Database M odeling and Design

3" Edition
Toby J. Teorey
University of Michigan
L ecture Notes
Contents
|. Database Systems and the Life Cycle (Chapter 1)... e 2

Introductory concepts; objectives of database management 2
Relational databaselifecycle 3
Characteristics of agood database design process 7

Il. Requirements Analysis (Chapter 3)............cco e i ven 2008

[11. Entity-Relationship (ER) Modeling (Chapters 2-4).................. 11
Basic ER modeling concepts 11
Schema integration methods 22
Entity-relationship 26
Transformations from ER diagramsto SQL Tables 29

V. Normalization and normal forms (Chapter 5)...35
First normal form (1NF) to third normal form (3NF) and BCNF 35
3NF synthesis algorithm (Bernstein) 42
Fourth normal form (4NF) 47

V. Access Methods (Chapter 6)............ccoeee i e veiiieie e i e e ven 2. 50
Sequentia access methods 50
Random access methods 52
Secondary Indexes 58
Denormalization 62
Join strategies 64

V1. Database Distribution Strategies (Chapter 8)... ceeiiieine....006
Requirements of agenerdized DDBMS: Date's 12 Rules 68
Distributed database requirements 72
The non-redundant “ best fit” method 74
The redundant “all beneficial sites” method 77

VI1l. Data Warehousing, OLAP, and Data Mining (Chapter 9)........... 79
Datawarehousing 79
On-line analytical processing (OLAP) 86
Datamining 93

Revised 11/18/98 — modify Section V

Revised 11/21/98 — insertionsinto Section V11

Revised 1/14/99 — modify Section VI

Revised 2/11/99 — modify Section 1V, 4NF (p.47 FD, MVD mix)

|. Database Systems and the Life Cycle

Introductory Concepts

data—a fact, something upon which an inference is based (information or knowledge has
value, data has cost)

data item—smallest named unit of datathat has meaning in thereal world (examples: last
name, address, ssn, political party)

data aggregate (or group) -- acollection of related dataitems that form a
whole concept; assimple group is afixed collection, e.g. date (month, day, year); a
repeating group is avariable length collection, e.g. a set of adliases.

r ecor d—qgroup of related data items treated as a unit by an application program (examples.
presidents, elections, congresses)

file—collection of records of asingle type (examples. president, election)

database—computerized collection of interrelated stored data that serves the needs of
multiple users within one or more organizations, i.e. interrelated collections of records
of potentially many types. Motivation for databases over files: integration for easy access
and update, non-redundancy, multi-access.

database management system (DBM S) -- ageneralized software system for
manipulating databases. Includeslogical view (schema, sub-schema), physical view
(access methods, clustering), data manipulation language, data definition language, utilities
- security, recovery, integrity, etc.

database administrator (DBA) -- person or group responsible for the effective use of
database technology in an organization or enterprise. Motivation: control over all phases of
thelifecycle.

Objectives of Database M anagement

1. Data availability—make an integrated collection of data available to awide variety of
users
* at reasonable cost—performance in query update, eliminate or control data
redundancy
* in meaningful format—data definition language, data dictionary
* easy access—query language (4GL, SQL, forms, windows, menus);
embedded SQL, etc.; utilities for editing, report generation, sorting

2. Dataintegrity—insure correctness and vaidity
* checkpoint/restart/recovery
* concurrency control and multi-user updates
* accounting, audit trail (financial, legal)

3. Privacy (the goal) and security (the means)
* schema/sub-schema, passwords

4. Management control—DBA:: lifecycle control, training, maintenance

5. Dataindependence (arelative term) -- avoids reprogramming of applications, allows
easier conversion and reorganization

* physical dataindependence—program unaffected by changes in the storage structure or
access methods

* |ogical dataindependence—program unaffected by changesin the schema

* Socia Security Administration example (1980is)
- changed benefit checks from $999.99 to $9999.99 format
- had to change 600 application programs
- 20,000 work hours needed to make the changes (10 work years)

* Student registration system—cannot go to a4-digit or hexadecimal course numbering
system because of difficulty changing programs

*Y 2K (year 2000) problem—many systems store 2-digit years (e.g. ‘02-OCT-98') in their
programs and databases, that give incorrect results when used in date arithmetic (especially
subtraction), so that ‘00 is still interpreted as 1900 rather than 2000. Fixing this problem
requires many hours of reprogramming and database alterations for many companies and
government agencies.

Relational Database Lifecycle

1. Requirements formulation and analysis
* natural data relationships (process-independent)
* usage requirements (process-dependent)
* hardware/software platform (OS, DBMYS)
* performance and integrity constraints
* result: requirements specification document, data dictionary entries

2. Logical database design
2.1 ER modeling (conceptual design)
2.2 View integration of multiple ER models
2.3 Transformation of the ER model to SQL tables
2.4 Normalization of SQL tables (up to 3NF or BCNF)
*result: global database schema, transformed to table definitions

3. Physical database design
* index selection (access methods)
* clustering

4. Database distribution (if needed for data distributed over a network)
* data fragmentation, allocation, replication

5. Database implementation, monitoring, and modification

Database Life Cycle

Step |l Information Requirements (reality)

Stepll Logical design

Step Il.a ER modeling {conceptual)

Retail
salesperson
Vi

Step Il.b WYiew

Customer vwiew

M
customer w

Salespersons

customer |1 orders N product
M [
seryved- by sold- by
1 salesperson
M
integration
customer ! places order
M fi
ordaer \i/
M
i
salesperson 1 product

M
—*
served-by

Integration of retail salesperson’s and customer's views

Step Il.c Transformation of the ER diagram to SOL tables

Customer creato Lable customor
cust- no cust- name | ... {cusi_no integer,
CUSt_nEMAa cherf1s),
cust_addr char{30),
sales_name chari 153,

Froduct prod—no integer,
_ _ i prinaty kay [custnoy,
prod-no | prod-name | gty-in-stock foreign key (sales_name)

references salesperaan,
Toreign key (prod_no]
ratarences product);

Salespersaon
sales-nameladdr| dept | job-level |vacation-days

Order Order-product
arder-na [sales-name |[cust-no order-no| prod-no

Step Il.d Hormalization of S0OL tables
(3HF, BCNF, 4NF, SNF)
Decomposition of tables and removal of update anomalies.

Salesperson Sales-vacations

sales-nameladdr| dept | job-level job-level |vacation-days

Step Il Physical Design (including denormalization)

Customer

cust-no | cust-name .
Customer/refined

cust-no | cust-name | sales-name

\ /

Order

order-no | sales-name [cust-no [physical design parameters:
Indexing, access methods, clustering

Step IY Data distribution

&1l parts
A1l salespersons
A11 custorners

411 parts
Salespersons in Michigan
Custamers in greater

Detroit

A1l parts

Salespersons
in Michigan

Custamers
in Michigan

A1l parts
Salespersons in [11inois
Customers in 1T1linois

read wiite

A11 parts
Salespersons in northeast
Customers in northeast

51 =AnnAarbar, 32 = Detroit, 53 = Chicago, 54 = Bostan, 35 = New York
T1,TZ, T3 are transactions {the figure shows all sites where they are initiated

Decigions: fragmentation, replication, allocation
Objectives: min. response time, min. communication cost, max availability

Characteristics of a Good Database Design Process

* iterative requirements analysis
- interview top-down
- use simple modelsfor data flow and data relationships
- verify model

* stepwise refinement and iterative re-design

* well-defined design review process to reduce devel opment costs review team
-database designers
-DBMS software group
-end usersin the application areas when to review
- after requirements analysis & conceptual design
- after physical design
- after implementation (tuning) meeting format
- short documentation in advance
- formal presentation
- criticize product, not person
- goal isto locate problems, do solutions off line
- timelimit is 1-2 hours

. Requirements Analysis

Pur pose - identify the real-world situation in enough detail

to be able to define database components. Collect two types of data: natural data (input to the
database) and processing data (output from the database).

Natural data requirements (what goes into the database)

1.

Organizational objectives
- sell more cars this year
- move into to recreational vehicle market

Information system objectives
- keep track of competitors' products and prices
- improve quality and timing of datato management regarding production schedule delays,
etc.
- keep track of vital resources needed to produce and market a product

Organizational structure/chart

Administrative and operational policies
- annual review of employees
- weekly progress reports
- monthly inventory check
- trip expense submission

Data elements, relationships, constraints, computing environment

Processing requirements (what comes out of the database)

1. Existing applications - manual, computerized

2. Percelved new applications

* quantifies how datais used by applications

* should be a subset of dataidentified in the natural relationships
(but may not be due to unforeseen applications)

* problem - many future applications may be unknown

Data and Process Dictionary Entries for Requirements Analysis

in the Database Design Lifecycle

Entity Description (possibly in adata dictionary)

Name

Reference-no
Cardinality

Growth rate
Synonyms

Role (or description)

Security level

Subtypes

Key attribute(s)

Non-key attribute(s)

other entities

Used in which applications

customer

4201

10,000

100 per month

user, buyer

someone who purchases or rents a
product made by the company.

0 (customer list is public)

adults, minors

cust-no

cust-name, addr, phone, payment-status Relationship to

salesperson, order, product
billing, advertising

Attribute description (dataelementsin adata dictionary)

Name

Reference-no

Range of legal values
Synonyms

Datatype
Description

Key or nonkey
Source of data

Used in applications
Attribute trigger

Relationship description
Name

Reference-no

Degree

Entities and connectivity
Synonyms

Attributes (of the relationship)
Assertions

Process (application) description
Name

Reference-no

Frequency

Priority

Deadline

Data elements used

Entities used

Data volume (how many entities)

cust-no

4202

1 to 999,999

cho, customer-number

integer

customer id number set by the company.
key

table of allowable id numbers

billing

[* describes actions that occur when a
data element is queried or updated*/

purchase

511037

binary

customer(0,n), product(1,n)

buy

quantity, order-no

acustomer must have purchased at
least one product, but some products
may not have been purchased as yet by
any customers.

payroll
163

bi-weekly

10

noon Fridays

emp-name, emp-salary
employee

implicit from entity cardinality

Interviews at different levels

Top management - business definition, plan/objectives, future plans

Middle management - functions in operational areas, technical areas, job-titles, job functions
Employees - individual tasks, data needed, data out

Specific end-users of aDBMS - applications and data of interest

Basic rulesin interviewing

1. Investigate the business first

2. Agree with the interviewee on format for documentation (ERD, DFD, etc.)
3. Define human tasks and known computer applications

4. Develop and verify the flow diagram(s) and ER diagram(s)

5. Relate applications to data (this helps your programmers)

Example: order entry clerk

Function: Take customer orders and either fill them or make adjustments.
Frequency: daily

Task Def Volume Data Elements
1. Create order 2000 A,B,EH

2. Vdidate order 2000 A, B,G H,J
3. Fill out error form 25 A, C

4. Reserve item/price 6000 A,D,H

5. Request dternate items 75 A E I, KM
6. Enter unit price 5925 A F,JN

10

[11. Entity-Relationship (ER) Modeling

Basic ER Modeling Concepts

Entity - aclass of rea world objects having common characteristics and properties about
which we wish to record information.

Relationship - an association among two or more entities

* occurrence - instance of arelationship is the collective instances of the related entities
* degree - number of entities associated in the relationship (binary, ternary, other n-ary)
* connectivity - one-to-one, one-to-many, many-to-many

* existence dependency (constraint) - optional/mandatory

Attribute - acharacteristic of an entity or relationship

* |dentifier - uniquely determines an instance of an entity

* |dentity dependence - when a portion of an identifier isinherited from another entity
* Multi-valued - same attribute having many values for one entity

* Surrogate - system created and controlled unique key (e.g. Oracle’'s “ create sequence”)

11

Concept Representation & Example

Entity Employes
Weak entity Employee-
job-history
Relationship
Attribute
identifier (key) ermp-id
descriptor (nonkey)
multivalued descriptor

Zi ﬁ:@)

comples attribute address

12

Concept Fepresentation & Example

Degree 1
FeCcUrsive Emol
binary Mpioyes

manager

e

manages

managed

binary Department | bt ot U bivision
t . M M _
ernary Skil Froject
Fh
Employee
Connectivity
ig-
one-to-one Department managed- L Employee

by
one-to-many Department 1—’—N Employee

many-to-rmany Employes
Existence i5e 1
optional Department mant?ged— Employee
4

13

ER model constructs
using the
Chen notation

ER model constructs using the
"crow's foot" approach
[Ever86, Knowledgewarel

max=1 min=1
/ min=0 l{/max:1
i5-
Department Emplaoyee Department [T H Emplayee
managed-
by
| N | has |
Division Department Division | | Department
1 T5n M | |15—|:u:|:upied—
office u:u:u:lﬁlnied O— Employee Office | | by S |Employee
iy M _ |WDF|<S— |
Ernployes Project Employes | on | Project
Employee- Employee-
job-history job-history
wedak entity intersection entity
is-group-leader-of
Employes

Fecursive binary relationship

(a) ER construct comparisons

Employes

14

Recursive entity

Super-class (super-type)/subclass (subtype) relationship

Generalization

* amilarities are generalized to a super-class entity, differences are specialized to a subclass e
caled an“1SA” relationship (“ specialization” isthe inverse relationship)

* digointness constraint - there is no overlap among subclasses

* completeness constraint - constrains subclasses to be all-inclusive of the super-class or not |
total or partial coverage of the superclass)

* gpecial property: hierarchical in nature

* gpecia property: inheritance - subclass inherits the primary key of the super-class, super-cle
common nonkey attributes, each subclass has specialized non-key attributes
Aggregation

* “part-of” relationship among entities to a higher type aggregate entity (“contains’ istheinve
relationship)

* attributes within an entity, data aggregate (mo-day-year)

* entity clustering variation: membership or “is-member-of” relationship

15

Employee

ah—"

supertype

subtypes

|

Manager

Engineer

Technician

| Secretary

(a) Generalization with disjoint subtypes

Individual

Employee

Customer

(b)) Generalization with overlapping subtypes and completeness constraint

Constraints

16

Constraintsin ER modeling
* role - the function an entity playsin arelationship
* existence constraint (existence dependency) - weak entity
* exclusion constraint - restricts an entity to be related to only of severa other
* entitiesat agiven point intime
- mandatory/optional
- specifies lower bound of connectivity of entity instances
- participating in arelationshipas 1 or O

* uniqueness constraint — one-to-one functional dependency among key attributes
in arelationship: binary, ternary, or higher n-ary

17

Technician

Froject

Motebook

& technician uses exactly one notebook for Functional dependencies
each project. Each notebook belongs to one
technician for each project. Note that a
technician may still work on many projects
and maintain different notebooks for
different projects.

emp-id, project-name -: notebook-no
emp-id, notebook-no -» project-name
project-name, notebook-no -» emp-id

{a) one-to-one-to-one ternary relationship

Project azsigned-

to

Employee

Location

Each employee assigned to a project works Functional dependencies
gt only one location for that project, but
can be at different locations for different
projects. &t a particular location, an
employee works on only one project. At a
particular location, there can be many
employees assigned to a given project.

emp-id, loc-name -» project-name
emp-id, project-name -» loc-name

(b} one-to-one-to-many ternary relationship

M .
Manager 1 manages Engineer
Fl
Project

Each engineer working on a particular project
has exactly one manager, but each manager Functional dependency
of a project may manage many engineers, and _ _ _
gach manager of an engineer may manage project-name, emp-id -> mgr-id

that engineer on many projects.
o) one-to-many-to-many ternary relationship

18

Ermployes

Emplogeses can use manyg skills on any Functional dependencies
one of many projects, and each project [Ap—
has many emplogyees with warious skills.

€d» many—to—many—to—rmany ternary relationship

19

ER diagram

notation
entity,
attribute Employee
(ho operation)

job-class

(@) Entity with attributes

Department Employee
(b} One-to-one
1 M
Division @ ~d Department

Object diagram using

the Blaha and Premerlani

variations of UFL notation
[BERJ9E, BIPrasl

ClassMame Employee

attribute emp-id: string
emp-name: string
job-class: integer

operation change-job-class
change-name

is-managed-
by
Department (" Employee

Division

has
—@ Department

{c) One-to-many, many side optional

1 is- M
_O

(d) One-to-many, one side optional

Office Emp]Dl:IEE

is-ococupied-

Employee

FProject

Aa_

(e} Many-to-rmany

Ermployee

(f)Recursive binary
relationship

u]
Office M Employee
wiorks-on A
Employee —@|Project
group-leader
Employee
*—

20

ER diagram Object diagram using
notation the UML notation
[BR196, BIProg]

Individual Individual

? type-of

Emplayee Customer Employee Customer

(@) Generalization ("is-a") relationship
with supertype and nondisjoint subtypes

Group
Group S

&)

:

&

Individual Individual

(b} Aggregation ("part-of") relationship

Employee Project Employee
emp-hired
zkill-
Skill skill Project
3kill- used profect-

assigned
{c) ternary relationship

21

Schema Integration Methods

Goal in schema integration
- to create a non-redundant unified (global) conceptua schema

(1) completeness- all components must appear in the global schema
(2) minimality - remove redundant concepts in the global schema
(3) understandability - does global schema make sense?
1. Comparing of schemas
* ook for correspondence (identity) among entities
* detect possible conflicts
- naming conflicts
homonyms - same name for different concepts
synonyms - different names for the same concept
- structural conflicts
type conflicts - different modeling construct for the same concept (e. g. “order” as an entity,
attribute, relationship)
- dependency conflicts - connectivity is different for different views (e.g. job-title vs. job-title-history)
- key conflicts - same concept but different keys are assigned (e.g. ID-no vs. SSN)

- behaviora conflicts - different integrity constraints (e.g. null rules for optional/mandatory:
insert/delete rules)

* determine inter-schema properties
- possible new relationships to combine schemas
- possible abstractions on existing entities or create new super-classes (super-types)
2. Conforming of schemas
* resolve conflicts (often user interaction is required)
* conform or align schemas to make compatible for integration
* transform the schemavia
- renaming (homonyms, synonyms, key conflicts)
- type transformations (type or dependency conflicts)
- modify assertions (behavioral conflicts)
3. Merging and restructuring
* superimpose entities

* restructure result of superimposition

22

Department1 publizhes NEepDrt Caontractor

i m I:I'IEII'I'IEI

{name J
[address ;,

| address "I

contains

Topic-area

[rarmne I

{a) Original schema 1, focused an reports

Fublication
Qitle)

I: code i
Idept—name)

contains Keyword

title)

(b} Original schema 2, focused on publications

23

Fublication

@em-name)

contains

Topic-area

research-area

(8) Schema 2.1, in which Keyword has changed to Topic-ares

1

i
Fublication

M

Department

code

containg

Topic-area

research-area

{b) Schema 2.2, in which the attribute dept-name has changed
to an attribute and an entity

24

M I

Fublicatian

1

Department

iaddressj

publizhes

rezearch-
area

Contractor

narne

ﬁaddressi

25

Entity-Relationship Clustering
Motivation

* conceptual (ER) models are difficult to read and understand for large and complex databases, e.g.
10,000 or more data el ements

* thereisaneed for atool to abstract the conceptual database schema (e. g. clustering of the ER
diagram)

* potential applications
- end user communication
- gpplication design team communication

- documentation of the database conceptual schema (in coordination with the data dictionary)

Clustering Methodology
Given an extended ER diagram for a database.....
Step 1. Define points of grouping within functional aress.
Step 2. Form entity clusters
* group entities within the same functional area
* resolve conflicts by combining at a higher functional grouping
Step 3. Form higher entity clusters.
Step 4. Validate the cluster diagram.

* check for consistency of interfaces.
* end-users must concur with each level.

26

Department

Contractor

1 1
@ &>
M M

—&>

M 1
FE-zsec Feport

1

&>

M

Authar

{a) ER model before clustering

F-abbr

=

Froject

Department

Contractor

1 1

©

Report 9 M M| Report

&uthar

fentity cl uster}2_1 M

| Feport

(b} ER rmodel after clustering

27

Project
M

OO
{a) Dominance grouping (b} Abstraction grouping
{c) Constraint grouping {d) Relationship grouping

28

Transformations from ER diagramsto SQL Tables
* Entity —directly toa SQL table

* Many-to-many binary relationship —directly to a SQL table, taking the 2 primary
keysin the 2 entities associated with this relationship as foreign keysin the new table

* One-to-many binary relationship — primary key on “one’ side entity copied asa
foreign key inthe “many” side entity’ stable

* Recursive binary relationship —same rules as other binary relationships

* Ternary relationship —directly to a SQL table, taking the 3 primary keys of the 3
entities associated with this relationship as foreign keysin the new table

* Attribute of an entity —directly to be an attribute of the table transformed from this
entity

* Generalization super-class (super-type) entity —directly to aSQL table

* Generalization subclass (subtype) entity —directly to a SQL table, but with the
primary key of its super-class (super-type) propagated down as aforeign key into itstable

* Mandatory constraint (1 lower bound) on the “one” side of a one-to-many
relationship —the foreign key in the “many” side table associated with the primary key in
the “one”’ side table should be set as“ not null” (when the lower bound is 0, nulls are
allowed asthe default in SQL)

29

Feport

Every report has one abbreviation, and every
abbreviation represents exactly one report.

i create table report

has-abbr

Abbreviation

{a) one-to-one, both
entities mandatory

Department

managed-b

Employee

(b} one-to-one, one entity
optional, one mandatory

Engineer

has-
allocated

Deskiop

{c) one-to-one,
both entities optional

{report_no integer,
report_name warchar{25a),
prirmary key({report_no);

1 create table abbreviation

{abbr_no char{g),

report_no integer not null unigue,

primary key {abbr_noj,

foreign key (report_no jreferences report
on delete cagscade on update cascade);

Every department must have a manager, but an
employee can be a manager of at most one department.

create table department
{dept-no integer,
dept_name char{z0),
mgr-id char{10) not null unigque,
primary key (dept_nay,
foreign key {mgr_id) references employee
on delete set default on update cascade);

create table employee
{emp_id char{10),
emp_name char{20},
prirmary key (emp-id));

Some desktop computers are allocated to engineers,
but not necessarily to all engineers.

create table engineer
{erp_id char{10},
desktop_no integer,
prirmary key (emp_idl;

create table desktop
(desktop_no integer,
emp-id char{10J,
primary key {desktop_no},
foreign key (emp_id} references engineer
on delete set null on update cascade);

30

Every employee works in exactly one department, and
each department has at least one employee.
create table department
! {dept_no integer,
dept_name char{2o),
primary key (dept_noj};
create table employee
{emp_id char(10],
emp_name char{2o),
dept_no integer not null,
(d) one-to-many, both primary key (emp_idJ,
entities mandatory foreign key (dept_no) references department
on delete set default on update cascade);

Department

M

Employes

Each department publishes one or more reports. & given
report may not necessarily be published by a department.
create table department
{dept_no integer,
dept_name char{20},
prirmary key (dept_noj);

create table report
{report_no integer,

Department

publizhes

Report dept_no integer,
primary key {report_na},
(e} one-to-many. one entity foreign key {dept_no} references department
optional, one unknown on delete set null on update cascade);

Every professional association could have none, one, or
Engineer many engineer members. Each engineer could be @ member
of none, one, or many professional associations.
create table engineer
(emp_id char(10},
prirmary key (ernp_id)i;
create table prof-assoc
{assoc_name varchar{256),
primary key (assoc_namel);

Prof-assoc create table belongs_to
{emp_id char{10),
asgoc_name varchar{2567,
{f) many-to-many, both primary key (emp_id, assoc-name),
entities optional foreign key (emp_id) references engineer
on delete cascade on Uupdate cascade,
foreign key {assoc_name) references prof-assoc
on delete cascade on update cascade);

31

Employee

{a) one-to-one, both
sides optional

Engineer

1 M

is-
roup-leads
-of

(b} one-to-many, one side

&Any employee is allowed to be married
to another employee in this company.

create table employee
temp_id char{10),
emp_narme char{20},
spouse_id char{19]),
primary key (emp_id},
foreign key (spouse_id) references employee
on delete set null on update cascade);

Engineers are divided into groups for certain
projects. Each group has a leader.

create table engineer
{emp_id char{i0),
leader_id char{10) not null,
primary key (emp_idJ,
foreign key (leader_id) references engineer
on delete set default on update cascade);

mandatory, many side optional

Employee

i5-
coauthor -
with

{c) many-to-many,
both sides aptional

Each employee has the opportunity to coauthor a
report with one or more other employees, or to
wiite the report alone.

create table employee
{emp_id char{10),
emp_name char{20),
prirmary key (emp_id));

create table coauthor

{author_id char{10],

coauthor_id charii0},

primary key (authar_id, coauthar-id},

foreign key (author_id) references employee
on delete cascade on update cascade,

foreign key (coauthor-id) references employee
oh delete cascade on update cascade);

32

Froject

create table employee (emp_id chari10},

Each employee assigned to a project works

Employee

gt only one lTocation for that project, but
can be at a different location for a different
project. &t & given location, an employee
warks on only one project. At a particular
location there can be many employees
gssigned to a given project.

Location

emp_name char{20),
primary key (emp-id});
create table project {project_name char{20),
primary key (project_name}};
create table location (loc_name char{13),
primary key (loc_name)l;

create table assigned_to (emp-id char{10},

project_name chari20},

loc-name char{15) not null,

prirmary key femp-id, project_nameJ,

foreign key (emp_id) references employee
on delete cascade on update cascade,

foreign key (project_name) references project
on delete cascade on update cascade,

foreign key (loc_name) references location
on delete cascade on update cascade),

unigue (emp_id, loc_narmel;

assigned_to

Functional dependencies

emp-id, 1oc-name -» project_name

emp-id, project_narme -» l0Cc_narme

emp_id |project_name [lToc_name
AF101 forest BGG
45101 acean E71
20702 acean A12
20702 river D54
21266 river G144
21266 ocean &12
TE323 hills fa]u]

(b} one-to-one-to-rany ternary relationships

33

Individual

an individual may be either an
employee or a customer, or both,
or neither.

Emplayee Custamer

create table individual (indiv_id char{10},
indiv_name char{20},
indiv_addr char{20},
primary key (indiv-id));
create table employee (ermp_id char(10),
job_title char(13],
primary key (emp_id},
foreign key (emp-id} references individual
oh delete cascade on update cascade);

create table customer (cust_no chari10],
cust_credit char{12),
primary key {cust_no},
foreign key {cust_no) references individual
on delete cascade on update cascade);

V. Normalization and Normal Forms

First normal form (1NF) to third normal form (3NF) and BCNF

Goals of normalization
1. Integrity
2. Maintainability

Side effects of normalization
* Reduced storage space required (usually, but it could increase)
* Simpler queries (sometimes, but some could be more complex)
* Simpler updates (sometimes, but some could be more complex)

First normal form (1NF) -- atable Risin INF iff al underlying
domains contain only atomic values, i.e. there are no repeating groupsin
arow.

functional dependency—given atable R, aset of attributes B is functionally dependent on
another set of attributes A if at each instant of time each A value is associated with only one B value.
Thisisdenoted by A ->B. A trivial FD isof theform XY --> X (subset).

super-key -- aset of one or more attributes, which, when taken collectively, alows usto identify
uniquely an entity or table.

candidate key—any subset of the attributes of a super-key that is also a super-key, but not
reducible.

primary key -- arbitrarily selected from the set of candidate keys, as needed for indexing.

Third normal form (3NF)
A tableisin 3NFif, for every nontrivial FD X --> A, either:
(2) attribute X is a super-key, or
(2) attribute A isamember of a candidate key (prime attribute)

Boyce-Codd normal form (BCNF)

A tableisin BCNF if, for every nontrivial FD X --> A,
(2) attribute X is a super-key.

35

Tables, Functional Dependencies, and Normal Forms

-

.wn

e,

¥ First Normal Form
TABLE SUPPLIER PART (100k rows, 73
bytes/row => 7.3 MB)
SNUM SNAME STATUS CITY
PNUM PNAME WT QTY

S1 SMITH 20 LONDON P1
S1 SMITH 20 LONDON P2
S1 SMITH 20 LONDON P3
S1 SMITH 20 LONDON P4
S1 SMITH 20 LONDON P5
S1 SMITH 20 LONDON P6
S2 JONES 10 PARIS P1
S2 JONES 10 PARIS P2
S3 BLAKE 10 PARIS P3
S3 BLAKE 10 PARIS P5
A CLARK 20 LONDON P2
A CLARK 20 LONDON P4

A CLARK 20 LONDON P5 CLAMP 22 7 8-20-90

S5 ADAMS 30 ATHENS P5 CLAMP 22 5 8-11-91

Functional dependencies

SNUM --> SNAME, STATUSCITY

CITY --> STATUS

PNUM --> PNAME, WT

SNUM,PNUM,SHIPDATE --> QTY

Attribute sizes (bytes)

SNUM 5 PNAME 10

SNAME 20 WT 5

STATUS 2 QrY 5

CITY 10 SHIPDATE 8

PNUM 8 Total size 73

Third Normal Form

TABLE PART (100 rows, 23 bytes/row => 2.3 KB)

PNUM PNAME WT Functional dependencies

P1 NUT 12 PNUM --> PNAME, WT

P2 BOLT 17

P3 WRENCH 17

P4 WRENCH 24

P5 CLAMP 12

P6 LEVEL 19

TABLE SHIPMENT (100k rows, 26 bytes/row => 2.6 MB)

SNUM PNUM QTY SHIPDATE Functional dependency

Sl P1 3 1-4-90 SNUM, PNUM, SHIPDATE--> QTY

S1 P2 2 2-17-90

36

S1 P3 6 11-5-89
S1 PA 2 6-30-90
S1 P5 1 8-12-91
S1 P6 5 4-21-91
S2 P1 3 5-3-90
S2 P2 4 12-31-90
S3 P3 4 3-25-91
S3 P5 2 3-27-91
A P2 2 10-31-89
A PA 3 7-14-90
A P5 7 8-20-90
S5 P5 5 8-11-91

NOT Third Normal Form
TABLE SUPPLIER (200 rows, 37 bytes/row => 7.4 KB)

SNUM SNAME STATUS CITY Functional dependencies

Sl SMITH 20 LONDON SNUM --> SNAME, STATUS, CITY
S2 JONES 10 PARIS CITY --> STATUS

S3 BLAKE 10 PARIS

A CLARK 20 LONDON

S5 ADAMS 30 ATHENS

Decomposition of Table Supplier into two Third Normal Form (3NF) Tables

37

Third Normal Form

TABLE SUPPLIER_W/O_STATUS (200 rows, 35 bytes/row => 7 KB)

SNUM SNAME CITY Functional dependency
S1 SMITH LONDON SNUM --> SNAME, CITY
S2 JONES PARIS

S3 BLAKE PARIS

A CLARK LONDON

S5 ADAMS ATHENS

TABLE CITY_AND_STATUS (100 rows, 12 bytes/row => 1.2 KB)

CITY STATUS Functional dependency
LONDON 20 CITY --> STATUS
PARIS 10

ATHENS 30

38

Relational tables predicted by the ER model, with no functional dependencies
given, just those implied by the diagram.

Table 1: emphistory (jobtitle, startdate, enddate, empid)

Table 2: employee (empid, empname, phoneno, officeno, projno,deptno)

Table 3: project (projno, projname, startdate, enddate)

Table 4: dept (deptno, deptname, mgrid)

39

Example of Table Design and Nor malization (3NF)
from a collection of FDs and an ER diagram

Functional dependencies (FDs) given

empid, startdate --> jobtitle, enddate

empid --> empname, phoneno, officeno, projno, deptno
phoneno --> officeno

projno --> projname, startdate, enddate

deptno --> deptname, mgrid

mgrid --> deptno

In general, the FDs can be derived from
1. Explicit assertions given

2. ER diagram (implied by ER constructs)
3. Intuition (your experience with the problem data)

Table 1: empid, startdate --> jobtitle, enddate

Thistable has a composite key that must be separated from functional dependencies (FDs) that involve
any individual component of this key (e.g. empno) on the left side.

Table 2
Let us start with the following set of FDs and then refine them, eliminating transitive dependencies
within the sametable.

Given: empid --> empname, phoneno, officeno, projno, deptno
phoneno --> officeno

We need to eliminate the redundant right sides of the transitive dependencies (office_no) and put them
into other tables. Thus we get:

Table 2a: empid --> empname, phoneno, projno, deptno
Table 2b: phoneno --> officeno

Table 3: projno --> projname, startdate, enddate

Table 4: deptno --> deptname, mgrid
mgrid --> deptno

40

Functional Dependency Inference rules
(Armstrong’s Axioms)

1. Reflexivity

If Y isasubset of the attributes of X, then X->Y.
X =ABCD,Y =ABC => X->Y

X->X trivia case

2. Augmentation
If X->Y and Z isasubset of table R (i.e. Z isany set of attributesin R), then XZ ->YZ.

3. Transitivity
If X->Y and Y->Z then X->Z.

4. Pseudo-transitivity
If X->Y and YW->Z then XW->Z.
(transitivity isa specia case of pseudo-transitivity when W is null)

5. Union
If X->Y and X->Z then X->YZ.

6. Decomposition
If X->YZ then X->Y and X->Z.

Superkey Rule 1. Any FD involving all attributes of a table defines
a super-key on the LHS of the FD.

Given: any FD containing all attributesin the table R(\W,X,Y,Z), i.e. XY ->WZ.
Proof:

(1) XY ->Wz given
(2) XY -> XY by the reflexivity axiom
(3) XY -> XYWz by the union axiom

(4) XY uniquely determines every attribute in table R, as shown in (3)
(5) XY uniquely definestable R, by the definition of atable as having no duplicate rows
(6) XY istherefore a super-key, by the definition of a super-key.

Super-key Rule 2. Any attribute that functionally determines a
Super-key of a table, isalso a super-key for that table.

Given: Attribute A is a super-key for table R(A,B,C,D,E), and E -> A.
Proof:
(2) Attribute A uniquely defines each row in table R, by the def. of a super-key

(2) A -> ABCDE by the definition of a super-key and arelational table
B E->A given
(4) E-> ABCDE by the transitivity axiom

(5) Eisasuper-key for table R, by the definition of a super-key.

41

3NF Synthesis Algorithm (Bernstein)

Basic definitions
geH setof FDs

Ht closure of H - set of all FDs derivable from H using all the FD inference rules
H’ cover of H - any set of FDs from which every FD in H* can
be derived

H’ (non-redundant) — non-redundant cover of H, i.e. acover which contains no proper subset
whichisalso acover. Can be determined with quadratic complexity O(n2).

Example

Given a set of FDs H, determine aminimal set of tablesin 3NF,

while preserving all FDs and maintaining only |ossless decomposition/joins.
H:

AB->C DM->NP D->KL
A->DEFG D->M

E->G L->D

F->DJ PR->S

G->DI PQR->ST

Step 1: Eliminate any extraneous attributes in the left hand
sides of the FDs. We want to reduce the |eft hand sides of as many FDs as possible. In general:
XY->Z and X->Z => Y isextraneous (Reduction Rule 1)
XYZ->W and X->Y => Y isextraneous (Reduction Rule 2)
For this example we mix left side reduction with the union and decomposition axioms:
DM->NP => D->NP=>D -> MNP

D->M D->M
PQR->ST => PQR->S, PQR->T => PQR->.T
PR->S PR->S PR->S

Step 2: Find a non-redundant cover H’ of H, i.e. eliminate any FD

derivable from othersin H using the inference rules (most frequently the transitivity axiom).
A->E->G => diminate A->G from the cover
A->F->D =>éiminate A->D from the cover

Step 3: Partition H’ into tables such that all FDswith the

same |eft side arein one table, thus eliminating any non-fully functional FDs. (Note: creating tables

at this point would be afeasible solution for 3NF, but not necessarily minimal.)

R1: AB->C R4: G->DI R7:L->D
R2: A->EF R5: F->DJ R8: PQR->T
R3: E->G R6: D->KLMNP

R9: PR->S

42

Step 4: Merge equivalent keys, i.e. merge tableswhere all FD’ s satisfy 3NF.

4.1 Write out the closure of all LHS attributes resulting from Step 3, based on transitivities.

4.2 Using the closures, find tables that are subsets of other groups and try to merge them. Use Rule
1 and Rule 2 to establish if the merge will result in FDs with super-keys on the LHS. If not, try
using the axioms to modify the FDsto fit the definition of super-keys.

4.3 After the subsets are exhausted, ook for any overlaps among tables and apply Rules 1 and 2
(and the axioms) again.

In this example, note that R7 (L->D) has a subset of the attributes of R6 (D->KLMNP). Therefore
we mergeto asingletable with FDs D->KLMNP, L->D becauseit satisfies 3NF: D is a super-key
by Rule 1 and L isasuper-key by Rule 2.

Final 3NF (and BCNF) table attributes, FDs, and candidate keys:

R1: ABC (AB->C with key AB) R5: DFJ (F->DJ with key F)

R2: AEF (A->EF withkey A) R6: DKLMNP (D->KLMNP, L->D, w/keys D, L)
R3: EG (E->G with key E) R7: PQRT (PQR->T with key PQR)

R4: DGl (G->DI with key G) R8: PRS (PR->S with key PR)

Step 4a. Check to see whether all tables are also BCNF. For any table that is not BCNF,
add the appropriate partially redundant table to eliminate the delete anomaly.

43

Maier’'s Example using 3NF Synthesis

[Maier,D. The Theory of Relational Databases, Computer Science Press, 1983]
R={AB,CDEFGH,IJIK}

Functiona dependencies (FDs):

()E-->ABCDFGHIJK (MHHI-->J
(2ABC-->EDFGHI1JK 8)1J-->H
3ABD-->ECFGHI1JK 9 HJI-->1
4 G-->HIJ
B)CF-->K
(6) DF-->K

Step 1 - No reduction of determinants necessary.
Step 2 - Find non-redundant cover.
(4) G->HIJ => eliminate HIJ from (1), (2), and (3)
(7) HI->J =>reduce (4) to G->HI, eliminating Jfrom (4)
(5) CF-> K =>eiminate K from (1) and (3)
(6) DF->K => eliminate K from (2)
(1) E->DFG => eliminate DFG from (2)
(1) E->CFG => eliminate CFG from (3)

Step 3 - Partition into groups with the same left side.

G1l: E->ABCDFG G6: DF->K

G2: ABC->E G7: HI->J

G3: ABD->E G8: 13>H

G4 G->HI G9: HJ->|

G5: CF->K
Step 4 - Merge equivalent keys, forming new groups. Construct final set of tables, attributes, FDs, and
candidate keys.

R1: ABCDEFG (E->ABCDFG, ABC->E, ABD->E with keysE, ABC, ABD)
R2: GHI (G->HI with key G)

R3: CFK (CF->K with key CF)

R4: DFK (DF->K with key DF

R5: HIJ (HI->J, 1J->H, HJ->l with keys HI, 13, HJ)

Example of a 3NF table that is not BCNF,

I.e. it has further anomalies:

S = student, C = course, | = instructor

SC->1 For each course, each student istaught by only one instructor. A course may be taught by mo
than one instructor.

| ->C Eachinstructor teaches only one course.

Thistableis 3NF with a candidate key SC:

SCl student course instructor
Sutton Math Von Neumann
Sutton Journalism Murrow
Niven Math Von Neumann
Niven Physics Fermi
Wilson Physics Einstein

Delete anomaly: If Sutton drops Journalism, then we have no record of Murrow teaching Journalism.
How can we decompose this table into BCNF?

Decomposition 1 (bad)........ eliminates the delete anomaly
SC (no FDs) and | -> C (two tables)
Problems- 1.lossy join

2. dependency SC ->1 isnot preserved

SC student course IC instructor course
Sutton Math Von Neumann Math
Sutton Journalism Murrow Journalism
Niven Math Fermi Physics
Niven Physics Einstein Physics
Wilson Physics

---------------- join SC and IC -----------=------

SCI’ student course instructor
Sutton Math Von Neumann
Sutton Journalism Murrow
Niven Math Von Neumann
Niven Physics Fermi
Niven Physics Einstein (spurious row)
Wilson Physics Fermi (spuriousrow)
Wilson Physics Eingtein

45

Decomposition 2 (better).....eliminates the delete anomaly
Sl (noFD) and 1 ->C

Advantages — eiminates the delete anomaly, lossless

Disadvantage - dependency SC ->1 isnot preserved

Sl student instructor IC instructor course
Sutton Von Neumann Von Neumann Math
Sutton Murrow Murrow Journalism
Niven Von Neumann Fermi Physics
Niven Fermi Einstein Physics
Wilson Einstein Dantzig Math (new)
Sutton Dantzig (new)

The new row isallowed in Sl using unique(student,instructor) in the create table command, and the
joinof Sl and IC islossless. However, ajoin of Sl and IC now produces the following two rows:

student course instructor
Sutton Math Von Neumann
Sutton Math Dantzig whichviolatesthe FD SC -> 1.

Oracle, for instance, has no way to automatically check SC->1, although you could write a procedure to
do this at the expense of alot of overhead.

Decomposition 3 (tradeoff between integrity and performance)

SC->1 and |->C (two tableswith redundant data)
Problems -extra updates and storage cost

46

Fourth Normal Form (4NF)

Fourth normal form (4NF) -- atable Risin 4NF iff it isin BCNF and whenever there exists a
nontrivial multi-valued dependency (MVD) in R, say X-->>Y, X isasuper-key for R.

Multi-valued dependency (MVD)

X -->>Y holdswhenever avalid instance of R(X,Y,Z) contains apair of rowsthat contain
duplicate values of X, then the instance also contains the pair of rows obtained by interchanging
theY valuesin the origina pair.

Multi-valued Dependency Inference rules
(Berri, Fagin, Howard...1977 ACM SIGMOD Proc.)

1. Reflexivity X -->>X
2. Augmentation If X-->>Y,then XZ-->>Y.
3. Transitivity If X-->>Y and Y -->>Z then X -->>(Z-Y).
4. Pseudo-trangitivity If X-->>Y and YW -->>Z then
XW -->> (Z-YW).
(trangitivity isa special case of pseudo-transitivity when W is null)
5. Union If X-->>Y and X -->>Z then X -->>YZ.
6. Decomposition If X-->>Y and X -->>7Z,
then X -->>Y intersect Z and X -->> (Z-Y)
7. Complement If X-->>Y andZ=R-X-Y,then X -->>Z,
8. FD =>MVD If X->Y,then X -->>Y,
9. FD, MVD mix If X-->>Yand Y ->Z' (whereZ’ iscontained

inZ,and Y and Z are digoint), then X->Z'.

Why is 4NF useful?

Avoids certain update anomalies/inefficiencies.

1. delete anomaly - two independent facts get tied together unnaturally so there may be bad side
effects of certain deletes, e.g. in “skills required” the last record of askill may belost if employee
istemporarily not working on any projects).

2. update inefficiency - adding anew project in “skills required” requiresinsertions for many
records (rows) that to include all required skillsfor that new project. Likewise, loss of a project
requires many deletes.

3. 4NF maintains smaller pieces of information with less redundancy.

47

Example of aternary relationship (many-to-many-to-many) that can be
BCNF or 4NF depending on the semantics associated with it.

Table NF 2-way 3-way Nontrivial
name decomp.decomp. MVDs
skill_available BCNF yes yes 6
skill_required BCNF yes yes 2

skill _in_common ANF no yes 0

Semantics and analysis of each relationship
skill _required—an employee must have all the required skills for a project to work on that project.

skill_required empno project skill Nontrivial MVDs
101 3 A project->>skill
101 3 B project->>empno
101 4 A
101 4 C
102 3 A
102 3 B
103 5 D
empno project empno skill project skill
101 3 101 A 3 A
101 4 101 B 3 B
102 3 101 C 4 A
103 5 102 A 4 C
102 B 5 D
103 D

2-way lossless join occurs when skill_required is projected over { empno, project} and { project, skill}.
Projection over { empno, project} and { empno, skill}, and over {empno, skill} and { project, skill},
however, are not lossless. 3-way lossless join occurs when skill_required is projected over { empno,
project}, { empno, skill}, { project, skill}.

48

skill_in_common—an employee must apply the intersection of available skillsto the skills needed for
different projects. In other words if an employee has a certain skill and he or she works on a given
project that requires that skill, then he or she must provide that skill for that project (thisisless restrictive
than skill_required because the employee need not supply all the required skills, but only thosein
common).

2

skill in_common empno project
101
101
101
101
102
102
103
103
103
103

URWWWAPNOW
O>>r>W>W>0>

2

empno_project empno skill project
101 3 101 A

101 101 B

A

B

A

102 102

103 102

103 103

103 5 103
This has a 3-way lossless decomposition. There are no 2-way lossless decompositions and no MVDs,
thusthetableisin 4NF.

4
3
3
4

O
auhrbhww
O>W>w>

49

V. Access Methods

Types of Queries

Query type 1. access all records of a given type
“Increase everyone s salary by 10%"
access method: sequentia processing

Query type 2: access at most one record
“Find the address of John Smith,
whose id number is 333-44-5555"

access methods: hashing, B* treeindex

Query type 3: access a subset of records of a given type
“Find all employeeswho have C programming experience and over three years with the
company”
access method: secondary indexing (Oracle uses B+trees for this)

Sequential Access Methods

Ira=n logical record accesses
sba = ceil(n/bf) sequential block accesses
rba=0 random block accesses

iotime = sba*Tsba+ rba*Trba seconds

where Tsbaisthe average disk i/o service time for a sequential
block and Trbaisthe average disk i/o service time for arandom block
access

Disk servicetimein a dedicated environment
sequential block access:

Tsba =rot/2 + bks/tr
whererot isthe disk rotation time (for afull rotation),
bksisthe block size in bytes (bf*record size), and
tr isthe disk transfer rate in bytes per second.

Trba = seek(avg) + rot/2 + bks/tr
where seek(avQ) is the average seek time over the extent of the file on disk

Disk servicetime in a shared environment

Tsha = Trba = seek(avg) + rot/2 + bkg/tr
where seek(avg) isthe average disk seek time over the extent of the entire disk.

50

interblock gap
~

oA LA

“—— plock ————

logical records
blocking factor = 4

k 1
merge
LITATTTHIT ’

transaction file

n 1 n+adds-deletes

LB TTHITHITHAIIT LAEITTHITITHATIH]]

old master file new master file
Batch processing of k sequentially stored records

read the transaction file:
lra=k where k = number of transaction records
sba = ceil (k/tfbf) where tfbf is the transaction file blocking factor

read the master file:
Ira=n
sba = ceil (n/bf) where bf isthe master file blocking factor

write anew master file:

Ira=n+ adds - deletes

sba = ceil ((n+adds-del etes)/bf)
where adds isthe number of records added or inserted,
and deletes is the number of records del eted.

51

Random Access M ethods
Hashing

Basic mechanism — transformation of a primary key directly to a physical address,
called abucket (or indirectly viaalogica address)

Callisons—handled by variations of chained overflow techniques
random access to a hashed file

Ira= 1+ overflow(avg)
rba= 1+ overflow(avg)

insertion into a hashed file

Ira= 1+ overflow(avg) + rewrite
rba= 1+ overflow(avg)

rba=1 for the rewrite

overtlow
primary data area area
prirmary
key physical ; SN LB AL
hashing | 34dress 15 | 27

16 TG
125

14| 30 42 | 66
71 19 67

=g = functiunx

key mod 12

ol &t
10
23] 35 B 119] »

Zo oo o s =D

—_

\L]Dgitﬂ] record
< block = <— block =

“—— bucket ———

52

Extendible Hashing

* number of buckets grow or contracts

* bucket splits when it becomes full

* collisions are resolved immediately, no long overflow chains

* primary key transformed to an entry in the Bucket Address Table (BAT),
typically in RAM

* BAT has pointers to disk buckets that hold the actual data

* Retrieve asingle record = 1 rba (access the bucket in one step)

* Cost (service time) of I/O for updates, inserts, and deletes is the same as for B+-trees

Frimary
key value

hash

T

hash
function

address

Bucket Address
Table (BAT)

buckets

Q00

Qo

=]

Figure 6.5 Extendible hashing table for example in Figure 6.3

key Mod 5

T

010

011

100

1 121

=
g1

101

1o

10
15

i

53

19
i5
=

125

30
Fa

15
23
118

B-treesand B*-trees

B-tree index basic characteristics

* each node contains p pointers and p-1 records

* each pointer at level i is for adataand pointer block at level i+1

* i=1 denotes the root level (single node or block)

* can be inefficient for searching because of the overhead in each search level

/,mza |qu |m\

,| g |,| 15 |’ ,| 45 |’| &1 |’ @[55 @[0s |@
L A

i [[[E & o fiss|ra

(a) B-tree with embedded records at each node

(o= [Tle[= [m e
/ \ ’ \
SLEIO[s[E®| (@ @ETn/®) | ®E® [P

MRS A A AN B
1? &0 1?.?22 2 3?,_? 45 52? ?3??9? g

|2 B | ke 1o
P P A N A PR A 2R T P o P

0?93? 2?
tb) B-tree with key-data pointer pairs in each node

1 g

@ tree pointer

[c] data pointer

B+-tree index basic characteristics

* eiminates data pointers from all nodes except the leaf nodes
* each non-leaf index node has p pointers and p-1 key values
* each pointer at level i isfor anindex block (of key/pointer pairs) at level i+1
* each leaf index has akey value/pointer pair to point to the actual data block
(and record) containing that primary key value
* |eaf index nodes can be logically connected via pointers for ordered sequence search
* hybrid method for efficient random access and sequential search

B i, JEELY

N

osjo[e[7@ |oxe7e[:]e |ese:le[:]e oo o |

i

"'—)|53$56Ep5?q30H59@64@?1$.|_)l?2q380$83HSSQSSQSQQ.'_)--
e A A A e A T A A A

Example: Bt-tree

To determine the order of aB*-tree, let us assume that the database has 500,000
records of 200 bytes each, the search key is 15 bytes, the tree and data pointers are 5
bytes, and the index node (and data block size) is 1024 bytes. For this configuration
we have non-leaf index node size = 1024 bytes = p*5 + (p-1)* 15 bytes

p = floor((1024+15)/20) = floor(51.95) = 51

number of search key valuesin the leaf nodes = floor ((1024-5)/(15+5))=50

h = height of the B+-tree (number of index levels, including the leaf index nodes

n = number of recordsin the database (or file); all must be pointed at from the next to last level, h-1

p1(p-1)>n

(h-D)log p + log(p-1) > log n

(h-1)log p > log n-log(p-1)

h>1+ (log n-log(p-1)) / log p

h> 1 + (log 500,000-log 50)/log 51 = 3.34, h=4 (nearest higher integer)

A good approximation can be made by assuming that the leaf index nodes are
implemented with p pointers and p key values:

ph>n

hlogp>logn

h>log n/log p
In this case, the result above becomesh > 3.35or h = 4.

55

B+-tree performance
read asinglerecord (B*-tree) = h+1 rba

update asinglerecord (B*-tree) = search cost + rewrite data block
= (h+1) rba+ 1rba

general update cost for insertion (B*-tree)
=search cost (i.e., h+1 reads)
+simple rewrite of data block and |leaf index node pointing to the data
block (i.e., 2 rewrites)
+nos* (write of new split index node
+ rewrite of the index node pointer to the new index node)
+ nosb* (write of new split data block)

= (h+1) rba+ 2 rba + nos* (2 rba) + nosb* (1 rba)

where nos is the number of index split node operations required and nosb is the
number of data split block operations required

genera update cost for deletion (B+-tree)
= search cost (i.e., h+1 reads)
+ simple rewrite of data block and leaf index node pointing to the data
block (i.e., 2 rewrites)
+ noc* (rewrite of the node pointer to the remaining node)

= (h+1) rba+ 2 rba+ noc* (1 rba)
where noc is the number of consolidations of index nodes required.

As an example, consider the insertion of anode (with key value 77) to the B*-tree
shown in Fig. 6.6. Thisinsertion requires a search (query) phase and an insertion
phase with one split node. The total insertion cost for height 3is

insertion cost = (3 + 1) rba search cost + (2 rba) rewrite cost

+ 1 split *(2 rba rewrite cost)
=8rba

56

021 8[s39[2|0

osserzlpl_|o

.

--—)53@56@5?@.—)59@54@?1$§—)|?2q380@83Ole---
vy b v v

(a) B*-tree before the insertion of record with key value 77

b
LB R, e

)

%53@5&95?@3}—)59@54@?1@'4?2@??@ Hauﬁn%@ 8 — ...
A A A A A e A

i)} B*-tree after the insertion and split block operation

57

Secondary Indexes

Basic characteristics of secondary indexes

* based on Boolean search criteria (AND, OR, NOT) of attributes that are not
the primary key

* atribute typeindex islevel 1 (usually in RAM)

* atribute valueindex isleve 2 (usualy in RAM)

* accession listislevel 3 (ordered list of pointers to blocks containing records
with the given attribute value)

* one accession list per attribute value; pointers have block address and record
offset typically

* accession lists can be merged to satisfy the intersection (AND) of records
that satisfy more than one condition

Boolean query cost (secondary index)

= search attribute type index + search attribute value index
+ search and merge m accession lists + accesst target records

= (0 + 0+ sum of m accession list accesses) sha+t rba

= (sum of m accession list cost) sha+t rba
where mis the number of accession lists to be merged and t is the number of
target records to be accessed after the merge operation.

accession list cost (for accession list j) = ceil(pj/bfac) sha
where pj is the number of pointer entriesin the jth accession list and bfac is
the blocking factor for all accession lists

bfac = block_size/pointer_size

* assume all accessesto the accession list are sequential

* ignorethe error incurred by assuming the first record access is sequential

use the 1% rule
(any variable affecting the result by less than 1% is ignored)

58

attribute type

index

attribute walue

city

— >

job_title

credit_rat

tot_purch

date_last

state

Zipcode

oo/ /0loo)e

inde:x

chicago

accession
lists

detroit

tucson

®
o
®

pilot

analyst

painter

engineer

excell

good

fair

no_way

&
L
&

59

L.
-

data blocks

chicago

™

chicago

tucson

105 angeles

DO

detroit

detroit

chicago

chicago

taronto

chicago

g

new york

detroit

lTondon

$88

detroit

sao paulo

chicago

%%

Example: Mail Order Business

Assume we have afile of 10,000,000 records of mail order customersfor alarge
commercia business. Customer records have attributes for customer name, customer
number, street address, city, state, zip code, phone number, employer, job title,
credit rating, date of last purchase, and total amount of purchases. Assume that the
record size is 250 bytes; block size is 5000 bytes (bf=20); and pointer size, including
record offset, is 5 bytes (bfac=1000). The query to be analyzed is“Find all customers
whosejob title is ‘engineer’, city is‘chicago’, and total amount of purchasesis
greater than $1,000.” For each AND condition we have the following hit rates, that
is, records that satisfy each condition:

jobtitleis‘engineer’: 84,000 records

city is‘chicago’: 210,000 records

total amount of purchases > $1000: 350,000 records

total number of target records that satisfy all three conditions = 750

query cost (inverted file)
= merge of 3 accession lists + access 750 target records

= [ceil(nl/bfac) + ceil(n2/bfac) + ceil (n3/bfac)] sha + 750 rba

= [ceil(84,000/1000) + ceil(210,000/1000) + ceil(350,000/1000] sha
+ 750 rba

= (84+210+350) sha+ 750 rba

=644 sha+ 750 rba

If we assume Tsbais 10 milliseconds and Trbais 25 milliseconds, we obtain
guery iotime (secondary index)

=644 sba* 10 ms + 750 rba*25 ms

=25190 ms

=25.19 sec (much more efficient than sequential scan, see below)

guery iotime (sequentia scan)
= cell(n/bf) sha*Tsha
= ceil(10,000,000/20)*10 ms
= 5,000,000 ms
=5000 sec

60

Secondary Indexes using B*-trees

* used by Oracle and many others for non-unique indexes

* index nodes contain key/pointer pairsin the same way as a primary key index
using aB+-tree

* key at each level, leaf and non-ledf, is the concatenation of attributes used in
the query , e.g. jobtitle, city, total _purchases (as attributes of consumer)

* |eaf node pointers are to the blocks containing records with the given combination
of attribute valuesindicated in the concatenated keys

* analysis of queries and updates for this type of index proceeds in the same way as
aprimary key (unique) index, keeping in mind that the key formats are different
in the two cases

guery iotime (B+tree secondary index) = rba* Trba
=[h+ ceil(t/bfac) —1 +t] * Trba

where histhe height of the B+tree index, bfac is the blocking factor for the accession

list (i.e. the number of pointer/key pairsin the leaf nodesin the B+tree), and t isthe
number of target recordsin the table that satisfies all the conditionsin the query.

Monleaf nodes /

|"jnh,tiﬂemit-:ntnten,puri ?job_tiiﬂe | city | tota1__pur;+1*

/ i} y

pointers to the next level of the BEY—tree

Leaf nodes

—

| job_titlelcitgltota]_pur‘j ?jnbftitha | city | tDtEI'|i_|:|L.Irj . —

Tink to
next leart
node

pointers to two records hawving the same
set of concatenated key values

Figure &.10 Using a BY—tree Tor a secondary index

61

Denor malization
* motivation — poor performance by normalized databases
* search for potential denormalizations that avoid or minimize delete anomalies

Toillustrate the effect of denormalization, let us assume that the tabler eview is
associated with the tablesemployee and manager as the table that follows shows.
The extension of ther eview table, r eview-ext, is shown as a means of reducing
the number of joins required in the query shown below. This extension resultsin a
real denormalization, that is,

review_no -> emp_id -> emp_name, emp_address

with the side effects of add and update anomalies. However, the delete anomaly
cannot occur because the original datais redundant in the extended schema.

Original Tables and Process (Query)

Table Primary Key Nonkeys

employee emp_id emp_name, emp_address, mgr_id
manager mgr_id emp_name, emp_address

review review_no emp_id, mgr_id

Query:

For agiven review number, display the employee name and address.
select e.emp_name, e.emp_addr

fromemployee ase, review asr

wherer.review_no = ‘xXxxx’

and eemp_id=r.emp_id;

Extended tabler eview_ext isnot in 3NF
createtabler eview_ext as
select r.review_no, e.emp_id, eemp_name, e.emp_addr, emgr_id
fromemployee ase, review asr
where e.emp_id = r.emp_id;

total cost = [iotime(q) + iotime(u)]* cost(q) + volume(s)* cost(s)

where
cost(q) = unit cost per 1/0 second for query or update processes
cost(s) = unit cost per byte for stored data
iotime(q) = 1/0 service time (sec) for query processes
iotime(u) = 1/0 servicetime (sec) for update processes
volume(s) = total volumein bytesfor stored data

62

Table Denormalization Algorithm

1. Select the dominant processes based on such criteria as high frequency of
execution, high volume of data accessed, response time constraints, or explicit high
priority.

2. Definejoin tables, when appropriate, for the dominant processes.

3. Evaluatetotal cost for storage, query, and update for the database schema, with
and without the extended table, and determine which configuration minimizes tota
Ccost.

4. Consider also the possibility of denormalization dueto ajoin table and its side
effects. If ajoin table schema appears to have lower storage and processing cost and
insignificant side effects, then consider using that schema for physical designin
addition to the original candidate table schema. Otherwise use only the original
schema.

63

Join Strategies

1. nested loop: complexity O(mn)

2. merge-join: complexity O(n logp n)
3. indexed join: complexity O(n)

4. hash-join: complexity O(n)

where m and n are the rows of the two tables to be joined
Assume

* assigned _to table has 50,000 rows

* project table has 250 rows

* |et the blocking factors for the assigned_to and proj ect tables be 100 and 50,
respectively, and the block sizeis equal for the two tables.

the common join column is project_name.

High Selectivity Joins

select p.project_name, p.project_|leader, aemp_id
from project asp, assigned_to asa
where p.project_name = a.project_name;

Nested L oop Case 1: assigned_to isthe outer loop table.

joincost =scanassigned_to once, scan project ntimes
= 50,000/100 + 50,000* 250/50
=500 + 250,000
= 250,500 sequential block accesses (sha)

If asequential block access requires an average of 10 ms, the total time required is 2505 seconds.
Nested L oop Case 2: project isthe outer loop table.

join cost = scan project once, scan assigned_to mtimes
= 250/50 + 250*50,000/100
= 5+ 125,000
= 125,005 sequentia block accesses (or 1250 seconds)

Note that this strategy does not take advantage of row order for these tables

M erge— oin Case 1: Both project and assigned_to are aready ordered by
project_name.

join cost = merge time (to scan both tables)
= 50,000/100 + 250/50
= 505 sequential block accesses (or 5.05 seconds)

Merge-Join Case 2: Only project isordered by project_name.

join cost = sort time for assigned_to + merge time (to scan both sorted tables)
(50,000*log2 50,000)/100 + 50,000/100 + 250/50

(50,000* 16)/100 + 500 + 5
= 8505 sequential block accesses (or 85.05 seconds)

64

M er ge-Join Case 3: Neither project nor assigned_to are ordered by
project_name.

join cost = sort time for both tables + merge time for both tables
= (50,000*og2 50,000)/100 +(250*log2 250)/50 + 50,000/100
+ 250/50
=8000 + 40 + 500 + 5
= 8545 sequentia block accesses (or 85.45 seconds)

We see that the sort phase of the merge-join strategy is the costliest component, but it still
significantly improves performance compared to the nested loop strategy.

L ow Selectivity Joins

Let ntr=100 qualifying rows for the foreign key table (assigned_to) and let ntr=1 row for the
primary key table (pr oj ect) in the example below. Assume h=2 for the unique index to project, Tsha
=10 ms, and Trba= 40 ms.

select p.project_name, p.project_|leader, aemp_id
fromproject asp, assigned_to asa
where p.project_name = a.project_name
and p.project_name = ‘financial analysis;

Indexed join Case 1: Scan foreign key table once and index to the primary key
join cost = scan the entire foreign key table (assigned_to)
+ index to the primary key table (project) qualifying row
=50,000/100 sha + (h+1) rba
=500 sha+ 3rba (or 5.12 seconds)
For the next case, assume the nonunique index height, hn = 3, index blocking factor
bfac = 500, with ntr = 100 target foreign key rows as given above.

Indexed join Case 2: Index to both the primary key table and the foreign key
Join cost = index to the primary key table + index to the foreign key table
= (h+1) rba+ [hn + cell(ntr/bfac) — 1 + ntr] rba
=3rba+[3+ 0+ 100] rba
=106 rba (or 4.24 seconds)

Indexed join Case 3: Nonunique indexes required for both tables due to join on
two nonkeys.
Join cost = index to thefirst table + index to the second table
=[hl + ceil(ntrl/bfacl) —1 + ntrl] rba
+ [h2 + ceil(ntr2/bfac2) —1 + ntr2] rba

Hash join Case 1:
join cost = scan first table (assigned_to) + scan second table (pr oj ect)
+ access qualifying rowsin the two tables
= 50,000/100 sha + 250/50 sha + 100 rba + 1 rba
=505 sha + 101 rba (or 9.09 seconds)

In the hash join strategy, the table scans may only have to be done infrequently as
long as the hash filein RAM remains intact for a series of queries, soin Case 1
above, the incremental cost for the given query requires only 101 rba or 4.04
seconds.

65

VI. Database Distribution Strategies

Overview of Distributed Databases

Distributed database - acollection of multiple, logicaly interrelated databases distributed over a
computer network [OzVa9l].

Distributed Database M anagement System (DDBM S) - a software system that permits the
management of a distributed database and makes the distribution transparent to the users. If
heterogeneous, it may allow transparent simultaneous access to data on multiple dissimilar systems.
Advantages

1. Improves performance, e.g. it saves communication costs and reduces query delays by providing dat:
at the siteswhere it is most frequently accessed.

2. Improvesthe reliability and availability of a system by providing alternate sites from where the
information can be accessed.

3. Increases the capacity of a system by increasing the number of sites where the data can be located.

4. Allows usersto exercise control over their own data while allowing others to share some of the data
from other sites.

5. Helps solve more complex database problems.
Disadvantages

1. Increases the complexity of the system and introduces severa technical as
well as management challenges especially when geographical and organizational boundaries are crossed.

2. Makes central control more difficult and raises several security issues because a dataitem stored at a
remote site can be always accessed by the users at the remote site.

3. Makes performance evaluation difficult because a process running at one node may impact the entire
network.

66

Cost

update time

data

peosmreBerecocesavallability
o -

data
Lot starage cost

query time

Mumber of copies of the fragment

67

Requirements of a Generalized DDBM S: Date’s 12 Rules

Rule 1. Local Autonomy. Loca dataislocaly owned and managed, even when it is accessible by
aremote site. Security, integrity, and storage remain under control of the local system. Local users
should not be hampered when their system is part of a distributed system.

Rule 2. No Central Site. There must be no central point of failure or bottleneck. Therefore the
following must be distributed: dictionary management, query processing, concurrency control, and
recovery control.

Rule 3. Continuous Operation. The system should not require a shutdown to add or remove a
node from the network. User applications should not have to change when a new network is added,
provided they do not need information from the added node.

Rule 4. Location Independence (or Transparency). A common global user view of the
database should be supported so that users need not know where the dataislocated. Thisallows datato
be moved for performance considerations or in response to storage constraints without affecting the user
applications.

Rule 5. Fragmentation Independence (or Transparency). Thisalowstablesto be split
among several sites, transparent to user applications. For example, we can store New Y ork employee
records at the New Y ork site and Boston employees at the Boston site, but allow the user to refer to the
separated data as EMPLOY EES, independent of their locations.

Rule 6. Replication Independence (or Transparency). Thisalowssevera copiesof atable
(or portions thereof) to reside at different nodes. Query performance can be improved since applications
can work with alocal copy instead of aremote one. Update performance, however, may be degraded du
to the additional copies. Availability can improve.

Rule 7. Distributed Query Processing. No centra site should perform optimization; but the
submitting site, which receives the query from the user, should decide the overall strategy. Other
participants perform optimization at their own levels.

Rule 8. Distributed Transaction Processing. The system should process a transaction across
multiple databases exactly asif all of the datawerelocal. Each node should be capable of acting asa
coordinator for distributed updates, and as a participant in other transactions. Concurrency control must
occur at thelocal level (Rule 2), but there must also be cooperation between individual systems to ensure
that a*“global deadlock” does not occur.

Rule 9. Hardware Independence. The concept of a single database system must be presented
regardless of the underlying hardware used to implement the individual systems.

Rule 10. Operating System Independence. The concept of a single database system must be
presented regardless of the underlying operating systems used.

Rule 11. Network Independence. Thedistributed system must be capable of communicating ove
awide variety of networks, often different ones in the same configuration. Standard network protocols
must be adhered to.

Rule 12. DBM S Independence (Heterogeneity). Thedistributed system should be able to be
made up of individual sites running different database management systems.

68

What are the basic issuesin the design and implementation of
distributed database systems?

* Data Distribution Strategies
- Fragmentation
- Datadlocation
- Replication
- Network data directory distribution

* Query Processing and Optimization

* Distribution Transparency
- location, fragmentation, replication, update

* Integrity
- Transaction management
- Concurrency control
- Recovery and availability
- Integrity constraint checking

* Privacy and Security
- Database administrators

* Data Manipulation Languages

- SQL isthe standard
- Forms coming into common use

69

Modified Life Cycle for Data Distribution

V. Data distribution (allocation). Create adataallocation schemathat indicates

where each copy of each tableisto be stored. The allocation schema defines at which site(s) atableis
located. A one-to-one mapping in the alocation schema results in non-redundancy, while a one-to-
many mapping defines a redundant distributed database.

Fragmentation.

Fragmentation is the process of taking subsets of rows and/or columns of tables as the smallest unit of
datato be sent across the network. Unfortunately, very few commercia systems have implemented this
feature, but we include a brief discussion for historical reasons. We could define afragmentation
schema of the database based on dominant applications “select” predicates (set of conditions for
retrieval specified in a select statement).

Horizontal fragmentation partitions the rows of aglobal fragment into subsets. A fragmentrq isa
selection on the global fragment r using a predicate P, its qualification. The reconstruction of r is
obtained by taking the union of al fragments.

Vertical fragmentation subdivides the attributes of the global fragment into groups. The ssmplest
form of vertical fragmentation is decomposition. A unique row-id may be included in each fragment to
guarantee that the reconstruction through ajoin operation is possible.

Mixed fragmentation isthe result of the successive gpplication of both fragmentation techniques.

Rules for Fragmentation

1. Fragments are formed by the select predicates associated with
dominant database transactions. The predicates specify attribute
values used in the conjunctive (AND) and digunctive (OR) form of
select commands, and rows (records) containing the same values form
fragments.

2. Fragments must be digoint and their union must become the whole
fragment. Overlapping fragments are too difficult to analyze and
implement.

3. Thelargest fragment isthe whole table. The smallest tableisa

singlerecord. Fragments should be designed to maintain a
balance between these extremes.

70

Data Distribution

Data distribution defines the constraints under which data all ocation strategies may operate. They are
determined by the system architecture and the available network database management software. The
four basic data distribution approaches are :

* Centralized

In the centralized database approach, al the data are located at a single site. The implementation of
this approach is smple. However, the size of the database is limited by the availability of the secondary
storage at the central site. Furthermore, the database may become unavailable from any of the remote
sites when communication failures occur, and the database system fails totally when the central sitefails

* Partitioned

In this approach, the database is partitioned by tables, and each table is assigned to a particular sits
This strategy is particularly appropriate where either local secondary storageis limited compared to the
database size, the reliability of the centralized database is not sufficient, or operating efficiencies can be
gained through the exploitation of the locality of referencesin database accesses.

* Replicated

The replicated data distribution strategy allocates a complete copy of the database to each sitein th
network. This completely redundant distributed data strategy is particularly appropriate when reliability i
critical, the database is small, and update inefficiency can be tolerated.

* Hybrid

The hybrid data distribution strategy partitions the database into critical and non-critical tables.
Non-critical tables need only be stored once, while critical tables are duplicated as desired to meet the
required level of reliability.

71

Distributed Database Requirements
Database Description

1. Conceptual schema (ER diagram)

2. Transactions: functions and data accessed
Configuration Information

1. Sources of data—where data can be |ocated.

2. Sinks of data—where user transactions can be initiated and
data transferred.

3. Transaction rate (frequency) and volume (data flow).

4. Processing capability at each site—CPU and 1/0O capability
(speed).

5. Security—data ownership (who can update) and access
authorization (who can query) for each transaction.

6. Recovery—estimated frequency and volume of backup
operations.

7. Integrity — referential integrity, concurrency control, journaling, overhead, etc.
Constraints

1. Network topology: Ethernet, tokenring, ATM

2. Processing capability needed at each site.

3. Channél (link) transmission capacity.

4. Availability—related to mean-time-between-failures (MTBF) and
mean-time-to-repair (MTTR).

Objective Functions
1. Response time as a function of transaction size.

2. Total system cost—communications, local 1/0O, cpu time, disk space.

72

The General Data Allocation Problem

Given
1. the application system specifications
- A database global schema.
- A set of user transactions and their frequencies.
- Security, i.e. data ownership (who can update) and access authorization (who can query) for
each transaction.
- Recovery, estimated frequency and volume of backup operations.

2. The distributed system configuration and software:
- The network topology, network channel capacities, and network control mechanism.
- The site locations and their processing capacity (CPU and 1/0 processing).
- Sources of data (where data can be located), and sinks of data (where user transactions can be
initiated and data transferred).
- The transaction processing options and synchronization algorithms.
- The unit costs for data storage, local site processing, and communications.

Find

the allocation of programs and database tables to sites which minimizes C, the total cost:
C=Ccomm* Cproc + Cstor
where:
Ccomm = communications cost for message and data.

Cproc = site processing cost (CPU and 1/0).
Cqtor = Storage cost for data and programs at sites.

subject to possible additional constraints on:

* Transaction response time which is the sum of communication delays, local processing,
and all resource queuing delays.

* Transaction availability which is the percentage of time the transaction executes with all
components available.

73

The Non-Redundant “Best Fit” Method

A generd rule for data allocation states that data should be placed as close as possible to where it will be
used, and then load balancing should be considered to find a global optimization of system
performance.

The non-redundant “best fit” method determines the single most likely site to allocate a table based on
maximum benefit, where benefit isinterpreted to mean total query and update references. In particular,

placetable Rj at the site s" where the number of local query and update references by all the user
transactions are maximized.

Example
System Parameters
Avg. Service Time Avg. Service Time
Table Size Loca Query(Update) Remote Query(Update)
R1 300 KBytes 100 ms (150 ms) 500 ms (600 ms)
R2 500 KBytes 150 ms (200 ms) 650 ms (700 ms)
R3 1.0 Mbytes 200 ms (250 ms) 1000 ms (1100 ms)

User transactions are described in terms of their frequency of occurrence, which tables they access, and
whether the accesses are reads or writes.

Transact Site(s) Frequency Table Accesses (Reads Writes)
T1 S1,54,S5 1 R1 (3 reads, 1 write), R2 (2 reads)
T2 S2,$4 2 R1 (2 reads), R3 (3 reads, 1 write)
T3 S3,S5 3 R2 (3 reads, 1 write), R3 (2 reads)
Security: User transactions T1,T2,T3 can either query or update (no
restrictions).

Sources of data: All sites S1 - Sb.
Sinks of data (possible locations of transactions): All sites S1 - S5.

74

L ocal Reference Computations

Our goal isto compute the number of local referencesto each table residing at each site, one by one.
The site that maximizes the local referencesto agiven table is chosen as the site where that table should
reside.

Table Site Trans. T1(freq) T2(freq) T3(freq) Tota locd refs
R1 S1 3read,1 write(1) 0 0 4
2 0 2 read(2) 0 4
S3 0 0 0 0
A 3read,1 write(l) 2 read(2) 0 8 (max.)
S5 3read,1 write(l) 0 0
R2 S1 2read() 0 0 2
2 0 0 0 0
S3 0 0 3 read,1 write(3) 12
$4 2read() 0 0 2
S5 2read(l) 0 3read,1 write(3) 14 (max.)
R3 SI1 O 0 0 0
2 0 3read,1 write(2) 0 8 (max.)
S3 0 0 2 read(3)
A 0 3read,1 write(2) 0 8 (max.)
S5 0 0 2 read(3)

Loca references for each table at each of five possible sites.
Allocation Decision

Allocate R1 at site 4.
Allocate R2 at site S5.
Allocate R3 at either site S2 or 4

Additiona information is needed to choose this allocation. For instance, if maximum availability
of dataisamajor consideration, then choose site S2 because site $4 already hastable R1 allocated to it
and putting R3 there as well would decrease the potential availability of data should site $4 crash.

Advantages
- smple algorithm

Disadvantages
- number of local references may not accurately characterize time or cost (reads and writes
given egqual weights)
- no insights regarding replication

75

Felations (tables): R1, R2, R3
Sites: 51,52, 53, 54, 55
Transactions: T1, T2, T3

76

The Redundant “ All Beneficial Sites” Method

This method can be used for either the redundant or non-redundant case. It selectsall sitesfor atable
allocation where the benefit is greater than the cost for one additional copy of that table. You are
assumed to start with zero copies.

Thebenefit for table R at site Sis measured by the difference in elapsed time to do aremote query to
table R from site S (i.e. no replicated copy available locally) and aloca query totable R at site S (i.e.
replicated copy availablelocally). Total benefit for table R at site Sis the weighted sum of benefit for
each query times the frequency of queries.

Thecost for table R a site Sisthe tota elapsed time for al the local updates of table R, plus the total
elapsed time for al the remote updates for the given table at that Site. Total cost for tableR at site Sis
weighted sum of cost for each update transaction times the frequency of update transactions.

Example
Cost/Benefit Computations for “All Beneficial Sites”
Table Site Remote updates (local updates) No. of writes*freg*time Cost
R1 S1 T1from$S4and S5 (T1 from S1) 2*1*600 ms +(1* 1* 150) 1350 ms
S2 Ti1lfromSl1, $4, S5 3*1*600 ms 1800 ms
S3 Ti1fromSl, $4, S5 3*1*600 ms 1800 ms
A TlfromSland S5 (T1from $4) 2* 1*600 ms +(1* 1* 150) 1350 ms
S5 TlfromSland $4 (T1from S5) 2* 1*600 ms +(1* 1* 150) 1350 ms
R2 S1 T3from S3and S5 2*3*700 ms 4200 ms
S2 T3from S3and S5 2*3*700 ms 4200 ms
S3 T3fromS5 (T3from S3) 1* 3* 700 ms +(1* 3* 200) 2700 ms
$4 T3from S3and S5 2*3*700 ms 4200 ms
S5 T3fromS3 (T3 from SH) 1* 3* 700 ms +(1* 3* 200) 2700 ms
R3 S1 T2fromS2and $4 2*2%1100 ms 4400 ms
S2 T2fromSA (T2 from S2) 1*2* 1100 ms +(1* 2* 250) 2700 ms
S3 T2fromS2 and $4 2*2%1100 ms 4400 ms
A T2fromS2 (T2 from S4) 1*2* 1100 ms +(1* 2* 250) 2700 ms
S5 T2fromS2 and $4 2*2%1100 ms 4400 ms
Table Site Query (read) sources No. of reads*freg* (remote-loca time) Benefit
R1 S1 TlasSl 3*1*(500 - 100) 1200 ms
S22 T2aS2 2*2*(500 - 100) 1600 ms
S3 None 0 0
A TladT2a A (3*1 + 2*2)*(500 - 100) 2800 ms**
S5 Tlass 3*1*(500 - 100) 1200 ms

77

R2 S1 Tlasi 2* 1*(650 - 150) 1000 ms
S2 None 0 0
S3 T3aS3 3*3* (650 - 150) 4500 ms**
A TlaHA 2* 1*(650 - 150) 1000 ms
S5 TlandT3aSh (2*1 + 3*3)* (650 - 150) 5500 ms**
R3 S1 None 0 0
S22 T2aSs2? 3*2* (1000 - 200) 4800 ms**
S3 T3aS3 2* 3* (1000 - 200) 4800 ms**
A T2aHA 3*2* (1000 - 200) 4800 ms**
S5 T3asSh 2* 3* (1000 - 200) 4800 ms**

**gtes where benefit > cost
Cost and benefit for each table located at five possible sites.

Advantages

- simple algorithm

- can be applied to either redundant or non-redundant case
- reads and writes given appropriate weights

Disadvantages
- global averages of query and update time may not be realistic
- network topology and protocols not taken into account

Relations {(tables): R1, R2, B3
Sites: 51, 52, 53, 54, 55
Transactions: T1, T2, T3

78

VII. Data Warehousing, OLAP, and Data Mining

Data war ehouse — alarge repository of historical data that can be integrated for decision support

Applications Applications Applications

\L \L \\/
Feeder
I DE1

Data reconciliation
* extractiaon
* transformation

* loading
D5S/EIS Data
| "warehouse

Figure 9.1 Data warehouse architecture
OLTP Data Warehouse
Transaction oriented Subject oriented
Thousands of users Few users (typically under 100)
Small (MB up to several GB) Large (100s of GB up to several TB)
Current data Historical data
Normalized data (many tables, Denormalized data (few tables,

few columns per table) many columns per table)
Continuous updates Batch updates
Simple to complex queries Usually very complex queries

Table 91 Comparison between OLTP and Data Warehouse databases

79

Core Requirements for Data Warehousing

1. DWs are organized around subject areas.

2. DWs should have some integration capability.

3. The dataiis considered to be nonvolatile and should be mass |oaded.

4. Datatendsto exist at multiple levels of granularity.

5. The DW should be flexible enough to meet changing requirements rapidly. .

6. The DW should have a capability for rewriting history, that is, allowing “what-if” analysis.
7. A usable DW user interface should be selected.

8. Data should be either centralized or distributed physically.

80

Data Warehouse Life Cycle

I. Requirements analysis and specification

1.1 Analyze the end-user requirements and develop a requirements specification. This step follows
the practice used by conventional relational databases (see Chapter 1).

1.2 Define the DW architecture and do someinitia capacity planning for servers and tools. Integrate
the servers, storage elements, and client tools.

1.3 Use enterprise data modeling

Il. Logical database design

Design the enterprise DW schema and views.

Star schemaiis the most often used format — good performance, ease of use
Fact table (one) — very large table containing numeric and/or non numeric attributes, including
the primary keys from the dimension tables; similar to intersection tables between entities with
many-to-many relationships

Dimension tables (several) - smaller tables containing mostly non numeric attributes; smilar to
relational tables based on entities

Snowflake schema— similar to star schema, except dimension tables are normalized

Fact table family (constellation) — multiple fact tables interact with dimension tables

81

Region

reg-no
reg-name
mgr-narme
addr
phane

Fact Table

Order

order-no

reg-no
cust-id

Customer

cust-id
cust-name
addr
phaone
campany

Figure 9.4 Star schema for the "order” data warehouse

sales-id
prod-no
quantity
total-price

order—-no
ord-date
shipping-date
date-filled

Salesperson

sales-id
sales—-name
addr

phone

Product

prod-no

82

prod-type
prod-narme
price

Order

1 order—-no
ord-date
shipping-date
date-filled

Region
req-no] Salesperson
reg-namea 1 sales—id
mgr-name Fact Table sales-name
addr I addr
phone order-no
M |reg-no 1
cust-id N
M |sales—id
prod—-no
quantity h Sales—addr | M
total-price
addr
phone
Customer
cust-id
cust-narme 1
addr Product
phone prod—-no
M 1 | prod-type
prod-name
price
Company 1
addr
company-id
company-name

Figure 9.6 Snowflake schemafor the “order” data warehouse
[1l1. Physical database design
3.1 Indexing (access methods)

join indexes — used to map dimension tables to the fact table efficiently

bit map indexes — used for low selectivity queries

3.2 View materialization — associated with aggregation of data by one or more dimensions
such astime or location

3.3 Partitioning — horizontal or vertical subsets of tables to enhance performance

83

reg-name bit maps

northwest [51 1 |4 ololololiloalolt o
farwest T{fofaoj (ool ool 1] 00
southwest | O[O | O] 0|1 T{fojojt1r ool
sales—id bit maps
410 aft o (oo |1 |ofafol] 1|00
411 gfo o 1 oo lafl ol af1 [0
412 Tjfojojojt | 1o f1]ofo |0
43 Jolo|1|ololo|olo|olo o |1

southwest | QO[O Q (1 (T (@)1 Q|01
AMD
412 T jofafr o (1 (o1]o(o |0

intersection bit map

RESULT | o jo (o fof1 (o |ofo 1] o|0 |0

Figure 9.7 Bit maps and query processing

V. Datadistribution
Define data placement, partitioning, and replication.

V. Database implementation, monitoring, and modification

5.1 Connect the data sources using gateways, ODBC drivers, etc.
5.2 Design and implement scripts for data extraction, cleaning, transformation, load, and refresh.
5.3 Populate the repository with the schema and view definitions, scripts, and other metadata.

5.4 Design and implement end-user applications. Rollout the DW and applications.

85

On-Line Analytical Processing (OLAP)

Common Features of Multidimensional Databases (M DD)

1
2.

3
4,
5

Dimensions — perspectives or entities about the real world

Hypercubes — basic structure for multidimensional databases

. Hierarchies— certain dimensions are hierarchica in nature

Formulas — derived data values can be defined by formulas (sum, average, etc.)

. Links—links are needed to connect hypercubes and their data sources

OLAP Logical Design

Step 1 — Analyze the end-user requirements and environment

Step 2 — Define cubes, dimensions, hierarchies, and links (high level)

Step 3 — Define dimension members (low level)

Step 4 — Define aggregations and other formulas (derived data)

Aggregation |ssues

1. Which datato aggregate

2.

How to store aggregate data

3. When to pre-aggregate derived data

Pre-aggregate nothing
Pre-aggregate nothing, but save the materialized view (dynamic)
Pre-aggregate everything (static)

Pre-aggregate selectively, based on known statistics

86

Example of aggregation: 3-dimensional problem

Dimensions Product Region Time-period
Levels al-products world-wide 10-year
product-type country 5-year
-------------- state 3-year
product-name city year
-------- quarter
store month
week
day

No. of aggregate
levels 2 4 7

Potential variables: quantity sold, quota, gross revenue
Potential further dimensions: customer, salesperson, type-of-sale

Subset of the 3-dimensional problem

Dimensions Product Region Time-period

Levels product-type state month
product-name store day

No. of aggregate 1 1 1

levels

Statistics on aggregates and hierar chies of aggregates
Number of dimensions=d =3
Number of possible views = 2d.1=7

1. product

2. region

3. time-period

4. product, region

5. product, time-period

6. region, time-period

7. product, region, time-period

Number of aggregate levelsfor dimensioni = n;

Number of one-way aggregates
= Sizl'dni =1+1+1=3for the subset
=S s gNj=2+4+7=13for thefull set

87

Number of two-way aggregates
=S i=1,0-1 Sj>i,d N Nj =1*1 + 1*1 + 1*1 = 3 for the subset
=S i=1,0-1 Sj>i,d N Nj = 2%4 + 2¢7 + 4*7 = 50 for the full set
Number of three-way aggregates
=S i=1,0-2 Sj>i'd_1 S ksj,d NiNjNk = 1*1*1 = 1 for the subset
=S i=1,d-2 Sj>i,d-1 S ksj,d NiNjNk = 2*4*7 = 56 for the full set

Number of d-way aggregates (in general)

Total number of aggregates
=3+ 3+ 1=7for the subset
=12+ 50 + 56 = 118 for the full set

Subset configuration

One-way aggregates
Product-type totals by store by day
State totals by product-name by day
Monthly totals by product-name by store

Two-way aggregates
Product-type totals by state totals by day
Product-type totals by month totals by store
State totals by monthly totals by product-name

Three-way aggregates
Product-type totals by monthly totals by state totals

88

Number of Recordsin Aggregates

Dimensions Product Region Time-period
Levels al-products=1 world-wide=1 10-year=1
product-type = 210 country = 100 5-year =2
--------------------- state = 4,500 3-year =3
product-name = 4,050 city = 15,000 year = 1*10
-------------- quarter = 4*10
store = 25,000 month = 12* 10
week = 52*10
day = 365*10

Number of records (rows) in eachl-way aggregate = individual cell =nrj;
for level i and dimension j

Number of records (rows) in each 2-way aggregate = NrjNryy,
for levelsi,k and dimensionsj,m

Number of records (rows) in each d-way aggregate = Nrj{Nlo............ Nrag
for levelsi k,.....,n and dimensions 1,2,.....,d

Subset configuration Full set configuration
Smallest 3-way
aggregate fact table 210*4500* 120 1*1*1 =1 record

= 113,400,000 records
Largest 3-way
aggregate fact table 210*4500* 120 210* 15000*520

= 113,400,000 records = 1,638,000,000 records
Number of fact records
in the data warehouse 4050* 25000* 3650 4050* 25000* 3650
(including nulls) = 369,562,500,000 = 369,562,500,000

89

Region

L reg-no
reg-narme
mgr-narme
addr
phone

Fact Table

order—-no

reg-no
cust-id

Customer

cust-id
cust-name
addr
phone
company

sales-id
prod-no
period-id
quantity
total-price

Order

order-no
ord-date
czhipping-date
date-filled

Salesperson

sales-id
sales-name
addr

phaone

Time-Period

period-id
day

ek
rmanth
Year

Sales-summary

N

Figure 9.3 Sales-summary as an example of aggregatiaon

reg-no
N | month
Fevenue
profit

Product

prod-no

1| prod-type
prod-name
orice

M Month

month
year

90

titrne-pericd

Janary1995
Febxruary 1995

region

Zouthwest
Morthwiest

Froduct

Ford-Mustang
Chrysler-Eagle

variables

guantity -sold
total-revenus

March 1993 North-central GM-Cameto
April 1995 South-central Toyota-Camry
May1995 Northeast
Jute 19935 Midwrest
lst-qtr 1993 SZoutheast
2nd-qtr 1998
Ard-gtr1993
vear199y
vear1995

(@) Linear sequence of sample members from each of four dimensions

Regiotl: Southwest
Quantity Total
Zo1d Revenue

January 1998 | Ford-Mustang 426 6317
Chrysler-Eagle 179 A004

GM-Catneto 314 C261

Toyota-Catnry 299 2753

February1995| Ford-Mustang 451 Bo42
Chrysler-Eagle 152 31149

GM-Catnero 356 BOOT

Toyota-Camry 301 49356

() 2-dimensional lavout of four dimensions of data

Figure 9.9 Display of multidimensional sales data

91

RFeport for January 1995

Southwest | MNorthwest Total of regions
Ford-Mustang 426 457 Ga3
Chrysler-Eagle 179 216 395
GM-Camero 31 245 S63
Toyota-Camry 299 322 GB21
Total of products 1222 1240 2462

(&) Pure operations computed the same in any order {sums)

Feport for January1993, Southwest region

Quota Quantity-sold Quantity-sold/quota
Ford-Mustang 400 426 1.065
Chrysler-Eagle 200 179 0.895
GM-Camero 300 318 1.060
Toyota-Camry 300 299 0997
Taotal 1200 1222 Ratio of sums = 1.018
Surm of ratios = 4017

(b} Mixed sums and ratios give inconsistent results

Figure 910 Examples of mixing formulas for derived data values

92

Data Mining

Definition — data mining is the activity of sifting through large files and databases to discover useful,
nonobvious, and often unexpected trends and relationships

The Knowledge Discovery in Databases (KDD) Process

1. Datasdection and cleaning

2. Datatransformation and reduction

3. Datamining

4. Interpretation and evaluation

5

. Taking action on the discovery

Data Mining Methods
Predictive modeling
. Database segmentation

. Datasummarization and link anaysis

1
2
3
4. Dependency analysis or modeling
5. Change and deviation analysis

6

. Optimization searching

93

Raw data
frelational databases, etc.) data

wWarehouse

data selection
and cleaning

target
data

data transformation
and reduction

reduced
data
data mining interpretation
and
evaluation
patterns interesting
and/ar patterns
trends
taking
action
— oh yeah!

Figure 9.11 The KDD Process

94

C Java

g !
Fro*C ODEC JDBC Weh intetfaces

web SOL
interfaces customized
ROLAFR interfaces
data
rnining SQL3 0oL MOLAP
Ohject- Ohject- o
Relational Relational Oriented Specialized
(RDE) (ORDE) (OODE) Databases
Active DB Active DE
Eeal-time DB Real-time DE
Temporal DB Temporal DE
MMultimmedia DB
Spatial DB
Text DB

Figure 10.1 Adwvanced Database Architecture

95

