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The Full Bayesian Significance Test (FBST) is adjusted for jump detection in a
diffusion process. Under a natural parameterization, pure diffusion can be seen as
a precise hypothesis. The evidence measure defined by FBST deals with absolutely
continuous posterior distributions, when posterior rates for precise hypotheses are
not appropriate. Applications to simulated and real data are shown.
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1. Introduction

In the context of financial data, some variables often present strong discontinuities,
the so-called jumps. The well-known stochastic differential equation driven by a
Brownian motion of Black and Scholes (1973) may then become unsuitable.

Decision making in the presence of jumps has been recently considered, in
both theoretical and empirical work. Merton (1976) proposed diffusion models with
jumps where the logarithm of jump sizes is assumed to be Gaussian. Kou (2002)
suggested a double exponential law for that variable and a more general case, with
the power exponential distribution, was considered by Galea et al. (2004).

Several inferential techniques have been developed in this area. Lee and
Mykland (2007) presented a nonparametric approach; Chan (2005) suggested
maximum likelihood estimation. Continuous time models face however a difficulty
in detecting jumps, as available data are obviously discrete.

On the other hand, diffusion processes with jumps are inherently non
identifiable models: trajectories are sums of diffusion and jump processes.
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Full Bayesian for Jump-Diffusion Models 1263

The usual methodology of classical statistical inference then become inappropriate
(Khalaf et al., 2003; Luan and Xie, 2001). Finally, asymptotic sampling distributions
are particularly inadequate for small samples in this context.

This article proposes a full Bayesian inference approach for the problem. The
Full Bayesian Significance Test (FBST) was developed by Pereira and Stern (1999)
for sharp hypothesis testing in parametric models. The FBST is also the optimal
solution for the considered decision problem, as shown by Madruga et al. (2001),
who obtained well-defined loss functions that make FBST a genuine Bayes test.
Such loss functions are very useful in our context as the statistician may fix them
to particular numerical descriptions of her world. A deep analysis and revision of
FBST may be found in Pereira et al. (2008).

This article considers diffusion models with jumps driven by the following
stochastic differential equation:

dSt
St

= � dt + � dWt + dJt = � dt + � dWt + d

( Nt∑
i=1

�Vi − 1�
)
�

In the equation above, Wt is a standard Brownian motion, Nt is a Poisson Process,
and Vi are non negative independent identically distributed random variables. The
derivative � represents expected return.

By making time discrete with unit steps, the equation above can be
approximated by the difference equation

�St
St

d= � + �Z + BX�

Here, Z, B, and X are independent random quantities, Z having a standard Normal
law, B and X, and therefore the product BX, a Bernoulli law.

A natural parameterization of the previous convolution allows us to frame the
problem of jump detection as a test of hypothesis. In this test, the null hypothesis
of no jumps is a sharp hypothesis.

Section 2 describes the formulation of the diffusion model with jumps and
its discrete version. The parameterization of the model and the application of the
Full Bayesian Significance Test (FBST) to it are seen in Sec. 3. Section 4 has
numerical results for both real and simulated data, yielding also parameter estimates
of maximum posterior density. Section 5 discusses possible generalizations and
presents conclusions.

2. The Jump-Diffusion Model Formulation

In this section, we state the jump-diffusion model that motivated the statistics test
that we are interested in. Let ���� � P� ��t	� be a completed filtered probability
space on which is defined a Brownian motion W and a compound Poisson process J ,
both adapted to the filtration ��t	. More precisely, we assume that the process J
takes the following form:

Jt =
Nt∑
j=1

�Vj − 1�� t ≥ 0�
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1264 Rifo and Torres

where N = �Nt	 is a standard Poisson process with rate 
, and �Vj	 is a sequence of
i.i.d. non negative random variables. We assume that:

1. for each j, Xj = log�Vj� has a given distribution;
2. the process W , N , and Xj’s are independent;
3. �t = ��Ws� Js � 0 ≤ s ≤ t	� t ≥ 0, augmented under P so that it satisfies the usual

hypothesis.

With the previous notation, we consider the following stochastic differential
equation (SDE):

dSt
St

= � dt + � dWt + dJt = � dt + � dWt + d

( Nt∑
i=1

�Vi − 1�
)
� (1)

For notational simplicity the Brownian motion and jumps are assumed to be
one dimensional. These assumptions, however, can be relaxed to develop a general
theory.

2.1. Discrete Model

The goal of this section is to approximate Eq. (1) using the Euler method. From
Protter (1990), the solution to the SDE (1), describing the dynamics of the process,
is given by

St = S0e
��− �2

2 �t+�Wt

Nt∏
i=1

Vi�

From this,

�St
St

= St+1 − St
St

= exp
[(

� − �2

2

)
�t + ��Wt+�t −Wt�+

Nt+�t∑
i=Nt+1

Xi

]
− 1�

If �t is small enough, we can reject the terms of greatest order from Taylor
expansion, obtaining

�St
St

∼
(
� − �2

2

)
�t + ��Wt+�t −Wt�+

Nt+�t∑
i=Nt+1

Xi +
1
2
�2�Wt+�t −Wt�

2

∼ ��t + �Z
√�t +

Nt+�t∑
i=Nt+1

Xi�

where Z is a normal standard random variable. The unknown parameters are �,
which represents the expected return, �, the volatility, and 
, the jump rate.

As it was shown in Kou (2002), for �t = � small enough we have:

Nt+�∑
i=Nt+1

Xi =
{
XNt+�� w.p. 
�


0� w.p. 1− 
��
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Full Bayesian for Jump-Diffusion Models 1265

In other words, if � is sufficiently small, the return can be approximated in
distribution by

�St
St

d= ��+ �Z
√
�+ BX�

where B is a Bernoulli random variable with P�B = 1� = 
�, and Z ∼ N�0� 1�.
Hence, returns can be modeled as a convolution between a normal quantity and
a random quantity with distribution F , defined below. The random quantity that
defines the convolution is �

√
�Z + BX.

Note that

P
(
�
√
�Z + BX ≤ x

) = P
(
�
√
�Z + X ≤ x

)
P�B = 1�+ P

(
�
√
�Z ≤ x

)
P�B = 0�

= P
(
�
√
�Z + X ≤ x

)

�+ P

(
�
√
�Z ≤ x

)
�1− 
��� (2)

Let � = 1. Considering B and X independent Bernoulli quantities, with
parameters p′ and 
, respectively, then BX has a Bernoulli distribution with
parameter p = p′
.

There are many alternative models depending on the distribution of the jumps,
see for example Merton (1976), for the normal distribution, Kou (2002) for double
exponential, and Galea et al. (2004) for a generalization of the previous works.

From (2), the density function of R = � + �Z + BX has the following
representation:

f�r �p� �� �2� = 1√
2��2

(
�1− p�e

−1
2�2

�r−��2 + p e
−1
2�2

�r−��+1��2)
� (3)

Figure 1(a) shows a realization of the returns Rt = �St/St and the density (3),
for � = 1 day, � = 5, � = 0�2, p = 0�025. That is, there are p = 2�5% jumps with
size one.

Figure 1. Time plot and fitted density for frequencies of simulated data, p = 0�025,
ev��0� = 0�00442.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
R
i
f
o
,
 
L
a
u
r
a
]
 
A
t
:
 
2
0
:
5
1
 
1
 
A
p
r
i
l
 
2
0
0
9



1266 Rifo and Torres

3. Full Bayesian Significance Test for Bernoulli Jumps

For the problem presented in Sec. 2, let us consider the parametric space:

� = {
� = �p� �� �2� ∈ R3 � p ∈ �0� 1�� � ∈ R� �2 > 0

}
�

The hypothesis,

�0 = ��p� �� �2� ∈ � � p = 0	� (4)

that states that the process has no jumps, is a precise hypothesis in �.
Let ����� �� be a probability measure structure on � such that � determines a

priori probability distribution on �����, � the Borelian �-algebra on �, as usual.
After observing data d = �r1� � � � � rn�, according to Eq. (3), the likelihood for

the parameter � may be written as:

f�d � �� =
n∏

i=1

1√
2��2

[
p e

− 1
2�2

�ri−��+1��2 + �1− p�e
− 1

2�2
�ri−��2]

�

The information about � can be updated by Bayes’ theorem and quantified by
the posterior probability law on �, �d.

Full Bayesian Significance Test (FBST) can be applied when this posterior
distribution has a density function with respect to Lebesgue measure, f�� �d�. In that
case, the posterior probability of the precise hypothesis (4) is null, and therefore
posterior ratio is not a good criterion to compare both models with and without
jumps.

The evidence measure for the precise hypothesis (4) introduced by the FBST
procedure is defined as the posterior probability

ev��0� = 1− �d�T0�� (5)

where T0 is the so-called tangential set to �0,

T0 = �� ∈ � � f�� �d� > f0	� with f0 = sup
�0

f�� �d��

Hence, if tangential set has high posterior probability, the evidence in favor
of �0 is small; if it has low posterior probability, the evidence against �0 is small.

In Madruga et al. (2001), the Bayesianity of the test of significance based on
this evidence measure is shown, in the sense that there exists a loss function such
that the decision for rejecting the null hypothesis is based on its posterior expected
value minimization.

In order to compute evidence (5), we will define a prior distribution for
� = �p� �� �2�, f���, assuming that f��� has a non null finite value at p = 0. This
condition avoids ev��0� being trivially 0 or 1.

Under this formulation, the measure of evidence in favor of �0 defined by (5)
allows us to perform a significance test for �0 without having to modify the
posterior distribution, for instance, by assigning positive prior probability to a
precise hypothesis.
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Full Bayesian for Jump-Diffusion Models 1267

We will assume, in this article, that p and ��� �2� are independent, that p has a
Beta(� = 1� �) distribution, �2 has a InverseGamma(a� b) distribution, and, given �2,
� has a uniform law on ��0 − c�� �0 + c��.

The posterior density for � = �p� �� �2� is then

f�� �d� ∝ f���f�d � ��
∝ f�d � ���1− p��−1��2�−�b+3�/2e−a/�2�2�1�0�1�×��0−c���0+c��×�0�
��p� �� �

2��

for hyperparameters �, a, b, �0, and c given.

4. Numerical Results

4.1. Simulation

We used S-Plus to perform FBST on simulated data from the convolution of a
Normal�5� 0�22� and a Bernoulli with parameter p having the values 0, 0.025, 0.10,
0.35, and 0.50.

Data were standardized

zi =
ri − r̄

sr
� i = 1� � � � � n�

where r̄ and sr are, respectively, the sample mean and sample standard deviation,
with sample size n = 40.

The hyperparameters for the prior distribution were chosen to be � = 1,
a = 1�5, b = 0�5, �0 = 0, c = 10.

Table 1 presents the evidence values ev��0� for the distinct simulated rates,
second column, and also maximum posterior estimates and mean posterior estimates
for �p� �� ��, third and fourth columns, respectively.

Figure 1 presents the simulated data on time for a process having p = 0�025
as jump rate. The right-hand graph shows the data empirical density (in full line),
and the density adjusted by the posterior mode (in dotted line). Data suggest the
possibility of jumps, quantified by the small evidence in favor of the null hypothesis,
ev��0� = 0�00442.

Table 1
In the second column, evidence values for several jump rates, p, and modal and
mean posterior estimates for �p� �� �� at the third and fourth column, respectively

(� = 5, � = 0�2, sample size n = 40)

Posterior estimates for �p� �� ��

p ev��0� Mode Mean

0 1 (0.0000, 5.055, 0.2076) (0.4761, 4.567, 0.2110)
0.025 0.00442 (0.0505, 5.012, 0.1999) (0.0753, 5.016, 0.2060)
0.10 9.74e-8 (0.1293, 5.012, 0.1725) (0.1366, 5.016, 0.1836)
0.35 1.66e-4 (0.2933, 5.004, 0.2000) (0.3283, 5.004, 0.2094)
0.50 2.92e-5 (0.4837, 5.026, 0.2129) (0.5122, 5.030, 0.2314)
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1268 Rifo and Torres

Figure 2. Simulated data empirical density (full line), density adjusted by posterior mode
(dotted line), with jump rate and evidence, respectively: (a) p = 0, ev��0� = 1; (b) p = 0�1,
ev��0� = 9�74e− 8; (c) p = 0�35, ev��0� = 1�66e− 4; and (d) p = 0�5, ev��0� = 2�92e− 5.

Figure 2 shows the simulated data empirical density (full line) in each case and
the density determined by the posterior mode (dotted line), for the various rates
considered.

It can be seen that a strong bimodality in the sample is well detected by the
FBST procedure as expected. On the other hand, without a strong bimodality, the
evidence in favor of �0 is large, as seen in the graph of simulated data with p = 0,
where ev��0� = 1.

The computation of evidence values ev��0� was based on the simulation of
400,000 independent points uniformly distributed over the support of the posterior
distribution, and having their non normalized values, ��� �d�, computed. Other
400,000 points were uniformly generated on �0, in order to obtain the sample
maximum of the non normalized posterior density on �0, �0.

The posterior probability of the tangential set can be approximated by the ratio
of the sum of values of ��� �d� larger than �0 to the total sum of ��� �d� for all
generated points.

The mean time for running of this program was 600 s approximately, in a
standard PC.

Other optimization numerical methods which could be more efficient for
determining �0 and integrating on T0, may be used. Our simple method, however,
had a good performance for the problem of model choice between models having
Bernoulli jumps or models without jumps. Furthermore, it can be generalized in a
straightforward way for other classes of jumps.
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4.2. Venezuela Rainfall Data

Figure 3 presents Annual Maximum Rainfall Data (Maiquetia station at Venezuela
central coast) from 1951–1998.

Coles and Pericchi (2003) used these data to compare Bayesian and Classical
methods on the prediction of the 1999 catastrophic maximum of 410mm.

For this example, the jump size was considered random, so the parametric space
had one more dimension added to it, k, having a uniform prior distribution on
�0� 30�, independently from the other components,

� = {
� = �p� �� �2� k� ∈ R4 � p ∈ �0� 1�� � ∈ R� �2 > 0� k ∈ �0� 30�

}
�

and

f�d � �� =
n∏

i=1

1√
2��2

[
p e

− 1
2�2

�ri−��+k��2 + �1− p�e
− 1

2�2
�ri−��2]

�

The analysis obtained an evidence value in favor of �0, ev��0� = 0�05353. The
posterior mode and mean estimates for normalized data are

�p̂� �̂� �̂� k̂�mode = �0�09064�−0�1258� 0�4869� 2�242��

�p̂� �̂� �̂� k̂�mean = �0�1406�−0�2742� 0�7348� 2�398��

In original units, the posterior mode estimate represents the model

R̂mode = �R− 0�13sdR + 0�49sdRZ + 2�2sdRB1�

and the posterior mean estimate represents the model

R̂mean = �R− 0�27sdR + 0�73sdRZ + 2�4sdRB2�

where �R and sdR are the sample mean and the sample standard deviation of
observed returns, Z has standard normal distribution, B1 has a Bernoulli(0.09)
distribution, and B2 has a Bernoulli(0.14) law.

Figure 3. Venezuela annual maximum rainfall data, 1951–1998. Source: http://www.black
wellpublishing.com/rss/Volumes/Cv52p4.htm
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1270 Rifo and Torres

Figure 4. Real data empirical density (full line), posterior mean adjusted density (dotted line);
qqplot for data and posterior mean model. Evidence in favor of non-existence of jumps is
ev��0� = 0�05353.

As seen in Fig. 4, those estimates fit the observed data well. The posterior mode
estimate is here the maximum likelihood estimate, as the chosen prior is uniform
with large support.

5. Conclusions

In this work, we are testing two kinds of models: diffusion processes vs. diffusion
processes with Bernoulli jumps. We could also be interested in testing for more
general jump families, which allow, for instance, heavy-tailed distributions or
diffusion processes having non constant volatility against processes having constant
volatility.

The proposed test procedure extends naturally for each of these families of
models, as long as there is a sharp hypothesis to be tested. Modifications on
the likelihood function are straightforward. The computational cost increases with
the dimension of the parameter space, as the required probabilities are integrated
directly on the latter.

As in those examples, strong likelihood may jeopardize mixture properties of
the envolved Markov chains and therefore slow down the convergence rate of other
Monte Carlo methodologies.

We stress the absolute continuity of the posterior distribution. The chosen
priors are usually Lebesgue absolutely continuous, entailing absolute continuity of
the posterior for the models in our context.

Any sharp hypothesis has therefore null posterior probability and posterior
ratios are not a good criterion to compare models defined by sharp hypotheses.

The measure of evidence used in this article is associated to a decision problem
(Sec. 1). In the real decision problem, we could—and should—consider the loss
function theminimization of its expected value is tantamount to performing the FBST.
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