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Abstract

C. Pereira and J. Stern have recently introduced a measure of evidence of a precise
hypothesis consisting of the posterior probability of the set of points having smaller
density than the supremum over the hypothesis. The related procedure is seen to
be a Bayes test for specific loss functions. The nature of such loss functions and
their relation to stylised inference problems are investigated. The dependence of
the loss function on the sample is also discussed as well as the consequence of the
introduction of Jeffreys’s prior mass for the precise hypothesis on the separability
of probability and utility.
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1 Introduction

Pereira and Stern (1999) have recently introduced a measure of evidence in
favour of a precise hypothesis, i.e., a subset of the parametric space having
null Lebesgue measure. The definition of their measure of evidence is now
presented:

Definition 1.1. (Pereira and Stern) Consider a parametric statistical mo-
del, i.e., a quintet (X ,A,F ,Θ, π), where X is a sample space, A is a
suitable sigma-algebra of subsets of X , F is a class of probability distribu-
tions on A indexed on a parametric space Θ and π is a prior density over (a

∗Correspondence to: Sergio Wechsler, Instituto de Matemática e Estat́ıstica, Uni-
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sigma-algebra of) Θ. Suppose a subset Θ0 of Θ having null Lebesgue mea-
sure (wrt Θ) is of interest. Let π(θ|x) be the posterior density of θ, given
the sample observation x, and T (x) = {θ : π(θ|x) > supΘ0

π(θ|x)}. The
Pereira-Stern measure of evidence is defined as EV (Θ0,x) = 1 − Pr[θ ∈
T (x)|x] and a Pereira-Stern test (or procedure) is to accept Θ0 whenever
EV (Θ0,x) is “large”.

As we can see from Definition 1.1, the Pereira-Stern measure of evidence
considers, in favour of a precise hypothesis, all points of the parametric
space whose posterior density values are, at most, as large as the supremum
over Θ0; roughly speaking, it considers all points which are less “probable”
than some point in Θ0. Also, we should remember that, according to
Pereira and Stern (1999), a large value of EV (Θ0,x) means that the subset
Θ0 lies in a high-probability region of Θ and, therefore, the data support
the null hypothesis; on the other hand, a small value of EV (Θ0,x) points
out that Θ0 is in a low-probability region of Θ and the data would make
us discredit the null hypothesis.

Pereira-Stern’s procedures are in accordance with the “Principle of
Least Surprise”, as suggested by Good (1988), since it considers in the
construction of the subset T (x) those points in the parametric space less
surprising (“more supported by the data”, Good 1988) than the least sur-
prising value in Θ0 (for further details on this principle, see Good 1988).
The posterior probability of T (x), Pr(θ ∈ T (x)|x), may also be called
“observed surprise”, as indicated in Evans (1997).

Pereira and Stern (1999) claim that the use of EV (Θ0,x) to assess the
evidence of Θ0 is a “Bayesian” procedure, as only the posterior density is
involved. Furthermore, the procedure has overcome the difficulty of dealing
with a precise hypothesis (see Basu 1975, Berger and Delampady 1987, for
a comprehensive analysis): unlike Jeffreys’s tests (Jeffreys 1961), Pereira-
Stern procedures do not introduce a prior positive probability for Θ0.

The main purpose of this paper is to verify the existence of loss func-
tions which render a Pereira-Stern procedure a Bayesian test of hypotheses
of Θ0 against Θ1, the complementary set Θ\Θ0. For the reader’s guid-
ance, the content of this paper is presented as follows: In Section 2, we will
exhibit such loss functions which confer “Bayesianity” to Pereira-Stern pro-
cedures and, in Section 3, shortcomings risen by the introduction of a prior
positive probability for Θ0 are pointed out. In Section 4, we will establish
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a relation between the Pereira-Stern solution to the problem of testing a
precise hypothesis Θ0 and the procedure for estimating g(θ) = 1(θ ∈ Θ0)
as done in Hwang et al. (1992). Finally, we will discuss the aforementioned
loss functions’ unavoidable dependence on the sample data and examine
loss functions depending on x in general. We should mention that, for sim-
plicity, hereafter we let Θ be the real line and Θ0 have a single real number
θ0 (the general case Θ ⊆ Rn, n ∈ N, is similar and will be omitted in the
present work; nevertheless, the necessary alterations will be commented as
we go along). We will then consider the hypotheses: H0 : θ = θ0 versus
H1 : θ 6= θ0.

2 A Direct Bayesian Test

In this section, we will verify that Pereira-Stern procedures consist in direct
Bayesian tests of hypotheses for specific loss functions. Here we call “direct”
the tests of precise hypotheses that take into account only a probability
density function over Θ, not introducing a positive probability for Θ0 as
in Jeffreys’s tests. The latter will be considered in the next section. Let
D = {Accept H0 (d0), Reject H0 (d1)} the decision space. We define the
following loss function:

Definition 2.1. The loss function L on D×Θ defined by L(Reject H0, θ)
= a[1 − 1(θ ∈ T (x))] and L(Accept H0, θ) = b + c1(θ ∈ T (x)), a, b, c > 0,
is called a LP 1 loss function.

We should note that we will consider for the verification of the “Bayesian-
ity” of Pereira-Stern procedures loss functions which depend on the sample
observation x. This fact hints the possibility that loss functions which
turn Pereira-Stern procedures into Bayesian hypotheses tests unavoidably
depend on the sample data. Such dependence may, at first sight, look
odd. However, as we will examine in detail in the last section of the paper,
loss functions depending on the sample data are able to incorporate some
psychological aspects from an individual’s preference ordering. In addi-
tion, this kind of loss function has already appeared in the literature, as in
Bernardo and Smith (1994, pp. 395).

Another aspect of LP1 loss functions is that they punish heavily the
decision-maker who accepts H0 when θ is, in fact, more “probable” than
θ0, that is, when θ belongs to T (x). Now, let us prove the following:
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Theorem 2.1. Minimization of posterior expected LP1 loss functions is a
Pereira-Stern procedure.

Proof. The posterior risk of acceptance is

Eπ[L(d0, θ)|x] = Eπ[L(Accept H0, θ)|x]

=
∫
Θ

[b + c1(θ ∈ T (x))] π(θ|x)dθ

=
∫
Θ

b π(θ|x)dθ +
∫

T (x)
c π(θ|x)dθ

= b + c(1− EV (Θ0,x)). (2.1)

On the other hand, the posterior risk of rejection is

Eπ[L(d1, θ)|x] = Eπ[L(Reject H0, θ)|x]

=
∫
Θ

a[1− 1(θ ∈ T (x))] π(θ|x)dθ

=
∫
Θ

a π(θ|x)dθ −
∫

T (x)
a π(θ|x)dθ

= aEV (Θ0,x). (2.2)

The test is, therefore, to accept Θ0 if, and only if, Eπ[L(d0, θ)|x] <
Eπ[L(d1, θ)|x], that is, if

EV (Θ0,x) >
b + c

a + c
(2.3)

From the above inequality, we note that if a < b, then the decision will
be always to reject H0, as EV (Θ0,x) takes values in the interval [0, 1]. In
particular, if for the decision-maker rejection of H0 is preferable to accep-
tance of H0 — whenever θ lies in T c(x) — then the decision will always be
to reject H0. On the other hand, if a � b and c is “small”, then the accep-
tance of H0 does not require a large value for EV (Θ0,x). This happens
whenever the decision-maker thinks that d0 is preferable to d1 and that θ
belonging to T (x) is not so embarrassing. As an example, if a, b, c > 0
satisfy 9a− 10b = c (19a− 20b = c), then we will decide in favour of H0

if EV (Θ0,x) > 0.90 (0.95), standard cutoff values in significance tests.
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We should also emphasize that there are variations of LP1 loss functions
whose interpretations are different from the one presented here, but which
still lead us to perform a Pereira-Stern test. For example, minimization of
the posterior expectation of L′ defined by L′(Reject H0, θ) = a − d1(θ ∈
T (x)) and L′(Accept H0, θ) = L(Accept H0, θ), for d > 0, will again result
in a Pereira-Stern test.

3 Pereira-Stern Procedures and Jeffreys’s tests

In this section, we will verify that the introduction of a prior positive prob-
ability for the hypothesis H0 will not render the Pereira-Stern measure of
evidence a test statistic for the decision problem stated in Section 2 with
LP1 loss functions. More precisely, the Pereira-Stern measure of evidence
will be just a term of this test statistic. For this purpose, let f(x|θ) be the
likelihood function, g(x) =

∫
Θ f(x|θ)π(θ)dθ be the marginal density of the

data and α ∈ [0, 1] be the prior probability for H0 (as done in Jeffreys’s
tests). Let us continue to solve the decision problem.

Suppose that the prior distribution on Θ is given by

P (θ) =
{

α, θ = θ0

(1− α)π(θ), θ 6= θ0
, (3.1)

where π(θ) is the original density on the parametric space before specifica-
tion of H0 and H1. Then, the posterior distribution on Θ is

P (θ|x) =

{
αf(x|θ0)/f(x), θ = θ0

(1− α)f(x|θ)π(θ)/f(x), θ 6= θ0

, (3.2)

where f(x) = αf(x|θ0) +
∫
θ 6=θ0

(1 − α)f(x|θ)π(θ)dθ. The posterior risk of
acceptance is

EP [L(d0, θ)|x] = EP [L(Accept H0, θ)|x]

=
b αf(x|θ0)

f(x)
+

∫
θ 6=θ0

[b + c1(θ ∈ T (x))]
(1− α)f(x|θ)π(θ)

f(x)
dθ

=
b αf(x|θ0)

f(x)
+

(1− α)g(x)
f(x)

[b + c− c EV (Θ0,x)]. (3.3)
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On the other hand, the posterior risk of rejection is

EP [L(d1, θ)|x] = EP [L(Reject H0, θ)|x]

=
a αf(x|θ0)

f(x)
+

∫
θ 6=θ0

[a− a1(θ ∈ T (x))]
(1− α)f(x|θ)π(θ)

f(x)
dθ

=
a αf(x|θ0)

f(x)
+

(1− α)g(x)
f(x)

a EV (Θ0,x). (3.4)

The test is then to accept Θ0 if, and only if, EP [L(d0, θ)|x] < EP [L(d1,
θ)|x], that is, if

EV (Θ0,x) +
(a− b) α f(x|θ0)

(a + c)(1− α)g(x)
>

b + c

a + c
. (3.5)

As we can see from the above inequality, EV (Θ0,x) is no more the
single test statistic if we take into account Jeffreys’s idea for testing precise
hypothesis. In this case, the decision criterion will depend not only on the
prior probability for H0 (the larger the value of α is, the smaller EV (Θ0,x)
needs to be in order to make us accept H0), but also on the ratio of the
likelihood of θ0 to the mean likelihood g(x), i.e., the statistic in (3.5) blends
the Pereira-Stern evidence and the ratio of posterior probabilities of Θ0 and
Θc

0. We should mention that for the general case Θ ⊆ Rn, n ∈ N, a small
modification should be done whenever Θ0 is not a singleton: to substitute
g0(x) =

∫
Θ0

f(x|θ)π0(θ)dθ for f(x|θ0), with π0 being a probability density
function over Θ0. If Θ0 has only one element θ0, π0 is degenerate and no
substitution is called for.

We should also note that when α = 0 we return to the situation of
Section 2, in which EV (Θ0,x) plays the role of the test statistic. For
general α > 0, in order to have the Pereira-Stern measure of evidence as
the test statistic (that is, EV (Θ0,x) being the only term depending on
x, as in the case α = 0), it seems that suitable loss functions depend not
only on x but also on the original prior density π over Θ. An example of
such loss function is given by L(Reject H0, θ0) = a; L(Accept H0, θ) =
[b + 1(θ ∈ T (x))]f(x|θ0)/g(x), for θ 6= θ0; zero, otherwise, with a, b > 0.
The dependence of the above loss function on π, when α > 0, suggests that
Pereira-Stern procedures — as Jeffreys’s tests — do not separate probability
and utility (Rubin 1987).

In the sequel, we will associate Pereira-Stern procedures with stylised
inference problems.
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4 Estimation of 1(θ ∈Θ0)

A different approach to a Pereira-Stern procedure is to consider it as a
problem of estimation (Hwang et al. 1992, among others). More precisely,
we consider EV (Θ0,x) as an estimator of 1(θ ∈ Θ0). Thus, the new
decision space, D′, is formed by all A-measurable functions φ : X → [0, 1].
We will show that the Pereira-Stern measure of evidence is a Bayesian
solution for this estimation problem. In this context we define the following
loss function:

Definition 4.1. Let φ(x) be an estimator of the function 1(θ ∈ Θ0) and
T c(x) the complementary set of T (x). The loss function L on D′ × Θ
defined by L(φ(x), θ) = [1(θ ∈ T c(x))−φ(x)]2 is called a LP 2 loss function.

We should note that if we substitute 1(θ ∈ Θ0) for the factor 1(θ ∈
T c(x)) = 1 − 1(θ ∈ T (x)) in the expression of LP2 loss function, we will
obtain the usual quadratic loss function (a proper scoring rule), whose op-
timal solution is the true Bayesian estimator Pr(θ ∈ Θ0|x). The term
1(θ ∈ T c(x)) incorporates Pereira-Stern’s original idea that the points be-
longing to T c(x) should support the null hypothesis H0, especially the point
θ0 itself, whereas values belonging to T (x) should discredit H0. The loss
function defined above is then seen as the squared distance between the
estimate φ(x) and the intuitive clairvoyant “estimate”, 1(θ ∈ T c(x)).

Theorem 4.1. The Pereira-Stern measure of evidence minimizes the pos-
terior expectation of LP2 loss functions.

Proof. The posterior risk is given by

Eπ[L(φ(x), θ)|x] =
∫

T c(x)
(1− φ(x))2π(θ|x)dθ +

∫
T (x)

φ2(x)π(θ|x)dθ

= (1− φ(x))2EV (Θ0,x) + φ2(x)(1− EV (Θ0,x))
= φ2(x)− 2φ(x)EV (Θ0,x) + EV (Θ0,x). (4.1)

Therefore φ∗(x) = EV (Θ0,x) is the optimal solution, minimizing the pos-
terior risk.
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5 Discussion

It is easily seen that performance of a Pereira-Stern procedure as an infer-
ence about a precise hypothesis does not violate the Likelihood Principle.
This being not sufficient for the “Bayesianity” of the procedure, we have
proceeded to characterize it as a Bayesian test of hypotheses.

A loss function represents the preference of a decision-maker among
consequences dependent on unknown values of the state of nature (Savage
1954). Assuming separability of probability and utility (see Rubin 1987, for
a deeper approach), one would call “Bayesian” a procedure which minimizes
expected loss functions — the coherent solution to the decision problem.

Only loss functions that depend on the factor 1(θ ∈ T (x)) lead to
Pereira-Stern procedures. Pereira-Stern procedures, therefore, correspond
to Bayes tests with loss functions which depend on x. While not violat-
ing the Likelihood Principle — they are genuine “posterior” procedures
— these procedures formally allow for consideration of the statistician’s
embarrassment (or pride!) on having accepted (or rejected) the null hy-
pothesis when the value of θ is idealistically revealed to belong to T (x),
a “stylised form of statistical inference” (Bernardo and Smith 1994). The
consideration of such psychological components in the construction of loss
functions can only be welcomed. In a somewhat different scenario, Kadane
(1992) has resolved Allais’ paradox by using a utility function incorporating
the statisticians suspicion that offers were too good to be true.

Another interesting feature of a Pereira-Stern procedure revealed by
the examination of its “Bayesianity” is that the introduction of Jeffreys’s
prior probability for H0 removes from EV (Θ0,x) the condition of full test
statistic. A way out for this difficulty is to consider “loss” functions depen-
dent on the original prior density π(θ). We arrive at the curious conclusion
that performance of a Jeffreys’s test in this setting does not separate util-
ity (of rejection/acceptance) from probability (of θ). This phenomenon,
which has connections with the classic problem of assigning positive proba-
bility to a precise hypothesis, calls for further investigation. In any case, it
should be emphasized that the Pereira-Stern procedure - by avoiding Jef-
freys’s framework - separates utility from probability and keeps EV (Θ0,x)
as the full test statistic. It is a most important alternative for Jeffreys’s
Bayesian tests of precise hypotheses, not requiring the probability mass for
the precise hypothesis needed by the latter.
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