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We also need to optimize the variational parameters &,,, and this is also done by

maximizing the lower bound Z(q, £). Omitting terms that are independent of £, and
integrating over «, we have

L(q,&) = /q(w)lnh(w,ﬁ)dw + const. (10.180)

Note that this has precisely the same form as (10.159), and so we can again appeal
to our earlier result (10.163), which can be obtained by direct optimization of the
marginal likelihood function, leading to re-estimation equations of the form

(&) = ¢, (BN + papy) b (10.181)

We have obtained re-estimation equations for the three quantities ¢(w), ¢(a),
and &, and so after making suitable initializations, we can cycle through these quan-
tities, updating each in turn. The required moments are given by

Elo] = X (10.182)
by
E[w'w] = Zny+pypy. (10.183)

Expectation Propagation

We conclude this chapter by discussing an alternative form of deterministic approx-
imate inference, known as expectation propagation or EP (Minka, 2001a; Minka,
2001b). As with the variational Bayes methods discussed so far, this too is based
on the minimization of a Kullback-Leibler divergence but now of the reverse form,
which gives the approximation rather different properties.

Consider for a moment the problem of minimizing KL(p||¢) with respect to ¢(z)
when p(z) is a fixed distribution and ¢(z) is a member of the exponential family and
so, from (2.194), can be written in the form

q(z) = h(z)g(n) exp {n"u(z)} . (10.184)
As a function of 7, the Kullback-Leibler divergence then becomes
KL(pllq) = —Ing(n) — n" Ep [u(z)] + const (10.185)

where the constant terms are independent of the natural parameters 1. We can mini-
mize KL(p||q) within this family of distributions by setting the gradient with respect
to 1 to zero, giving

—Ving(n) =Epx [u(z)]. (10.186)

However, we have already seen in (2.226) that the negative gradient of In g(n) is
given by the expectation of u(z) under the distribution ¢(z). Equating these two
results, we obtain

Eq@ [u(2)] = Epz) [u(z)]. (10.187)
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We see that the optimum solution simply corresponds to matching the expected suf-
ficient statistics. So, for instance, if ¢(z) is a Gaussian NV (z|p, ) then we minimize
the Kullback-Leibler divergence by setting the mean p of ¢(z) equal to the mean of
the distribution p(z) and the covariance X equal to the covariance of p(z). This is
sometimes called moment matching. An example of this was seen in Figure 10.3(a).
Now let us exploit this result to obtain a practical algorithm for approximate
inference. For many probabilistic models, the joint distribution of data D and hidden
variables (including parameters) & comprises a product of factors in the form

p(D,0) =[] f:(6). (10.188)

This would arise, for example, in a model for independent, identically distributed
data in which there is one factor f,,(8) = p(x,|@) for each data point x,,, along
with a factor f,(@) = p(@) corresponding to the prior. More generally, it would also
apply to any model defined by a directed probabilistic graph in which each factor is a
conditional distribution corresponding to one of the nodes, or an undirected graph in
which each factor is a clique potential. We are interested in evaluating the posterior
distribution p(@|D) for the purpose of making predictions, as well as the model
evidence p(D) for the purpose of model comparison. From (10.188) the posterior is
given by

pwmzﬁgﬂmm (10.189)

and the model evidence is given by
mm:/Hﬁ@w. (10.190)

Here we are considering continuous variables, but the following discussion applies
equally to discrete variables with integrals replaced by summations. We shall sup-
pose that the marginalization over 8, along with the marginalizations with respect to
the posterior distribution required to make predictions, are intractable so that some
form of approximation is required.

Expectation propagation is based on an approximation to the posterior distribu-
tion which is also given by a product of factors

q@:%nﬁm (10.191)

in which each factor f;(@) in the approximation corresponds to one of the factors
£i(8) in the true posterior (10.189), and the factor 1/Z is the normalizing constant
needed to ensure that the left-hand side of (10.191) integrates to unity. In order to
obtain a practical algorithm, we need to constrain the factors f;(@) in some way,
and in particular we shall assume that they come from the exponential family. The
product of the factors will therefore also be from the exponential family and so can
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be described by a finite set of sufficient statistics. For example, if each of the ?i(é’)
is a Gaussian, then the overall approximation ¢(@) will also be Gaussian.

Ideally we would like to determine the f;(@) by minimizing the Kullback-Leibler
divergence between the true posterior and the approximation given by

1 R
KL (pllq) = KL <M H f:(0) 7 H fi(0)> . (10.192)

Note that this is the reverse form of KL divergence compared with that used in varia-
tional inference. In general, this minimization will be intractable because the KL di-
vergence involves averaging with respect to the true distribution. As a rough approx-
imation, we could instead minimize the KL divergences between the corresponding
pairs f;(@) and f;(0) of factors. This represents a much simpler problem to solve,
and has the advantage that the algorithm is noniterative. However, because each fac-
tor is individually approximated, the product of the factors could well give a poor
approximation.

Expectation propagation makes a much better approximation by optimizing each
factor in turn in the context of all of the remaining factors. It starts by initializing
the factors f;(@), and then cycles through the factors refining them one at a time.
This is similar in spirit to the update of factors in the variational Bayes framework

considered earlier. Suppose we wish to refine factor ?j(é’). We first remove this

factor from the product to give [ [, 2 f:(@). Conceptually, we will now determine a

revised form of the factor f;(@) by ensuring that the product

¢ (8) o f;(0) [ | £:(0) (10.193)
i#]
is as close as possible to N
fi@ ] i) (10.194)
i#]

in which we keep fixed all of the factors f;(@) for i # j. This ensures that the
approximation is most accurate in the regions of high posterior probability as defined
by the remaining factors. We shall see an example of this effect when we apply EP
to the ‘clutter problem’. To achieve this, we first remove the factor f;(@) from the
current approximation to the posterior by defining the unnormalized distribution

V() = %, (10.195)

Note that we could instead find ¢\/ (@) from the product of factors ¢ # j, although
in practice division is usually easier. This is now combined with the factor f;(8) to
give a distribution

- 11(0)(6) (10.196)
Zj
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Figure 10.14 lllustration of the expectation propagation approximation using a Gaussian distribution for the
example considered earlier in Figures 4.14 and 10.1. The left-hand plot shows the original distribution (yellow)
along with the Laplace (red), global variational (green), and EP (blue) approximations, and the right-hand plot
shows the corresponding negative logarithms of the distributions. Note that the EP distribution is broader than
that variational inference, as a consequence of the different form of KL divergence.

where Z; is the normalization constant given by
Z;= / f;(8)q\ (8)de. (10.197)

We now determine a revised factor ?j (0) by minimizing the Kullback-Leibler diver-

gence
/i(8)qV(8)
KL( j Zj ‘

anW(9)> . (10.198)

This is easily solved because the approximating distribution ¢"*% (@) is from the ex-
ponential family, and so we can appeal to the result (10.187), which tells us that the
parameters of ¢"°V (@) are obtained by matching its expected sufficient statistics to
the corresponding moments of (10.196). We shall assume that this is a tractable oper-
ation. For example, if we choose ¢(8) to be a Gaussian distribution N (8|, X), then
p is set equal to the mean of the (unnormalized) distribution f;(8)q\ (@), and X is
set to its covariance. More generally, it is straightforward to obtain the required ex-
pectations for any member of the exponential family, provided it can be normalized,
because the expected statistics can be related to the derivatives of the normalization
coefficient, as given by (2.226). The EP approximation is illustrated in Figure 10.14.

From (10.193), we see that the revised factor ?j(é’) can be found by taking
¢"*" (@) and dividing out the remaining factors so that

~ o 0"V(0)
fi(0) = Kq\j—w)

where we have used (10.195). The coefficient K is determined by multiplying both

(10.199)



10.7. Expectation Propagation 509

sides of (10.199) by ¢\*(8) and integrating to give

K = / 71(8)qV () de (10.200)

where we have used the fact that ¢"* (@) is normalized. The value of K can therefore
be found by matching zeroth-order moments

/E’(@)q\j(@) de = /fj(e)q\j<9)d9. (10.201)

Combining this with (10.197), we then see that X' = Z; and so can be found by
evaluating the integral in (10.197).

In practice, several passes are made through the set of factors, revising each
factor in turn. The posterior distribution p(@|D) is then approximated using (10.191),
and the model evidence p(D) can be approximated by using (10.190) with the factors

1:(@) replaced by their approximations f;(8).
Expectation Propagation

We are given a joint distribution over observed data D and stochastic variables
0 in the form of a product of factors

p(D,0) =[] £:(0) (10.202)

and we wish to approximate the posterior distribution p(@|D) by a distribution
of the form

1 ~
a9) = 1] (o). (10.203)
We also wish to approximate the model evidence p(D).

1. Initialize all of the approximating factors ?Z(B)

2. Initialize the posterior approximation by setting

q(0) < [ [ F:(0). (10.204)

3. Until convergence:
(a) Choose a factor ?j(b?) to refine.
(b) Remove ?j (8) from the posterior by division

gV (0) = =——. (10.205)
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(¢) Evaluate the new posterior by setting the sufficient statistics (moments)
of ¢"°¥(0) equal to those of ¢\ () f;(@), including evaluation of the
normalization constant

Z; = /q\j (0)£;(6)de. (10.206)
(d) Evaluate and store the new factor
— qncw (0)
fi(0) = Z,—— . (10.207)
J( ) J q\j <0>

4. Evaluate the approximation to the model evidence

p(D) ~ / H 1:(6)d6. (10.208)

A special case of EP, known as assumed density filtering (ADF) or moment
matching (Maybeck, 1982; Lauritzen, 1992; Boyen and Koller, 1998; Opper and
Winther, 1999), is obtained by initializing all of the approximating factors except
the first to unity and then making one pass through the factors updating each of them
once. Assumed density filtering can be appropriate for on-line learning in which data
points are arriving in a sequence and we need to learn from each data point and then
discard it before considering the next point. However, in a batch setting we have the
opportunity to re-use the data points many times in order to achieve improved ac-
curacy, and it is this idea that is exploited in expectation propagation. Furthermore,
if we apply ADF to batch data, the results will have an undesirable dependence on
the (arbitrary) order in which the data points are considered, which again EP can
overcome.

One disadvantage of expectation propagation is that there is no guarantee that
the iterations will converge. However, for approximations ¢(8) in the exponential
family, if the iterations do converge, the resulting solution will be a stationary point
of a particular energy function (Minka, 2001a), although each iteration of EP does
not necessarily decrease the value of this energy function. This is in contrast to
variational Bayes, which iteratively maximizes a lower bound on the log marginal
likelihood, in which each iteration is guaranteed not to decrease the bound. It is
possible to optimize the EP cost function directly, in which case it is guaranteed
to converge, although the resulting algorithms can be slower and more complex to
implement.

Another difference between variational Bayes and EP arises from the form of
KL divergence that is minimized by the two algorithms, because the former mini-
mizes KL(q||p) whereas the latter minimizes KL(pl||g). As we saw in Figure 10.3,
for distributions p(@) which are multimodal, minimizing KL(p||¢) can lead to poor
approximations. In particular, if EP is applied to mixtures the results are not sen-
sible because the approximation tries to capture all of the modes of the posterior
distribution. Conversely, in logistic-type models, EP often out-performs both local
variational methods and the Laplace approximation (Kuss and Rasmussen, 2006).
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lllustration of the clutter problem
for a data space dimensionality of
D = 1. Training data points, de-
noted by the crosses, are drawn
from a mixture of two Gaussians
with components shown in red
and green. The goal is to infer the
mean of the green Gaussian from
the observed data.

10.7.1 Example: The clutter problem

Following Minka (2001b), we illustrate the EP algorithm using a simple exam-
ple in which the goal is to infer the mean @ of a multivariate Gaussian distribution
over a variable x given a set of observations drawn from that distribution. To make
the problem more interesting, the observations are embedded in background clutter,
which itself is also Gaussian distributed, as illustrated in Figure 10.15. The distribu-
tion of observed values x is therefore a mixture of Gaussians, which we take to be
of the form

p(x]0) = (1 — w)N(x]0,I) + wN (x]|0, al) (10.209)

where w is the proportion of background clutter and is assumed to be known. The
prior over @ is taken to be Gaussian

p(@) = N(0]0,0I) (10.210)
and Minka (2001a) chooses the parameter values ¢ = 10, b = 100 and w = 0.5.
The joint distribution of N observations D = {x1,...,xx} and @ is given by
N
p(D,8) = p(6) | [ p(x.10) (10.211)
n=1

and so the posterior distribution comprises a mixture of 2" Gaussians. Thus the
computational cost of solving this problem exactly would grow exponentially with
the size of the data set, and so an exact solution is intractable for moderately large
N.

To apply EP to the clutter problem, we first identify the factors fo(8) = p(0)
and f,,(0) = p(x,|@). Next we select an approximating distribution from the expo-
nential family, and for this example it is convenient to choose a spherical Gaussian

q(8) = N'(8|m, o). (10.212)
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Exercise 10.37

Exercise 10.38

Exercise 10.39

The factor approximations will therefore take the form of exponential-quadratic
functions of the form

10(68) = s, N(0m,,, v,1) (10.213)

where n = 1,..., N, and we set fy(@) equal to the prior p(@). Note that the use of
N (8|-,-) does not imply that the right-hand side is a well-defined Gaussian density
(in fact, as we shall see, the variance parameter v,, can be negative) but is simply a
convenient shorthand notation. The approximations f,, (@), forn = 1,..., N, can
be initialized to unity, corresponding to s, = (27w, )P /2 v, — oo and m,, = 0,
where D is the dimensionality of x and hence of 8. The initial ¢(@), defined by
(10.191), is therefore equal to the prior.

We then iteratively refine the factors by taking one factor f,, (@) at a time and
applying (10.205), (10.206), and (10.207). Note that we do not need to revise the
term f(@) because an EP update will leave this term unchanged. Here we state the
results and leave the reader to fill in the details.

First we remove the current estimate f,, (@) from ¢(@) by division using (10.205)
to give ¢\" (@), which has mean and inverse variance given by

m\” = m+0\"; (m—-m,) (10.214)
W\t = ot —pr (10.215)

n

Next we evaluate the normalization constant Z,, using (10.206) to give
Zn = (1 —w)N (x,/m\", (0\" + DI) + wN (x,]0, al). (10.216)

Similarly, we compute the mean and variance of ¢"*" (@) by finding the mean and
variance of ¢\"(8) f,,(8) to give

\n
m = m\"+ p"v\z 1 (%, — m\") (10.217)
\n)2 \n\2 _ \n |2
where the quantity
pn=1— Zﬂmxnm,al) (10.219)

has a simple interpretation as the probability of the point x,, not being clutter. Then
we use (10.207) to compute the refined factor f,, (@) whose parameters are given by

vt = (V)T = (v\) ! (10.220)
m, = m"+ (v, +0")(0\"")"H(m™ —m\") (10.221)
Sp = Zn (10.222)

(270,) P/2N (my [m\?, (v, + 0\?)I)

This refinement process is repeated until a suitable termination criterion is satisfied,
for instance that the maximum change in parameter values resulting from a complete
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Figure 10.16 Examples of the approximation of specific factors for a one-dimensional version of the clutter
problem, showing f,.(#) in blue, f,.(9) in red, and ¢'\" (¢) in green. Notice that the current form for ¢\" () controls
the range of & over which f,, (6) will be a good approximation to f,(8).

pass through all factors is less than some threshold. Finally, we use (10.208) to
evaluate the approximation to the model evidence, given by

N
p(D) = (2mv™") P2 exp(B/2) [ | {sn(2mvn) P72} (10.223)
n=1
where N
(mncw )T mncw mT m,
B=—+-— n . 10.224
. ; - ( )

Examples factor approximations for the clutter problem with a one-dimensional pa-
rameter space 6 are shown in Figure 10.16. Note that the factor approximations can
have infinite or even negative values for the ‘variance’ parameter v,,. This simply
corresponds to approximations that curve upwards instead of downwards and are not
necessarily problematic provided the overall approximate posterior ¢(€) has posi-
tive variance. Figure 10.17 compares the performance of EP with variational Bayes
(mean field theory) and the Laplace approximation on the clutter problem.

10.7.2 Expectation propagation on graphs

So far in our general discussion of EP, we have allowed the factors f;() in the
distribution p(@) to be functions of all of the components of @, and similarly for the

approximating factors f (@) in the approximating distribution ¢(@). We now consider
situations in which the factors depend only on subsets of the variables. Such restric-
tions can be conveniently expressed using the framework of probabilistic graphical
models, as discussed in Chapter 8. Here we use a factor graph representation because
this encompasses both directed and undirected graphs.
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Figure 10.17 Comparison of expectation propagation, variational inference, and the Laplace approximation on
the clutter problem. The left-hand plot shows the error in the predicted posterior mean versus the number of
floating point operations, and the right-hand plot shows the corresponding results for the model evidence.

We shall focus on the case in which the approximating distribution is fully fac-
torized, and we shall show that in this case expectation propagation reduces to loopy
belief propagation (Minka, 2001a). To start with, we show this in the context of a
simple example, and then we shall explore the general case.

First of all, recall from (10.17) that if we minimize the Kullback-Leibler diver-
gence KL(pl||¢g) with respect to a factorized distribution ¢, then the optimal solution
for each factor is simply the corresponding marginal of p.

Now consider the factor graph shown on the left in Figure 10.18, which was

Section 8.4.4 introduced earlier in the context of the sum-product algorithm. The joint distribution
is given by
p(x) = fa(w1,22) fi (2, 23) fe(T2, 24). (10.225)

We seek an approximation ¢(x) that has the same factorization, so that

(%)  fa(r, 22) fo2, 23) fola, 24). (10.226)

Note that normalization constants have been omitted, and these can be re-instated at
the end by local normalization, as is generally done in belief propagation. Now sup-
pose we restrict attention to approximations in which the factors themselves factorize
with respect to the individual variables so that

q(x) o far (M)?az (@)?bz (@)?bs (iFs)}Ecz ($2>?c4($4> (10.227)

which corresponds to the factor graph shown on the right in Figure 10.18. Because
the individual factors are factorized, the overall distribution ¢(x) is itself fully fac-
torized.

Now we apply the EP algorithm using the fully factorized approximation. Sup-
pose that we have initialized all of the factors and that we choose to refine factor
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Figure 10.18 On the left is a simple factor graph from Figure 8.51 and reproduced here for convenience. On
the right is the corresponding factorized approximation.

?b(xz, x3) = Foe (.ﬁL’Q)}Ebg (z3). We first remove this factor from the approximating
distribution to give

¢\P(%) = fur (21) faz (22) fea () fea(24) (10.228)

and we then multiply this by the exact factor f,(x2, z3) to give

IA7(X) = q\b(x)fb(l”%if?,) = ?al(xl)?a2($2>?c2($2>?c4($4>fb<$27333)- (10.229)

We now find ¢"°"(x) by minimizing the Kullback-Leibler divergence KL(p||¢"*").
The result, as noted above, is that ¢"°¥(z) comprises the product of factors, one for
each variable z;, in which each factor is given by the corresponding marginal of
P(x). These four marginals are given by

Bla) o far(z1) (10.230)
B(r2) o far(22) fea(2) Y fola, 3) (10.231)
plas) o Z{fb(:cz,:cg)?az(u)?cz)(:cz)} (10.232)
Plaa) o foa(a) (10.233)

and ¢"°V(x) is obtained by multiplying these marginals together. We see that the
only factors in ¢(x) that change when we update fy(z2,23) are those that involve
the variables in f; namely x; and x3. To obtain the refined factor ?b(l'Q,.ﬁEg) =
Foa(2) fos (x3) we simply divide ¢"°% (x) by ¢\b(x), which gives

Fra(z2) o D fula,xs) (10.234)

Foa(s) o Z{fb(:cz,:cs)?az(:cz)?cz(:@)}. (10.235)

T2
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Section 8.4.4

These are precisely the messages obtained using belief propagation in which mes-
sages from variable nodes to factor nodes have been folded into the messages from

factor nodes to variable nodes. In particular, ?bg(l’g) corresponds to the message
U f,—z, (z2) sent by factor node fj, to variable node x» and is given by (8.81). Simi-
larly, if we substitute (8.78) into (8.79), we obtain (10.235) in which fz2(x2) corre-
sponds to fif, .z, (x2) and feo(x2) corresponds to fif, ., (x2), giving the message
fv3(x3) which corresponds to fif, .z, (23).

This result differs slightly from standard belief propagation in that messages are
passed in both directions at the same time. We can easily modify the EP procedure
to give the standard form of the sum-product algorithm by updating just one of the

factors at a time, for instance if we refine only fy3(z3), then fyo(x2) is unchanged

by definition, while the refined version of fy3(x3) is again given by (10.235). If
we are refining only one term at a time, then we can choose the order in which the
refinements are done as we wish. In particular, for a tree-structured graph we can
follow a two-pass update scheme, corresponding to the standard belief propagation
schedule, which will result in exact inference of the variable and factor marginals.
The initialization of the approximation factors in this case is unimportant.

Now let us consider a general factor graph corresponding to the distribution

0) = H () (10.236)

where 8, represents the subset of variables associated with factor f;. We approximate
this using a fully factorized distribution of the form

0) o [ [ Fin(0s) (10.237)
ik

where 6}, corresponds to an individual variable node. Suppose that we wish to refine
the particular term f;;(6;) keeping all other terms fixed. We first remove the term

?j(é’j) from ¢(8) to give
70) oc [T T Fir(0r) (10.238)
i#j k
and then multiply by the exact factor f;(8;). To determine the refined term fﬂ(ﬁl)

we need only consider the functional dependence on 6, and so we simply find the
corresponding marginal of

aV(9)1;(0). (10.239)
Up to a multiplicative constant, this involves taking the marginal of f;(8;) multiplied
by any terms from ¢\’ (@) that are functions of any of the variables in 0. Terms that

correspond to other factors f;(0;) for i # j will cancel between numerator and
denominator when we subsequently divide by ¢\ (@). We therefore obtain

Fu@) o< > FHO) T TT Fiom(Om) (10.240)

Om£1€0; k m#l
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We recognize this as the sum-product rule in the form in which messages from vari-
able nodes to factor nodes have been eliminated, as illustrated by the example shown
in Figure 8.50. The quantity f;,,(6,,) corresponds to the message jif; g, (0m),
which factor node j sends to variable node m, and the product over % in (10.240)
is over all factors that depend on the variables ¢, that have variables (other than
variable #;) in common with factor f;(€;). In other words, to compute the outgoing
message from a factor node, we take the product of all the incoming messages from
other factor nodes, multiply by the local factor, and then marginalize.

Thus, the sum-product algorithm arises as a special case of expectation propa-
gation if we use an approximating distribution that is fully factorized. This suggests
that more flexible approximating distributions, corresponding to partially discon-
nected graphs, could be used to achieve higher accuracy. Another generalization is
to group factors f;(8;) together into sets and to refine all the factors in a set together
at each iteration. Both of these approaches can lead to improvements in accuracy
(Minka, 2001b). In general, the problem of choosing the best combination of group-
ing and disconnection is an open research issue.

We have seen that variational message passing and expectation propagation op-
timize two different forms of the Kullback-Leibler divergence. Minka (2005) has
shown that a broad range of message passing algorithms can be derived from a com-
mon framework involving minimization of members of the alpha family of diver-
gences, given by (10.19). These include variational message passing, loopy belief
propagation, and expectation propagation, as well as a range of other algorithms,
which we do not have space to discuss here, such as tree-reweighted message pass-
ing (Wainwright et al., 2005), fractional belief propagation (Wiegerinck and Heskes,
2003), and power EP (Minka, 2004).

Exercises

10.1

10.2

10.3

10.4

(o) I Verify that the log marginal distribution of the observed data In p(X)
can be decomposed into two terms in the form (10.2) where £(q) is given by (10.3)
and KL(q/||p) is given by (10.4).

(x) Use the properties E[z1] = m; and E[z5] = ms to solve the simultaneous equa-
tions (10.13) and (10.15), and hence show that, provided the original distribution
p(z) is nonsingular, the unique solution for the means of the factors in the approxi-
mation distribution is given by E[z1] = p1 and E[25] = po.

(x%) m Consider a factorized variational distribution ¢(Z) of the form (10.5).
By using the technique of Lagrange multipliers, verify that minimization of the
Kullback-Leibler divergence KL(pl||q) with respect to one of the factors ¢;(Z;),
keeping all other factors fixed, leads to the solution (10.17).

(x*) Suppose that p(x) is some fixed distribution and that we wish to approximate
it using a Gaussian distribution ¢(x) = N(x|u, X). By writing down the form of
the KL divergence KL(p||q) for a Gaussian ¢(x) and then differentiating, show that



