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Abstract Jeffreys and Pereira-Stern Bayesian procedures for testing provide measures

of evidence in favour the null hypothesis which can lead to different decisions. We in-

troduce two procedures for testing based on pooling the posterior evidences in favour

of the null hypothesis provided by these procedures. We prove that the proposed pro-

cedure which has been built using the linear pool of probability is a Bayes test and

does not lead to Jeffreys-Lindley paradox. We apply the results for testing precise hy-

pothesis about parameters of some asymmetric family of distributions including the

skew-normal one.
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1 Introduction

Jeffreys [11] introduces a procedure for testing that is based on the Bayes factor. Bayes

factor is defined as the ratio of the posterior to the prior odds in favour of the null

hypothesis H0. We decide in favour of H0, whenever the Bayes factor BF (H0, H1)

assumes high value. Equivalently, we can make our decision based on the posterior of

H0, P (H0|x), which is a function of the Bayes factor. This procedure is usually named

Jeffreys test.

More recently, Pereira and Stern [19] introduce another measure of evidence in

favour of H0. This measure of evidence is the region over the posterior obtained con-

sidering all points of the parametric space for which the posterior values are, at most,

as large as the supremum over the subset of the parametric space Θ induced by the
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null hypothesis. Therefore, Pereira-Stern measure of evidence in favour of the null hy-

pothesis, Ev(H0,x), is the posterior probability related to the less probable points of

Θ. The decision is in favour of H0, whenever Ev(H0,x) is small. This test procedure

is named Pereira-Stern or full Bayesian significance test (FBST, for short). For more

details on Bayesian procedure for test see [18], [12], [21], [22], [17], [4] among many

others.

Jeffreys test and the FBST are both Bayes tests for specific loss functions, thus, the

decision to be made under both procedures is the action that minimizes the posterior

risk ([7], [16]).

Jeffreys and Pereira-Stern measures of evidence are both usefull posterior sum-

maries and, in general, they lead to the same decision. However, some previous works

([20], [17], [15], for example) have shown that decisions that are made taking into con-

sideration such measures can differ. Different decisions are expected whenever the null

hypothesis is precise and improper priors or conjugate priors with variance going to

infinity are elicited to describe the prior uncertainty about the parameter. Under such

priors, Jeffreys test can lead to the Jeffreys-Lindley paradox ([22], [23]) which does not

occur if the FBST is assumed [19].

This paper aims at introducing two statistics for testing which consist of pooling

Jeffreys and Pereira-Stern measures of evidence in favour of H0. In order to aggregating

these two measures of evidence, we consider the linear and the logarithmic operators

which have been widely used in Group Decision Theory in order to obtain a consensus

probability measure. Thus, these proposed procedures are intermediate measures of

evidence in favour of H0. We verify the existence of a loss function which render

decision theoretic aspects to the proposed procedure which is building assuming the

linear operator, that is, we prove that it is also a Bayes test. We also prove that this

procedure does not lead to the Jeffreys-Lindley paradox. Although we could not prove

that the procedure constructed taking into consideration the logarithmic operator is

a Bayes test, we verify that it is a generalization of Jeffreys test. All four procedures

are applyed to some asymmetric family of distributions, including the standard skew-

normal.

This paper is organized as follows. Section 2 presents two usual mathematical meth-

ods for combining or aggregating probability distributions, the linear and the logarith-

mic operators, and some of their properties. Section 3 breafly presents Jeffreys test and

the FBST as a Bayes test. The connection between the FBST and the highest posterior

density regions is also provided. Two statistics for testing are introduced and some of

their properties are pointed out. In Section 5 the proposed procedures are applied to

exponential and standard skew-normal distributions. In order to evaluate the efficiency

of the proposed procedures a Monte Carlo study is performed. In Section 6 we test the

returns of some Latinamerican emerging markets for asymmetry. Section 7 closes the

paper with some conclusions.

2 Pooling probabilities

Combination or aggregation of probabilities plays an important role in decision prob-

lems in which there is a group of experts expressing their opinions about the events of

interest. This subject has been attracted attention in the literature for many years and

many pooling procedures have been proposed in order to obtain the group consensus
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probability distribution. Two typical and well-known procedures for pooling probabili-

ties are the linear and the logarithm operators. These two aggregating procedures will

be, briefly, reviewed in the following. More details about them and some others proce-

dures for pooling probabilities can be found in [8], [9] and [10], and, more recently, a

discussion is presented in the context of risk analysis by [6].

Denote by pi(θ), i = 1, . . . , n, the opinion of the ith expert about θ which can

be a mass function in the discrete case or a density function for the continuous case.

Let αi, i = 1, . . . , n, be non-negative weights such that
∑n

i=1 αi = 1. The consensus

probability distribution PLi is obtained by the linear probability pool whenever it is

given by:

PLi(θ) =

n∑

i=1

αipi(θ). (1)

Consider the same notation but, now, assume that αi > 0, i = 1, . . . , n. We say

that the consensus probability distribution PLo is obtained through the logarithmic

probability pool if it is of form

PLo(θ) =

∏n
i=1[pi(θ)]

αi

∫
Θ

∏n
i=1[pi(θ)]αi

dθ. (2)

These two pooling procedures satisfy some nice properties. The linear probability

pool given in (1) preserves unanimity, that is, PLi(θ) = a if pi(θ) = a, for all i.

Consequently, it satisfies the zero preservation property only if all experts unanimously

declare pi(θ) = 0. On the other hand, it preserves independency only if the group is

dictatorial, say, αi = 1 for some i, and expert i announce that the events of interest

are independent.

The logarithmic probability pool in (2) also satisfies independency and zero preser-

vation properties. However, it is not necessary unanimity for observing zero preserva-

tion property. In fact, such property follows whenever only one expert elicit pi(θ) = 0.

If we assume
∑n

i=1 αi = 1, the logarithmic probability pool also follows the axiom of

unanimity and, under this condition for the weights, the external Bayesianity property

is also satisfied, which means that, receiving extra information relevant to θ after pi(θ),

i = 1, . . . , n, has been declared, the new consensus probability obtained by updating

the original one is the same we obtain if we firstly update each expert opinion pi(θ)

and then combine them.

Next section, we consider these two procedures for aggregating probabilities to

obtain statistics for testing.

3 Test procedures

In this section we briefly review Jeffreys and the full Bayesian significance tests. Since

Jeffreys and Pereira-Stern measures of evidence in favour of the null hypothesis H0 are

probability measures and can lead to different decisions, we consider the two pooling

procedures presented in Section 2 to introduce intermediate measures of evidence in

favour of H0. We prove that the test procedure obtained assuming the linear pool of

probability is a Bayes test and does not lead to the Jeffreys-Lindley paradox.

Suppose that we are interested in testing the following hypothesis for θ:

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1, (3)
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where {Θ0, Θ1} is a partition of Θ, the parametric space of θ.

We focus our attention in tests for precise null hypotheses on θ, that is, we assume

Θ0 = {θ0} ⊂ Θ, where θ0 is a known value.

3.1 Jeffreys and Pereira-Stern tests

3.1.1 Jeffreys test

Typically, from Bayesian point-of-view, we elicit prior probabilities P (Hi) for the hy-

potheses Hi, i = 0, 1, and compute the posterior probability of Hi through Bayes’s

theorem. For precise null hypotesis, the posterior for H0 is given in terms of the Bayes

factor BF (H0, H1) = f(x|H0)/f(x|H1) = BF (H1, H0)
−1, say,

P (H0|x) =

[
1 +

P (H1)

P (H0)
BF (H1, H0)

]−1

. (4)

We accept H0 whenever its posterior probability is larger than the posterior prob-

ability of H1. In fact, Jeffreys test is a Bayes test whenever the following loss function

is assumed: {
L(Accept H0, θ) = ω11{θ ∈ Θ1}
L(Reject H0, θ) = ω01{θ ∈ Θ0}, (5)

where 1{A} is the indicator function of event A and ωi > 0, i = 1, 2. Thus, we decide

in favour of H0 if the posterior risk of accepting the null hypothesis is the smallest.

Consequently, under this appraoch, we accept H0 whenever

P (H0|x) >
ω1

ω1 + ω0
. (6)

For a detailed explanation of Jeffreys test see [11], [5], [18] and many others. It is

well known that, for testing precise hypothesis, Jeffreys test can lead to the Jeffreys-

Lindley paradox ([23], [22]). The FBST, which is briefly described in next section, was

introduced in literature in order to avoid such a problem.

3.1.2 Pereira-Stern test

Pereira-Stern or the Full Bayesian significance test (FBST) does not introduce prior

probabilities for the hypotheses Hi and makes the test for precise hypotheses simple

([19], [20]). To perform the FBST, the only necessary information is the posterior

distribution for θ. In this case, H0 is accepted if Θ0 is in a high posterior probability

region of Θ.

Let π(θ|x) be the posterior density of θ. Consider the following highest relative

surprise (HRS) set:

T (x) =

{
θ ∈ Θ : π(θ|x) ≥ sup

Θ0

{π(θ|x)}
}

. (7)

The posterior evidence in favour of the null hypothesis is given by EV (H0,x) =

1− Pr(θ ∈ T (x)|x). The null hypothesis H0 is accepted whenever EV (H0,x) is large.
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(See [17] for the FBST in its invariant formulation). As proved in [16], the FBST is a

Bayes test if the following loss function is assumed
{

L(Accept H0, θ) = b + c1{θ ∈ T (x)}
L(Reject H0, θ) = a[1− 1{θ ∈ T (x)}], (8)

where b, ξ and c are real, positive numbers. Consequently, from the decision theoretic

point-of-view, we accept H0 whenever

EV (H0,x) >
b + c

c + a
. (9)

Remark: A 100(1 − α)% region of highest posterior density (HPD region) for θ is

the set R(x) = {θ ∈ Θ : π(θ|x) ≥ cα} where cα is the largest constant such that

P (θ ∈ R(x)|x) ≥ 1 − α. It is usual to accept the null hypothesis if the value of θ

under test - say, θ0 - belongs to R(x) [18]. Consequently, decisions made considering

the Pereira-Stern measure of evidence and the HPD region are the same whenever

(i) α < (b + c)(c + a)−1 < EV (H0,x) or (b + c)(c + a)−1 < α < EV (H0,x), which

leads to the acceptance of H0;

(ii) (b + c)(c + a)−1 > α > EV (H0,x) or α > (b + c)(c + a)−1 > EV (H0,x), which

leads to the rejection of H0.

Otherwise, Pereira-Stern procedure and the HPD region will lead to different decisions.

3.2 Proposed procedures for testing

Since Jeffreys and Pereira-Stern measures of evidence in favour of the null hypothesis

H0 are probability measures, we can consider them as the opinions of two different

experts about the same event and combining them in order to obtain a consensus

probability measures that provide an intermediate evidence in favour of H0.

Considering the linear probability pool given in (1) we have a new measure of

evidence in favour of the null hypothesis that is given by:

PLi(H0|x) = αEv(H0,x) + (1− α)P (H0|x), (10)

where α ∈ [0, 1]. We decide in favour of the null hypothesis H0 whenever PLi(H0|x) is

large. This procedure is named along this paper Linear-pool-based test.

Considering the logarithmic probability pool in (2), another consensus measure of

evidence in favour of H0 is obtained and assumes the following form:

PLo(H0|x) =
[Ev(H0,x)]α[P (H0|x)]1−α

[Ev(H0,x)]α[P (H0|x)]1−α + [1− Ev(H0,x)]α[1− P (H0|x)]1−α
, (11)

where α ∈ [0, 1]. Similarly, we decide in favour of the null hypothesis H0 whenever

PLo(H0|x) is large. We name this procedure Logarithmic-pool-based test. Although

it is not necessary, in (11) we assume α ∈ [0, 1] because, under this condition, the

logarithmic probability pool follows the unanimity property.

After some calculations, the probability in (11) become:

PLo(H0|x) =

{
1 +

[
1− Ev(H0,x)

Ev(H0,x)

]α [
P (H1)

P (H0)
BF (H1, H0)

]1−α
}−1

, (12)
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which is a generalization of expression in (4). It is noteworthy that for the non trivial

case where α 6= 0, if Ev(H0,x) 6= 0 (even for Ev(H0,x) very close of 0 which is a strong

evidence against the null hypothesis) and P (H0|x) → 1 we have that PLo(H0|x) → 1.

Similar result is observed for Ev(H0,x) → 1 and P (H0|x) 6= 0.

It is well known that Jeffreys test can lead to the Jeffreys-Lindley paradox ([13],

[23]) which states that P (H0|x) → 1 for a precise null hypothesis and large sample sizes.

This can also be observed if conjugate prior with variance going to infinity or improper

priors are assumed [22]. Thus, the procedure in (11) can also lead to the Jeffreys-Lindley

paradox since it is enough having P (H0|x) → 1 to observe PLo(H0|x) → 1. On the

other hand, notice from (10) that PLi(H0|x) → 1 only if Jeffreys and Pereira-Stern

measure of evidence in favour of H0 tend both to 1.

Another important characteristic of the Linear-pool-based test in (10) is that it is

a Bayes test. In next section, we verify the existence of a loss function that confer a

decision theoretic aspect to such a procedure.

3.3 The Bayesianity of the Linear-pool-based test

Let us assume the following loss function:{
L(Accept H0, θ) = (1− α)γ1(θ ∈ Θ1) + α[β + γ1(θ ∈ T (x))]

L(Reject H0, θ) = (1− α)ξ1(θ ∈ Θ0) + αξ[1− 1(θ ∈ T (x))],
(13)

where α ∈ [0, 1], β ≥ 0, ξ and γ are real, positive numbers.

Theorem: Minimization of the posterior expected loss function in (13) is the Linear-

pool-based test.

Proof: The posterior risk of accepting H0 is

Eπ(L(Accept H0, θ)|x =

∫

Θ

[(1− α)γ1(θεΘ1) + α[β + γ1(θεT (x))]]π(θ|x)dθ

= (1− α)γ

∫

Θ1

π(θ|x)dθ + αb

∫

Θ

π(θ|x)dθ + αγ

∫

T (x)

π(θ|x)dθ

= (1− α)γP (H1|x) + αβ + αγ(1− Ev(H0, x))

= (1− α)γ + α(β + γ)− γPLI(H0|x).

The posterior risk of rejection is

Eπ(L(Reject H0, θ)|x) =

∫

Θ

[(1− α)ξ1(θεΘ0) + αξ[1− 1(T (x))]]π(θ|x)dθ

= (1− α)ξ

∫

Θ0

π(θ|x)dθ + αξ

∫

Θ

π(θ|x)dθ − αξ

∫

T (x)

π(θ|x)dθ

= (1− α)ξP (H0|x) + αξEv(H0, x))

= ξPLI(H0|x).

Therefore, the test is to accept the null hypothesis if, and only if, Eπ(L(AcceptH0, θ)|x) <

Eπ(L(RejectH0, θ)|x), that is, whenever we have that:

(1− α)γ + α(b + γ)− γPLI(H0|x) < ξPLI(H0|x)

PLI(H0|x) >
γ + αβ

γ + ξ
. (14)
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4 Criterion to compare Bayes tests

Next sections will present comparisons among the test procedures discussed in the

previous one. Since the usual Bayesian procedures for testing and the test proceduce

based on the linear aggregation of the usual measures of evidence in favour of the

null hypothesis (linear-pool-based test) are Bayes test, in order to fairly compare such

procedures, we assume that the prior risks of accepting (rejecting) the null hypothesis

are equals for all three procedures and, thus, we define the cut points for acceptance

given by (6), (9) and (14).

Denote respectively by Ev(H0) and PLI(H0) the prior evidences in favour of the

null hypothesis provided by the FBST and the test built using the linear operator.

Assume that Ev(H0) ∈ (0, 1) and PLI(H0) ∈ (0, 1). By doing equal the prior risks of

acceptance for the three procedures, it follows that:

c =
ω1P (H1)− b

1− Ev(H0)
, (15)

γ =
ω1P (H1)− αβ

1− PLI(H0)
. (16)

Similarly, assuming that the risks of rejecting H0 for the three procedures are equal,

the values of a and ξ are given, respectively, by:

a =
ω0P (H0)

Ev(H0)
, (17)

γ =
ω0P (H0)− αβ

PLI(H0)
. (18)

The cut points are then defined by specifying b, β, ω0 and ω1. It is noticeable that

if Ev(H0) = 1, the constant c is arbitrarely chosen and the expressions to obtain b and

a are simplified.

Since we have not found a loss function which render the test constructed using

the logarithmic operator (logarithmic-pool-based test), we can assume the same cut

point as in (14) whenever it is possible to assume P (H0) = Ev(H0) = p. Because

the unanimity property, in this cases, logarithmic and linear operators provide equal

measures of evidence in favour of H0. Consequently, whenever p 6= 0 we have that

ω0 = a = ξ and the other values are obtained as before. On the other hand, whenever

p = 0 it follows that ω0 = a = ξ, b = β = 0 and c and γ are arbitrarily chosen.

5 Comparing the test procedures

In this section we performe a Monte Carlo study in order to compare the test procedures

presented in the previous section. We focus the attention in tests for a precise null

hypothesis, say, we assume H0 : θ = θ0, where θ0 is a known value, and consider

two asymmetric families of probability distributions: the exponential and the standard

skew-normal distributions. In both cases, we assume α = 0.5. We consider two sample

sizes (n = 10 and 100). We also consider 1,000 replications of the likelihood with

parameter θTrue.

In order to make the procedures comparable, the cut points k for acceptance of H0

are defined considering the criterion described in Section 4. We assume that b and β
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in expressions (8) and (13) are close to zero. We also assume that P (H0) is equal or

very close to EV (H0). Under such conditions linear and logarithmic probability pools

provide similar results then we can use the same cut point to make decisions about the

null hypothesis. Thus, for all test procedures, we will accept the null hypothesis if the

posterior evidence in favour of H0 is higher than k = ω1(ω1 + ω0)
−1.

5.1 Tests under the exponential distribution

In this section the goal is to evaluate the performance of the proposed procedures

whenever a non informative conjugate prior is assumed. We consider a simple situation

where X1, . . . , Xn|θ iid∼ exp(θ), θ > 0 and θ ∼ Gamma(ψ, β). Consequently, we have

that θ|x ∼ Gamma(ψ + n, β +
∑n

i=1 xi) and it follows that the Bayes factor and the

Pereira-Stern measure of evidence in favour of H0 are given, respectively, by:

FB(H0, H1) =
Γ (ψ)(β + Σn

i=1xi)
ψ+n

βψΓ (ψ + n)
θ0e

−θ0

∑n

i=1
xi ,

Ev(H0,x) = 1−
∫

T (x)

e
−θ(β+

∑n

i=1
xi)θψ+n−1(β +

∑n
i=1 xi)

ψ+n

Γ (ψ + n)
dθ, (19)

where T (x) = {θ ∈ R+ : (ψ + n − 1) log(θ/θ0) ≥ (β + nx̄)(θ − θ0)}. Assume that

θ0 is smaller than the posterior mode. Since the Gamma distribution is unimodal,

T (x) = {θ : θ0 ≤ θ ≤ a}, where a is such that log(θ0)−θ0(β+
∑n

i=1 xi)[ψ+n−1]−1 =

log(a)−a(β+
∑n

i=1 xi)[ψ+n−1]−1. Thus, denoting by Γa(α, δ) the cdf of the Gamma

distribution Gamma(α, δ) evaluated in a it follows that:

Ev(H0,x) = 1− Γa

(
ψ + n, β +

n∑

i=1

xi

)
+ Γθ0

(
ψ + n, β +

n∑

i=1

xi

)
.

We obtain Ev(H0,x) for θ0 greater than the posterior mode similarly.

In Tables 1 and 2, we provide the average of the posterior measures of evidence

in favour of the null hypothesis and the percentage of acceptance of H0 for dif-

ferent cut points k, respectively. We consider θ0 = 1 and assume that, a priori,

θ ∼ Gamma(0.001, 0.001). Consequently, we have that EV (H0) = 0.0063. Notice from

Table 1 that, in average, for both sample sizes, the posterior evidence in favour of H0

whenever the null hypothesis is true is higher than we have a prior, for all procedures.

Moreover, Jeffreys test provides the highest average for the posterior evidence in favour

of H0. The proposed procedures are comparable and provides better result than we

obtain for the FBST. For θTrue 6= θ0 and n = 10, in average, the FBST has the best

performance always providing the smallest average for the evidence in favour of H0

and the proposed procedures brings some improvement to the analysis if compared to

the Jeffreys test. In this case, the logarithmic-pool-based test is slightly better than

the one built assuming the linear probability pool. Similar conclusions can be drawn

for n = 100. In this case, however, it is noticeable that all four procedures provide the

same mean evidence in favour of the null hypothesis, except for θTrue = 0.9, 1.0 and

1.5.

It is noteworthy from Table 2 that, for samples of sizes n = 10, the percentage

of acceptance of H0 tends to be smaller for high cut points for all procedures. For
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Table 1 Posterior mean evidences in favour of H0, exponential case

θT rue Ev(H0, x) P (H0|x) PLi(H0|x) PLo(H0|x)

Sample size n = 10

0.5 0.0892 0.3982 0.2437 0.1948
0.9 0.4334 0.7990 0.6162 0.6145
1.0 0.5229 0.8151 0.6690 0.6733
1.5 0.4001 0.6837 0.5419 0.5360
2.0 0.1829 0.4715 0.3272 0.3055
2.5 0.0783 0.2960 0.1872 0.1615
3.0 0.0334 0.1614 0.0974 0.0773

Sample size n = 100

0.5 0.0000 0.0000 0.0000 0.0000
0.9 0.3253 0.8495 0.5874 0.5969
1.0 0.5020 0.9228 0.7124 0.7500
1.5 0.0055 0.1156 0.0606 0.0291
2.0 0.0000 0.0000 0.0000 0.0000
2.5 0.0000 0.0000 0.0000 0.0000
3.0 0.0000 0.0000 0.0000 0.0000

k = 0.90 and 0.95 the percentage of acceptance of the null hypothesis is very small for

all values of θTrue (including θTrue = θ0) and all test procedures and it is zero for

the Jeffreys test whenever k = 0.90, and for Jeffreys test and the test procedure based

on the linear operator whenever k = 0.95. For k = 0.05 and 0.10, the percentage of

acceptance of H0 tends to be high for all values of θTrue (including θTrue 6= θ0). For

the intermediate values of k, the percentage of acceptance tends to be close to zero

for values of θTrue close to θ0. The percentage of acceptance under all test procedures

is higher then 50.0% for k = 0.33 and θTrue = 0.9, 1.0 and 1.5. The same result is

observed for the Jeffreys test if k = 0.67. For n = 100 we observe an improvement

in the results for all procedures maily for small values of k, that is, assuming the cut

points k = 0.05 and 0.10 and, for the Jeffreys test whenever k = 0.90 and 0.95. It is

nothworthy that the FBST presents better performance for θTrue close to θ0. See also

Figure 1 for the percentage of rejection of H0 or the empirical power function of the

tests for some particular cases.
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Fig. 1 Emprirical power function for Pereira and Stern (full line), Jeffreys(•), linear-pool-
based (dashed line) and logarithimc-pool-based (∗) tests, cut point k = 0.05, n = 10 (left) and
100, exponential case.
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Table 2 Percentage of acceptance of H0, exponential case

θT rue Ev(H0.x) P (H0|x) PLi(H0|x) PLo(H0|x) Ev(H0.x) P (H0|x) PLi(H0|x) PLo(H0|x)

Sample size n = 10

k = 0.05 k = 0.10

0.5 0.298 0.747 0.695 0.558 0.213 0.692 0.620 0.464
0.9 0.915 0.997 0.995 0.983 0.845 0.994 0.989 0.964
1.0 0.949 1.000 0.997 0.992 0.901 0.997 0.991 0.979
1.5 0.884 0.985 0.970 0.956 0.791 0.966 0.945 0.915
2.0 0.649 0.915 0.868 0.819 0.486 0.859 0.787 0.714
2.5 0.399 0.769 0.690 0.602 0.245 0.675 0.571 0.471
3.0 0.176 0.577 0.472 0.382 0.078 0.450 0.318 0.232

k = 0.33 k = 0.67

0.5 0.090 0.531 0.335 0.236 0.028 0.285 0.062 0.081
0.9 0.562 0.975 0.917 0.858 0.251 0.880 0.426 0.482
1.0 0.704 0.979 0.939 0.901 0.374 0.900 0.563 0.629
1.5 0.513 0.891 0.769 0.734 0.237 0.674 0.368 0.404
2.0 0.192 0.656 0.455 0.400 0.049 0.327 0.091 0.105
2.5 0.041 0.404 0.215 0.173 0.005 0.116 0.017 0.021
3.0 0.012 0.178 0.066 0.055 0.002 0.037 0.003 0.003

k = 0.90 k = 0.95

0.5 0.009 0.000 0.007 0.007 0.004 0.000 0.000 0.001
0.9 0.092 0.000 0.076 0.080 0.047 0.000 0.000 0.023
1.0 0.108 0.000 0.089 0.090 0.057 0.000 0.000 0.021
1.5 0.059 0.000 0.045 0.048 0.025 0.000 0.000 0.013
2.0 0.015 0.000 0.012 0.013 0.008 0.000 0.000 0.004
2.5 0.003 0.000 0.003 0.003 0.003 0.000 0.000 0.002
3.0 0.001 0.000 0.001 0.001 0.000 0.000 0.000 0.000

Sample size n = 100

k = 0.05 k = 0.1

0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.9 0.785 0.995 0.990 0.948 0.687 0.990 0.977 0.912
1.0 0.945 1.000 0.999 0.997 0.882 0.999 0.999 0.993
1.5 0.025 0.391 0.288 0.137 0.011 0.286 0.204 0.069
2.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k = 0.33 k = 0.67

0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.9 0.417 0.955 0.883 0.784 0.165 0.875 0.366 0.524
1.0 0.662 0.997 0.979 0.938 0.348 0.976 0.597 0.753
1.5 0.001 0.128 0.042 0.018 0.000 0.037 0.001 0.002
2.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k = 0.90 k = 0.95

0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.9 0.044 0.645 0.069 0.106 0.018 0.352 0.022 0.024
1.0 0.119 0.833 0.177 0.240 0.058 0.549 0.069 0.072
1.5 0.000 0.004 0.000 0.000 0.000 0.001 0.000 0.000
2.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

In summary, if compared to Jeffreys test, the proposed test procedures are better

whenever θTrue 6= θ0. For θTrue = θ0, they tend to have better performance than the

FBST. The test based on the logarithmic operator is better than the test costructed

assuming the linear operator whenever θTrue 6= θ0 and for k up to 0.33. For such cut

points the test based on the linear operator is better if the null hypothesis is true.
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5.2 Tests under the skew-normal distribution

Bayesian inference for the skewness parameter λ in the skew-normal family of distribu-

tion ([2]) has been considered, for instance, by [14], [3] and [1]. Jeffreys test for λ was

firstly considered by [3] that assume two centered student-t prior distributions for λ,

with small degrees of freedom - one of which shows to be a good approximation for the

reference prior introduced by [14]. In this section, we consider tests for the skewness

parameter under the standard skew normal distribution [2] assuming normal priors for

the skewness parameter.

Denote by φn(.; µ, Σ) and Φn(.; µ, Σ) (φn(.) and Φn(.)) the pdf and the cdf, re-

spectively, of the n-variate normal distribution Nn(µ, Σ) (Nn(0, In)). Supose that,

given the skewness parameter λ ∈ R, the random variables X1, ..., Xn are iid with

standard skew-normal distribution [2] which density is fx(x|λ) = 2nφn(x)Φn(λx). As-

sume that λ ∼ N(m, v). Thus, the posterior is also a skewed distribution which pdf is

π(λ|x) = φ(λ; m, v)Φn(λx) [Φn(mx;0, In + vxxt)]−1.

Under such assumptions, for testing H0 : λ = λ0, we have that the Bayes factor

and the Pereira-Stern measure of evidence in favour of H0 are given, respectively, by:

FB(H0, H1) =
Φn(λ0x)

Φn(mx;0, In + vxxt)
, (20)

Ev(H0,x) = 1−
∫

T (x)

φ(λ; m, v)
Φn(λx)

Φn(mx;0, In + vxxt)
dλ, (21)

where T (x) = {λ ∈ R : φ(λ; m, v)Φn(λx) ≥ φ(λ0; m, v)Φn(λ0x)}.
In the Monte Carlo study in the following, we assume λ0 = 0, that is we are testing

for normality, and assume prior distributions centered in m = 0. As a consequence, the

tangencial set is given by T (x) = {λ ∈ R : λ2 ≤ 2v
∑n

i=1 log[2Φ(λxi)]}.
We assume two priors for λ - λ ∼ N(0, 1) and λ ∼ N(0, 50). Thus the prior evidence

in favour of H0 is EV (H0) = 1.0. To define the cut points we also assume P (H0) = 0.95.

Table 3 shows the average of the posterior measures of evidence in favour of the

null hypothesis. It can be noticed that, in average, the posterior evidences in favour

of H0 is smaller than we have a priori for all procedures, except for Jeffreys test if

the null hypothesis is true. Taking, for instance, n = 10 and the cut point k = 0.33,

and assuming that λ ∼ N(0, 1), we conclude that, in average, Jeffreys test leads to the

wrong decision for all values of λTrue 6= 0 and the proposed procedures leads to it for

values of λTrue close to zero.

Table 4 shows the percentage of acceptance of H0 for different cut points k. See

also Figure 2 for the empirical power function for some particular cases. From Table

4 we conclude that all test procedures have better performance for large sample sizes,

except whenever λTrue = 0, for the Logarithmic-pool-based test, if k = 0.67 and

λ ∼ N(0, 50), and for Pereira-Stern and Linear-pool-based tests. Similar to what was

observed for the exponential case, Jeffreys test is the best if the null hypothesis is true

and Pereira-Stern test works better whenever the null hypothesis is false. For samples

of size n = 100, the use of an informative prior tends to lead to better results for

all test procedures. However, that is not the case for small samples. For n = 10, the

empirical power function of Jeffreys test tends to be closer to the ideal one for both cut

points and if λ ∼ N(0, 50). Similar behavior is observed for the proposed procedures

and assuming k = 0.33. For n = 100 and both prior specifications, its noticeable the

good performance of the Logarithmic-pool-based test. The percentage of acceptance of
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Table 3 Posterior mean evidences in favour of H0, skew-normal case

λT rue Ev(H0, x) P (H0|x) PLi(H0|x) PLo(H0|x)

λ ∼ N(0, 1) and n = 10

-10 0.0107 0.4637 0.2372 0.0915
-5 0.0142 0.5005 0.2574 0.1113
-2 0.0404 0.6198 0.3301 0.2095

-0.5 0.3380 0.9136 0.6258 0.6648
0 0.5065 0.9550 0.7307 0.8010

0.5 0.3281 0.9096 0.6188 0.6552
2 0.0426 0.6316 0.3371 0.2191
5 0.0145 0.5076 0.2611 0.1137
10 0.0107 0.4674 0.2391 0.0923

λ ∼ N(0, 50) and n = 10

-10 0.0009 0.1181 0.0595 0.0111
-5 0.0022 0.2161 0.1092 0.0299
-2 0.0266 0.5482 0.2874 0.1857

-0.5 0.3063 0.9422 0.6243 0.7255
0 0.4879 0.9826 0.7353 0.8701

0.5 0.3101 0.9342 0.6222 0.7264
2 0.0238 0.5326 0.2782 0.1737
5 0.0025 0.2144 0.1085 0.0310
10 0.0009 0.1147 0.0578 0.0113

λ ∼ N(0, 1) and n = 100

-10 0.0087 0.0000 0.0043 0.0000
-5 0.0119 0.0000 0.0060 0.0000
-2 0.0118 0.0000 0.0059 0.0000

-0.5 0.0136 0.2927 0.1532 0.0704
0 0.5019 0.9841 0.7430 0.8589

0.5 0.0146 0.2819 0.1483 0.0711
2 0.0119 0.0000 0.0060 0.0000
5 0.0107 0.0000 0.0053 0.0000
10 0.0080 0.0000 0.0040 0.0000

λ ∼ N(0, 50) and n = 100

-10 0.0003 0.0000 0.0002 0.0000
-5 0.0015 0.0000 0.0008 0.0000
-2 0.0230 0.0000 0.0115 0.0000

-0.5 0.2159 0.5027 0.3593 0.2085
0 0.4875 0.9964 0.7419 0.8381

0.5 0.2269 0.4528 0.3399 0.1964
2 0.0208 0.0000 0.0104 0.0000
5 0.0014 0.0000 0.0007 0.0000
10 0.0004 0.0000 0.0002 0.0000

the null hypothesis for both cut points is close to the one observed for Jeffreys test,

when H0 is true, and it is very close of zero, otherwise.

It is noteworthy that the results obtained for Jeffreys test and the FBST whenever

λ ∼ N(0, 1) is comparable to the ones obtained by [3] using the Bayes factor and the

95% HPD region, respectively.

6 Application: Latin American Emerging markets returns

It is well known that emerging markets are more susceptible to the political scenario

than developed markets thus their indexes tend to present more atypical observations

as well as structural changes. In this cases, normality can be a strong assumption since
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Table 4 Percentage of acceptance of H0, skew-normal case

λT rue Ev(H0.x) P (H0|x) PLi(H0|x) PLo(H0|x) Ev(H0.x) P (H0|x) PLi(H0|x) PLo(H0|x)

Sample size n = 10

λ ∼ N(0, 1)

k = 0.33 k = 0.67

-10 0.000 0.799 0.133 0.010 0.000 0.091 0.000 0.000
-5 0.000 0.847 0.198 0.035 0.000 0.152 0.000 0.000
-2 0.010 0.912 0.478 0.212 0.001 0.439 0.008 0.034

-0.5 0.401 0.995 0.963 0.868 0.173 0.959 0.360 0.587
0 0.686 1.000 0.991 0.961 0.329 0.990 0.651 0.826

0.5 0.405 0.996 0.951 0.857 0.163 0.944 0.372 0.556
2 0.014 0.896 0.512 0.234 0.001 0.477 0.010 0.030
5 0.000 0.845 0.212 0.031 0.000 0.167 0.000 0.001
10 0.000 0.810 0.130 0.007 0.000 0.090 0.000 0.000

λ ∼ N(0, 50)

k = 0.33 k = 0.67

-10 0.000 0.046 0.002 0.000 0.000 0.002 0.000 0.000
-5 0.000 0.213 0.072 0.003 0.000 0.070 0.000 0.000
-2 0.015 0.648 0.483 0.217 0.002 0.468 0.014 0.057

-0.5 0.373 0.976 0.953 0.870 0.170 0.953 0.363 0.692
0 0.655 0.996 0.990 0.970 0.316 0.990 0.645 0.902

0.5 0.378 0.965 0.944 0.862 0.170 0.940 0.364 0.706
2 0.009 0.652 0.459 0.194 0.005 0.446 0.009 0.059
5 0.000 0.219 0.068 0.009 0.000 0.062 0.000 0.001
10 0.000 0.042 0.004 0.001 0.000 0.004 0.000 0.000

Sample size n = 100

λ ∼ N(0, 1)

k = 0.33 k = 0.67

-10 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
-5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
-2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-0.5 0.002 0.367 0.194 0.064 0.000 0.188 0.001 0.011
0 0.673 1.000 0.999 0.980 0.340 0.999 0.649 0.899

0.5 0.001 0.344 0.192 0.063 0.000 0.186 0.001 0.013
2 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

λ ∼ N(0, 50)

k = 0.33 k = 0.67

-10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
-5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
-2 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-0.5 0.312 0.578 0.601 0.265 0.099 0.442 0.039 0.088
0 0.640 1.000 1.000 0.886 0.342 0.999 0.630 0.870

0.5 0.337 0.514 0.558 0.241 0.102 0.384 0.029 0.076
2 0.005 0.000 0.001 0.000 0.001 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

the empirical distributions of such markets often exhibits skewness and tails that are

lighter or heavier than normal distribution.

In this section, we consider the return series of the main stock indexes of four Latin

American markets, say, the MERVAL (Índice de Mercado de Valores de Buenos Aires)

of Argentina, the IBOVESPA (Índice da Bolsa de Valores do Estado de São Paulo)

of Brazil, the IPSA (Índice de Precios Selectivos de Acciones) of Chile and the IPyC

(Índice de Precios y Cotizaciones) of Mexico. The stock returns are recorded weekly

from October 31, 1995 to October 31, 2000.
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Fig. 2 Emprirical power function for Pereira and Stern (full line), Jeffreys(•), linear-pool-
based (dashed line) and logarithimc-pool-based (∗) tests, cut point k = 0.33, n = 100, v =
1(left) and 50, skew-normal case.

The data sets consist of the return series r1, . . . , rn that were transformed in order

to be better fitted by the standard skew-normal distribution with unknown skewness

parameter, say, the data sets are yi = ri(r̄2)−0.5, i = 1, . . . , n, where r̄2=
∑n

i=1 r2
i /n.

(By using this tranformation it follows that E(Y ) = 1 and CV(Y)=CV(R)).

We assume that λ ∼ N(0, 50), consequently, the prior evidence in favour of H0 is

1.0. We also consider two prior specifications for H0 - a non-informative prior which

establishes that P (H0) = 0.5 and the other one that assume that P (H0) is close to

the prior Pereira-Stern measure of evidence in favour of the null hypothesis, that is,

we assume P (H0) = 0.99. Under the last prior, we can assume the same cut point k

for accepting H0 for all procedures, since in this case the linear and the logarithmic

probability pool have similar behavior.

Table 5 and Figure 3 present, respectively, posterior summaries and the densities for

the skewness parameters for the four indexes. The area in grey represents the posterior

Pereira-Stern measure of evidence in favour of the null hypothesis.

Table 5 Posterior summaries for the skewness parameter

mean variance mode

MERVAL 0.0016 0.0004 0.0838
IBOVESPA 0.0982 0.0130 0.0986

IPSA -0.0008 0.0003 -0.0455
IPyC 0.1338 0.0137 0.1436

Notice from Figure 3 that the posteriors of λ for all indexes have unique modes and

put most of their mass in small values of λ which means that we have evidence of small

asymmetry for all stock returns. It can also be perceived from Table 5. Notice that

Bayes estimates (posterior means and modes) point out that the skewness parameters

λ for all indexes are small. Moreover, for MERVAL and IPSA, the estimates for λ are

very close of zero which means that, for Argentinean and Chilean stock markets, the

assumption of normality for the returns can be a reazonable one. IPyC presents the
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Fig. 3 Posteriors for the skewness parameters and posterior evidences EV (H0, x) (area in
grey)

highest asymmetry - for this index, we observe λ̂ close to 0.13. The asymmetry for all

indexes is positive, except for IPSA.

Table 6 Tests for the skewness parameter

P (H0) = 0.99 P (H0) = 0.50

EV (Ho, x) P (H0|x) PLi(H0|x) PLo(H0|x) P (H0|x) PLi(H0|x) PLo(H0|x)

MERVAL 0.9895 0.9892 0.9894 0.9894 0.4808 0.7352 0.9033
IBOVESPA 0.3869 0.9998 0.6933 0.9810 0.9771 0.6820 0.8384

IPSA 0.9950 0.9892 0.9921 0.9927 0.4815 0.7383 0.9315
IPyC 0.2676 0.9996 0.6336 0.9685 0.9630 0.6153 0.7551

Table 6 presents the posterior evidences in favour of H0 for all procedures. Notice

that the proposed procedures and Pereira-Stern posterior evidences in favour of H0 are

higher for MERVAL and IPSA than for IBOVESPA and IPyC, for all choices of P (H0)

while the opposite is observed for Jeffreys test. We also notice that logarithmic and

Jeffreys test provide very close evidence in favour of H0, mainly, for P (H0) = 0.99.

For P (H0) = 0.99 and assuming that ω0 = ω1 (say, k = 0.50), Pereira-Stern test

leads to the conclusion that the returns of MERVAL and IPSA are symmetric and that

the returns of IBOVESPA and IPyC are asymmetric. All the other procedures lead to
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the conclusion that the returns for all indexes are distributed according to the standard

normal distribution. If we assume that 2ω0 = ω1 the same conclusion is drawn, except

that in this case the Linear-pool-based test also points out that the distribution of the

IPyC returns has asymmetric behaviour. Jeffreys and Logarithmic-pool-based tests

provide strong evidence in favour of the null hypothesis in all cases - it is noteworthy

that we will accept the null hypothesis for all cut points k < 0.9685. Notice also

that Pereira-Stern and the Linear-pool-based tests lead to the same conclusion for

all k > 0.6933 and k < 0.9894, in this cases, accepting the null hypothesis only for

MERVAL and IPyC.

Now asssume that P (H0) = 0.50. In this case the evidences in favour of the null

hypothesis provided by the Linear-pool-based and Logarithmic-pool-based tests are

higher than 0.61 for all indexes, which means that we have a relatively strong evidence

of asymmetry for the returns. Consider an arbitrary cut point k = 0.90 which is

an usual cut point in classical significance test procedures. In this case, the FBST

and the Logarithmic-pool-based test lead to the conclusion that the returns of IPSA

and MERVAL have symmetric behavior, that is, they are normally distributed. The

same conclusion is drawn for the returns of IPSA, IBOVESPA, IPyC and MERVAL

if the Linear-pool-based test is assumed as the test procedure. Moreover, in this case,

Pereira-Stern and Jeffreys tests lead to opposite decisions. Similar behaviour is observed

when comparing Jeffreys and Logarithmic-pool-based tests. Notice that according to

Jeffreys test we conclude that MERVAL and IPSA has asymmetric behaviour what is

a contradiction if we take into consideration the estimates in Table 5.

7 Final Remarks

In this paper we introduced two Bayesian procedures for hypotheses testing which

are based on aggregating Jeffreys and Pereira-Stern measures of evidence in favour of

the null hypothesis. These procedures were constructed considering the linear and the

logarithmic operators which are typical procedures to obtain a consensus probability

in Group Decision Theory. We performed a Monte Carlo study in order to compare

all the four procedures assuming asymmetric families of distribution. We applied the

procedures to test the returns of some Latin American emerging stock markets for

asymmetry.

From the simulation study we concluded that, in general, the proposed test pro-

cedures tend to be better than Jeffreys test whenever the null hypothesis is false, and

they tend to have better performance than Pereira-Stern test (FBST) whenever the

null hypothesis is true. The Logarithmic-pool-based (Linear-pool-based) test tends to

be better than the linear-pool-based (logarithmic-pool-based) one whenever the null

hypothesis is false and small (large) cut points are considered.

Overall, the proposed procedures, mainly the Logarithmic-pool-based test, bring

some improvement and show to be reazonable approaches for testing.
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