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Bayesian Inference

Full Bayesian Significance Test for
Zero-Inflated Distributions

JOSEMAR RODRIGUES

UFSCar-DEs, São Carlos, SP-Brazil

In this article, we discuss an application of the Full Bayesian Significance Test
(FBST) introduced by Pereira and Stern (1999) to compute the evidence of the
Poisson distribution against the Zero-Inflated Poisson distribution (ZIP). The FBST
is intuitive and easy to implement via Winbugs as an alternative to the classical tests
formulated by Xie et al. (2001) in statistical process context. This evidence measure
is based on the augmented data and used to test the fitting of the ZIP model for
count data with excess of zeros in two illustrative examples in the statistical process
control and the horticultural research.

Keywords Augmented data; Evidence; Gibbs sampling; Poisson distributions;
Horticultural research; Mixture distributions; Statistical control process.

Mathematics Subject Classification 62F15.

1. The Zero-Inflated Distribution (ZID)

Usually the count data set with excess of zero can arise in many areas, particularly
in quality studies in industry and horticultural research. This type of count data is
modeled by the ZID and the classical fitting tests are based on asymptotic results
(Xie et al., 2001). For example, the Poisson distribution has often been used for
count data, however, this model does not provide a good fit to actual data when
there is a frequent or excessive number of zero counts. In such a situation, the zero-
inflated distribution (ZID) is more appropriate. In this article, this distribution is
studied from the Bayesian point of view using the data augmentation algorithm.
The zero-inflated Poisson distribution (ZIP) and illustrative examples, via MCMC
algorithm implemented in Winbugs, are considered. In particular, the Full Bayesian
Significance Test (FBST) is computed to verify a good fit of the Poisson distribution.
The FBST is a measure of evidence of a precise hypothesis which is the posterior
probability of the set of points having smaller density than the supremum over the
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300 Rodrigues

Table 1
The discrete mixture
distribution on �

� P

0 �
� 1− �

hypothesis. In the statistical process context this evidence measure can be used to
check the validity of the Poisson distribution, since the ZIP model is complicated in
order to construct the traditional c-chart. In this article, this measure is adapted to
augmented data and easily computed via Winbugs. One interesting characteristic of
the FBST based on the augmented data is not to protect the Poisson distribution
against the inflated Poisson distribution when the parameter rate is large as do the
classical tests.

There are many different ways to formulate the ZID model; in this article we
consider the following way:

Pr�Y = y �� = �� =
{
I����y	
 � = 0

p�y � �	
 � > 0
(1.1)

where I�0��y	 is a distribution which is degenerate at zero and p�y � �	 is a conditional
probability function of Y given �. The overdispersion discrete model is defined by

p�y	 = Pr�Y = y� =
∫ �

0
Pr�Y = y � ��dP��	
 (1.2)

where P is a continuous or discrete measure on �. We give a special attention to
the following discrete measure shown in Table 1 for 0 ≤ � < 1. It is important to
mention that this approach is restrictive since � could be negative in some real cases.
This kind of discrete measure P inflates the model p�y � �	 with zeros and gives the
following ZID:

p�y � �
�	 = �I�0��y	+ �1− �	p�y � �	� (1.3)

For the ZID in (1.3) we have that

E��Y� = �1− �	E�Y � �� = � and Var��Y� = �1− �	Var�Y � ��+ �

1− �
�2� (1.4)

The second equation is a more general form to show overdispersion than the usual
quadratic variance function. For example, for the zero-inflated Poisson we have

Var�Y� = � + �

1− �
�2�

2. The FBST Based on the Augmented Data

Suppose that Y = �Y1
 � � � 
 Yn	 is a vector of n independent random variables
generated by the ZID model. Let A = �yi 
 yi = 0
 i = 1
 � � � 
 n� and m = #�A	, then
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Bayesian Test for Zero-Inflated Distributions 301

the likelihood function is

LY ��
�� = ��+ �1− �	p�0 � �	�m�1− �	n−m
∏
yi �∈A

p�yi � �	�

The elements of the set A come from either of two different groups, the degenerated
distribution at zero or p�0 � �	. In this situation, it is natural to define an unobserved
(or missing) latent allocation variable:

Ii =
{
1 with probability p��
�	


0 otherwise


for i ∈ A and

p��
�	 = �

�+ �1− �	p�0 � �	 � (2.1)

This latent variable indicates whether the ith element of A is drawn from the first
component of (1.3) or not. So, the likelihood function based on the augmented data
D = �Y
 I� (Tanner and Wong, 1987), where I = �I1
 � � � 
 Im	 is

LD��
�� = LY ��
 ��
m∏
i=1

p��
�	Ii �1− p��
�		1−Ii

= �S�1− �	n−S︸ ︷︷ ︸
inflated zeros

p�0 � �	m−S
∏
yi �∈A

p�yi � �	︸ ︷︷ ︸
data from the model

= L1��	L2��	
 (2.2)

where S = ∑m
i=1 Ii ∼ Bin�m
 p��
�	�. Assuming a joint prior, ���
�	, the joint

posterior of ��
�	, given D, is

���
� �D	 ∝ LD��
�����
�	�

2.1. FBST via the Augmented Data

The computation of the evidence measure for

Ho 
 � = 0 versus H1 
 � > 0 (2.3)

is performed (see Pereira and Stern, 1999) in two steps, a numerical optimization
step and a numerical integration step. These two steps are easily implemented via
Winbugs and we only need the knowledge of the parameter space represented by
the posterior distribution, avoiding the most important argument against Bayesian
test called the Lindley’s paradox.

Since the parameters w and � are unrelated due to the factorization of the
likelihood funtion, the FBST will be based on the marginal likelihood L2��	 as
follows:

• Optimization step: Finding the mode, �o, of �o�� � Y	 under Ho 
 � ∈ �o,
where �o = �� 
 w = 0�, and the posterior density, �0�� � Y	, is given by

�o�� � Y	 = ���
 0	
n∏

i=1

p�yi � �	�
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302 Rodrigues

• Integration step:

Ev�Ho �D	 = 1− Pr�� ∈ T��D	 �D� = 1−
∫ �

0

∫ �

T∗�D	
���
� �D	d�d��

where

T��D	 = �� 
 ��� �D	 ≥ ���o �D	�

Remarks. The FBST has the following properties (for more details we suggest
refering to Pereira and Stern, 1999):

• We have that Ev�Ho �D	 = 1 if and only if � = 0, so, if this evidence measure
is “small” it means that the null set, ��o�, is in a region of low posterior
probability, and, consequently, the data D gives strong evidence in favour of
H1 
 � > 0.

• This procedure is the FBST introduced by Pereira and Stern (1999) to test
Ho, where T� is the Highest Density Probability Set.

• Increasing the sample size the FBST converges to right 0/1 value
(accept/reject decision).

• Considering only the observed sample allowing no adhoc artifice like a
positive prior distribution on the precise hypothesis.

• For small values of � and large values of � it can be seen from (2.1) that
the FSBT does not give protection (a small probability type one error) to the
Poisson distribution as do the classical tests listed in Table 5 (Xie et al., 2001).

3. The Inflated Poisson Distribution

From now on, our detailed exposition is limited to the Poisson model

p�y � �	 = �ye−�

y! �

However, the metodology is generic and can be applied to other discrete
distributions. The likelihood function based on D is

LD��
�� ∝ �S�1− �	n−S�
∑

yi �∈A yie−�n−S	� = L1��	L2��	


where S ∼ Bin�m
 p��
�	� and

p��
�	 = �

�+ �1− �	e−�
�

The likelihood function suggests the following independent priors:

���	 ∼ ��a
 b� and ���	 ∼ Beta�c
 d�� (3.1)

So, the joint posterior distribution for ��
�	, given D, is

���
� �D	 ∝ �S+c−1�1− �	n−S+d−1�T+a−1e−�n−S+b	�
 (3.2)

where T = ∑
yi �∈A yi.
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Bayesian Test for Zero-Inflated Distributions 303

3.1. Posterior Simulation Using MCMC Algorithm

It is very easy to implement via Winbugs (see the Winbugs code in Sec. 4) and it
consists of the following two steps:

• Step 1. Given ���j−1	
 ��j−1		 at the �j − 1	-stage we draw S�j	 from the
Bin�m
 p���j−1	
 ��j−1		��

• Step 2. Given S�j	, we draw ���j	
 ��j		 from the densities

��j	 ∼ Beta
[
S�j	 + c
 n− S�j	 + d

]
��j	 ∼ �

[∑
yi �∈A yi + a
 n− S�j	 + b

]
(3.3)

3.2. FBST via the Augmented Data

The computation of the evidence measure for

Ho 
 � = 0 versus H1 
 � > 0 (3.4)

is performed in the following two steps:

• Optimization step. The mode, �o, of �o�� � Y	 under Ho 
 � ∈ �o is

�o =
T + a− 1
n+ b




where �o�� � Y	 is the gamma density with parameters T + a and n+ b.
• Integration step.

Ev�Ho �D	 = 1− Pr�� ∈ T��D	 �D�


where,

T��D	 = �� 
 ��� �D	 ≥ ���o �D	��

Remark. The marginal density, ��� �D	, corresponds to a gamma distribution
with the shape parameter

∑
i
A yi + a and the scale parameter n− S + b which is

maximized at T+a−1
n−S+b

. Also, we remind that, under this posterior distribution, the
FBST based on the augmented data is equivalent to the FBST formulated by Pereira
and Stern (1999), to test Ho 
 � = T+a−1

n+b
.

4. Some Illustrative Examples

Example 4.1 (Horticultural Research). As an illustrative example of the ZIP model
we consider the Poisson data (Table 3) provided by Marin and Jones (1993).
The data are the number of roots produced by 270 micropropagated shoots of
the columnar apple cultivar Trajan. During the rooting period, all shoots were
maintained under identical conditions, but the shoots themselves were cultered on
media containing different concentrations of the cytokimin BAP, in growth cabinets
with an 8- or 16-hour photoperiod. The full experimental background is given by
Marin and Jones (1993). As discussed by Rideout et al. (1998), the large numbers
of zeros for 16-hour photoperiod are an obvious problem for the Poisson fit.
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304 Rodrigues

Table 2
Posterior quantiles and the FBST

Photoperiod

8 16

quantile 2.5 50 97.5 2.5 50 97.5
� 6.72 7.15 7.57 4.84 5.36 5.95
� 0.004 0.017 0.047 0.39 0.47 0.55
FBST 0.66 0.0

The posterior summaries using the Bayesian procedure proposed in the previous
sections are given in Table 2.

We have the following conclusions with respect to Example 4.1:

• It is clear from results of Table 3 that the Poisson distribution has serious
problems of fitting for 16-hour photoperiod.

• Table 3 shows that the ZIP, with the non informative priors given by
c = d = 1 and a = b = 1�0E − 10 is definitely better than the ordinary
Poisson distribution.

• In Table 3, it interesting to pay attention for the nice fitting of the ZIP
distribution at the point zero.

• Also, we have a reasonable overall fit as compared with the simple Poisson
model. The same result was found by Rideout et al., 1998, using asymptotic
results.

• These examples show that it is quite easy to implement this Bayesian
procedure and the FBST in Winbugs.

• Also, in Table 2, the parameter � shows in a simple way how the
overdispersion is occurring at different levels of photoperiod. Although, we
have a few zeros �m = 2	 for the photoperiod level 8, the FBST gives a small
evidence for Ho. It is reasonable because the parameter � is quite large for
this photoperiod level. This confirms our statement that the FSBT based on
augmented data does not give protection to the Poisson distribution for large
values of �.

Example 4.2 (Statistical Process Control). This example was discussed by Xie et al.
(2001) with the purpose of comparing many different classical tests based on
asymptotic likelihood theory. The data set in Table 4 is the read write errors
discovered in a computer hard disk in a manufacturing process. In the statistical
control process context (Xie et al., 2001) the variable Y is the number of non
comformities in the unit after submitting a random shock which occurs with
probability 1− �. It is assumed that Y follows a ZIP distribution. The upper control
limit yu for a control chart based on the number of non conformities can be obtained
from the Bayesian point of view as the smallest integer solution of

P�Y ≥ yu �D� =
∫

p�y � �
�	���
� �D	d� d� ≤ �
 (4.1)

where � is the predetermined false alarm probability for the upper control limit yu.
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Table 3
Fitted frequency for the Poisson and ZIP models

Photoperiod

8 16

No. of roots O EZIP EP O EZIP EP

0 2 2�91 0�11 62 61�68 7�43
1 3 0�78 0�82 7 1�74 21�27
2 6 2�78 2�91 7 4�63 30�43
3 7 6�60 6�89 8 8�23 29�02
4 13 11�75 12�23 8 11�00 20�76
5 12 16�76 17�36 6 11�80 11�88
6 14 19�93 20�55 10 10�57 5�66
7 17 20�34 20�84 4 8�13 2�31
8 21 18�18 18�50 2 5�49 0�82
9 14 14�45 14�59 7 3�31 0�26
10 13 10�35 10�36 4 1�79 0�07
11 10 6�74 6�68 2 0�89 0�01
12 2 4�03 3�95 3 0�40 0�00
13 2 2�2 2�16
14 3 1�14 1�09
17 1 0�54 0�51

No. of shoots 140 130

�2ZIP = 21�22, �2P = 51�72 �2ZIP = 49�85, �2P = 2954
�2j =

∑
i
�Oi−Ei	

2

Ei
, j = P, ZIP

Ev = 0�66 Ev = 0�0

Fitted frequency: O = Total observed frequency; EP = Fitted Poisson frequency; EZIP =
Fitted ZIP frequency

For the data set in Table 4, (4.1) can be easily calculated via Winbugs given
P�Y ≥ 14 �D� = 0�0062 at the acceptable false rate � = 0�01. This means that there
should not be any alarm for values less or equal to 14 when the underlying model
is the ZIP distribution. Using a non Bayesian approach, Xie et al. (2001) found the
same value yu = 14 at � = 0�01.

The conclusions for this example are:
• Table 5 shows a perfect agreement between the classical tests and the FBST.
Also, Table 6 confirms the MLE estimators obtained by Xie et al. (2001).

• The data set in Table 4 contains many units with zeros, that is, m = 180 and
n = 208. It is clear from Table 5 that the ZIP model should be used instead
of the Poisson model. The FBST gives a strong evidence in favour of the ZIP
model.

• Winbugs code for Example 4.2:
model;

�S ∼ dbin�pw
m	

pw ← w/�w + �1− w	 ∗ exp�−theta		
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306 Rodrigues

theta ∼ dgamma�r
mu	

r ← y + a

y ← inprod�v1� �
 v2� �	

mu ← n− S + b

w ∼ dbeta�a1
mu1	

a1 ← S + c

mu1 ← n− S + d

for �i in 1 : 10	�O�i� ← n ∗ �w ∗ equals�v1�i�
 0	+ �1− w	 ∗
exp �−theta+ v1�i� ∗ log�theta	− logfact�v1�i�			�

thetao ← �r − 1	/�n+ b	

logLthetao ← �y + a− 1	 ∗ log�thetao	− �n− S + b	 ∗ thetao
logLtheta ← �y + a− 1	 ∗ log�theta	− �n− S + b	 ∗ theta
Ev ← 1− step�logLtheta− logLthetao	�

%Data

list�v1 = c�0
 1
 2
 3
 4
 6
 9
 11
 15
 75	
 v2 = c�180
 11
 5
 2
 1
 2
 2
 1
 1
 2	


m = 180
 c = 1
 d = 1
 a = 1�0E − 10
 b = 1�0E − 10
 n = 208	

%Initial values


list�w = 0�5
 theta = 7	

Table 4
A set of defect count data from a manufacturing process

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 6 0 9
11 0 1 2 0 0 0 0 0 0 0 0 3 3 0 0 5 0 15 6
0 0 0 4 2 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
75 0 0 0 0 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0
0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
0 0 1 0 0 0 0 0
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Table 5
Summary of the test statistics and the FBST

Test methods Test statistic Critical region Accept/reject Ho

Score test, S1 628�135 S1 > 6�6349 Reject
Likelihood ratio test, S2 806�243 S2 > 6�6349 Reject
Chi-square test, S3 350�197 S3 > 15�0863 Reject
Confidence Interval test, S4 0�1933 S4 < 1 Reject
C test, S5 25�0626 �S5� > 2�5758 Reject
R test, S6 25�0925 �S6� > 2�5758 Reject
FBST Ev = 0

Table 6
Posterior quantiles and the MLE

Quantile

Mean 2.5 50 97.5 MLE

� 8�454 7�427 8�435 9�574 8�6413
� 0�8618 0�8125 0�863 0�905 0�8654

5. Conclusions

In this article, we consider the Full Bayesian Significance Test of Pereira and Stern
(1999) based on the augmented data to ckeck if the data come from a Poisson or
the Zero-Inflated Poisson model. This test is intuitive and easy to implement via
Winbugs as an alternative to the classical tests or Bayes factors.
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