arXiv:0905.2524v1 [math.ST] 15 May 2009

18th World IMACS/ MODSIM Congress, Cairns, Australia 13-17 July 2009
http;//mssanz.org.@modsim09

CHASSIS - Inverse Modelling of Relaxed Dynamical Systems
Dalia Chakrabarty

School of Physics & Astronomy, University of Nottingham, thlagham NG7 2RD, U.K.
email: dalia.chakrabarty@nottingham.ac.uk

The state of a non-relativistic gravitational dynamicatsyn is known at any timeif the dynamical rule, i.e.
Newton’s equations of motion, can be solved; this requipeification of the gravitational potential. The
evolution of a bunch of phase space coordinates deterministic, though generally non-linear. We discuss
the novel Bayesian non-parametric algorithm CHASSIS thetggphase spaqadf f(w) and potentiafd(x) of a
relaxed gravitational system. CHASSIS is undemandingrimseof input requirements in that it is viable given
incomplete, single-component velocity information ofteys members. Hereis the 3-D spatial coordinate and
w = X +V wherev is the 3-D velocity vector. CHASSIS works with a 2-integfak= f(E, L) where energy
E=®+v?/2,V? = 3,2, v? and the angular momentumlis= |r x v|, wherer is the spherical spatial vector. Also,
we assume spherical symmetry. CHASSIS obtains thefrom which the kinematic data is most likely to have
been drawn, in the best choice fb(-), using an MCMC optimiser (Metropolis-Hastings). The likeod function

L is defined in terms of the projections 6f) into the space of observables and the maximunf iis sought

by the optimiser. The recovered solutions can be suscepthblarge uncertainties given the dimensionality of
the domain of the unconstraind¢) and the typically small, observed velocity samples inatistastrophysical
systems. This scenario is tackled by assuming f(E), i.e. we assume the phase space to be isotropic.
However, this simplifying assumption of isotropy is addexs by undertaking a Bayesian test of significance that
is developed to be used in the non-parametric context.

A test based on the-value estimates of the goodness of isotropy in the data wasqusly undertaken
(Chakrabarty & Saha 2001). Howevgrvalues are sensitive to sample sizes and obfuscate ietetjpn of
analyses of dferently sized kinematic samples. Thus, a Bayesian formaksa better alternative, eg. Fully
Bayesian Significance Test or FBST (Pereira & Stern 199®&iReiStern & Wechsler 2008). The null hypothesis
that we aim to test, is that the data are drawn from an isatrb), i.e. Ho : f = W[E(v2/2+®(r))] where the data
are drawn fronf and¥ is some function¥ > 0 for E < 0 and¥ = 0 otherwise. Within FBST, the evidence value
(ev) in favour ofHg is obtained by first numerically spotting the most likely figaration ¢*) that is compatible
with Hg and then finding the volume of the tangential $elby numerical integration. Her€ is the set of all
configurations with posterior probability in excess of tbat*. We have developed the implementation of this
scheme in the non-parametric context; in CHASSIS, the cordigons aref (E) and®(r). To have configurations
obeyingHy, we perform sampling from th&E) — @(r) pair identified upon convergence of a run of CHASSIS.
From this sampling, the resultind E) — @(r) configuration corresponding to the highgsis compared to all the
otherf(E) — ®(r) pairs, in order to obtain a measure of the volum& of

We discuss two distinct applications of the isotropic vemsof CHASSIS. In one, 2 distinct kinematic data
sets of 2 distinct types of members of an example galaxy aatysed by CHASSIS under the assumption of
isotropy. Thef(-) and®(-) recovered from runs done with the two data sets are ideshtifsedistinct. Given that
the same galaxy cannot be described by twiedent gravitational potentials, the risk involved in theywaethod
of extracting the galactic potential from kinematic datamafividual galactic members is demonstrated here for
the first time. The goodness of the assumption of isotropgrgthe 2 data sets, is quantified by our Bayesian
test of hypothesis.

In the second application, it is shown that once the amougtafitational matter inside a fiduciary radius
is pinned down from independent measurements, the reabdgrgis unique, irrespective of the tof(-), from
which kinematic data samples are drawn as input for CHAS&3ong as velocity dispersion values are mea-
sured at 1 or more ffierent locations in the system. This consistent natue(gfis arrived at, notwithstanding
varied forms for the assumed tdy-), including isotropic as well a& & L dependent forms.
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1 Introduction

The complete characterisation of a gravitationally bourah-relativistic dynamical system can be undertaken

with the help off(w,t) - the pdf of phase spac® - and the gravitational potentidi(x); heret is time and

w = X + v, wherex represents the spatial coordinates and the velocity vectoe x. A sample of phase space

coordinates can be drawn frof§-) and allowed to evolve id(:), in accordance to Newton’s laws. In this way,

the evolution of the system is deterministic at any tintough non-linear in general. Hence, we aim to estimate

f(-) and®(-); we focus on the characterisation of astrophysical systerthis paper. A related aim is to derive

the distribution of the total gravitating matter from théimsted®(-), while keeping in mind that sudiotal mass

is accounted for only partly by luminous matter while theajee fraction is dark matter in these systems.
Conventionally,

e f(:) and®(-) are almost always parametrically described. Howeveemgthat astrophysical systems such
as galaxies are more likely to manifest complexity in thgimamics than otherwise, any smooth parametric
description of such systems is erroneous.

e mass determination is typically pursued via observed phetdc or luminous information though no func-
tional dependence of the total (luminawgark) matter content on such measurements exist.

e inhomogeneities in the measurement errors notwithstandimodness-of-fit parameters are often invoked
to seek the solution. For galaxies, measurements are tlypicasy and such goodness-of-fit parameters
can be artificially inflated (Bissantz & Munk, 2001).

All these issues suggest a better - preferably, a nonparamebute tof(-) and®(-) determination. It is such a
novel, data driven characterisation of real (as distinguished from simulated) astrophysical systems that CHAS
SIS offers, using the few kinematic measurements that are typically available. Importantly, we test the chief
assumption of our algorithm using a test of significanceithdeveloped in this regard.

As motivated above, we discard all photometric informatiwet may be available for a system at hand and
use the kinematic information that is sometimes availabdanely velocities along the line-of-sight (LOS) of
individual system members, (such as stars). We define tlasxgalich that the; — x, coordinate system spans
the plane-of-the-sky (POS) and the LOS is along the z-axisisTour data comprise 1-compongfivalues of
individual galactic members and their POS coordinates. M account for the errors vy measurement. The
observed data samples often bgak00 data points. These data are input into the Bayesianigdgp€HASSIS
(Chakrabarty & Saha 2001, Chakrabarty & Portegies Zwarb200

2 CHASSIS

CHASSIS helps constraif®(-) and f(-) of galaxies, given the data (say). Actually, within CHASSIS, we
constrain the gravitational matter densify) rather thand(-), where Poisson equation conneet9 andd(-) as
in:

D(X) = —41GV?p(x) (1)

This helps to avoid problems about negaji¥g. The calculation ofd(-) from p(-) is undertaken at every step.
Dynamical theory tells us (Dubrovin, Fomenko & Petrovic890):

f = f[Ki(w)], where Ki=0 Vi=123.... 2)

i.e. Kj is an integral of motion. Now, we realise that the size of thtad is small to moderate and typically
bears no more information other than a single componentlotitg. In such a case, we feel that the data are
not suficient to constrain the extended formsfdf) and®(-). In other words, we resort to making assumptions
aboutf(-) andd(.).

In fact, we assum&; #constant, only foi = 1,2. Thus,f = f[Kj(w), Ko(w)] whereK; =energyE of the
galactic particle an&, = the angular momentum &r. HereE = }; vJ?/Z + ®(x) andL = |r x v| wherer is the
spherical radius andis the 3-D velocity vectory); x* = r?, v = 3;; V2. We also assume radial symmetry in the

potential, i.e.®(x) = ®(r). Thus, the particle energy i = v2/2 + ®(r). In this geometry, the Poisson equation
(Equatior1) is solved numerically by assuming the mass ttiadified on spherical shells. In other words, the
relevant radial range is discretised and over each radigbi) is held a constant.
In this background, we seek
Pr(f, p|u) < Pr(u|f, p) Pr(f, p) (3)



Dalia Chakrabarty: CHASSIS

where the only constraints posed by the priors are phygicdlistic requirements of positivity and monotonicity.
This owes to the fact that in general, we do not possess ary ptlor information that could help constrain the
forms of the sought functions. Thus,

Pr(f. )
Pr(f)

Pr(f) Pr(p), where

, of
1 if szva—E <0

L
= 0 otherwise

Prp) = 1 |if pzovz—fso
= 0 otherwise 4)
We adopt the above priors and estimate tt¢ from which the datal is most likely to have been drawn, in
the estimated (). This is done by iterating towards the most likely set o), po(-)} starting with an arbitrarily

chosen seed. At every step, the current choicé(gfis projected into the space of observables (spanned by
X1, X2, V3); a ready definition for the likelihood functiafi is in terms of the projection(-) of f(E, L).

mi(d, X, V) = f f[E(v, ©(r)), L] dxsdvidv, and
Ndala
L = ngm (5)

i=1

wherex, X,, Vi, is thei™ data point in théNgxa Sized data sample.

The numerical implementation of a trif{-) function, at a trial §(-) or) ®(-) is the crucially important question
from the point of view of algorithm design. We do this by distising theE — L space and holdin§(-) a constant
(=fee1) Over a giverk — L cell. The contribution tay(-), from this — L cell - defined by sayk: € [E;, Ez], L €
[L1, Ly] - is given as:

R f dxsdvidv, and

mo= (6)

cell

Let the integral on the right hand side of the former of theae ¢quations bé\. Then, we seek the mapping
A :— E - Lspace.

In order to establish this, first we determine the 2-D areatgisection between the locii & = Eq, E = E,,
L = L3, L = Ly, inthevy — v, space. This gives the connection betweenEhe L cell at hand ands, v,.
Mapping %3 to this cell requires knowledge of the minimum and maximurlues of x; that are allowed in

the cell, given the data point, x,, V5. This maximum value is,/r2 — (x;)? — (x,)2 wherer is the solution to:
E, = V3/2+ L2/2r3 + ®(ro). The minimumxs is O.
This explains the background to the structureg(@fand f(-).

2.1 p-histogram and f-histogram

The representation of(E, L) over the discretise® — L space, is akin to a 2-D histogram. Similarly, th)
structure is represented as a 1-D histogram. These histagaee updated at the beginning of every step, while
maintaining positivity and monotonicity.

The jump distribution we use is discussed below. If in stefor r € [rq-1,rq] (Vg = 1,...,N;, ro=0),
p(rq) = af, then in thek + 1™ step:

R
agﬂ = a'(;” + (a'é - a'éﬂ) exp(g) (7)

whereR is a random number witR € [-0.5,0.5] ands; is an experimentally optimised scale that determines
the scale over which the shape of fMaistogram is changed. This updating is dofte Once the shape of the
p-histogram is updated in this way, the whole structure itesthy the factor ex®/s,) wheres; is another scale.
The f-histogram is similarly updated in shape and subsequentiyalised.
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2.2 Optimisation

Once the histograms are updated, we project the cufi@nbver ankE — L cell, into the space of observables,
for the i data point and then sum over all such cells to getEquation 7). This is don& i, to obtain£
(Equation 6). The global maxima ifi is sought by the Metropolis-Hastings algorithm (Metropa@t. al 1953,
Hastings 1970, Chib & Greenberg 1995). Anticipating thelitkood distribution to be multimodal, we work with
highly dispersed seeds to initiate several chains (Gelm&uBin 1992) as well as employ simulated annealing
on a single chain. The latter approach, though perhaps s, is one that we find verytective in test runs.

While the optimisation routine is hard-wired within CHASSIthe user is allowed the flexibility to adjust
details of the used cooling schedule and other optimisgtamameters such as the scales relevant to the jump
distribution (5, ). In this note, it is worth mentioning that the current implkentation of optimisation is
modular, and it is simple to replace it by a mofEc&nt routine.

2.3 Required User Input

The methodology discussed above is incorporated into CHB%8d all that user is required to input is the
velocity data, the source of which is independent of CHASSI81s, measured kinematic data, irrespective of
its source, is acceptable, as long as the columns pertairetoldservables,, vz and the measured errorsyg.

Hererp = /X2 + X3. Besides, the user is allowed to input details such as théoeuof bins, bin widths, fraction

of data she wants to perform the run with, the seeds for thghg@molutions and the optimisation related details
(see Section 2.2). The user inputs are advanced via an itgthdi CHASSIS calls at the beginning of a run.

2.4 Assumption of Isotropy

Given the limited data sample, we find that limiting the domi f to 2-D is not constraining enough in reducing
the magnitude of uncertainties in the estimated solutionséful levels. Thus, we resort to imposing the further
constraint thatf = f(E), i.e. we assume isotropy to exist in phase space (dhisesymmetrical inv; andx;,
wherej=1,2,3). Then we resort to (1) justifying or rejecting ourwasgtion in the data by performing a test of
hypothesis exercise (2)exploring independent measursrigat may be available in the literature to obtajm a
that is un&ected by the amount of anisotropy in the data.

3 Testing for Isotropy - Nonparametric FBST

We test for isotropy in the data, i.e. the null hypotheésis f= Y[E(v, )], wheref is the phase spaqalf from
which the observed data are drawn ah some function that manifests phase space isotrdfl) = OVE > 0
and¥(E) > 0 otherwise.

This Hg is tested in the data along the lines of the Fully Bayesian Significance Test or FBSereira &
Stern 1999; Pereira, Stern & Wechsler 2008), except tha, ez advance a nonparametric implementation of
the same. Our null is sharp, as is the requirement for FBST (i, Esteves & Wechsler 2001). We refer to our
object functiongp(:), f(-)} = 6 (say); letd € ®-space. We assume this continuous in th@-space. According
to FBST, the evidence in favour &fy is 1 - ev, where:

ev = 1-Pr@eT|u), where
T = {0:Pr@u) > Pr@Ho)}. (8)

Hered* is the value of) which, under the null, maximises the posteriorRi).

At the end of every iterative step during a run of CHASSI8 canfiguration is identified. Thé&(-) recovered
upon convergence of the run is indeed a functio& @indE only but the truef is not necessarily so.

Upon convergence of a run of CHASSIS performed with datae sample the recover@dN times, such
that thei!" sampling ofé gives thei set of observables ar; i = 1,2,...,N. TheseN data samples are then
input intoN different new runs of the algorithm. During the run performedilie datau;, the j™ iterative step
yields the configuratios (say), where?! = {f(-)!, p()!}. Thenf(:)/ is isotropicVi, j, since the phase spapdf
from whichu; is drawn is the recoveref{E), which by construction, is indeed isotropic.

We scan over all, j to identifyi*, j* for which the posterior is maximised. Thuﬁ, = 6" is identified. Here
6 = {f*(E), p*(r)}, i.e. functions recovered at the end of ffigh step, in a run performed with the data

In this nonparametric implementation, P T|u) = X/Y, whereX is the number of times that a step yields a
likelihood in excess of Pé(|Ho) in all the undertaken run¥. is the total number of iterative steps in all the runs
undertaken.
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Figure 1: Left: The (normalised) phase space distribution functions rexam/ from two runs of CHASSIS,
performed with the GC datas (in black) and PNe datap (in red). The normalisation is performed to ensure
that f(E)=1 for E=-1. Thesepdfs are recovered under the assumption of isotropy and oueimgitation of
nonparametric FBST shows that the profile in black is expktt®e closer to the true phase sppdé than is the
profile in red. The errors arel-o- uncertainties identified on the solution by the optimiséiddie: Gravitational
matter density distributions from three runs with performed with three dierent seeds (in magenta, cyan and
black) and from 3 runs withip (in yellow, red and blue). The units of density and radiusaeteophysicalRight:
p(r) from one of the runs done withs is shown in black while that withip is in red. Thep*(r) corresponding to
the implementation of datas is shown in green while that correspondingutois in blue. We notice thais(r)

is consistent with*(r) obtained fromug while p*(r) obtained fromup is significantly lower thampp(r).

4 Application 1 - multistability in galaxies

Itis a common practise in astrophysics to employ the medslHie velocity data of suitable galactic members,
with the aim of recovering the total gravitational massriisttions. To examine the viability of such a practise,
we employ the available measured kinematic data of twordistilasses of galactic members in an example
galaxy - as an aside, these are planetary nebulae (PNe)amndayl clusters (GCs). The data of 164 PNg)@re
due to Douglas et al (2007) and that of 30 GGg)(are due to Bergond et. al (2006). These sample sizes are too
discrepant to allow for easy interpretation of gmyalue based testing ¢iy defined in Section 3. Instead, we
resort to the non-parametric FBST discussed above.

The two data sets are input into ttsetropy-assuming andsphericity-assuming CHASSIS. Thef (E) andp(r)
recovered from the two distinct data are found to be inco@sisvith each other, within error bars (Figure 1).
The diference in the recoverdd-) could arise from dterent divergences between an isotropic phase gpéfte
and thef from which up are drawn, as compared to that from whighare drawn. However, the distribution of
gravitational matter in the galaxy should be uniquely dateed. That such is not our conclusion, prompts us to
examine if the inherent assumption of isotropy is to be blknTéus, we test for our nully (defined above in
Section 3) in the datap andug separately.

The results of our implementation of FBST are shown in Fiduré/e find that for three dierent runs done
with distinct seeds, givenp, the average evidence in favour of the null is about 0.60 Fiae runs done with
different seeds, givams, the average % evis 0.95. Thus we conclude that the degree of isotropy opthethat
Ug is drawn from is higher than that of thel f thatup is drawn from.

We wonder if the diierence in the recovered mass distributions be due to théumtettdiference in isotropy
in the two data sets? To understand this, we invoke the @eitylof CHASSIS that the algorithm overestimates
mass density at all where phase space anisotropy prevails (discussed in 8égtiorhus, we expect thalr)
recovered usinglp (op(r)) is more of an over-estimate compared to the galactic messity than is the(r)
recovered usingg (os(r)).

However, as shown in Figure 1, at alk 6 kpc,ps(r) > pp(r). Therefore, to reconcile thefterence between
pp(r) andpg(r), the isotropy issue cannot help unless we proposeutha drawn from a more anisotropjum f
thanup. This is of course not true but its inverse is. Hence we catethat diferences ipg(r) andpp(r) are
intrinsic to the system and not due to our assumption ofagytr

Thus we have demonstrated the potential risk in employingrkiatic data of individual galactic members of
a particular population type, to compute the gravitationabs distribution of galaxies. We have also shown that
the galactic phase space is described by at least two dibtisins of attractions, i.e. the galaxy is multistable, as
we would expect complex systems like galaxies to be.
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Figure 2: Gravitational mass density distributions oveliug, obtained from runs done with data drawn from
three diferent phase space distributiorfs{ss, fwp fmichie) that are distinguished from each other in terms of
the inherent degree of anisotropy in their form@.) estimated from run performed with d&gaorropy is in black,

with Swp is in red and withSyichie is in blue. Theo(r) implied by the fiduciary test potentidle(r) is in cyan.

The left panel displays results obtained when the constétotal mass is included\g ~ 4.06x 10 M, within
about 8.7 kpc). On the right, the general inconsistency betwthe estimated profiles, when the mass constraint
is excluded, is brought out.

5 Application 2 - using the total mass constraint

Motivated by the need to simplify our analysis by reducing ttumber of degrees of freedom to the bare mini-
mum, we persist with the assumptionfof= f(E), i.e. phase space is isotropic. We envisage that when the da
have been drawn from an anisotropitf, the algorithm will imply erroneous answers. Using physizguments
we can predict the nature of this error - CHASSIS overestgidt) atr where phase space anisotropy prevails.

We implement an independent measure of the total gravitatimatter Mo) inside a given radiusRg) in
an example galaxy with the aim of recovering the correcttgmufor p(r) under our assumption of isotropy,
irrespective of the degree of anisotropy of fiaf from which the input data is drawn. If the system is at a large
distance from us, we cannot get velocity data of individushgtic members. Then, we can only get projected
velocity dispersion valuesr(;) at 1 or a few radial locations in the galaxy. In this backgmwf sparse and
incomplete velocity data, we prepare velocity data samfpleimputting to CHASSIS, in the following way.

We select observables;( x,, v3) from 3 different toyf(-), two of which are selected to depend Brand L
while the third is isotropic. For the example galaxy,is known aftr;, r> andrs say. Then we consider the system
to be divided into 3 anulii witlr € [0,r4], (r1,r2], (r2, r3]. The errors in theo, measured at; (i = 1,2, 3) can
be related to the size of the data samiNjewe intend to draw from the given annulus, assuming normalrerr
distribution. The phase spapef that we choose our samples from dgguss, fwo fmichie:

fauss(E)

exp( ) E <O,
2no?

0 E>O0,

1 L2 -E
fwp (E, L) > exp(— I’aO'Z) exp(ﬁ) E <0,
0 E>O.

1 L2 -E
Wexp(— ra(rz) [exp(;) - 1] E <O,
= 0 E>0 9)

o2

fumichie(E, L)

The samples chosen frofgauss, fwp fmichie ar€Sacausss Swo Swmichie (Say). Also, to test for thefiect of data from
different forms off (-), we defineE = v?/2 + g (r) where we cho0os®ieg(r) ~ 1/ /12 + r2.

The total mass constraint is expected to narrow down theerafhgolutions possible; in this sense it acts as
a prior on the solution fop(-). We test if the chosen data samples, when input into CHAS®®ver ad(r)
that is concurrent withibg(r) when we includgexclude the constraint that total mass within= Rg is Mo.
Here Mg is obtained from literature as about 406" M, with errors ofésMg = +0.2 x 10! My, andRe ~8.7
kpc (Koopmans & Treu 2003). We incorporate the constrainaigling a penalty function to the definition
of the likelihood; the role of this penalty function is to @dise any solution that implies a total gravitational
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mass withinRg (M¢(Rg)) different fromMg. This penalty function is|M(Rg) — Mo|/26Mp. Herea is a flag,
designed to include or exclude the constraint from the defmbf the likelihood, depending on whether it is 1
or 0 respectively.

The results of conducting our test runs are shown in FiguM¥@ find that when the constraint is included,
the p(r) profiles are consistent with each other within errors,spextive of the anisotropy in the data used to
obtain this profile. In absence of guidance from the constranisotropy fiects results.

6 Summary

Here we have discussed the novel nonparametric Bayesianthly CHASSIS that estimates the most likely
phase spacedf (f(-)) from which an observed sample of 1-D component of velesitf individual galactic
members is drawn, at the most likely gravitational poténbig) of the galaxy. The main purpose of this paper
is to bring out the fact that CHASSIS igabust and viable algorithmthat can be implemented to extract the all-
important gravitational matter density distribution irsi@int galaxies, even within the domain of very sparse and
incomplete data. Given the dearth of measurements in tlyssenss, it is prudent to work with a small number
of degrees of freedom. With this in mind, one version of CHESBas been designed to work under the purview
of the assumption of isotropy in phase space, by which weyiraplf (-) that is symmetric in the 3 velocity and

3 spatial coordinates. In another version, the assumpfi@otopy is not made and CHASSIS is made to work
with a greater number of dof (Chakrabarty & Saha, under pedjmn).

We dofer independent means of tackling the obvious fallout of th&umption of isotropy, when invoked;
phase spacpdfs from which realistic data are drawn, will not be isotromigieneral, leading to spurious solu-
tions for f(-) and®(-). Firstly, a robust test of hypothesis is developed thastie assumption of isotropy, given
the data. This test is modelled after Pereira & Stern’s (85T and is designed to work in the nonparametric
context. Data available in astrophysical literature arplé@mented to conclude that kinematic data of distinct
galactic member populations will in general provide distigravitational mass distributions. The multistability
of the example galaxy is demonstrated and the folly of thislenof mass determination is indicated. Secondly,
we demonstrate that the usage of information about totaitgteonal mass, available in the literature, can con-
strain the sought gravitational matter density distribatirrespective of anisotropy in the data. Such a congtrain
basically supplements for the uninformative priors thatuse within CHASSIS.

Currently, we are working on the establishment of a critigdlie of the evidence value in favour of a given
null. This will enable the quantified judgement of when t@otjor accept the null, given the data. Atthe moment,
our implementation of FBST only allows for a comparativegachent.
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