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The state of a non-relativistic gravitational dynamical system is known at any timet if the dynamical rule, i.e.
Newton’s equations of motion, can be solved; this requires specification of the gravitational potential. The
evolution of a bunch of phase space coordinatesw is deterministic, though generally non-linear. We discuss
the novel Bayesian non-parametric algorithm CHASSIS that gives phase spacepd f f (w) and potentialΦ(x) of a
relaxed gravitational system. CHASSIS is undemanding in terms of input requirements in that it is viable given
incomplete, single-component velocity information of system members. Herex is the 3-D spatial coordinate and
w = x + v wherev is the 3-D velocity vector. CHASSIS works with a 2-integralf = f (E, L) where energy
E = Φ+ v2/2, v2 =

∑3
i=1 v2

i and the angular momentum isL = |r ×v|, wherer is the spherical spatial vector. Also,
we assume spherical symmetry. CHASSIS obtains thef (·) from which the kinematic data is most likely to have
been drawn, in the best choice forΦ(·), using an MCMC optimiser (Metropolis-Hastings). The likelihood function
L is defined in terms of the projections off (·) into the space of observables and the maximum inL is sought
by the optimiser. The recovered solutions can be susceptible to large uncertainties given the dimensionality of
the domain of the unconstrainedf (·) and the typically small, observed velocity samples in distant astrophysical
systems. This scenario is tackled by assumingf = f (E), i.e. we assume the phase space to be isotropic.
However, this simplifying assumption of isotropy is addressed by undertaking a Bayesian test of significance that
is developed to be used in the non-parametric context.

A test based on thep-value estimates of the goodness of isotropy in the data was previously undertaken
(Chakrabarty & Saha 2001). However,p-values are sensitive to sample sizes and obfuscate interpretation of
analyses of differently sized kinematic samples. Thus, a Bayesian formalism is a better alternative, eg. Fully
Bayesian Significance Test or FBST (Pereira & Stern 1999, Pereira, Stern & Wechsler 2008). The null hypothesis
that we aim to test, is that the data are drawn from an isotropic f (·), i.e. H0 : f̂ = Ψ[E(v2/2+Φ(r))] where the data
are drawn fromf̂ andΨ is some function:Ψ > 0 for E < 0 andΨ = 0 otherwise. Within FBST, the evidence value
(ev) in favour ofH0 is obtained by first numerically spotting the most likely configuration (θ∗) that is compatible
with H0 and then finding the volume of the tangential setT by numerical integration. HereT is the set of all
configurations with posterior probability in excess of thatof θ∗. We have developed the implementation of this
scheme in the non-parametric context; in CHASSIS, the configurations aref (E) andΦ(r). To have configurations
obeyingH0, we perform sampling from thef (E) − Φ(r) pair identified upon convergence of a run of CHASSIS.
From this sampling, the resultingf (E)−Φ(r) configuration corresponding to the highestL is compared to all the
other f (E) −Φ(r) pairs, in order to obtain a measure of the volume ofT .

We discuss two distinct applications of the isotropic version of CHASSIS. In one, 2 distinct kinematic data
sets of 2 distinct types of members of an example galaxy are analysed by CHASSIS under the assumption of
isotropy. Thef (·) andΦ(·) recovered from runs done with the two data sets are identified as distinct. Given that
the same galaxy cannot be described by two different gravitational potentials, the risk involved in the very method
of extracting the galactic potential from kinematic data ofindividual galactic members is demonstrated here for
the first time. The goodness of the assumption of isotropy, given the 2 data sets, is quantified by our Bayesian
test of hypothesis.

In the second application, it is shown that once the amount ofgravitational matter inside a fiduciary radius
is pinned down from independent measurements, the recoveredΦ(·) is unique, irrespective of the toyf (·), from
which kinematic data samples are drawn as input for CHASSIS,as long as velocity dispersion values are mea-
sured at 1 or more different locations in the system. This consistent nature ofΦ(·) is arrived at, notwithstanding
varied forms for the assumed toyf (·), including isotropic as well asE & L dependent forms.

Keywords: Bayes theorem, Bayesian significance test, Astrophysical applications.
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1 Introduction

The complete characterisation of a gravitationally bound,non-relativistic dynamical system can be undertaken
with the help of f (w, t) - the pd f of phase spaceW - and the gravitational potentialΦ(x); heret is time and
w = x + v, wherex represents the spatial coordinates and the velocity vectoris v = ẋ. A sample of phase space
coordinates can be drawn fromf (·) and allowed to evolve inΦ(·), in accordance to Newton’s laws. In this way,
the evolution of the system is deterministic at any timet, though non-linear in general. Hence, we aim to estimate
f (·) andΦ(·); we focus on the characterisation of astrophysical systems in this paper. A related aim is to derive
the distribution of the total gravitating matter from the estimatedΦ(·), while keeping in mind that suchtotal mass
is accounted for only partly by luminous matter while the greater fraction is dark matter in these systems.

Conventionally,

• f (·) andΦ(·) are almost always parametrically described. However, given that astrophysical systems such
as galaxies are more likely to manifest complexity in their dynamics than otherwise, any smooth parametric
description of such systems is erroneous.

• mass determination is typically pursued via observed photometric or luminous information though no func-
tional dependence of the total (luminous+dark) matter content on such measurements exist.

• inhomogeneities in the measurement errors notwithstanding, goodness-of-fit parameters are often invoked
to seek the solution. For galaxies, measurements are typically noisy and such goodness-of-fit parameters
can be artificially inflated (Bissantz & Munk, 2001).

All these issues suggest a better - preferably, a nonparametric - route to f (·) andΦ(·) determination. It is such a
novel, data driven characterisation of real (as distinguished from simulated) astrophysical systems that CHAS-
SIS offers, using the few kinematic measurements that are typically available. Importantly, we test the chief
assumption of our algorithm using a test of significance thatis developed in this regard.

As motivated above, we discard all photometric informationthat may be available for a system at hand and
use the kinematic information that is sometimes available,namely velocities along the line-of-sight (LOS) of
individual system members, (such as stars). We define the galaxy such that thex1 − x2 coordinate system spans
the plane-of-the-sky (POS) and the LOS is along the z-axis. Thus, our data comprise 1-componentv3 values of
individual galactic members and their POS coordinates. We also account for the errors inv3 measurement. The
observed data samples often bear. 100 data points. These data are input into the Bayesian algorithm CHASSIS
(Chakrabarty & Saha 2001, Chakrabarty & Portegies Zwart 2005).

2 CHASSIS

CHASSIS helps constrainΦ(·) and f (·) of galaxies, given the datau (say). Actually, within CHASSIS, we
constrain the gravitational matter densityρ(·) rather thanΦ(·), where Poisson equation connectsρ(·) andΦ(·) as
in:

Φ(x) = −4πG∇2ρ(x) (1)

This helps to avoid problems about negativeρ(·). The calculation ofΦ(·) from ρ(·) is undertaken at every step.
Dynamical theory tells us (Dubrovin, Fomenko & Petrovich, 1990):

f = f [Ki(w)], where K̇i = 0 ∀i = 1, 2, 3 . . . . (2)

i.e. Ki is an integral of motion. Now, we realise that the size of the datau is small to moderate and typically
bears no more information other than a single component of velocity. In such a case, we feel that the data are
not sufficient to constrain the extended forms off (·) andΦ(·). In other words, we resort to making assumptions
about f (·) andΦ(·).

In fact, we assumeKi ,constant, only fori = 1, 2. Thus, f = f [K1(w),K2(w)] whereK1 ≡energyE of the
galactic particle andK2 ≡ the angular momentum orL. HereE =

∑

j v2
j/2+ Φ(x) andL = |r × v| wherer is the

spherical radius andv is the 3-D velocity vector:
∑

j x2
j = r2, v2 =

∑

j v2
j . We also assume radial symmetry in the

potential, i.e.Φ(x) = Φ(r). Thus, the particle energy isE = v2/2+ Φ(r). In this geometry, the Poisson equation
(Equation 1) is solved numerically by assuming the mass to bestratified on spherical shells. In other words, the
relevant radial range is discretised and over each radial bin, ρ(r) is held a constant.

In this background, we seek
Pr(f , ρ|u) ∝ Pr(u| f , ρ) Pr(f , ρ) (3)
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where the only constraints posed by the priors are physically realistic requirements of positivity and monotonicity.
This owes to the fact that in general, we do not possess any other prior information that could help constrain the
forms of the sought functions. Thus,

Pr(f , ρ) = Pr(f ) Pr(ρ), where

Pr(f ) = 1 if f ≥ 0 ∨ ∂ f
∂E

∣

∣

∣

∣

∣

∣

L

≤ 0

= 0 otherwise

Pr(ρ) = 1 if ρ ≥ 0 ∨ dρ
dr
≤ 0

= 0 otherwise (4)

We adopt the above priors and estimate thef (·) from which the datau is most likely to have been drawn, in
the estimatedΦ(·). This is done by iterating towards the most likely set of{ f (·), ρ(·)} starting with an arbitrarily
chosen seed. At every step, the current choice off (·) is projected into the space of observables (spanned by
x1, x2, v3); a ready definition for the likelihood functionL is in terms of the projectionη(·) of f (E, L).

ηi(xi
1, x

i
2, v

i
3) =

∫

f [E(v,Φ(r)), L] dx3dv1dv2 and

L =

Ndata
∑

i=1

logηi (5)

wherexi
1, x

i
2, v

i
3 is theith data point in theNdata sized data sample.

The numerical implementation of a trialf (·) function, at a trial (ρ(·) or)Φ(·) is the crucially important question
from the point of view of algorithm design. We do this by discretising theE − L space and holdingf (·) a constant
(= fcell) over a givenE − L cell. The contribution toη(·), from thisE − L cell - defined by say,E ∈ [E1, E2], L ∈
[L1, L2] - is given as:

ηcell
i = fcell

∫

dx3dv1dv2 and

ηi =
∑

cell

ηcell
i (6)

Let the integral on the right hand side of the former of these two equations beA. Then, we seek the mapping
A :−→ E − Lspace.

In order to establish this, first we determine the 2-D area of intersection between the locii ofE = E1, E = E2,
L = L1, L = L2, in the v1 − v2 space. This gives the connection between theE − L cell at hand andv1, v2.
Mapping x3 to this cell requires knowledge of the minimum and maximum values of x3 that are allowed in

the cell, given the data pointxi
1, x

i
2, v

i
3. This maximum value is

√

r2
0 − (xi

1)2 − (xi
2)2 wherer0 is the solution to:

E2 = v2
3/2+ L2/2r2

0 + Φ(r0). The minimumx3 is 0.
This explains the background to the structures ofρ(·) and f (·).

2.1 ρ-histogram and f -histogram

The representation off (E, L) over the discretisedE − L space, is akin to a 2-D histogram. Similarly, theρ(r)
structure is represented as a 1-D histogram. These histograms are updated at the beginning of every step, while
maintaining positivity and monotonicity.

The jump distribution we use is discussed below. If in stepk, for r ∈ [rq−1, rq] (∀q = 1, . . . ,Nr, r0=0),
ρ(rq) = αk

q, then in thek + 1th step:

αk+1
q = αk

q+1 + (αk
q − αk

q+1) exp

(

R
s1

)

(7)

whereR is a random number withR ∈ [−0.5, 0.5] and s1 is an experimentally optimised scale that determines
the scale over which the shape of theρ-histogram is changed. This updating is done∀q. Once the shape of the
ρ-histogram is updated in this way, the whole structure is scaled by the factor exp(R/s2) wheres2 is another scale.
The f -histogram is similarly updated in shape and subsequently normalised.
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2.2 Optimisation

Once the histograms are updated, we project the currentf (·) over anE − L cell, into the space of observables,
for the ith data point and then sum over all such cells to getηi (Equation 7). This is done∀ i, to obtainL
(Equation 6). The global maxima inL is sought by the Metropolis-Hastings algorithm (Metropolis et. al 1953,
Hastings 1970, Chib & Greenberg 1995). Anticipating the likelihood distribution to be multimodal, we work with
highly dispersed seeds to initiate several chains (Gelman &Rubin 1992) as well as employ simulated annealing
on a single chain. The latter approach, though perhaps less obvious, is one that we find very effective in test runs.

While the optimisation routine is hard-wired within CHASSIS, the user is allowed the flexibility to adjust
details of the used cooling schedule and other optimisationparameters such as the scales relevant to the jump
distribution (s1, s2). In this note, it is worth mentioning that the current implementation of optimisation is
modular, and it is simple to replace it by a more effcient routine.

2.3 Required User Input

The methodology discussed above is incorporated into CHASSIS and all that user is required to input is the
velocity data, the source of which is independent of CHASSIS. Thus, measured kinematic data, irrespective of
its source, is acceptable, as long as the columns pertain to the observablesrp, v3 and the measured errors inv3.

Hererp =

√

x2
1 + x2

2. Besides, the user is allowed to input details such as the number of bins, bin widths, fraction

of data she wants to perform the run with, the seeds for the sought solutions and the optimisation related details
(see Section 2.2). The user inputs are advanced via an input file that CHASSIS calls at the beginning of a run.

2.4 Assumption of Isotropy

Given the limited data sample, we find that limiting the domain of f to 2-D is not constraining enough in reducing
the magnitude of uncertainties in the estimated solutions to useful levels. Thus, we resort to imposing the further
constraint thatf = f (E), i.e. we assume isotropy to exist in phase space (sinceE is symmetrical inv j andx j,
where j=1,2,3). Then we resort to (1) justifying or rejecting our assumption in the data by performing a test of
hypothesis exercise (2)exploring independent measurements that may be available in the literature to obtain aρ
that is unaffected by the amount of anisotropy in the data.

3 Testing for Isotropy - Nonparametric FBST

We test for isotropy in the data, i.e. the null hypothesisH0 : f̂ = Ψ[E(v, r)], where f̂ is the phase spacepd f from
which the observed data are drawn andΨ is some function that manifests phase space isotropy:Ψ(E) = 0∀E > 0
andΨ(E) > 0 otherwise.

This H0 is tested in the datau along the lines of the Fully Bayesian Significance Test or FBST (Pereira &
Stern 1999; Pereira, Stern & Wechsler 2008), except that here, we advance a nonparametric implementation of
the same. Our null is sharp, as is the requirement for FBST (Madurga, Esteves & Wechsler 2001). We refer to our
object functions{ρ(·), f (·)} ≡ θ (say); letθ ∈ Θ-space. We assume thatθ is continuous in theΘ-space. According
to FBST, the evidence in favour ofH0 is 1− ev, where:

ev = 1− Pr(θ ∈ T |u), where

T = {θ : Pr(θ|u) > Pr(θ∗|H0)}. (8)

Hereθ∗ is the value ofθ which, under the null, maximises the posterior Pr(θ|u).
At the end of every iterative step during a run of CHASSIS, aθ configuration is identified. Thef (·) recovered

upon convergence of the run is indeed a function ofE andE only but the truef̂ is not necessarily so.
Upon convergence of a run of CHASSIS performed with datau, we sample the recoveredθ, N times, such

that theith sampling ofθ gives theith set of observables orui; i = 1, 2, . . . ,N. TheseN data samples are then
input intoN different new runs of the algorithm. During the run performed with the dataui, the jth iterative step
yields the configurationθ j

i (say), whereθ j
i ≡ { f (·) j

i , ρ(·)
j
i }. Then f (·) j

i is isotropic∀i, j, since the phase spacepd f
from whichui is drawn is the recoveredf (E), which by construction, is indeed isotropic.

We scan over alli, j to identify i∗, j∗ for which the posterior is maximised. Thus,θ j∗

i∗ = θ
∗ is identified. Here

θ∗ ≡ { f ∗(E), ρ∗(r)}, i.e. functions recovered at the end of thej∗-th step, in a run performed with the dataui∗ .
In this nonparametric implementation, Pr(θ ∈ T |u) = X/Y, whereX is the number of times that a step yields a

likelihood in excess of Pr(θ∗|H0) in all the undertaken runs.Y is the total number of iterative steps in all the runs
undertaken.
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Figure 1: Left: The (normalised) phase space distribution functions recovered from two runs of CHASSIS,
performed with the GC datauG (in black) and PNe datauP (in red). The normalisation is performed to ensure
that f (E)=1 for E=-1. Thesepd f s are recovered under the assumption of isotropy and our implementation of
nonparametric FBST shows that the profile in black is expected to be closer to the true phase spacepd f than is the
profile in red. The errors are±1-σ uncertainties identified on the solution by the optimiser.Middle: Gravitational
matter density distributions from three runs withuG performed with three different seeds (in magenta, cyan and
black) and from 3 runs withuP (in yellow, red and blue). The units of density and radius areastrophysical.Right:
ρ(r) from one of the runs done withuG is shown in black while that withuP is in red. Theρ∗(r) corresponding to
the implementation of datauG is shown in green while that corresponding touP is in blue. We notice thatρG(r)
is consistent withρ∗(r) obtained fromuG while ρ∗(r) obtained fromuP is significantly lower thanρP(r).

4 Application 1 - multistability in galaxies

It is a common practise in astrophysics to employ the measured 1-D velocity data of suitable galactic members,
with the aim of recovering the total gravitational mass distributions. To examine the viability of such a practise,
we employ the available measured kinematic data of two distinct classes of galactic members in an example
galaxy - as an aside, these are planetary nebulae (PNe) and globular clusters (GCs). The data of 164 PNe (uP) are
due to Douglas et al (2007) and that of 30 GCs (uG) are due to Bergond et. al (2006). These sample sizes are too
discrepant to allow for easy interpretation of anyp-value based testing ofH0 defined in Section 3. Instead, we
resort to the non-parametric FBST discussed above.

The two data sets are input into theisotropy-assuming andsphericity-assuming CHASSIS. Thef (E) andρ(r)
recovered from the two distinct data are found to be inconsistent with each other, within error bars (Figure 1).
The difference in the recoveredf (·) could arise from different divergences between an isotropic phase spacepd f
and thef̂ from whichuP are drawn, as compared to that from whichuG are drawn. However, the distribution of
gravitational matter in the galaxy should be uniquely determined. That such is not our conclusion, prompts us to
examine if the inherent assumption of isotropy is to be blamed. Thus, we test for our nullH0 (defined above in
Section 3) in the datauP anduG separately.

The results of our implementation of FBST are shown in Figure1. We find that for three different runs done
with distinct seeds, givenuP, the average evidence in favour of the null is about 0.60 For three runs done with
different seeds, givenuG, the average 1− ev is 0.95. Thus we conclude that the degree of isotropy of thepd f that
uG is drawn from is higher than that of thepd f thatuP is drawn from.

We wonder if the difference in the recovered mass distributions be due to the concluded difference in isotropy
in the two data sets? To understand this, we invoke the peculiarity of CHASSIS that the algorithm overestimates
mass density at allr where phase space anisotropy prevails (discussed in Section 5). Thus, we expect thatρ(r)
recovered usinguP (ρP(r)) is more of an over-estimate compared to the galactic mass density than is theρ(r)
recovered usinguG (ρG(r)).

However, as shown in Figure 1, at allr & 6 kpc,ρG(r) > ρP(r). Therefore, to reconcile the difference between
ρP(r) andρG(r), the isotropy issue cannot help unless we propose thatuG is drawn from a more anisotropicpd f
thanuP. This is of course not true but its inverse is. Hence we conclude that differences inρG(r) andρP(r) are
intrinsic to the system and not due to our assumption of isotropy.

Thus we have demonstrated the potential risk in employing kinematic data of individual galactic members of
a particular population type, to compute the gravitationalmass distribution of galaxies. We have also shown that
the galactic phase space is described by at least two distinct basins of attractions, i.e. the galaxy is multistable, as
we would expect complex systems like galaxies to be.
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Figure 2: Gravitational mass density distributions over radius, obtained from runs done with data drawn from
three different phase space distributions (fGauss, fWD fMichie) that are distinguished from each other in terms of
the inherent degree of anisotropy in their forms.ρ(r) estimated from run performed with dataS isotropy is in black,
with S WD is in red and withS Michie is in blue. Theρ(r) implied by the fiduciary test potentialΦtest(r) is in cyan.
The left panel displays results obtained when the constraint of total mass is included (M0 ≈ 4.06×1011 M⊙ within
about 8.7 kpc). On the right, the general inconsistency between the estimated profiles, when the mass constraint
is excluded, is brought out.

5 Application 2 - using the total mass constraint

Motivated by the need to simplify our analysis by reducing the number of degrees of freedom to the bare mini-
mum, we persist with the assumption off = f (E), i.e. phase space is isotropic. We envisage that when the data
have been drawn from an anisotropicpd f , the algorithm will imply erroneous answers. Using physical arguments
we can predict the nature of this error - CHASSIS overestimatesρ(r) at r where phase space anisotropy prevails.

We implement an independent measure of the total gravitational matter (M0) inside a given radius (RE) in
an example galaxy with the aim of recovering the correct solution for ρ(r) under our assumption of isotropy,
irrespective of the degree of anisotropy of thepd f from which the input data is drawn. If the system is at a large
distance from us, we cannot get velocity data of individual galactic members. Then, we can only get projected
velocity dispersion values (σp) at 1 or a few radial locations in the galaxy. In this background of sparse and
incomplete velocity data, we prepare velocity data samplesfor inputting to CHASSIS, in the following way.

We select observables (x1, x2, v3) from 3 different toy f (·), two of which are selected to depend onE andL
while the third is isotropic. For the example galaxy,σp is known atr1, r2 andr3 say. Then we consider the system
to be divided into 3 anulii withr ∈ [0, r1], (r1, r2], (r2, r3]. The errorδ in theσp measured atri (i = 1, 2, 3) can
be related to the size of the data sampleNi we intend to draw from the given annulus, assuming normal error
distribution. The phase spacepd f that we choose our samples from arefGauss, fWD fMichie:

fGauss(E) =
1

√
2πσ2

exp
(−E
σ2

)

E < 0,

= 0 E > 0,

fWD(E, L) =
1

√
2πσ2

exp

(

− L2

raσ2

)

exp
(−E

σ2

)

E < 0,

= 0 E > 0.

fMichie(E, L) =
1

√
2πσ2

exp

(

− L2

raσ2

)

[

exp
(−E
σ2

)

− 1
]

E < 0,

= 0 E > 0. (9)

The samples chosen fromfGauss, fWD fMichie areS Gauss, S WD S Michie (say). Also, to test for the effect of data from
different forms off (·), we defineE = v2/2+ Φtest(r) where we chooseΦtest(r) ∼ 1/

√

r2 + r2
c .

The total mass constraint is expected to narrow down the range of solutions possible; in this sense it acts as
a prior on the solution forρ(·). We test if the chosen data samples, when input into CHASSIS, recover aΦ(r)
that is concurrent withΦtest(r) when we include/exclude the constraint that total mass withinr = RE is M0.
HereM0 is obtained from literature as about 4.06×1011 M⊙, with errors ofδM0 = ±0.2× 1011 M⊙ andRE ≈8.7
kpc (Koopmans & Treu 2003). We incorporate the constraint byadding a penalty function to the definition
of the likelihood; the role of this penalty function is to penalise any solution that implies a total gravitational
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mass withinRE (Mc(RE)) different fromM0. This penalty function isα|Mc(RE) − M0|/2δM0. Hereα is a flag,
designed to include or exclude the constraint from the definition of the likelihood, depending on whether it is 1
or 0 respectively.

The results of conducting our test runs are shown in Figure 2.We find that when the constraint is included,
the ρ(r) profiles are consistent with each other within errors, irrespective of the anisotropy in the data used to
obtain this profile. In absence of guidance from the constraint, anisotropy affects results.

6 Summary

Here we have discussed the novel nonparametric Bayesian algorithm CHASSIS that estimates the most likely
phase spacepd f ( f (·)) from which an observed sample of 1-D component of velocities of individual galactic
members is drawn, at the most likely gravitational potential Φ(·) of the galaxy. The main purpose of this paper
is to bring out the fact that CHASSIS is arobust and viable algorithm that can be implemented to extract the all-
important gravitational matter density distribution in distant galaxies, even within the domain of very sparse and
incomplete data. Given the dearth of measurements in these systems, it is prudent to work with a small number
of degrees of freedom. With this in mind, one version of CHASSIS has been designed to work under the purview
of the assumption of isotropy in phase space, by which we imply an f (·) that is symmetric in the 3 velocity and
3 spatial coordinates. In another version, the assumption of isotropy is not made and CHASSIS is made to work
with a greater number of dof (Chakrabarty & Saha, under preparation).

We offer independent means of tackling the obvious fallout of the assumption of isotropy, when invoked;
phase spacepd f s from which realistic data are drawn, will not be isotropic in general, leading to spurious solu-
tions for f (·) andΦ(·). Firstly, a robust test of hypothesis is developed that tests the assumption of isotropy, given
the data. This test is modelled after Pereira & Stern’s (1999) FBST and is designed to work in the nonparametric
context. Data available in astrophysical literature are implemented to conclude that kinematic data of distinct
galactic member populations will in general provide distinct gravitational mass distributions. The multistability
of the example galaxy is demonstrated and the folly of this mode of mass determination is indicated. Secondly,
we demonstrate that the usage of information about total gravitational mass, available in the literature, can con-
strain the sought gravitational matter density distribution, irrespective of anisotropy in the data. Such a constraint
basically supplements for the uninformative priors that weuse within CHASSIS.

Currently, we are working on the establishment of a criticalvalue of the evidence value in favour of a given
null. This will enable the quantified judgement of when to reject or accept the null, given the data. At the moment,
our implementation of FBST only allows for a comparative judgement.
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