
In Defense of Randomization: a Subjectivist
Bayesian Approach

Fernando V. Bonassi∗, Raphael Nishimura† and Rafael B. Stern∗∗

∗Department of Statistical Science - Duke University - USA
fernando.bonassi@duke.edu

†Instituto de Matemática e Estatística - Universidade de São Paulo - Brasil
raphaeln@ime.usp.br

∗∗Faculdade de Direito - Universidade de São Paulo - Brasil
stern@usp.br

Abstract. In research situations usually approached by Decision Theory, it is only considered
one researcher who collects a sample and makes a decision based on it. It can be shown that
randomization of the sample does not improve the utility of the obtained results. Nevertheless,
we present situations in which this approach is not satisfactory. First, we present a case in which
randomization can be an important tool in order to achieve agreement between people with different
opinions. Next, we present another situation in which there are two agents: the researcher - a person
who collects the sample; and the decision-maker - a person who makes decisions based on the
sample collected. We show that problems emerge when the decision-maker allows the researcher to
arbitrarily choose a sample. We also show that the decision-maker maximizes his expected utility
requiring that the sample is collected randomly.
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1. INTRODUCTION

It is common to study in Decision Theory a situation in which there is an unique agent.
In this framework one wishes to choose the best among several possible decisions. It
is well known that there is no random decision which provides the agent an expected
utility better than that of the optimal deterministic decision [3]. Among the possible
situations in which Decision Theory can be applied, a very important one is that of
sample selection.

Based on the aforementioned conclusions, Lindley [5] argues against the use of
randomization in sample selection. Many others also give strong arguments against its
use on statistical inference [1], [6]. Nevertheless, it remains as a common sense that
randomization plays an important role either to (I) accomodate intersubjective problems
or (II) reduce the effects of unknown biases.

It is obvious that argument (I) is only reasonable when more than one decision-maker
is involved. This kind of situation was first presented by Savage [9]: “The need for
randomization presumably lies in the imperfection of actual people and, perhaps, in the
fact that more than one person is ordinarily concerned with an investigation”. Kadane
and Seidenfeld [6] reinforce the latter when stating that some experiments are made to
prove hypotheses to others (and not only to learn).



Following argument (I), we present in Section 2 a model related to intersubjectivity
that justifies the use of randomization. The individual rationality is given by utility func-
tions, as in Decision Theory, while the intersubjective rationality is given by Cooperative
Game Theory.

Most arguments in favor of randomization are due to (II). A possible justification was
given in Berry and Kadane [2]. They present a probabilistic framework that supports this
idea. However, their approach does not make explicit use of Decision Theory, since no
utility function is clearly presented. Similar arguments are also proposed in [11].

Following [2], we present in Section 3 some models that justify argument (II), extend-
ing the idea by formally using an utility function and, consequently, a Decision Theo-
retic approach. We believe this is an important step to convince a subjectivist Bayesian
that randomization is important. In this section we use ideas of Non-Cooperative Game
Theory [4], such as dominated strategy.

2. COOPERATIVE GAME MODEL

In this section, we present situations in which different agents wish to reach an agree-
ment on what to do. First, a simple model unrelated to Statistics is presented. Using
Cooperative Game Theory we conclude that randomized decisions create new outcomes
which are better for all agents. Next, the same methodology is used again to show that
randomization can help agents with different prior distributions reach an agreement.

2.1. Illustrative Model

We consider a situation in which two persons, Alice (A) and Bob (B), decide what to
do on the weekend. For simplicity, we suppose that there are only two places one can go
to on the weekend: the cinema (C) or the theater (T). The possible outcomes are: Alice
and Bob choose separately a place or they call it a date and choose a place for both.
The following notation will be used: by ({X},Y ) we mean that X went alone to place
Y and by ({A,B},Y ) we mean that A and B went on a date to place Y . Although both
of them look forward to the date, they have opposite preferences on where to go to. The
preferences are expressed by the following utility functions:

Outcome Alice Bob

({A},C),({B},C) -1 1
({A},C),({B},T ) -1 -1
({A},T ),({B},C) 1 1
({A},T ),({B},T ) 1 -1

({A,B},C) 0 3
({A,B},T ) 3 0

The first column indicates the possible outcomes. The second and third columns
indicate, respectively, Alice and Bob’s satisfaction when such an outcome occurs.



A natural question to ask is: What will Alice and Bob do on the weekend? Cooperative
Game Theory gives an answer using the concept of core of a game [10], [8]. An outcome
is in the core of this game whenever three conditions are satisfied:

1. Alice can not get on her own a better outcome.
2. Bob can not get on his own a better outcome.
3. There is no date which is a better outcome for both Alice and Bob.

Outcomes which are not on the core of the game are unstable because there is some
person or group that can get, on its own, a better outcome for all members of the group.
For example, ({A,B},C) is not in the core of the game since in ({A},T ),({B},C) Alice
can get on her own a better outcome. Therefore, it seems reasonable to expect that, if
Alice and Bob are rational, then only outcomes on the core of the game will happen.

It is easy to see that the only outcome on the core of this game is ({A},T ),({B},C).
This raises another question: Should Alice and Bob give up on the date because of their
divergence on where to go to?

We consider a broader space of outcomes in which the place is randomly chosen.
There are two possible outcomes. First, by ({A}, p1 ∗C +(1− p1) ∗T ),({B}, p2 ∗C +
(1− p2)∗T ) we mean that Alice and Bob do not go on a date, Alice goes with probability
p1 to the cinema and with (1− p1) to the theater and Bob goes with probability p2 to
the cinema and with (1− p2) to the theater. Second, by ({A,B}, p∗C +(1− p)∗T ) we
mean that Alice and Bob go on a date and both go to the cinema with probability p and
to the theater with probability 1− p.

In this space it is natural to consider that the utility of an outcome R for some person
is that person’s expected utility for R. According to Decision Theory this is actually a
necessary condition for Alice and Bob to be rational. For example, Alice’s utility for
({A}, p1 ∗C +(1− p1)∗T ),({B}, p2 ∗C +(1− p2)∗T ) is 1−2p1 and Bob’s is 2p2−1.

Now one can ask once again: Which outcome will happen? Which outcomes are in
the core of the game? Firstly we observe that if p1 6= 0 or p2 6= 1, then ({A}, p1 ∗C +
(1− p1) ∗T ),({B}, p2 ∗C +(1− p2) ∗T ) can be improved for Alice on her own or for
Bob on his own. Therefore, the only outcome which is not a date which can possibly be
on the core of the game is ({A},T ),({B},C). Nevertheless, for instance, in the outcome
({A,B},0.5∗C+0.5∗T ) both Alice and Bob get an expected utility equal to 1.5, greater
than in ({A},T ),({B},C). Therefore, all outcomes in the core of this game are dates. It
can be shown the core of this game is {{A,B}, p∗C +(1− p)∗T : p ∈ [1/3,2/3]} 1.

2.2. Funding Model

In the illustrative model, randomization provides a way for all players to get a better
utility. Nevertheless, this still has little to do with Statistics 2. Next, we will consider a

1 Even though the symmetry of the utilities might suggest that p = 1/2 is the “fairest”, Game Theory
states that all outcomes in the core might happen. The chosen outcome is a consequence of Alice and
Bob’s bargaining skills. Although this process is important, it won’t be approached in this work.
2 In section 2.1, there was no uncertainty about the state of nature, a very important feature in Statistics.



sampling model which is permeated by the same ideas presented in 2.1. By doing so, we
show that randomization can be an effective way of dealing with inter-subjectivity.

We consider a situation in which there are two research funding agencies, FAPESP
and CNPq. Both of them wish to conduct an experiment in order to learn about a param-
eter θ ∈ {0,1}. This experiment consists of observing one of two unknown quantites, X1
and X2, which also assume values in {0,1}. This observation is so costly that it is only
possible if both agencies cooperate.

Nevertheless, FAPESP and CNPq disagree on the distribution of these unknown quan-
tities. By PF we mean FAPESP’s probability distribution and by PC, CNPq’s probability
distribution. They are given by the following table:

P PF PC

P(X1 = 1|θ = 0) 0.1 0.5
P(X1 = 1|θ = 1) 0.9 0.5
P(X2 = 1|θ = 0) 0.5 0.1
P(X2 = 1|θ = 1) 0.5 0.9

P(θ = 1) 0.5 0.5

Therefore, it is possible to say that FAPESP believes X1 is informative for θ and
X2 is not. On the other hand, CNPq believes that X2 is informative for θ and X2 is
not. Although both agencies have the same prior distributions for θ , they have different
likelihood functions.

There are three possible deterministic allocations in this situation: by ({F},{C}) we
mean that FAPESP and CNPq do not cooperate and, therefore, no experiment is realized;
by ({F,C},X1) we mean that FAPESP and CNPq cooperate and X1 is observed and
by ({F,C},X2) we mean that FAPESP and CNPq cooperate and X2 is observed. We
consider that in ({F},{C}) the utility for both agencies is 0. On the other hand, when
an experiment is realized the utility for an agency is the expected Kullback-Leibler
divergence between posterior and prior distributions for θ , how much is learned, minus
0.1, the utility of the amount invested.

We procede calculating FAPESP’s expected utility in each outcome. First, in
({F},{C}), FAPESP’s utility is always 0 and, therefore, that is the expected utility.
Next, in ({F,C},X2) FAPESP’s posterior distribution for θ is equal to its prior distribu-
tion with probability 1. Therefore, FAPESP’s expected utility in ({F,C},X2) is 0 minus
0.1. Last, in ({F,C},X1) the Kullback-Leibler divergence between FAPESP’s posterior
distribution for θ and its prior is 0.36 with probability 1. We conclude that FAPESP’s
expected utility in ({F,C},X1) is 0.26.

Both agency’s expected utilities are given by the following table:

Outcome FAPESP CNPq

({F},{C}) 0 0
({F,C},X1) 0.26 -0.1
({F,C},X2) -0.1 0.26

Next, we can once again make use of Cooperative Game Theory in order to analyze
this situation. When only those three outcomes are considered the core of the game is
({F},{C}), since one agency always gets less than 0 in the other ones. Nevertheless,



we can consider outcomes of the form ({F,C}, p ∗X1 +(1− p) ∗X2), that is, in which
FAPESP and CNPq cooperate to observe X1 with probability p and X2 with probability
(1− p) - a random selection. It can be shown that, when these outcomes are considered,
the core of the game is {({F,C}, p ∗X1 + (1− p) ∗X2) : p ∈ ]0.27,0.73[}. Therefore,
collecting the sample randomly is best in this situation.

3. NON-COOPERATIVE GAME MODEL

In the last section we studied problems in which people were trying to reach an agree-
ment. Cooperative Game Theory was used to understand the group rationality in these
situations. In this section we present situations in which there is a stronger opposition
of interests. The agents which are presented do not talk to each other or try to reach an
agreement. They try to maximize their expected utility on their own. To analyze these
situations we will make use of Non-cooperative Game Theory.

In all the models presented in this section there will always be two agents: the
researcher and the decision-maker. The researcher is a person who collects a sample
based on his utility function. The decision-maker is a person who makes a decision
based on the sample collected. In all the models, the decision-maker is able to decide
if he will let the researcher arbitrarily choose a sample or if only a sample collected
randomly is acceptable.

3.1. The Convenience Sampling Model

We consider a model in which there is a population with only two units, {t1, t2}.
The decision-maker is interested in some populational parameter, here denoted by θ ,
in Θ = {θ0,θ1}. In order to learn about this parameter, the decision-maker performs
an experiment which consists of observing a characteristic of one populational unit,
Yi ∈ {0,1}, i ∈ {t1, t2}. In addition, θ is related to a random feature of each populational
unit, Xi ∈ {0,1}, i ∈ {t1, t2}. However, the decision-maker cannot observe this feature.
On the other hand the researcher does observe it before collecting the sample. It is more
convenient for the researcher to collect a unit with Xi = 1.

We illustrate this model with a situation which might occur in a clinic. The researcher
might have two options: collect the information from a patient who has just arrived in
his clinic or from another patient, who is very ill and unable to leave his house. In the
latter, the researcher would have to go to the patient’s house, which might be considered
incovenient. If the populational parameter of interest is related to the illness, then it
would be certainly correlated with the convenience feature of this example.

The decision-maker’s prior distribution for θ is P(θ = θ0) = P(θ = θ1). He also
believes P(Xi = 0) = P(Xi = 1), ∀i ∈ {t1, t2} and Xt1 is independent of Xt2 . At last, he
believes the association between θ , Xi and Yi is given by P(Yi = 1|θ = θ0,Xi = 1) = 0.3,
P(Yi = 1|θ = θ0,Xi = 0) = 0.2, P(Yi = 1|θ = θ1,Xi = 1) = 0.7 and P(Yi = 1|θ = θ1,Xi =
0) = 0.8, ∀i ∈ {t1, t2}.

The researcher must choose a unit from {t1, t2} to collect. This unit will be named
d. The researcher’s utility function is U(ti) = Xti . Therefore, it is reasonable that the



decision-maker assumes the researcher will collect an unit with Xi = 1, whenever it
is available in the population. As a matter of fact, this is a dominant strategy for the
researcher in this model.

The decision-maker must choose between d0, deciding that θ = θ0, and d1, deciding
that θ = θ1, based on the observed variable Yd . His utility function is given by the
following table:

Utility d0 d1

θ = θ0 1 -2
θ = θ1 -2 1

It is easy to see that the best decision when observing Yd = 0 is d0 and when observing
Yd = 1 is d1. It is now possible to calculate the expected utility of this decision rule.

Using the dominant strategy for the researcher, we have:

P(Yd = 1|θ = θ0) = P(Yd = 1|θ = θ0,Xd = 1)P(X1 = 1∪X2 = 1)+

P(Yd = 1|θ = θ0,Xd = 0)P(X1 = 0∩X2 = 0) = 0.3∗0.75+0.2∗0.25 = 11/40

P(Yd = 1|θ = θ1) = P(Yd = 1|θ = θ1,Xd = 1)P(X1 = 1∪X2 = 1)+

P(Yd = 1|θ = θ1,Xd = 0)P(X1 = 0∩X2 = 0) = 0.7∗0.75+0.8∗0.25 = 29/40

Thus, the expected utility of this decision rule is:

E(U(Yd ,θ)) = P(θ = θ0)P(Yd = 0|θ = θ0)−2P(θ = θ1)P(Yd = 0|θ = θ1)−
2P(θ = θ0)P(Yd = 1|θ = θ0)+P(θ = θ0)P(Yd = 1|θ = θ1) = 0.5∗ (29/40−22/40−22/40+29/40) =
0.175

We can also calculate the expected utility of the decision-maker when he collects a
sample randomly instead of giving the researcher freedom to decide. We consider π a
uniform random variable in {t1, t2} and independent of all others. In this situation we
have:

P(Yπ = 1|θ = θ0) = P(Yπ = 1|θ = θ0,Xd = 1)P(Xπ = 1)+

P(Yπ = 1|θ = θ0,Xπ = 0)P(Xπ = 0) = 0.3∗0.5+0.2∗0.5 = 10/40

P(Yπ = 1|θ = θ1) = P(Yπ = 1|θ = θ1,Xd = 1)P(Xπ = 1)+

P(Yπ = 1|θ = θ1,Xπ = 0)P(Xπ = 0) = 0.7∗0.5+0.8∗0.5 = 30/40

And the expected utility for the decision-maker is:

E(U(Yd ,θ)) = P(θ = θ0)P(Yd = 0|θ = θ0)−2P(θ = θ1)P(Yd = 0|θ = θ1)−
2P(θ = θ0)P(Yd = 1|θ = θ0)+P(θ = θ0)P(Yd = 1|θ = θ1) = 0.5∗ (30/40−10/40−10/40+30/40) =
0.25

Therefore, it is possible to conclude that, in this case, it is better for the decision-
maker to require that the sample is collected randomly than to let the researcher choose
one on his own. The problem with this conclusion is that this procedure yields the
same expected utility as any sample chosen by the decision-maker. This problem can
be approached in two ways.



First, one can consider that the decision-maker and the researcher are the same person.
If a person believes all samples yield the same expected utility, can he be certain that
other aspects, such as the convenience in collecting the sample, will not intuitively be
taken into account? And can this person be sure that this intuitive factor does not depend
on the parameter in some manner? If so, the intuitive factor should be taken into account
in the model. Nevertheless, as presented by [7], it is difficult to model such a factor.

Next, it is also possible to analyze cases in which the decision-maker must have a
known algorithm, which will be used to decide the sample for all researchers eventually
working with him. Such is the case of governmental agencies which cannot present ad
hoc criteria because of the equality principle. Two such algorithms are: requiring that
the sample is selected randomly or letting the researcher arbitrarily choose the sample.
It is difficult to imagine another general algorithm which cannot be exploited by any
researcher.

We conclude that randomization can be an important tool for the decision-maker to
prevent the disturbance generated by convenience sampling.

3.2. The Ethical Sampling Model

We can also consider another model in which the variables are the same as those
presented in the Convenience Sampling and both the decision-maker and the researcher
believe in the same probabilities as those described. They believe that P(Yi = 1|θ =
θ0,Xi = 1) = 0.3, P(Yi = 1|θ = θ0,Xi = 0) = 0.2, P(Yi = 1|θ = θ1,Xi = 1) = 0.7 and
P(Yi = 1|θ = θ1,Xi = 0) = 0.8, ∀i ∈ {t1, t2}, among others. Nevertheless, in contrast to
the model of Section 3.1 we now consider the researcher’s utility function as U(d) =
P(Yd = 1).

We illustrate this model with a situation which might occur in a clinical trial. The
variable Yi corresponds to the survival of the patient submitted to the clinical trial.
The variable θ corresponds to the efficiency of the drug being tested in the population.
Finally Xi corresponds to a factor which, when present, increases the chance of survival
of a person. It is reasonable to assume that a physician, based on ethical reasons, wishes
to maximize the probability of survival of the patient.

It is easy to show that the dominant strategy for the researcher is the same as that
presented in the Convenience Sampling model. Therefore, the same analysis applies
and collecting the sample randomly is still better for the decision-maker than the one
collected by the researcher.

The interpretation in which we consider the decision-maker as being the same person
as the physician is specially appealing in this case. It is reasonable to assume that the
physician cannot put into the model all of his intuitive knowledge about medicine. On
the other hand, that knowledge might be used when choosing the sample. As shown, this
can be prejudicial for the statistical experiment.

On the other hand, this approach also brings new insight into the benefits of agencies,
such as the FDA, in requiring the samples to be selected randomly.



4. CONCLUSIONS

In a subjectivist bayesian perspective, we present models to support two of the most
common reasons on why to randomize: accommodate intersubjective problems and
reduce the effects of unknown biases.

The intersubjective problems are presented in a context of cooperative games. In the
model analyzed, it is impossible for the agents to reach an agreement without the use of
randomization. On the other hand, when random decisions are possible the agents are
able to reach an agreement which is in the best interest of all of them.

The unknown biases are presented in a context of non-cooperative games. Agents play
different roles in the process of collecting and analyzing data. Each one of them has a
different utility function. It is shown that the agent collecting the sample can introduce
prejudicial biases. Therefore, it is best for the analyst to have the sample collected
randomly. Opposed to previous presentations, we make explicit use of decision theory
through utility functions.
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