j= :�(:A),there must exist LT such that LT j= :A and OT j= :�(LT).Given Lemma H.0.6 and OT j= :�(LT),(LT ;OT) j= ��.Hence, (LT ;OT) j= �� ^ � ^ :A, and�� ^ � 6j= A.A contradiction.

260 APPENDIX H. PROOFS OF CHAPTER 8Proof of Theorem 8.3.2It su�ces to show that if � 6� false and � 2 O, then �� ^ � is satis�able.Suppose � 6� false and � 2 O.There must exist some LT such that :�(LT) ^ � is satis�able.To see why, suppose that � j= �(LT) for all LT .Then � j= L̂T �(LT) = false.A contradiction.Let OT be a model of :�(LT) ^ �.By Lemma H.0.6, (LT ;OT) j= ��.Hence, (LT ;OT) j= �� ^ �.

261Proof of Theorem 8.3.4Must show the following:1. Label(true;�;O) = true.The weakest sentence � in O such that � ^ � j= true is clearly true.2. Label(false;�;O) = false.Note that � is non{committal about O. That is, the only sentences in Othat are entailed by � are valid. Hence, the only sentences in O that arecontradictory with � are unsatis�able. Therefore, the weakest sentence � in Osuch that � ^ � j= false is clearly false.3. Label(A ^ B;�;O) = Label(A;�;O) ^ Label(B;�;O).Let � and � be the weakest sentences in O such that� ^ � j= A and � ^ � j= B:Must show that � ^ � is the weakest sentence in O such that� ^ � ^ � j= A ^B:It su�ces to show that if � ^
 j= A ^B;then
 j= � ^ �. Suppose � ^
 j= A ^B:Then � ^
 j= A and � ^
 j= B:Therefore,
 j= �,
 j= �, and
 j= � ^ �.4. Label(A;�;O) = Label(B;�;O) when j= A � B. Follows because the de�ni-tion of Label(A;�;O) does not depend on the syntax of A.

262 APPENDIX H. PROOFS OF CHAPTER 8Proof of Theorem 8.4.3Suppose that � is the conjunction of all disjunctive clauses I, such that I belongsto O and I is a prime implicate of �. We must show that1. � j= �.2. If � j= � ^ � and � 2 O, then � j= �.� j= � follows easily from the de�nition of �. Now suppose that � j= � ^ � and� 2 O. Let us express � in terms of its prime implicates,� = ^J; where J is a prime implicate of �.Since � j= �, each J is an implicate of �. Therefore, for each J , there is some I suchthat1. I is a prime implicate of �.2. I belongs to O.3. I j= J .Therefore, � entails each J and also entails �.Proof of Theorem 8.5.1Must show that :�(A) is the strongest sentence in O such that�� ^ A j= :�(A):By Theorem 8.3.3, the sentence �(A) is logically the weakest in O such that�� ^ �(A) j= :A:Therefore, :�(A) is logically the strongest in O such that�� ^A j= :�(A):

263Proof of Theorem 8.3.6Let � be the state of belief satisfying CN = hL;O;G;SOi. We must show that�� = Â2L�(A) � :Ais equivalent to �CN = ^i2N i� ^ SOi�(i) � :i:It su�ces to show the following:�� j= i� ^ SOi�(i) � :i�CN j= �(A) � :A:By de�nition of �, �(i� ^ i) = SOi�(i) _ �(i�). Therefore,�� j= SOi�(i) _ �(i�) � :(i ^ i�)j= i� ^ (SOi�(i) _ �(i�)) � :ij= i� ^ SOi�(i) � :i:Suppose that A is a complete sentence. ThenA � ^Aj=i�^i i� ^ i:And by de�nition of �, �(A) = _Aj=i�^iSOi�(i):Moreover, �CN j= i� ^ i � :SOi�(i)j= ^Aj=i�^i i� ^ i � ^Aj=i�^i:SOi�(i)j= ^Aj=i�^i i� ^ i � : _Aj=i�^iSOi�(i)j= A � :�(A)j= �(A) � :A:

264 APPENDIX H. PROOFS OF CHAPTER 8Suppose that A is not a complete sentence. There must exist complete sentences fAigsuch that A is equivalent to WiAi. Then�CN j= �(Ai) � :Aij= î �(Ai) � î :Aij= �(_i Ai) � :_i Aij= �(A) � :A:

Bibliography[Aleliunas, 1988] Aleliunas, Romas 1988. A new normative theory of probabilisticlogic. In Proceedings of CSCSI{88. CSCSI. 67{74.[Bonissone, 1987] Bonissone, Piero 1987. Summarizing and propagating uncertaininformation with triangular norms. International Journal of Approximate Reason-ing 1:71{101.[Cooper, 1990] Cooper, F. G. 1990. The computational complexity of probabilisticinference using bayesian belief networks. Arti�cial Intelligence 42(2-3):393{405.[Darwiche, 1993] Darwiche, Adnan Y. 1993. Fuzzy probability calculus. (Submittedto IEEE{FUZZ{93).[de Kleer et al., 1992] de Kleer, Johan; Mackworth, Alan K.; and Reiter, Raymond1992. Characterizing diagnoses and systems. Arti�cial Intelligence 56(2-3):197{222.[Doyle, 1990] Doyle, Jon 1990. Methodological simplicity in expert system construc-tion: The case of judgements and reasoned assumptions. In Shafer, Glenn andPearl, Judea, editors 1990, Readings in Uncertain Reasoning. Morgan KaufmannPublishers, Inc., San Mateo, California. 689{693.[Dubois and Prade, 1988] Dubois, Didier and Prade, Henri 1988. Possibility Theory:An Approach to Computerized Processing of Uncertainty. Plenum Press, New York.[Fagin and Halpern, 1989] Fagin, Ronald and Halpern, Joseph Y. 1989. Uncertainty,belief, and probability. In Proc. International Joint Conference on Arti�cal Intel-ligence (IJCAI). 1161{1167. 265

266 BIBLIOGRAPHY[Fine, 1973] Fine, Terrence L. 1973. Theories of Probability. Academic Press, Inc.[Ginsberg, 1988] Ginsberg, Matthew L. 1988. Multivalued logics: a uniform ap-proach for reasoning in arti�cial intelligence. Computational Intelligence 4:265{316.[Halpern and Fagin, 1990] Halpern, Joseph Y. and Fagin, Ronald 1990. Two viewsof belief: Belief as generalized probabilities and belief as evidence. In Proceedingsof AAAI. AAAI. 112{119.[Horvitz et al., 1989] Horvitz, Eric J.; Cooper, Gregory F.; and Suerdmont,H. Jacques 1989. Bounded conditioning: Flexible inference for decisions underscarce resources. Technical Report KSL-89-42, Knowledge Systems Laboratory,Stanford University.[Hunter, 1991] Hunter, David 1991. Non{monotonic reasoning and the reversibil-ity of belief change. In Proceedings of the Seventh Conference on Uncertainty inArti�cial Intelligence. 159{164.[Koopman, 1940] Koopman, Bernard O. 1940. The axioms and algebra of intuitiveprobability. Annals of Mathematics 41(2):269{292.[Krantz et al., 1971] Krantz, D.; Luce, R. D.; Suppes, P.; and Tversky, A. 1971.Foundation of measurement, volume I. Academic Press, New York.[Kraus et al., 1990] Kraus, S.; Lehmann, D.; and Magidor, M. 1990. Nonmonotonicreasoning, preferential models and cumulative logics. Arti�cial Intelligence 24(1-2):167{207.[Pearl, 1988] Pearl, Judea 1988. Probabilistic Reasoning in Intelligent Systems: Net-works of Plausible Inference. Morgan Kaufmann Publishers, Inc., San Mateo, Cal-ifornia.[Peot and Shachter, 1991] Peot, Mark A. and Shachter, Ross D. 1991. Fusion andpropagation with multiple observations in belief networks. Arti�cial Intelligence48(3):299{318.

BIBLIOGRAPHY 267[Polya, 1954] Polya, George 1954. Patterns of Plausible Inference. Princeton Uni-versity Press, Princeton, NJ.[Reiter and de Kleer, 1987] Reiter, Ray and de Kleer, Johan 1987. Foundations ofassumption-based truth maintenance systems: Preliminary report. In Proceedingsof AAAI. AAAI. 183{188.[Rescher, 1969] Rescher, Nicholas 1969. Many{Valued Logic. McGraw{Hill, Inc.[Rosser and Turquette, 1952] Rosser, J. B. and Turquette, A. R. 1952. Many-ValuedLogic. North-Holland, Amsterdam.[Shafer, 1976] Shafer, Glenn 1976. A Mathematical Theory of Evidence. PrincetonUniversity Press, Princeton, NJ.[Shenoy and Shafer, 1990] Shenoy, Parkash P. and Shafer, Glenn 1990. Axioms forprobability and belief{function propagation. Uncertainty in Arti�cial Intelligence;R.D. Shachter, T.S. Levitt, L.N. Kanal and J.F. Lemmer, eds. 4.[Shenoy, 1989] Shenoy, Parkash P. 1989. A valuation{based language for expertsystems. International Journal of Approximate Reasoning 5(3):383{411.[Spohn, 1987] Spohn, Wolfgang 1987. Ordinal conditional functions: A dynamictheory of epistemic states. Causation in Decision, Belief Change, and Statistics;W. L. Harper and B. Skyrms, eds. 2:105{134.[Spohn, 1990] Spohn, Wolfgang 1990. A general non{probabilistic theory of induc-tive reasoning. In Kanal, L.; Shachter, R.; Levitt, T.; and Lemmer, J., editors1990, Uncertainty in Arti�cial Intelligence 4. Elsevier Science Publishers. 149{158.[Srinivas and Breese, 1992] Srinivas, Sampath and Breese, Jack 1992. IDEAL: In-
uence Diagram Evaluation and Analysis in Lisp documentation and user guide.Technical Report 23, Rockwell International Science Center, Palo Alto Laboratory.[Suermondt and Cooper, 1988] Suermondt, H.J. and Cooper, G.F. 1988. Updatingprobabilities in multiply{connected belief networks. In Fourth Workshop on Un-certainty in Arti�cial Intelligence. 335{343.

268 BIBLIOGRAPHY[Verma, 1986] Verma, T. S. 1986. Causal networks: Semantic and expressiveness.Technical Report R-65, Cognetive Systems Laboratory, UCLA.[Walley, 1973] Walley, Peter 1973. Varieties of Modal and Comparative Probability.University Micro�lm International.[Zadeh, 1975] Zadeh, L. A. 1975. The concept of a linguistic variable and its appli-cation to approximate reasoning|I&II. Information Sciences 8:199{249.[Zadeh, 1976] Zadeh, L. A. 1976. The concept of a linguistic variable and its appli-cation to approximate reasoning|III. Information Sciences 9:43{80.

