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Abstract 

This paper demonstrates that it is possible to re- 
lax the commitment to numeric degrees of be- 
lief while retaining the desirable features of the 
Bayesian approach for representing and changing 
states of belief. We first present an abstract rep- 
resentation of states of belief and an associated 
notion of conditionalization that subsume their 
Bayesian counterparts. Next, we provide some 
symbolic and numeric instances of states of be- 
lief and their conditionalizations. Finally, we show 
that patterns of belief change that make Bayesian- 
ism so appealing do hold in our framework. 

Introduction 
Representing states of belief and modeling their dy- 
namics is an important area of research in AI that 
has many interesting applications. A number of for- 
malisms for this purpose have been suggested in the 
literature [Aleliunas, 1988; Bonissone, 1987; Dubois 
and Prade, 1988; Ginsberg, 1988; Pearl, 1988; Shenoy, 
1989; Spohn, 19901 but Bayesian formalisms [Pearl, 
19881 seem to be among the best we know. Here, a 
state of belief is represented by a probability function 
over some set of propositions, and Bayes conditional- 
ization is used to change a state of belief upon acquir- 
ing certain evidence. 

The success and increasing popularity of Bayesian 
formalisms result largely from two factors. First, their 
admission of non-binary degrees of belief makes them 
more convenient than classical logic formalisms, for ex- 
ample, which support true and false propositions only. 
Second, the associated notion of Bayes conditional- 
ization ives rise to many desirable patterns of belief 
change F Polya, 1954; Pearl, 19881. Among these pat- 
terns are Polya’s five patterns of plausible inference: 
examining a consequence, a possible ground, a con- 
flicting conjecture, several consequences in succession, 
and circumstantial evidence [Polya, 19541. For exam- 
ple, the first of these patterns says “The verification 
of a consequence renders a conjecture more credible” 
while the second says “Our confidence in a conjecture 
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can only diminish when a possible ground for the con- 
jecture has been exploded.” 

A significant problem with probability calculus?, 
however, is that it commits one to numeric degrees of 
belief. The reason why this commitment is problem- 
atic was clearly expressed by Jon Doyle [Doyle, 19901: 

One difficulty is that while it is relatively easy 
to elicit tentative propositional rules from ex- 
perts and from people in general, it is consider- 
ably harder to get the commitment to particu- 
lar grades of certainty . . . Worse still, individual 
informants frequently vary in their answers to a 
repeated question depending on the day of the 
week, their emotional state, the preceding ques- 
tions, and other extraneous factors . . . Reported 
experiments show the numbers do not actually 
mean exactly what they mean, for the perfor- 
mance of most systems remains constant under all 
sort of small (< 30%) perturbations in the precise 
values used. 

Nevertheless, AI practitioners continue to have mixed 
feelings about probability calculus and other numerical 
approaches to uncertainty: 

Understandably, expert system designers have dif- 
ficulty justifying their use of the numerical judge- 
ments in face of these indications of psychologi- 
cal and pragmatic unreality. Unfortunately, they 
have had to stick to their guns, since no satisfac- 
tory alternative has been apparent. [Doyle, 19901 

It is therefore of significant interest to the AI com- 
munity to have a calculus that (1) does not commit 
to numbers, (2) admits non-binary degrees of belief, 
and (3) supports patterns of belief change that make 
probability calculus so successful. But is this possi- 
ble? This paper answers “Yes.” In the following sec- 
tions, we present a belief calculus that enjoys the above 
properties.2 

‘We use the terms “probability calculus,” “probability 
theory,” and “Bayesianism” interchangeably in this paper. 

2Proofs, omitted due to space limitations, can be found 
in the full version of this paper. 
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Representing states of belief 
A state of belief can be viewed as an attribution of 
degrees of support to propositions.3 To formalize this 
intuition, however, we need to choose particular repre- 
sentations of propositions and degrees of support, and 
to constrain the mappings from propositions to degrees 
of support so that they correspond to coherent states 
of belief. 

Propositions Our account of propositions is to 
identify them with sentences of a propositional lan- 
guage L with the usual connectives 1, A, V, and >. 
We use false to denote any contradictory sentence, 
and true to denote any tautologous sentence, in C. 
The symbols A, B, and C denote sentences in G, and 
/= denotes logical entailment. 

Degrees of support A degree of support is an 
abstract quantity. It is neither strictly numeric nor 
strictly symbolic. Degrees of support can be integers, 
rationals, and even logical sentences. We view a de- 
gree of support as a primitive concept that derives its 
meaning from the operations and relations that are de- 
fined on degrees of support S. The symbols a, b, and 
c denote degrees of support in S. 

States of belief A state of belief is a mapping 0 
from a language C into degrees of support S.4 This 
definition, however, admits some incoherent states of 
belief. For example, if S = (true, false}, we may have 
a state of belief that assigns false to a proposition and 
to its negation. We would like to exclude such states. 
And we will do this by identifying and formalizing a set 
of intuitive properties about coherent states of belief. 
The following are the properties we have identified: 
(AO) Equivalent sentences have the same support in 

the same state of belief. 
(Al) Contradictory sentences have the same support 

across all states of belief. 
(A2) Tautologous sentences have the same support 

across all states of belief, which is different from the 
support for contradictory sentences. 

(A3) The support for A > B is a function of the 
support for 1d and the support for A A B. 

(A4) If A + B b C and A has the same support as 
C, then B has also the same support as A and C. 

Formalizing the above properties constrains the de- 
grees of support S, and the mappings form C to S, 
as shown by the following theorem. 

3 We use the term “degree of support” as a generalization 
of the term “degree of belief.” Support could be for or 
against the proposition to which it is attributed. 

4 We assume that degrees of support are useful. That is, 
for all a in S, there is a state of belief that attributes a to 
some sentence in its domain. 

Theorem 1 Let 9 : t + S be a state of belief, A and 
B be sentences in t. Properties (AQ)-(Ad) hold iff: 

I. O(A) = @e(B) if A is equivalent to B. 
2. There exists a partial function $ : S x S -+ S 

such that:= 

e +(A V B) = @(A) $9(B) if /= l(A A B), and 
ea@b = b $ a, (a $ b) $ c = a @ (b $ c), and 

if(a@b)$c=a thena$b=a. 

3. There exists a unique support 0 in S such that: 
0 *(false) = 8, and 
0 for all a, a $0 = a. 

4, There exists a unique support 1 # 0 in S such that: 
e @(true) = 1, and 
e for all a, there exists b that satisfies a $ b = 1. 

The function $ is called support summation and 
(S, @) is called a partial support structure. 

0 1 
0 1 

I-- 

0 1 
00 0 
true false 

Table 1: Examples of partial support structures. 

The full paper shows that the first three partial 
support structures of Table 1 induce states of belief 
that correspond to the following, respectively: classi- 
cal logic, probability calculus, and nonmonotonic logic 
based on preferential models [Kraus et al., 19901. 

In probability calculus, we assess our support for a 
sentence by providing a number in the interval [0, 11. 
If we have complete confidence in a sentence, we give 
it a support of one; otherwise, we give it a support of 
less than one. Another way to assess support for a sen- 
tence is to explicate the reason we have doubts about 
it. For example, given that Tweety is a bird, we may 
have doubts about its flying ability because “Tweety 
is wingless.” This intuition motivates a class of states 
of belief where degrees of support are sentences, called 
objections, in a propositional language 0. 

The support summation function in objection-based 
states of belief is logical conjunction. That is, the ob- 
jection to A V B is equivalent to A’s objection con- 
joined with B’s objection. For example, considering 
Table 2, the objection to A > B = “Bird implies flies” 
can be computed by conjoining the objection to A A B 
= “Bird and flies” with the objection to 1A = “Not 
bird,” which yields a,( A A B) Aa = “Wingless and 
has feather.“6 

‘a @ b is defined iff a = 9(A) and b = @(B) for some 
i5, A, B where I= ‘(A A B). 

‘Note that A > B is equivalent to (A A El) V -A. 
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Table 2: A partial objection-based state of belief. 

There is a close connection between objection-based 
states of belief and ATMS [Reiter and de Kleer, 19871, 
which rests on the following observation: the objection 
to a sentence can be viewed as an ATMS label for the 
negation of that sentence. For example, the objection 
to “Bird implies flies,” “Wingless and has feather,” can 
be viewed as a label for “Bird and does not fly.” 

Ordering degrees of support Degrees of support 
can be partially ordered using the support summation 
function. The intuition here is that the sum of two 
supports is at least as great as each of the summands. 

Theorem 2 Define support a to be no greater than 
support b (written a < $ b) ifl there is a support c sat- 
isfying a @ c = b. The relation Le is a partial order 
on 5, and for all a in S, 0 -<@a se 1. se is called a 
support order. 

Table 3: Examples of support orders. 

A sentence that has support 0 will be called rejected 
and its negation will be called accepted. Note that if 
a sentence is accepted, it must have support 1, but 
the converse is not true. To consider an example, let 
degrees of support S be (possible, impossible}, and 
let support summation be defined as follows: a @ b = 
possible unless a = b = impossible. This makes 1 = 
possible. Moreover, a state of belief 9 may be such 
that G( “Bird”) = +( “Not bird”) = possible. Hence, a 
sentence and its negation may have support 1 and yet 
none of them may be accepted. 

Changing states of belief 
This section is mainly concerned with the following 
question: how should a state of belief change as a result 
of accepting a non-rejected sentence? 

When we accept a sentence A in a state of belief 9, 
we say that we have conditionalized 9 on A. Our goal 
in this section is to formalize this process. 

Definition 1 Let @ be a state of belief with respect 
to (5, L, @). If A E II: is not rejected by @, then a 
conditionalization of @ on A (written +A) is a state of 
belief, with respect to (S, .C, @), in which A is accepted. 

Given a state of belief 9, there are many condition- 
alized states of belief @A that satisfy the above def- 
inition. Some of these states correspond to plausible 
changes in a state of belief, but others do not. We 
would like to constrain conditionalization so that im- 
plausible belief changes are excluded. And we will do 
this by identifying and formalizing some intuitive prop- 
erties of belief change. The following are the properties 
we have identified: 
(A5) Accepting a non-rejected sentence retains all 

accepted sentences. 
(A6) Accepting an accepted sentence leads to no 

change in a state of belief. 
(A7) Accepting A V B does not decrease the support 

for A. 

(A8) If A’s support .after accepting C equals its sup- 
port after accepting B A C, then B’s support after 
accepting C equals its support after accepting AAC. 

(AO) If A V B is equally supported by two states of 
belief and A is unequally supported by these states, 
then A remains so after each state accepts A V B. 

(AlO) The support for A after accepting A V B is a 
function of the initial supports for A and A V B. 
Formalizing the above properties leads to a construc- 

tive definition of conditionalization as shown by the 
following theorem. 

Theorem 3 Assume (AU)-(Ad), let d be a state 
of belief with respect to (S, L, @), and let A, B be 
two sentences in 1: where A is not rejected by 9. 
Properties (A5)-(AlO) hold ifl there exists a partial 
function @ : S x S + S such that:? 

0 @A(B) = @(A A B) 8 9(A), and 
0 O@a =O, a01 = a, (a @ b) 8 c = (a 8 c) $ (b 8 c), 

a@a= 1, a 0 b >e a, if a @ c = b @ c then a = b, 
andifa@b= cad thena@c=b@d. 

The function 8 is called support scaling and (S, a, 0) 
is cabled a support structure. 

The full paper shows that the first three scal- 
ing functions in Table 4 give rise to conditionaliza- 
tion rules that correspond to the following, respec- 
tively: augmenting conclusions in classical logic, Bayes 
conditionalization in probability calculus, and aug- 
menting/retracting conclusions in nonmonotonic logic 
based on preferential models [Kraus et al., 19901. 

Conditionalization of objection-based states of be- 
lief roughly states the following: the objection to B 
after accepting A is the initial objection to A A B 
minus the initial objection to A [Darwiche, 1992b]. 

‘a 0 b is defined iff a leb and b # 0. 
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I a0b 

((0’ 11, ma4 min(a, b) 
m 11, +> a/b 
((O,l,..., oo),min) a-b 

wT*) 
true, if a E true; 
aA-,b, otherwise. 

Table 4: Examples of support scaling. 

To give an example, let us compute the objection to 
B= “Flies” conditioned on accepting A = “Bird.” 
According to Theorem 3, this can be computed from 
the objection to A A B = “Bird and flies,” and the 
objection to A = “Bird,” which are given in Table 2. 
The desired objection, @A(B), is then computed by 
@(A A B) A 4(A) = ‘LWingless.9’ 

We conclude this section by noting that objection- 
based conditionalization is closely related to updating 
ATMS labels. A complete treatment of this connec- 
tion, however, is not within the scope of this paper - 
the interested reader is referred to [Darwiche, 1992b). 

Conditional and unconditional supports 
For our framework to be useful in building artificial 
agents, the specification of a state of belief must be 
made intuitive enough so that a domain expert can 
naturally map his state of belief onto an artificial 
agent. This section discusses a function on degrees 
of support that helps achieve this goal. 

A basic observation about human reasoning, claimed 
by Bayesian philosophers, is that it is more intuitive 
for people to specify their support for a sentence B 
(e.g., “The grass is wet”) conditioned on accepting a 
relevant sentence A (e.g., “It rained”) than to specify 
their unconditional support for B. It is therefore nat- 
ural for domain experts to specify their states of belief 
by providing conditional supports. This is indeed the 
approach taken by most probabilistic representations 
where a domain expert provides statements of the form 
“P( BIA) = p,” which reads as “If I accept A, then my 
probabilistic support for B becomes p.” 

One should note, however, that conditional sup- 
ports are most useful when they can tell us something 
about unconditional supports. For example, condi- 
tional probabilities can be easily mapped into uncon- 
ditional probabilities: P(A A B) = P(B IA) P(A). It 
is then important to ask whether the previous equal- 
ity is an instance of a more general one that holds in 
our framework. This question is answered positively 
by the following theorem, which states that for every 
support structure there is a function on degrees of sup- 
port that plays the same role as that played by numeric 
multiplication in probability theory. 

Theorem 4 Let (S, $, 8) be a support structure, @ 
be a state of belief with respect to (S, C, @), and A, B 
be two sentences in L where A is not rejected by @. 
Properties (AO)-(AlO) imply the existence of a partial 
function 8 : S x S -+ S such that? 

o @(A A B) = CPA(B) @ <h(A), and 
o (a@b)@b=(a@b)8b=a,O@a=O,a@l=a, 

a@b <e a, a@b = b@a, and (a@b)@c = a@(b@c). 

The function @ is called support unsealing. 

Table 5: Examples of support unsealing. 

The support unsealing function in objection-based 
states of belief is logical disjunction. We have pre- 
viously computed the objection to B = “Flies” condi- 
tioned on accepting A = “Bird” to be @A(B) = “Wing- 
less.” So let us now compute the objection to A A B 
= “Bird and flies.” Theorem 4 tells us that we need 
the objection to A for this computation, which is given 
in Table 2. The desired objection, @(A A B), is then 
computed by @A(B) V (P(A) = “Wingless.” 

Patterns of plausible reasoning 
The ultimate objective of many works in AI - most 
notably nonmonotonic logics - is to capture patterns 
of plausible reasoning in nonnumerical terms. George 
Polya (1887-1985) was one of the first mathematicians 
to attempt a formal characterization of qualitative hu- 
man reasoning. Polya identified five main patterns of 
plausible reasoning in [Polya, 1954, Chapter XV] and 
demonstrated that they can be formalized using prob- 
ability theory. Pearl highlighted these patterns in his 
recent book [Pearl, 1988] and took them - along with 
other patterns such as nonmonotonicity, abduction, 
explaining-away and the hypothetical middle [Pearl, 
1988, Page 191 - as evidence for the indispensability 
of probability theory in formalizing plausible reason- 
ing. In his own words: 

We take for granted that probability calculus is 
unique in the way it handles context-dependent 
information and that no competing calculus exists 
that closely covers so many aspects of plausible 
reasoning [Pearl, 1988, Page 201. 

This section shows that four of Polya’s patterns of 
plausible reasoning hold in our framework. First, how- 
ever, we need to formally define certain terms that 
Polya used in stating his patterns. To “verify” or 

‘a @ b is defined iff there is c satisfying c 0 b = a. 
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“prove” a proposition is to accept it. To ‘Lexplode9’ 
a proposition is to reject it. And, the “credibility of,‘, 
“confidence in,” and “belief in” a proposition are all 
equivalent terms. 

Definition 2 A is no more supported than B in a 
state of belief @ ifl 9(A) Le 9(B). 

Given Theorem 2, it should be clear that the relation 
no-more-supported is a partial ordering. 

Definition 3 A is no more believed than B in a state 
of belief 9 ifl A is no more supported than B, and TB 
is no more supported than lA, in <p. 

The second part of the above definition may seem re- 
dundant, but it generally is not. Table 6 provides a 
counterexample. 

Table 6: A state of belief with respect to the 
structure ((0, l}, max), where 0 srnax 1. bird is no 
more supported than fly although it is more believed. 

The reason for this asymmetry with probability cal- 
culus is that, in general, the support for a proposition 
does not determine the support for its negation, as is 
the case in probability calculus. 

Theorem 5 No-more-believed is a partial ordering. 

We are now ready to state and prove Polya’s patterns. 

P Examining a consequence: 

The verification of a consequence renders a con- 
jecture more credible.[Polya, 1954, Page 1201 

Theorem 6 If A > B is accepted, and B is not 
rejected, by a state of belief 0, then @B(A) >@@(A) 
unless +(A) = 0 or 9(B) = 1. 
I Examining several consequences in succession: 

The verification of a new consequence enhances 
our confidence in the conjecture, unless the 
new consequence is implied by formerly verified 
consequences.[Polya, 1954, Page 1251 

Theorem 7 If A > Cl, . . . , A 1 Cn are accepted, 
and Cl A . . . A C, is not rejected, by a state of 
belief @, then @c,A...Ac,@) >&c~A...Ac,-~ (A) 
unless +c~A...Ac~-~(G) = 1. 

The patterns of examining a possible ground and ex- 
amining a conflicting conjecture are omitted for space 
limitations and can be found in the full version of this 
paper. 

Discussion and related work 
I An important attraction of probabilistic states of be- 
lief is that they can be specified using Probabilistic 
Causal Networks (PCNs) [Pearl, 19881. PCNs are easy 
to construct and serve as models for computing un- 
conditional and conditional probabilities. There are 
parallel constructs for specifying abstract states of be- 
lief, called abstract causal networks (ACNs) [Darwiche 
and Ginsberg, 1992; Darwiche, 1992a]. ACNs are also 
easy to construct and serve as models for computing 
unconditional and conditional degrees of support. 
I The four belief calculi that we presented so far are 
not the only instances of our framework. Table 7, for 
example, depicts two more calculi. 

5 
a@b 

a@b 

0 
1 
a F@b 
a@b 

Improbability 
P9 11 
a+b-1 

(a - Wl - b) 

1 
0 
a>b 
a+b-ab 

Improb. of A 

Consequence 
A propositional language 
avb 

C 

false, if a E false; 
a v Tb, otherwise. 

false 
true 
al=b 
ar\b 

Consequence of A 

Table 7: Improbability and Consequence calculi. 

If a domain expert is not satisfied with the calculi pro- 
posed in this paper, all he has to do is the following: 
choose a set of supports S that he feels more com- 
fortable with and accept properties (AO)-(AlO) with 
respect to this choice. The results of this paper show 
that there must exist a support structure, (S, @, a), 
which gives rise to a new belief calculus that shares 
with probability calculus its desirable properties. 
I It is typical of multivalued logics [Bonissone, 1987; 
Ginsberg, 19881 and generalizations of probability cal- 
culus [Aleliunas, 19881 to assume one of the following 
axioms: 

@(A A B) is a function of 9(A) and 9(B), or 
@(-A) is a function of <p(A). 

None of the six calculi presented in this paper satisfy 
the first axiom, and only probability and improbability 
calculi satisfy the second axiom. 
a One can define a notion of qualitative conditional 
influence that generalizes the probabilistic notion de- 
fined for Qualitative Probabilistic Networks [Wellman, 
19881. In a state of belief 9, we say that A positively 
influences B given C if and only if 

9 ~A*c*D(B)<$~PA/\c*D(B), 

for all D where 1A A C A D and A A C A D are not 
rejected by @. Negative and zero influences are similar. 
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One criticism of the work presented here may be that 
its conception of a state of belief is restrictive because 
of Property (A3). As a result of this property, states 
of belief such as those represented by Dempster’s basic 
probability assignments [Shafer, 19761 do not fit in our 
framework. 
I It is not clear whether the pattern of circumstantial 
evidence holds in our framework. This pattern says 
that “If a certain circumstance is more credible with 
a certain conjecture than without it, the proof of that 
circumstance can only enhance the credibility of that 
conjecture.“[Polya, 1954, Page 1271. 
B Some important questions remain unanswered about 
our framework. For example, what additional proper- 
ties of states of belief and belief change would commit 
us to Bayesianism ? Moreover, what additional proper- 
ties of belief change would force the uniqueness of sup- 
port scaling, thus, reducing a support structure into a 
pair (S, @)? Finally, is their an abstract decision the- 
ory that subsumes probabilistic decision theory, in the 
same way that our framework subsumes Bayesianism? 

Conclusion 
We have presented an abstract framework for repre- 
senting and changing states of belief, which subsumes 
the Bayesian framework. At the heart of the frame- 
work is a mathematical structure, (S, $, a), called 
a support structure, which contains all the informa- 
tion needed to represent and change states of be- 
lief. We have also presented symbolic and numeric 
instances of support structures, and have shown that 
our framework supports some patterns of plausible rea- 
soning that have been considered unique to numeric 
formalisms. 
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