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Abstract

It is well-known that good initializations can improve the speed and accuracy of the solutions of
many nonnegative matrix factorization (NMF) algorithms [56]. Many NMF algorithms are sensitive
with respect to the initialization of W or H or both. This is especially true of algorithms of the
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1 Introduction

Nonnegative data are pervasive. Consider the following four important applications, each of which give rise
to nonnegative data matrices.

• In document collections, documents are stored as vectors. Each element of a document vector is a
count (possibly weighted) of the number of times a corresponding term appears in that document.
Stacking document vectors one after the other creates a nonnegative term-by-document matrix that
represents the entire document collection numerically.

• Similarly, in image collections, each image is represented by a vector, and each element of the vector
corresponds to a pixel. The intensity and color of the pixel is given by a nonnegative number, thereby
creating a nonnegative pixel-by-image matrix.

• For item sets or recommendation systems, the information for a purchase history of customers or
ratings on a subset of items is stored in a non-negative sparse matrix.

• In gene expression analysis, gene-by-experiment matrices are formed from observing the gene se-
quences produced under various experimental conditions.

These are but four of the many interesting applications that create nonnegative data matrices (and tensors)
[5].

Three common goals in mining information from such matrices are: (1) to automatically cluster similar
items into groups, (2) to retrieve items most similar to a user’s query, and (3) identify interpretable critical
dimensions within the collection. For the past decade, a technique called Latent Semantic Indexing (LSI)
[4], originally conceived for the information retrieval problem and later extended to more general text
mining problems, was a popular means of achieving these goals. LSI uses a well-known factorization of
the term-by-document matrix, thereby creating a low rank approximation of the original matrix. This
factorization, the singular value decomposition (SVD) [22, 40], is a classic technique in numerical linear
algebra.

The SVD is easy to compute and works well for points (1) and (2) above, but not (3). The SVD does
not provide users with any interpretation of its mathematical factors or why it works so well. A common
complaint from users is: do the SVD factors reveal anything about the data collection? Unfortunately,
for the SVD, the answer to this question is no, as explained in the next section. However, an alternative
and much newer matrix factorization, known as the nonnegative matrix factorization (NMF), allows the
question to be answered affirmatively. As a result, it can be shown that the NMF works nearly as well as
the SVD on points (1) and (2), and further, can also achieve goal (3).

Most examples and applications of the NMF in this paper refer to text mining because this is the
area with which we are most familiar. However, the phrase “term-by-document matrix” which we will use
frequently throughout this paper can just as easily be replaced with gene-by-observation matrix, purchase-
by-user matrix, etc., depending on the application area.

2 Low Rank Approximations

Applications, such as text processing, data mining, and image processing, store pertinent information in
a huge matrix. This matrix A is large, sparse, and often times nonnegative. In the last few decades,
researchers realized that the data matrix could be replaced with a related matrix, of much lower rank.
The low rank approximation to the data matrix A brought several advantages. The rank-k approximation,
denoted Ak, sometimes required less storage than A. But most importantly, the low rank matrix seemed to
give a much cleaner, more efficient representation of the relationship between data elements. The low rank
approximation identified the most essential components of the data by ignoring inessential components
attributed to noise, pollution, or inconsistencies. Several low rank approximations are available for a given



ALGORITHMS, INITIALIZATIONS, CONVERGENCE FOR THE NMF 3

matrix: QR, URV, SVD, SDD, PCA, ICA, NMF, CUR, etc. [30, 40, 55, 18]. In this section, we focus on
two such approximations, the SVD and the NMF, that have been applied to data mining problems.

2.1 The Singular Value Decomposition

In 1991, Susan Dumais [20] used the singular value decomposition (SVD) to build a low rank approximation
to the term-by-document matrix of information retrieval. In fact, to build a rank-k approximation Ak to
the rank r term-by-document matrix A, simply use the k most significant singular components, where
k < r. That is,

Ak =
k

∑

i=1

σiuiv
T
i = UkΣkV

T
k ,

where σi is the ith singular value of A, and ui and vT
i are the corresponding singular vectors [22]. The

technique of replacing A with the truncated Ak is called Latent Semantic Indexing (LSI) because the low
rank approximation reveals meanings and connections between documents that were hidden, or latent, in
the original noisy data matrix A.

Mathematically, the truncated SVD has one particularly appealing property: of all possible rank-
k approximations, Ak is the best approximation in the sense that ‖A − Ak‖F is as small as possible
[4, 6]. Thus, the truncated SVD provides a nice baseline against which all other low-rank approximations
can be judged for quantitative accuracy. This optimality property is also nice in practice. Algorithms
for computing the k most significant singular components are fast, accurate, well-defined, and robust
[2, 4, 22]. Two different algorithms will produce the same results up to roundoff error. Such uniqueness
and computational robustness are comforting. Another advantage of the truncated SVD concerns building
successive low rank approximations. Once A100 has been computed, no further computation is required if,
for example, for sensitivity analysis or comparison purposes, other lower rank approximations are needed.
That is, once A100 is available, then Ak is available for any k ≤ 100.

LSI and the truncated SVD dominated text mining research in the 1990s [1, 3, 4, 7, 6, 8, 10, 11, 15, 20,
26, 28, 27, 36, 59, 61, 62]. However, LSI is not perfect. For instance, while it first appeared that the low
rank approximation Ak would save storage over the original matrix A, experiments showed that this was
not the case. A is generally very sparse for text mining problems because only a small subset of the terms
in the collection are used in any particular document. No matter how sparse the original term-by-document
matrix is, the truncated SVD produces singular components that are almost always completely dense. In
many cases, Ak can require more (sometimes much more) storage than A.

Furthermore, A is always a nonnegative matrix, yet the singular components are mixed in sign. The
SVD’s loss of the nonnegative structure of the term-by-document matrix means that the factors of the
truncated SVD provide no interpretability. To understand this statement, consider a particular document
vector, say, column 1 of A. The truncated SVD represents document 1, A1, as

A1 ≈ σ1v11







...
u1
...






+ σ2v12







...
u2
...






+ · · · + σkv1k







...
uk

...






,

which reveals that document 1 is a linear combination of the singular vectors ui, also called the basis
vectors. The scalar weight σiv1i represents the contribution of basis vector i in document 1. Unfortunately,
the mixed signs in ui and vi preclude interpretation.

Clearly, the interpretability issues with the SVD’s basis vectors are caused by the mixed signs in the
singular vectors. Thus, researchers proposed an alternative low rank approximation that maintained the
nonnegative structure of the original term-by-document matrix. As a result, the nonnegative matrix factor-
ization (NMF) was created [35, 45]. The NMF replaces the role played by the singular value decomposition
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(SVD). Rather than factoring A as UkΣkV
T
k , the NMF factors A as WkHk, where Wk and Hk are

nonnegative.

2.2 The Nonnegative Matrix Factorization

Recently, the nonnegative matrix factorization (NMF) has been used to create a low rank approximation to
A that contains nonnegative factors called W and H. The NMF of a data matrix A is created by solving
the following nonlinear optimization problem.

min ‖Am×n − Wm×kHk×n‖2
F , (1)

s.t. W ≥ 0,

H ≥ 0.

The Frobenius norm is often used to measure the error between the original matrix A and its low rank
approximation WH, but there are other possibilities [17, 35, 43]. The rank of the approximation, k, is a
parameter that must be set by the user.

The NMF is used in place of other low rank factorizations, such as the singular value decomposition
(SVD) [40], because of its two primary advantages: storage and interpretability. Due to the nonnegativity
constraints, the NMF produces a so-called “additive parts-based” representation [35] of the data. One
consequence of this is that the factors W and H are generally naturally sparse, thereby saving a great deal
of storage when compared with the SVD’s dense factors.

The NMF also has impressive benefits in terms of interpretation of its factors, which is, again, a
consequence of the nonnegativity constraints. For example, consider a text processing application that
requires the factorization of a term-by-document matrix Am×n. In this case, k can be considered the
number of (hidden) topics present in the document collection. In this case, Wm×k becomes a term-
by-topic matrix whose columns are the NMF basis vectors. The nonzero elements of column 1 of W

(denoted W1), which is sparse and nonnegative, correspond to particular terms. By considering the highest
weighted terms in this vector, one can assign a label or topic to basis vector 1. Figure 1 shows four basis
vectors for one particular term-by-document matrix, the medlars dataset of medical abstracts, available at
http://www.cs.utk.edu/~lsi/. For those familiar with the domain of this dataset, the NMF allows users
the ability to interpret the basis vectors. For instance, a user might attach the label “heart” to basis vector
W1 of Figure 1. Similar interpretation holds for the other factor H. Hk×n becomes a topic-by-document
matrix with sparse nonnegative columns. Element j of column 1 of H measures the strength to which topic
j appears in document 1.

Another fascinating application of the NMF is image processing. Figure 2 clearly demonstrates two
advantages of the NMF over the SVD. First, notice that the NMF basis vectors, represented as individual
blocks in the W matrix, are very sparse (i.e., there is much white space). Similarly, the weights, represented
as individual blocks in the Hi vector, are also sparse. On the other hand, the SVD factors are nearly
completely dense. Second, the basis vectors of the NMF, in the W matrix, have a nice interpretation, as
individual components of the structure of the face—ears, noses, mouths, hairlines. The SVD basis vectors
do not create an additive parts-based representation. In addition, the gains in storage and interpretability
do not come at a loss in performance. The NMF and the SVD perform equally well in reconstructing an
approximation to the original image.

Of course, the NMF has its disadvantages too. Other popular factorizations, especially the SVD, have
strengths concerning uniqueness and robust computation. Yet these become problems for the NMF. There
is no unique global minimum for the NMF. The optimization problem of Equation (2) is convex in either
W or H, but not in both W and H, which means that the algorithms can only, if at all, guarantee
convergence to a local minimum. In practice, NMF users often compare the local minima from several
different starting points, using the results of the best local minimum found. However, this is prohibitive
on large, realistically-sized problems. Not only will different NMF algorithms (and there are many now
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Figure 1: Interpretation of NMF basis vectors on medlars dataset

[5]) produce different NMF factors, the same NMF algorithm, run with slightly different parameters, can
produce different NMF factors.

2.3 Summary of SVD vs. NMF

We pause to briefly summarize the advantages of these two competing low rank approximations. The
properties and advantages of the SVD include: (1) an optimality property; the truncated SVD produces
the best rank-k approximation (in terms of squared distances), (2) speedy and robust computation, (3)
unique factorization; initialization does not affect SVD algorithms, and ( 4) orthogonality; resulting basis
vectors are orthogonal and allow conceptualization of original data as vectors in space. On the other hand,
the advantages of NMF are: (1) sparsity and nonnegativity; the factorization maintains these properties of
the original matrix, (2) reduction in storage; the factors are sparse, which also results in easier application
to new data, and (3) interpretability; the basis vectors naturally correspond to conceptual properties of the
data.

The strengths of one approximation become the weaknesses of another. The most severe weakness
of the NMF are its convergence issues. Unlike the SVD and its unique factorization, there is no unique
NMF factorization. Because different NMF algorithms can converge to different local minima (and even
this convergence to local minima is not guaranteed), initialization of the algorithm becomes critical. In
practice, knowledge of the application area can help guide initialization choices. We will return to such
initialization issues in Section 4.

3 ALS Algorithms for the NMF

Several currently popular NMF algorithms [14, 35, 34, 45, 43, 60] do not create sparse factors, which are
desired for storage, accuracy, and interpretability reasons. Even with adjustments to create sparse factors,
the improved algorithms [24, 34, 46, 53] exhibit an undesirable locking phenomenon, as explained below.
Thus, in this section, we propose two new NMF algorithms [31], called ACLS and AHCLS, that produce
sparse factors and avoid the so-called locking problem.
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Figure 2: Interpretation of NMF and SVD basis vectors on face dataset, from [35]

Both algorithms are modifications to the simple Alternating Least Squares (ALS) algorithm [45], wherein
W is fixed and H is computed using least squares, then H is fixed and W is computed using least
squares, and so on, in alternating fashion. The method of alternating variables is a well-known technique
in optimization [42]. One problem with the first ALS algorithm applied to the NMF problem (done by
Paatero and Tapper in 1994 [45]) was the lack of sparsity restrictions. To address this, the ACLS algorithm
adds a reward for sparse factors of the NMF. The user sets the two parameters λH and λW to positive
values. Increasing these values increases the sparsity of the two NMF factors. However, because there are
no upperbounds on these parameters, a user must resort to trial and error to find the best values for λH

and λW . The more advanced AHCLS [31], presented in Section 3.2, provides better sparsity parameters
with more intuitive bounds.

3.1 The ACLS Algorithm

The ACLS (Alternating Constrained Least Squares) algorithm is implemented differently than the original
ALS algorithm [45] because issues arise at each alternating step, where a constrained least squares problem
of the following form

min
hj

‖aj − Whj‖2
2 + λH‖hj‖2

2 s.t. λH ≥ 0,hj ≥ 0 (2)

must be solved. The vectors aj and hj are columns of A and H, respectively. Notice that the decision
variable hj must be nonnegative. There are algorithms specifically designed for this nonnegative constrained
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least squares problem. In fact, the NNLS algorithm of Lawson and Hanson [9, 33] is so common that it
appears as a built-in function in MATLAB. Unfortunately, the NNLS algorithm is very slow, as it is an
“active set” method, meaning it can swap only one variable from the basis at a time. Even the faster
version of the NNLS algorithm by Bro and de Jong [12] is still not fast enough, and the NNLS step remains
the computational bottleneck. As a result, in practice, compromises are made. For example, a standard
(unconstrained) least squares step is run [9] and all negative elements in the solution vector are set to 0.
This ad-hoc enforcement of nonnegativity, while not theoretically appealing, works quite well in practice.
The practical ACLS algorithm is shown below.

Practical ACLS Algorithm for NMF

input λW , λH

W = rand(m,k); % initialize W as random dense matrix or use another initialization from Section 4

for i = 1 : maxiter
(cls) Solve for H in matrix equation (WT W + λHI) H = WT A. % for W fixed, find H

(nonneg) Set all negative elements in H to 0.
(cls) Solve for W in matrix equation (HHT + λW I) WT = HAT . % for H fixed, find W

(nonneg) Set all negative elements in W to 0.
end

3.2 The AHCLS Algorithm

ACLS uses a crude measure ‖x‖2
2 to approximate the sparsity of a vector x. The AHCLS replaces this with

a more sophisticated measure, spar(x), which was invented by Hoyer [25].

spar(xn×1) =

√
n − ‖x‖1/‖x‖2

√
n − 1

In AHCLS (Alternating Hoyer-Constrained Least Squares), the user defines two scalars αW and αH in
addition to λH and λW of ACLS. For AHCLS, the two additional scalars 0 ≤ αW , αH ≤ 1 represent a
user’s desired sparsity in each column of the factors. These scalars, because they range from 0 to 1, match
nicely with a user’s notion of sparsity as a percentage. Recall that 0 ≤ λW , λH ≤ ∞ are positive weights
associated with the penalties assigned to the density of W and H. Thus, in AHCLS, they measure how
important it is to the user that spar(Wj∗) = αW and spar(Hj∗) = αH . Our experiments show that
AHCLS does a better job of enforcing sparsity than ACLS does. And the four AHCLS parameters are
easier to set. For example, as a guideline, we recommend 0 ≤ λW , λH ≤ 1, with of course, 0 ≤ αW , αH ≤ 1.
The practical AHCLS algorithm, using matrix systems and ad-hoc enforcement of negativity, is below. E

is the matrix of all ones.

Practical AHCLS Algorithm for NMF

input λW , λH , αW , αH W = rand(m,k); % initialize W as random dense matrix or use another initialization

from Section 4

βH = ((1 − αH)
√

k + αH)2

βW = ((1 − αW )
√

k + αW )2

for i = 1 : maxiter
(hcls) Solve for H in matrix equation (WTW + λHβHI − λHE) H = WT A.
(nonneg) Set all negative elements in H to 0.
(hcls) Solve for W in matrix equation (HHT + λW βW I − λW E) WT = HAT .
(nonneg) Set all negative elements in W to 0.

end
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3.3 Advantages and Disadvantages of ACLS and AHCLS

3.3.1 Speed

These algorithms have many advantages. For instance, rather than computing the vectors in H column
by column (as is done in [53]), thereby solving sequential least squares problems of the form of Equation
(2), one matrix system solve can be executed. Further, because each CLS step solves a small k × k matrix
system, ACLS and AHCLS are the fastest NMF algorithms available (and faster than current truncated
SVD algorithms). See Section 3.4 for comparative run times. They converge quickly and give very accurate
NMF factors.

3.3.2 Sparsity

Only W must be initialized, and sparsity is incorporated for both NMF factors. We believe that avoidance
of the so-called locking phenomenon is one reason why the class of ALS algorithms works well in practice.
Nearly all other NMF algorithms, especially those of the multiplicative update class [24, 25, 35, 34, 47, 52,
53], lock elements when they become 0. That is, during the iterative process, once an element in either
W or H becomes 0, it must remain 0. For the basis vectors in the text mining problem, which are stored
in W, this means that in order to improve the objective function, the algorithm can only remove terms
from, not add terms to, topic basis vectors. As a result, once the algorithm starts down a path toward a
particular topic vector, it must continue in that direction. On the other hand, ALS algorithms do not lock
elements, and thus provide greater flexibility, allowing them to escape from a path heading towards a poor
local minimum.

3.3.3 Convergence

It has been proven that ALS algorithms will converge to a fixed point, but this fixed point may be a
local extrema or a saddle point [21, 23, 38]. The ACLS and AHCLS algorithms with properly enforced
nonnegativity, for example, by the NNLS algorithm, are known to converge to a local minimum [17, 38].
However, our ad-hoc enforcement of nonnegativity, which drastically speeds up the algorithm (and improves
sparsity), means there are no proofs claiming convergence to a local minimum; saddle points are now
possible. (Actually, this is not so damning for our two ALS algorithms because most NMF algorithms
suffer this same problem. The few NMF algorithms believed to guarantee convergence to a local minimum
have been proven otherwise [21, 23, 38].) Our experiments [31, 32] and others [29, 44, 45, 43, 48] have
shown that the ALS fixed points can be superior to the results of other NMF algorithms.

3.3.4 Nonnegativity

Clearly, ad-hoc enforcement of nonnegativity is theoretically unattractive. There are some alternatives to
this ad-hoc enforcement of nonnegativity. For instance, one could convert from an alternating least squares
approach to an alternating linear programming approach, whereby nonnegativity of variables is enforced
in a natural way by the simple constraints of the linear programming formulation. Yet, this has the same
problem as the NNLS algorithm, lengthy execution time. A second alternative to ad-hoc enforcement of
nonnegativity is to add negativity penalties in the form of logarthmic functions to the NMF objective
function [39]. This is a focus of future work.

3.4 Numerical Experiments

Figure 3 compares our ACLS and AHCLS algorithms with the popular Lee-Seung mean squared error
algorithm [35] and the GDCLS algorithm [53]. We use our own implementation of GDCLS, which is much
faster than the implementation presented in [53]. The speed improvement results from our use of one matrix



ALGORITHMS, INITIALIZATIONS, CONVERGENCE FOR THE NMF 9

system rather than serial vector systems to solve the CLS step. This implementation trick was described
above for the ACLS and AHCLS algorithms.

To create Figure 3, we used the medlars dataset of medical abstracts and the cisi dataset of library
science abstracts. These figures clearly show how the ALS-type algorithms outperform the Lee-Seung
multiplicative update algorithms in terms of accuracy and speed. While the ALS-type algorithms provide
similar accuracy to the GDCLS algorithm, they are much faster. This speed advantage continues to hold for
much larger collections like the reuters10 collection, used in Section 4. (Details on the reuters10 dataset
appear in Section 4.3.) On average the ACLS and AHCLS algorithms require roughly 2/3 the time of the
GDCLS algorithm. Figure 3 also reports the error in the optimal rank-10 approximation required by the
SVD. Notice how close all NMF algorithms come to the optimal factorization error. Also, notice that ACLS
and AHCLS require less time than the SVD to produce such good, sparse, nonnegative factorizations.
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Figure 3: Accuracy and Run-times of NMF Algorithms on medlars (left) and cisi (right) datasets

4 Initializations

All NMF algorithms are iterative and it is well-known that they are sensitive to the initialization of W

and H [56]. Some algorithms require that both W and H be initialized [24, 25, 35, 34, 46], while others
require initialization of only W [45, 43, 52, 53]. In all cases, a good initialization can improve the speed
and accuracy of the algorithms, as it can produce faster convergence to an improved local minimum [55].
A good initialization can sidestep some of the convergence problems mentioned above, which is precisely
why they are so important. In this section, we compare several initialization procedures (two old and four
new) by testing them on the ALS algorithms presented in Section 3. We choose to use the ACLS and
AHCLS algorithms because they produce sparse accurate factors and require about the same time as the
SVD. Most other NMF algorithms require much more time than the SVD, often times orders of magnitude
more time.

4.1 Two Existing Initializations

Nearly all NMF algorithms use simple random initialization, i.e., W and H are initialized as dense matrices
of random numbers between 0 and 1. It is well-known that random initialization does not generally provide
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Table 1: Initialization Methods for the NMF

Name Proposed by Pros Cons
Random Lee, Seung [34] easy, cheap to compute dense matrices, no intuitive basis
Centroid Wild et al. [56] reduces # NMF iterations, expensive, must run clustering

firm, intuitive foundation algorithm on cols of A

SVD-Centroid Langville [32] inexpensive, reduces # NMF SVD factor V must be available
iterations

Random Acol Langville [31] cheap, sparse matrices built only slight decrease in number of
from original data NMF iterations

Random C Langville adapts cheap, sparse not very effective
from Drineas [18]

Co-occurrence Langville adapts uses term-term similarities large, dense co-occurrence matrix,
from Sandler [50] very expensive computation

a good first estimate for NMF algorithms [55], especially those of the ALS-type of [13, 37, 49, 51]. Wild
et al. [56, 57, 58] have shown that the centroid initialization, built from the centroid decomposition [16]
is a much better alternative to random initialization. Unfortunately, this decomposition is expensive as a
preprocessing step for the NMF. Another advantage of ALS algorithms, such as our ACLS and AHCLS,
is that they only require initialization of W. In ALS algorithms, once W(0) is known, H(0) is computed
quickly by a least squares computation. As a result, we only discuss techniques for computing a good W(0).

4.2 Four New Initializations

Some text mining software produces the SVD factors for other text tasks. Thus, in the event that the
SVD factor V is available, we propose a SVD-centroid initialization [32], which initializes W with a
centroid decomposition of the low dimensional SVD factor Vn×k [54]. While the centroid decomposition of
Am×n can be too time-consuming, the centroid decomposition of V is fast because Vn×k is much smaller
than Am×n. When the SVD factors are not available, we propose a very inexpensive procedure called
random Acol initialization. Random Acol forms an initialization of each column of the basis matrix W

by averaging p random columns of A. It makes more sense to build basis vectors from the given data,
the sparse document vectors themselves, than to form completely dense random basis vectors, as random
initialization does. Random Acol initialization is very inexpensive, and lies between random initialization
and centroid initialization in terms of performance [31, 32].

We also present two more initialization ideas, one inspired by the C matrix of the CUR decomposition
[18], and another by the term co-occurrence matrix [50]. We refer to these last two methods as random C

initialization and co-occurrence initialization, respectively. The random C initialization is similar to the
random Acol method, except it chooses p columns at random from the longest (in the 2-norm) columns of
A, which generally means the densest columns since our text matrices are so sparse. The idea is that these
might be more likely to be the centroid centers. The co-occurrence method first forms a term co-occurrence
matrix C = AAT . Next, the method for forming the columns of W(0) described as Algorithm 2 of [50] is
applied to C. The co-occurrence method is very expensive for two reasons. First, for text mining datasets,
such as reuters10, m >> n, which means C = AAT is very large and often very dense too. Second,
the algorithm of [50] for finding W(0) is extremely expensive, making this method impractical. All six
initialization methods are summarized in Table 1. The two existing methods appear first, followed by our
four suggested methods.
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Table 2: Experiments with Initialization Methods for the NMF

Method Time W(0) Storage W(0) Error(0) Error(10) Error(20) Error(30)
Random .09 sec 726K 4.28% .28% .15% .15%
Centroid 27.72 46K 2.02% .27% .18% .18%

SVD-Centroid .65† 56K 2.08% .06% .06% .06%
Random Acol∗ .05 6K 2.01% .21% .16% .15%
Random C◦ .11 22K 3.35% .29% .20% .19%
Co-occurrence 3287 45K 3.38% .37% .27% .25%
ACLS time .37 sec 3.42 6.78 10.29

† provided V of the SVD is already available
∗

each column of W
(0) formed by averaging 20 random columns of A

◦ each column of W(0) formed by averaging 20 of the longest columns of A

4.3 Initialization Experiments with Reuters10 dataset

The reuters10 collection is our subset of the Reuters-21578 version of the Reuter’s benchmark document
collection of business newswire posts. The Reuters-21578 version contains over 20,000 documents catego-
rized into 118 different categories, and is available online.1 Our subset, the reuters10 collection, is derived
from the set of documents that have been classified into the top ten most frequently occurring categories.
The collection contains 9248 documents from the training data of the “ModApte split” (details of the split
are also available at the website above).

The numbers reported in Table 2 were generated by applying the alternating constrained least squares
(ACLS) algorithm of Section 3 with λH = λW = .5 to the reuters10 dataset. The error measure in this
table is relative to the optimal rank-10 approximation given by the singular value decomposition. For this
dataset, ‖A− U10Σ10V

T
10‖F = 22656. Thus, for example, the error at iteration 10 is computed as

Error(10) =
‖A − W(10)H(10)‖F − 22656

22656
.

We distinguish between quantitative accuracy, as reported in Table 2, and qualitative accuracy as
reported in Tables 3 through 9. For text mining applications, it is often not essential that the low rank
approximation be terribly precise. Often suboptimal solutions are “good enough.” After reviewing Tables
3–9, it is easy to see why some initializations give better accuracy and converge more quickly. They start
with basis vectors in W(0) that are much closer to the best basis vectors found, as reported in Table 3,
which was generated by using the basis vectors associated with the best global minimum for the reuters10
dataset, found by using 500 random restarts. In fact, the relative error for this global minimum is .009%,
showing remarkable closeness to the optimal rank-10 approximation. By comparing each subsequent table
with Table 3, it’s clear why one initialization method is better than another. The best method, SVD-
centroid initialization, starts with basis vectors very close to the “optimal” basis vectors of Table 3. On
the other hand, random and random Acol initialization are truly random. Nevertheless, random Acol does
maintain one clear advantage over random initialization as it creates a very sparse W(0). The Random
C and co-occurrence initializations suffer from lack of diversity. Many of the longest documents in the
reuters10 collection appear to be on similar topics, thus, not allowing W(0) to cover many of the reuters
topics.

Because the algorithms did not produce the “wheat” vector always in column one of W, we have
reordered the resulting basis vectors in order to make comparisons easier. We also note that the nonnegative

1http://www.daviddlewis.com/resources/testcollections/
reuters21578/
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Table 3: Basis vectors of W(50) from Best Global Minimum found for reuters10

W
(50)
1 W

(50)
2 W

(50)
3 W

(50)
4 W

(50)
5 W

(50)
6 W

(50)
7 W

(50)
8 W

(50)
9 W

(50)
10

tonne billion share stg mln-mln gulf dollar oil loss trade
wheat year offer bank cts iran rate opec profit japan
grain earn company money mln attack curr. barrel oper japanese
crop qrtr stock bill shr iranian bank bpd exclude tariff
corn rise sharehol. market net ship yen crude net import

agricul. pct common england avg tanker monetary price dlrs reagan
wheat earn acquisition interest ship frgn-exch. oil trade

Table 4: Basis vectors of W(0) created by Random Initialization for reuters10

W
(0)
1 W

(0)
2 W

(0)
3 W

(0)
4 W

(0)
5 W

(0)
6 W

(0)
7 W

(0)
8 W

(0)
9 W

(0)
10

announce wpp formality bulletin matthews dramatic squibb wag cochran erik
medtec reflagging simply awfully nyt boca raton kuwaiti oils mln support

pac kwik moonie blair barrel clever dacca hears barriers sale oil
purina tilbury tmg fresno purina billion democrat bwtr deluxe direct

mezzanine capacitor bushnell farm june bkne induce nestle mkc wheat
foreign grain country leutwiler trend clever rate fed. econ. aid

matrix factorization did produce basis vectors that cover 8 of the 10 “correct” reuters classifications, which
appear on the last line of Table 3. The two missing reuters classifications are corn and grain, both of which
are lumped into the first basis vector labeled wheat. This first basis vector does break into two separate
vectors, one pertaining to wheat and grain and another to corn when the number of basis vectors is
increased from k = 10 to k = 12. We note that these categories have been notoriously difficult to classify,
as previously reported in [19].

Table 5: Basis vectors of W(0) created by Centroid Initialization for reuters10

W
(0)
1 W

(0)
2 W

(0)
3 W

(0)
4 W

(0)
5 W

(0)
6 W

(0)
7 W

(0)
8 W

(0)
9 W

(0)
10

tonne bank share medar cts iran rate oil stg strike
wheat rate company mdxr mmln gulf dollar trade bill port
grain dollar offer mlx loss attack bank price take-up union
corn billion pct mlxx net iranian currency barrel drain seaman
crop pct stock mich shr missile market japan mature worker

agriculture trade dlrs troy dlrs tanker monetary opec money ship
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Table 6: Basis vectors of W(0) created by SVD-Centroid Initialization for reuters10

W
(0)
1 W

(0)
2 W

(0)
3 W

(0)
4 W

(0)
5 W

(0)
6 W

(0)
7 W

(0)
8 W

(0)
9 W

(0)
10

tonne billion share bank cts iran dollar oil loss trade
wheat year offer money shr gulf rate barrel oper japan
grain earn company rate mln attack curr. opec profit japanese
corn qrtr stock stg net iranian yen crude cts tariff
crop rise pct market mln-mln missile japan bpd mln import

agricul. pct common pct rev ship economic price net country

Table 7: Basis vectors of W(0) created by Random Acol Initialization for reuters10

W
(0)
1 W

(0)
2 W

(0)
3 W

(0)
4 W

(0)
5 W

(0)
6 W

(0)
7 W

(0)
8 W

(0)
9 W

(0)
10

mln fee agl mln mark loss official dlrs bank trade
denman mortg. tmoc dlrs mannes. mln piedmont oper bancaire viermetz

dlrs billion bank share dividend cts dollar billion austral mln
ecuador winley pct seipp mln maki interest loss neworld nwa

venezuela mln company billion dieter name tokyo texaco datron cts
revenue fed maki dome gpu kato japanese pennzoil share builder

Table 8: Basis vectors of W(0) created by Random C Initialization for reuters10

W
(0)
1 W

(0)
2 W

(0)
3 W

(0)
4 W

(0)
5 W

(0)
6 W

(0)
7 W

(0)
8 W

(0)
9 W

(0)
10

analyst dollar econ. bank market analyst analyst analyst trade rate
lawson rate policy rate bank market industry bank dollar trade
market econ. pct market analyst trade price currency japan official
trade mark cost currency price pct market japan price bank

sterling bank growth dollar mark last believe billion japanese market
dollar rise trade trade good official last cut pct econ.

Table 9: Basis vectors of W(0) created by Co-occurrence Initialization for reuters10

W
(0)
1 W

(0)
2 W

(0)
3 W

(0)
4 W

(0)
5 W

(0)
6 W

(0)
7 W

(0)
8 W

(0)
9 W

(0)
10

dept. average agricul. national farmer rate-x aver price plywood wash. trade
wheat pct wheat bank rate-x natl average aqtn trade japan
agricul. rate tonne rate natl avge price aequitron japan billion
tonne price grain pct avge farmer yield medical official market
usda billion farm oil cwt cwt billion enzon reagan japanese
corn oil dept. gov. wheat wheat bill enzon pct import
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5 Convergence Criterion

Nearly all NMF algorithms use the simplest possible convergence criterion, i.e., run for a fixed number
of iterations, denoted maxiter. This criterion is used so often because the natural criterion, stop when
‖A−WH‖ ≤ ǫ, requires more expense than most users are willing to expend, even occasionally. Notice that
maxiter was the convergence criterion used in the ACLS and AHCLS algorithms of Section 3. However,
a fixed number of iterations is not a mathematically appealing way to control the number of iterations
executed because the most appropriate value for maxiter is problem-dependent.

In this section, we use the ACLS algorithm applied to the cisi dataset to compare two convergence
criterion: the natural but more expensive Frobenius norm measure, and our proposed angular measure,
which we describe in the next paragraph. We note that we used the most efficient implementation of the
Frobenius measure [5], which exploits the trace form of the Frobenius norm.

‖A− WH‖2
F = trace(AT A) − 2 trace(HTWTA) + trace(HTWT WH).

In this equation trace(AT A) is a constant that does not change throughout the iterations, and thus, is
only computed once and stored. At each iteration 2 trace(HTWT A) and trace(HTWTWH) must be
computed. However, some calculations required by these traces, such as WTA and WTW, are already
available from the least squares steps, and hence, need not be recomputed.

Our angular convergence measure is moderately inexpensive in storage and computation, and is intu-

itively appealing. Simply measure the angle θi between successive topic vectors, i.e., W
(j+1)
i and W

(j)
i at

iterations j and j + 1. Once θi ≤ ǫ for i = 1, . . . , k, stop because the topic vectors have converged satis-
factorily. Mitchell and Burdick [41] have shown that, in a different context, a similar measure converges
simultaneously with the expensive convergence criterion based on the objective function, ‖A−WH‖ [55].
However, Figure 4 clearly shows one problem with the angular convergence measure—it does not maintain
continual descent, because the basis vectors compared from one iteration to the next are not required to
maintain any fixed column order. After several iterations, the column ordering of the basis vectors in W

is less likely to change, making the angular measure more useful in later iterations of the algorithm. The
angular convergence measure is much less expensive to compute than the Frobenius measure, but does re-
quire additional storage of the W matrix from the previous iteration. We note in practice, that regardless
of the chosen convergence criterion, it is wise to only compute the measure every five or so iterations after
some burn-in period.

The recent 2005 reference by Lin [38] mentioned the related convergence criterion issue of stationarity.
The fact that ‖A − WH‖ (or some similar objective function) levels off does not guarantee stationarity.
Lin advocates a stationarity check once an algorithm has stopped. For instance, the stationarity checks
of Chu and Plemmons [14] may be used. Lin [38] proposes a convergence criterion, that simultaneously
checks for stationarity, and fits nicely into his projected gradients algorithm. We agree that a stationarity
check should be conducted on termination.

6 Conclusion

The two new NMF algorithms presented in this paper, ACLS and AHCLS, are some of the fastest available,
even faster than truncated SVD algorithms. However, while the algorithms will converge to a stationary
point, they cannot guarantee that this stationary point is a local minimum. If a local minimum must be
achieved, then we recommend using the results from a fast ALS-type algorithm as the initialization for
one of the slow algorithms [38] that do guarantee convergence to a local minimum. In this paper we also
presented several alternatives to the common, but poor, initialization technique of random initialization.
Lastly, we proposed an alternative stopping criterion that practical implementations of NMF code should
consider. The common stopping criterion of running for a fixed number of iterations should be replaced
with a criterion that fits the context of the users and their data. For many applications, iterating until
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Figure 4: Frobenius convergence measure (left) and angular convergence measure (right) of ACLS Algorithm
on cisi datasets

‖A−WH‖ reaches some small level is unnecessary, especially in cases where one is most interested in the
qualitative results produced by the vectors in W. In such cases, our proposed angular convergence measure
is more appropriate.
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