ÁLGEBRAS DE BOOLE

JONAS GOMES

Sumário

1. Definição	1
1.1. Definição por Reticulados	1
1.2. Definição Algébrica	3
2. Filtros e Ideais	3
2.1. Definicão	3
2.2. Bases de um Filtro	4
3. Ultrafiltros	5
3.1. Definicão	5
Referências	5

Esse texto é uma reescrita de [1] feito de forma mais detalhada. Foi escrito como uma das notas de apresentação para a Profa. Dra. Lucia R. Junqueira, IME-USP, no primeiro semestre de 2009.

1. Definição

1.1. Definição por Reticulados.

Definição 1. Dizemos que um conjunto A é parcialmente ordenado $por \leq se \ \forall x, y, z \in A$

$$x \le x \tag{1}$$

Se
$$x \le y$$
 e $y \le x$ então $x = y$ (2)

Se
$$x \le y$$
 e se $y \le z$ então $x \le z$ (3)

Além disso, A terá relação de ordem total se:

$$x < y \ ou \ y < x \tag{4}$$

Definição 2. Seja A um conjunto parcialmente ordenado. O supremo (respect.:ínfimo) de um subconjunto B é definido por

$$x \in B \ tal \ que \ \forall y \in B \ y \le x \ (respect.: \ x \le y)$$

e se for o menor (respect.: maior) elemento com essa propriedade.

Notação: Denotaremos o supremo (respect.: ínfimo) de B por sup(B) (respect.: inf(B)) ou $\vee_{i\in I}B$ (respect.: $\wedge_{i\in I}B$) Se $B=\{x,y\},$ $sup(B)=x\vee y$ (respect.: $inf(B)=x\wedge y$.

Definição 3. Um reticulado é um conjunto A parcialmente ordenado tal que

$$\forall x, y \in A \ \exists (x \land y) \ e \ \exists (x \lor y)$$

Exemplo 1. Se A é um conjunto completamente ordenado, então A é um reticulado.

Proposição 1. Se A é um reticulado e $B \cup C = A$, então $sup(A) = sup(B) \vee sup(C)$

Demonstração. Se x é sup de A, então $\forall y \in A, y \leq x$. Como $y \in A \Rightarrow y \in B \cup C$, então $\forall y \in B$ e $\forall y \in C$ $y \leq x$. Dessa forma, $supB \leq x$ e $supc \leq x$, assim $supB \vee supC \leq x$. Assim x é um majorante de $\{supB, supC\}$. Para mostrar que ele é o menor majorante, suponha que exista $m \in A$ tal que $supB \leq m$ e $supC \leq m$. Assim, $\forall y \in B$, $\forall z \in C$ $y \leq m$ e $z \leq m$. Assim, $\forall a \in A, a \leq m$, do que segue que m é um majorante de A e assim, $x \leq m$.

Se $x = supB \lor supC$, então $supB \le x$ e $supC \le x$, donde $supA \le x$. Pra mostrar que x é o menor elemento com essa propriedade, considere $m \in A$ tal que $supB \le m$ e $supC \le m$. Assim m é majorante de $\{supB, supC\}$, do que segue que $x \le m$.

Proposição 2. Seja A um reticulado. Se $B \subset A$ é finito, então existe supB.

Demonstração. Faremos por indução no número de elementos de B. Se $n=1,\ B=\{x\}$ e supB=x. Supondo que caso n=k tenha sido provado, para n=k+1 temos que B pode ser escrito como $B=\{x_1,x_2,\ldots,x_k,x_{k+1}\}$ ou $B=\{x_1,x_2,\ldots,x_k\}\cup\{x_{k+1}\}$. Pela proposição anterior, sabemos que $supB=sup\{x_1,x_2,\ldots,x_k\}\vee sup\{x_k\}$. Como A é um reticulado, o resultado segue. \square

Definição 4. Um reticulado R é dito complementado se existe supR = 1, infR = 0 e

$$\forall x \in R, \exists y \ tal \ que \ x \land y = 0, x \lor y = 1$$

Para garantir que o complemento de um elemento seja único exigimos a propriedade de distributividade do reticulado:

Definição 5. Dizemos que um reticulado é distributivo se

$$\forall x, y, z \in R, x \land (y \lor z) = (x \land y) \lor (x \land z) \ e \ x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

Proposição 3. Em um reticulado distributivo cada elemento tem um e somente um complemento.

Demonstração. Suponha que $x \in R$ tenha dois complementos, isso é, $\exists z,y \in R$ tal que $x \land y = 0 = x \land z$ e $x \lor y = 1 = x \lor z$

$$y = y \lor 0 = y \lor (x \land z) = (y \lor x) \land (y \lor z)$$
$$= 1 \land (y \lor z) = y \lor z$$

Assim
$$y = y \lor z$$
 da mesma forma $z = y \lor z$ e assim $y = z$

Nota 1. Representaremos o oposto de x por x^*

1.2. Definição Algébrica.

Definição 6. Uma álgebra de Boole é uma estrutura \mathcal{B} da forma:

$$\mathcal{B} = \{ \land, \lor, *, 1, 0 \}$$

que satisfaz:

$$x \land y = y \land x, x \lor y = y \lor x \tag{5}$$

$$x \wedge (y \wedge z) = (x \wedge y) \wedge z, x \vee (y \vee z) = (x \vee y) \vee z \qquad (6)$$

$$x \wedge (y \vee x) = x, x \vee (x \wedge y) = x$$
 (7)

$$x \wedge x^* = 1, x \vee x^* = 0$$
 (8)

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z), x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z) \tag{9}$$

Definição 7. Em uma Álgebra de Boole \mathcal{B} , diremos que $x \leq y$ se $x \wedge y = y$

1.2.1. Igualdade das definições.

Proposição 4. $\mathcal{B}\acute{e}$ uma Álgebra de Boole sse $<\mathcal{B}, \leq>\acute{e}$ um reticulado complementado e distributivo

Demonstração. Precisamos primeiro mostrar que \leq define uma relação de ordem em B. É imediato mostrar 1 e 2. Se $x,y,z\in\mathcal{B}$ são tais que $x\leq y$ e $y\leq z$ então, $x\wedge z=x\wedge (y\wedge z)=(x\wedge y)\wedge z=y\wedge z=z.$ Assim verifica-se 3. Como \wedge e \vee são funções com contradomínio em \mathcal{B} , então \mathcal{B} é reticulado. 8 garante-nos de que existe o complemento e 7 garante-nos de que ele é único. Assim toda Álgebra de Boole \mathcal{B} é um reticulado complementado e distributivo.

Como $<\mathcal{B}, \le>$ satisfaz todas propriedades de uma Álgebra de Boole, \mathcal{B} é uma Álgebra de Boole.

2. Filtros e Ideais

2.1. Definicão.

Definição 8. Um Filtro (respect. Ideal) C em um reticulado R é um conjunto não-vazio que satisfaz:

$$\forall x, y \in C \quad x \land y \in C \quad (respect: \ x \lor y \in C) \tag{10}$$

$$\forall x \in C, y \in R \ x \le y \Rightarrow y \in C \ (respect: y \le x \Rightarrow y \in C)$$
 (11)

Exemplo 2. O próprio reticulado é ao mesmo tempo um ideal e um filtro

Exemplo 3. Fixado $y \in R$, o conjunto $\{x \in R \text{ tal que } x \leq y\}$ é um ideal, chamado de ideal principal gerado por y.

Proposição 5. Em todo reticulado finito, todo filtro e todo ideal é gerado por algum elemento.

Demonstração. Seja C um filtro (respect: ideal) e $x = \wedge C$ (respect: $x = \vee C$). Vamos mostrar que C é gerado por x (Note que por estar em um reticulado e C ser finito, x existe. Note também que $x \in C$). Seja $C' = \{y \in R \text{ tal que } x \leq y\}$ (respect. $x \geq y$), vamos mostrar que C = C'. Se $z \in C$, então $z \geq x$ (respect. $z \leq x$), assim $C \subset C'$. Se $z \in C'$, então $z \geq x$ e, logo $C' \subset C$.

Nota 2. De agora em diante, quando nos referirmos a filtro e ideal queremos dizer filtros e ideais próprios (diferentes do reticulado)

Os subconjuntos de uma álgebra de Boole que podem ser estendidos a filtros são aqueles que gozam da seguinte propriedade:

Definição 9. Um conjunto F de uma álgebra de Boole tem a propriedade da intersecção finita ('fip') se o ínfimo de qualquer subconjunto finito de F é diferente de 0

Exemplo 4. Qualquer filtro (próprio) tem a fip

Proposição 6. Se B é uma álgebra de Boole e $A \subset B$ é um conjunto com a fip, $\forall x \in B$, ou $A \cup \{x\}$ ou $A \cup \{x*\}$ tem a fip.

Demonstração. Seja $A \subset B$ conjunto com a fip, $x \in B$ e $F \subset A$ um subconjunto finito contido em A. Se $F \cup x = 0$, então $\wedge (F \cup x) = (\wedge F) \wedge x = 0$. Ou seja, F = x*, logo $A \cup \{x*\} = A$ e $A \cup \{x*\}$ tem a fip. Da mesma forma, se $F \cup \{x*\} = 0$, então $A \cup \{x*\}$.

2.2. Bases de um Filtro. Se B é uma Álgebra de Boole e $A \subset B$, denotaremos por A^0 o conjunto dos elementos de B maiores que algum elemento de A:

$$A^0 = \{x \in B \text{ tal que } x \ge a, \text{ para algum} a \in A\}$$

Denotaremos por A^c o conjunto de todos os ínfimos de subconjuntos finitos de A:

$$A^c = \{x \in B \text{ tal que } \exists F \subset A \text{ finito } ex = \land F\}$$

Definição 10. Se F for um filtro, A será dito uma base de F se $A^0 = F$

Definição 11. Se F for um filtro, A será dito uma sub-base de F se $(A^c)^0 = F$

Lema 1. Se B é uma Álgebra de Boole e $A \subset B$, então $(A^c)^0$ é um filtro de B (não necessariamente próprio). Qualquer filtro contendo A contém $(A^c)^0$. $(A^c)^0$ é um filtro (próprio) sse A tem a fip.

Demonstração. Se $x, y \in (A^c)^0$ então $\exists X, Y \subset A$ finitos tal que $x \ge \land (X)$ e $y \ge \land (Y)$. É claro que $A \cup B$ é finito e $\land (A \cup B) = (\land A) \land (\land B)$. Mas $(\land A) \land (\land B) \le x \land y$ e, logo, $x \land y \in (A^c)^0$. Se $x \in (A^c)^0$ e $y \in B$,

então, se $y \geq x$, $\land X \leq x \leq y$ e, assim, $y \in (A^c)^0$. Se $F \supset A$ é um filtro, então, se $x \in (A^c)^0$, existe X finito tal que $\land X \leq x$. Como F é filtro, $\land X \in F$. Assim, $x \in F$ e $(A^c)^0 \subset F$. Se A não tem a fip, existe $X \subset A$ finito tal que $\land X = 0$. Assim, $0 \in (A^c)^0$ (já que $0 \geq \land X$) e assim o filtro não é próprio. Se o filtro não for próprio, então $0 \in (A^c)^0$ e existe $X \subset A$ finito tal que $0 \geq \land X$, ou seja, $\land X = 0$. Assim A não tem a fip.

3. Ultrafiltros

3.1. **Definicão.** Seja B uma Álgebra de Boole e F um filtro em B. Se não existir um filtro F' diferente de F tal que $F \subset F'$, diremos que F é um ultra-filtro (ultra-filtro é um filtro maximal na relação de ordem definida pela inclusão em 2^B).

Referências

[1] Bell, J.L. Slomson, A. B. *Models and Ultraproducts: An Introduction*, Dover Publications, Inc. Mineola, Nova York, USA., 3th edition, 2006