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ABSTRACT
In this paper we state and prove ad hoc “Separation Theorems”of the so-called
Smooth Commutative Algebra, the Commutative Algebra of C∞-rings. These
results are formally similar to the ones we find in (ordinary) Commutative
Algebra. However, their proofs are not so straightforward, since they depend
on the introduction of the key concept of “smooth saturation.” As an appli-
cation of these theorems we present an interesting result that sheds light on
the natural connection between the smooth Zariski spectrum and smooth real
spectrum of a C∞-ring, the C∞-analog of the real spectrum of a commutative
unital ring.
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1. Introduction

It is a well-known fact that a smooth manifold M—which is a geometrical object—can be encoded by an
algebraic entity, its R-algebra of smooth real functions, C∞(M,R), since there is a canonical bijection
(evaluation) M ∼= HomR−Alg(C∞(M,R),R). This identification works even at the level of morphisms
C∞(M, M′) ∼=HomR−Alg(C∞(M′,R), C∞(M,R)). Moreover, geometric constructions over a manifold
M, such as its tangent bundle, TM, remain algebraically represented: TM ∼= HomR−Alg(C∞(M,R),
R[x]/(x2)).

The set C∞(M,R) supports a far richer structure than just the one of an R-algebra: it interprets not
only the real polynomial functions but all smooth real functions Rn → R, n ∈ N. Moreover, this
extended interpretation also satisfies all the compositional identities that hold between the smooth real
functions. Thus, C∞(M,R) is a natural instance of the algebraic structure called C∞-ring.

A more systematic algebraic study of these rings of smooth functions was carried out in the mid 1960s
and early 1970s. It was not until the decades of 1970s and 1980s that a study of the abstract (algebraic)
theory of C∞-rings was made, mainly in order to construct—out of the ideas of F. W. Lawvere—topos
models for Synthetic Differential Geometry [12, 17–19]; In [10], the first steps toward an “algebraic
geometry of C∞-rings” were taken, through the definition of the C∞-schemes.

The interest in C∞-rings gained strength in recent years [2, 8, 9, 13, 20]. In [13], D. Joyce presents the
foundations of a version of Algebraic Geometry in which the role of rings is replaced by C∞-rings, with
the goal to apply these new notions and results to Differential Geometry: this can be considered as a part
of a larger (and ambitious) program, also pursued by D. I. Spivak (see [20]), of extending/transferring
Jacob Lurie’s program of Derived Algebraic Geometry to Derived Differential Geometry.
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In [8], Kremnizer and Borisov give a detailed account of six notions of radicals of an ideal of a C∞-
ring, among which we find the∞-radical of an ideal of a C∞-ring. Here we focus on this concept, that
we call “ the C∞-radical” of an ideal: this concept first appeared in [17], and it is germane to the theory of
C∞-rings, carrying some differences with respect to the usual notion of radical in ordinary Commutative
Algebra—which only makes use of powers of elements.

The difference between the notions of “radical” and “C∞-radical” ideals brings us, alone, a whole new
study of some important concepts, such as C∞-reduced C∞-rings and the “smooth Zariski spectrum.”
This “smooth” depiction of Zariski’s spectrum presents some crucial differences when compared to
the ordinary Zariski spectrum, both in its topological features and in its functorial and sheaf-theoretic
features (see [3, 15]).

This paper also provides some sketches for proofs of results scattered across literature, filling in some
gaps. The main reference on Category Theory is [14]. For Commutative Algebra we refer the reader to
[1].

Overview of the Paper:
In the Section 2 we provide some preliminaries on the main subject on which we build this

version of Commutative Algebra, the category C∞-rings, presenting some definitions and some of their
fundamental constructions (the main definitions can be found in [19], and a more detailed account of
C∞-rings can be found, for example, in [4]).

In the Section 3 we present the C∞ parallels of the ordinary Commutative Algebraic construction
of the ring of fractions, radicals and the concept of saturation. In order to prove the existence of the
C∞-ring of fractions we make use of the notion of the C∞-ring of C∞-polynomials, studied in [4], and
then we define the concept of “smooth saturation” (Definition 3.3 of Section 3.1), pointing some of its
relationships with the ordinary concept of saturation (Theorem 3.7). We state and prove various results
about this concept.

We start by recalling the ordinary Commutative Algebraic construction of the ring of fractions,
radical of an ideal and the concept of saturation, motivating the introduction of their C∞ parallels. In
order to prove the existence of the C∞-ring of fractions we make use of the notion of the C∞-ring of C∞-
polynomials (see [4]). We study the concept of “C∞-radical” introduced in [17], relating it to concept of
“smooth saturation,” introduced in [2], pointing some of its relationships with the ordinary concept of
saturation in Commutative Algebra. We present many results about these three concepts. In Section 4
we present distinguished classes of C∞-rings (i.e., C∞-rings which satisfy some further axioms), as C∞-
fields, C∞-domains and local C∞-rings. We prove some results connecting the filter of closed subsets
of Rn and the set of C∞-radical ideals of C∞(Rn) (in fact, a Galois connection [Proposition 4.10]), as
well as various results about them—including the fact that the C∞-radical of any ideal is again an ideal
(Proposition 4.6). The authors know of no such proof in the current literature. From the preceding results
on smooth saturation and on smooth radical ideals, we present in Section 5 a similar version of the
Separation Theorems (Theorem 5.1) one finds in ordinary Commutative Algebra.

In Section 6 we present some order-theoretic aspects of C∞-rings, defining fundamental concepts as
the “real C∞-spectrum” of a C∞-ring—a concept introduced in [7]—and its topology (the “Harrison
smooth topology”), establishing that every C∞-ring is semi-real (Proposition 6.4) and, as an application
of the Separation Theorems, we prove an important result which establishes a spectral bijection from the
real C∞-spectrum of a C∞-ring to its smooth Zariski spectrum (Theorem 6.22): comparing this smooth
algebraic scenario with the usual commutative algebraic setting, this is a surprising result.

2. Preliminaries

We provide here the main preliminary notions on C∞-rings, with respect to their universal algebra (cf.
[4]).

In order to formulate and study the concept of C∞-ring, we use a first order language, L, with a
denumerable set of variables (Var(L) = {x1, x2, . . . , xn, . . .}), whose nonlogical symbols are the symbols
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of C∞-functions from Rm to Rn, with m, n ∈ N, i.e., the non-logical symbols consist only of function
symbols, described as follows:

For each n ∈ N, the n-ary function symbols of the set C∞(Rn,R), i.e., F(n) = {f (n)|f ∈ C∞(Rn,R)}.
Thus, the set of function symbols of our language is given by:

F =
⋃
n∈N

F(n) =
⋃
n∈N

C∞(Rn).

Note that our set of constants is identified with the set of all 0-ary function symbols, i.e., C = F(0) =
C∞(R0) ∼= C∞({∗}).

The terms of this language are defined, in the usual way, as the smallest set which comprises the
individual variables, constant symbols and n-ary function symbols followed by n terms (n ∈ N).

Functorially, a (set-theoretic) C∞-ring is a finite product preserving functor from the category C∞,
whose objects are of the formRn, n ∈ N, and whose morphisms are the smooth functions between them,
i.e., a finite product preserving functor:

A : C∞ → Set

Apart from the functorial definition and the “first-order language” definition we just gave, there are
many equivalent descriptions. We focus, first, on the universal-algebraic description of a C∞-ring in Set,
given in the following:

Definition 2.1. A C∞-structure on a set A is a pair A = (A, �), where:

� :
⋃

n∈N C∞(Rn,R) → ⋃
n∈N Func (An; A)

(f : Rn C∞→ R) �→ �(f ) := (f A : An → A)
,

that is, � interprets the symbols1 of all smooth real functions of n variables as n-ary function symbols
on A.

We call a C∞-structure A = (A, �) a C∞-ring whenever it preserves projections and all equations
between smooth functions. More precisely, we have the following:

Definition 2.2. Let A = (A, �) be a C∞-structure. We say that A (or, when there is no danger of
confusion, A) is a C∞-ring if the following is true:
• Given any n, k ∈ N and any projection pk : Rn → R, we have:

A |	 (∀x1) · · · (∀xn)(pk(x1, . . . , xn) = xk).

• For every f , g1, . . . gn ∈ C∞(Rm,R) with m, n ∈ N, and every h ∈ C∞(Rn,R) such that f =
h ◦ (g1, . . . , gn), one has:

A |	 (∀x1) · · · (∀xm)(f (x1, . . . , xm) = h(g(x1, . . . , xm), . . . , gn(x1, . . . , xm))).

Definition 2.3. Let (A, �) and (B, �) be two C∞-rings. A function ϕ : A→ B is called a morphism of
C∞-rings or C∞-homomorphism if for any n ∈ N and any f : Rn C∞→ R, one has �(f )◦ϕ(n) = ϕ◦�(f ),
where ϕ(n) = (ϕ, . . . , ϕ) : An → Bn.

Remark 2.4. (on universal algebraic constructions) It is not difficult to see thatC∞-structures, together
with their morphisms (which we call C∞-morphisms) compose a category (see Theorems 1 and 2 of
[4]), that we denote by C∞Str, and that C∞-rings, together with all the C∞-morphisms between C∞-
rings (which we call C∞-homomorphisms) compose a full subcategory, C∞Ring. In particular, since

1Here considered simply as syntactic symbols rather than functions.



COMMUNICATIONS IN ALGEBRA® 2017

C∞Ring is a “variety of algebras” (see Remark 5 of [4]), i.e., it is a class of C∞-structures which satisfies
a given set of equations, (or equivalently, by Birkhoff ’s HSP Theorem) it is closed under substructures
(Definition 8 of [4]), homomorphic images (Proposition 7 of [4]) and products (Definition 10 of [4]).
Moreover:
• C∞Ring is a concrete category and the forgetful functor, U : C∞Ring→ Set creates directed inductive
colimits (see p. 22 of [19]);
• Each set X freely generates a C∞-ring (see Section 3 of [4]). In particular, the free C∞-ring on n
generators is C∞(Rn), n ∈ N (see Proposition 1.1 of [19]);
• Every C∞-ring is the homomorphic image of some free C∞-ring determined by some set, being
isomorphic to the quotient of a free C∞-ring by some congruence;
• The congruences of C∞-rings are classified by their “ring-theoretical” ideals (Proposition 17 of [4]);
• In C∞Ring one defines “the C∞-coproduct” between two C∞-rings A = (A, �) and B = (B, �),
denoted by A⊗∞ B (see Section 4.2 of [4]);
• Using free C∞-rings and the C∞-coproduct, one gets the “C∞-ring of polynomials” on any set S of
variables with coefficients in A, given by A{xs | s ∈ S} = A⊗∞ C∞(RS) (see Section 4.3 of [4]).

3. Smooth rings of fractions

We begin by giving a description of the fundamental concept of “smooth ring of fractions”, presenting
a slight modification of the axioms given in [17]. In order to show that the C∞-ring of fractions exists in
the category of C∞-rings, we use the C∞-ring of C∞-polynomials. The definitions and results we state
here may be found with more detail in [5].

We turn to the discussion of how to obtain the ring of fractions of a C∞-ring A with respect to some
of its subsets, S ⊆ U(A, �).

For any commutative unital ring R, one characterizes S−1R by the following universal property (cf.
Proposition 3.1 of [1]):

Proposition 3.1. Given a ring homomorphism g : R→ B such that (∀s ∈ S)(g(s) ∈ B×), there is a unique
ring homomorphism g̃ : S−1R→ B such that g̃ ◦ ηS = g.

In order to extend this notion to the category C∞Ring we make use of the universal property
described in Proposition 3.1, as we see in the following:

Definition 3.2. Let A be a C∞-ring and S ⊆ A one of its subsets. The C∞-ring of fractions of A with
respect to S is a C∞-ring, A{S−1}, together with a C∞-homomorphism ηS : A→ A{S−1} satisfying the
following properties:
(1) (∀s ∈ S)(ηS(s) ∈ (A{S−1})×)

(2) If ϕ : A→ B is any C∞-homomorphism such that for every s ∈ S we have ϕ(s) ∈ B×, then there is
a unique C∞-homomorphism ϕ̃ : A{S−1} → B such that the following triangle commutes:

By this universal property, the C∞-ring of fractions is unique, up to (unique) isomorphisms.

The existence of such a C∞-ring of fractions is proved making use of the constructions available
within the category C∞Ring, such as the free C∞-ring on a set of generators, their coproduct, their
quotients and others described in [4].
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3.1. Smooth saturation

A key concept for Commutative Algebra was introduced by A. Grothendieck and J. Dieudonné in [11],
namely the concept of “a saturated (multiplicative) set”: given a commutative unital ring, A, and S ⊆ A,
the saturation of S was defined by Ssat = {a ∈ A|(∃d ∈ A)(a · d ∈ 〈S〉)}, where 〈S〉 denotes the
multiplicative submonoid of A generated by S. In other words, the saturation of a set S is the set of
all divisors of elements in 〈S〉.

One easily checks that the saturation of a subset S of a commutative ring A equals the pre-image
of the set of all invertible elements of A[S−1] by the canonical map ηS : A → A{S−1}, i.e., Ssat =
η�S [(A[S−1])×]. We use this specific characterization in order to introduce the concept of “the smooth
saturation of a subset S of a C∞-ring A,” that we are going to denote by S∞−sat.

Definition 3.3. Let A be a C∞-ring, S ⊆ A and (F, σ) be a ring of fractions of A with respect to S. The
smooth saturation of S in A is:

S∞−sat := {a ∈ A|σ(a) ∈ F×}.

It is straightforward to check that the smooth saturation of a subset of A does not depend on any
particular choice of the “inverting” C∞-homomorphisms, that is, if both (F, σ) and (F′, σ ′) satisfy the
Definition 3.2, then σ�[F×] = σ ′�[F′×] (for a proof, see Proposition 3.6, p. 14 of [5]).

Remark 3.4. Since for every s ∈ S, ηS(s) ∈ (A{S−1})×, from now on we use the more suggestive notation:

(∀s ∈ S)
(

1/ηS(s) ·= ηS(s)−1
)

,

For any a ∈ A and s ∈ S we write:
ηS(a)

ηS(s)
·= ηS(a) · ηS(s)−1.

Alternatively, but equivalently, we have:

Definition 3.5. Let A be a C∞-ring and let S ⊆ A× be any subset. The smooth saturation of S is
S∞−sat = ηS�[A{S−1}×], where ηS : A→ A{S−1} is the canonical map of the ring of fractions of A with
respect to S.

Remark 3.6. Let A be a C∞-ring, S ⊆ A and consider the forgetful functor, U : C∞Ring→ CRing. We
have always Ssat ⊆ S∞−sat.

Theorem 3.7 (Theorem 3.11 of [5]). Since η∞S : A → A{S−1} is such that η∞S [S] ⊆ (A{S−1})×, then
(η∞S )[S] ⊆ (U(A{S1}))×, so by the universal property of the ring of fractions, ηS : U(A) → U(A)[S−1],
there is a unique R-algebras homomorphism Can : U(A)[S−1] → U(A{S−1}) such that the following
diagram commutes:

In these settings, the following assertions are equivalent:
(1) Ssat = S∞−sat;
(2) Can is a ring-isomorphism.
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Now we give some properties relating the inclusion relation among the subsets of a C∞-ring and their
smooth saturations.

Proposition 3.8 (Proposition 3.12 of [5]). Let A be a C∞-ring and T, S ⊆ A be any two of its subsets.
Then:
(i) A× ⊆ S∞−sat

(ii) S ⊆ S∞−sat

(iii) S ⊆ T implies S∞−sat ⊆ T∞−sat and
(iv) S∞−sat = 〈S〉∞−sat, where 〈S〉 is the submonoid generated by S.

Some necessary and sufficient conditions for the C∞-homomorphism ηS : A → A{S−1} to be a
C∞-isomorphism are given below:

Proposition 3.9. The following assertions are equivalent:
(i) ηS : A→ A{S−1} is a C∞-isomorphism;
(ii) S∞−sat ⊆ A×;
(iii) S∞−sat = A×

Proof. Naturally (i) ⇒ (ii), for if ηS is an isomorphism, both η−1
S and ηS preserve invertible elements

and A× = η−1
S [(A{S−1})×] = η�S [(A{S−1})×] = Ssat. Since we always have A× ⊆ S∞−sat, (ii) implies

that A× = S∞−sat, so (ii)⇒ (iii).
Finally, note that idA : A→ A has the universal property of the ring of fractions of A with respect to

A×, so it follows that (idA : A→ A) ∼= (ηA× : A→ A{(A×)−1}). Thus ηA× must be the composition
of a C∞-isomorphism with idA, thus a C∞-isomorphism.

Observe that, by Proposition 3.2, we have A× = ηA×[(A{(A×)−1})×] = (A×)∞−sat – that is, A× is a
“C∞-saturated set.”

Next we give some properties of the smooth saturation of a set.

Proposition 3.10. Let A be a C∞-ring and S ⊆ A be any of its subsets. Then

(S∞−sat)∞−sat = S∞−sat

Proof. Since S ⊆ S∞−sat, there exists a unique morphism μSS∞−sat : A{S−1} → A{(S∞−sat)−1} such
that μSS∞−sat ◦ ηS = ηS∞−sat . By the definition of S∞−sat, we have ηS[S∞−sat] ⊆ (A{S−1})×, and by the
universal property of ηS∞−sat : A → A{(S∞−sat)−1}, there must exist a unique ν : A{(S∞−sat)−1} →
A{S−1} such that ν ◦ ηS∞−sat = ηS.

Thus, we get two commuting diagrams:



2020 J. C. BERNI AND H. L. MARIANO

so (μSS∞−sat)−1 = ν, and μSS∞−sat is an isomorphism. Hence A{S−1} ∼= A{(S∞−sat)−1}, and by
Definition 3.2, (S∞−sat)∞−sat = S∞−sat.

Proposition 3.11. If g, h : A{S−1} → B are two morphisms such that g ◦ ηS = h ◦ ηS then g = h. In other
words, ηS : A→ A{S−1} is an epimorphism.

Proof. Since g ◦ ηS is such that (g ◦ ηS)[S] ⊆ B×, there exists a unique morphism t̃ : A{S−1} → B such
that t̃ ◦ ηS = g ◦ ηS. By hypothesis we have h ◦ ηS = g ◦ ηS, so g has the property which determines t̃
and g = t̃ = h.

Proposition 3.12. Let A be a C∞-ring and S, T ⊆ A two of its subsets. The following assertions are
equivalent:
(i) S∞−sat ⊆ T∞−sat

(ii) There is a unique morphism μ : A{S−1} → A{T−1} such that μ ◦ ηS = ηT.

Proof. See Proposition 3.16 of [5].

Corollary 3.13. The following assertions are equivalent:
(i) S∞−sat = T∞−sat

(ii) There is an isomorphism μ : A{S−1} → A{T−1} such that μ ◦ ηS = ηT;
(iii) There is a unique isomorphism μ : A{S−1} → A{T−1} such that μ ◦ ηS = ηT.

Proof. See Corollary 3.17 of [5].

Proposition 3.14. Let A be a C∞-ring and S, T two of its subsets such that S ⊆ T. The following assertions
are equivalent:
(i) μST : A{S−1} → A{T−1} is a C∞-isomorphism;
(ii) S ⊆ T ⊆ S∞−sat;
(iii) T∞−sat = S∞−sat.

Proof. Ad (ii)→ (iii): Since S ⊆ T we have S∞−sat ⊆ T∞−sat, and since T ⊆ S∞−sat we have T∞−sat ⊆
(S∞−sat)∞−sat = S∞−sat. Thus S∞−sat ⊆ T∞−sat ⊆ S∞−sat and S∞−sat = T∞−sat. Assuming (iii), note
that we always have T ⊆ Tsat, and since Tsat = Ssat, it follows that T ⊆ Ssat – so (ii) holds. Finally, the
equivalence (i) ⇐⇒ (iii) was established in Corollary 3.13.

Proposition 3.15. Let A be a C∞-ring and S ⊆ A. Whenever {Si}i∈I is a directed system such that:

S =
⋃
i∈I

Si

we have:

S∞−sat =
(⋃

i∈I
Si

)∞−sat

=
⋃
i∈I

Si
∞−sat

Proof. It is clear that
⋃

i∈I Si∞−sat ⊆ S∞−sat. Note that A{S−1} is isomorphic to the vertex of the
following directed colimit:
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lim−→i∈I A{Si−1}

A{Si−1} αij ��

αi ��

A{Sj−1}

αj��

and that ηS : A → A{S−1} is such that for any i ∈ I, ηS[Si] ⊆ ηS[S] ⊆ (A{S−1})×, so by the universal
property of ηSi : A→ A{(Si)−1}, there is a unique C∞-rings homomorphism ϕi : A{(Si)−1} → A{S−1}
such that ϕi ◦ ηSi = ηS, so

A{S−1}

A{Si−1} ϕij ��

ϕi
��

A{Sj−1}

ϕj
��

commutes for every i, j ∈ I such that i ≤ j (for ηSi : A→ A{Si−1} is an epimorphism). By the universal
property of the colimit, there is a unique C∞-homomorphism ϕ : lim−→i∈I A{Si−1} → A{S−1} such that
(∀i ∈ I)(ϕ ◦ αi = ϕi).

On the other hand, given s ∈ S =⋃
i∈I Si there is i ∈ I such that s ∈ Si, so ηSi(s) ∈ A{Si−1}×. Taking

η̃ := αi ◦ ηSi : A → lim−→i∈I A{Si−1}, we have η̃(s) ∈
(

lim−→i∈I A{Si−1}
)×

. By the universal property
of ηS : A → A{S−1}, there is a unique C∞-homomorphism ψ : A{S−1} → lim−→i∈I A{Si−1} such that
ψ ◦ ηS = η̃. Now, it is easy to see, by the universal properties involved, that ϕ and ψ are inverse C∞-

isomorphisms and that η̃�
[(

lim−→i∈I A{Si−1}
)×] =⋃

i∈I Si∞−sat., so S =⋃
i∈I Si∞−sat.

Our next goal is to give a characterization of ring of fractions in C∞Ring using a similar axiom-
atization one has in Commutative Algebra. In order to motivate it, we first present an important
characterization of the ring of fractions in CRing.

Fact 3.16 (Theorem 3.23 of [5]). Let A be a commutative ring with unity and S ⊆ A. Then ϕ : A→ B is
isomorphic to the localization map η : A→ A[S−1] if and only if:
(i) (∀b ∈ B)(∃c ∈ S)(∃d ∈ A)(b · ϕ(c) = ϕ(d))

(ii) (∀b ∈ A)(ϕ(b) = 0→ (∃c ∈ S)(c · b = 0))

hold.

For C∞-rings we have the analogous result, that generalizes Theorem 1.4 of [17], in the sense that it
is an equivalence (an “if and only if ” statement) and that S needs not to be a singleton:

Theorem 3.17. Let A be a C∞-ring 
 ⊆ A a set. Then ϕ : A→ B is isomorphic to the smooth localization
η
 : A→ A{
−1} if and only if:
(i) (∀b ∈ B)(∃c ∈ 
∞−sat)(∃d ∈ A)(b · ϕ(c) = ϕ(d))

(ii) (∀b ∈ A)(ϕ(b) = 0→ (∃c ∈ 
∞−sat)(c · b = 0))

hold.

We postpone the proof of this theorem, giving it right after Remark 3.24.

Theorem 3.18. Let A, Ã be C∞-rings, 
 ⊆ A and let η : A → Ã be a C∞-rings homomorphism such
that:
(i) (∀d ∈ Ã)(∃b ∈ A)(∃c ∈ A)(η
(c) ∈ Ã×&(d · η(c) = η
(b)));
(ii) (∀b ∈ A)((η
(b) = 0Ã)→ (∃c ∈ A)((η
(c) ∈ Ã×)&(b · c = 0A)))

Then η
 : A→ Ã is isomorphic to CanSη : A→ A{Sη
−1}, where Sη = η�
[Ã×].
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Proof. First we show that η
 : A→ Ã has the universal property which characterize CanSη .
Let f : A→ B be a C∞-rings homomorphism such that f [Sη] ⊆ B×. We are going to show there is a

unique C∞-rings homomorphism f̃ : Ã→ B such that f̃ ◦ η
 = f .
Note that η
[Sη] = η
[η�
[Ã×]] ⊆ Ã×.
Candidate and Uniqueness of f̃ : Let f̃1, f̃2 : Ã→ B be such that f̃1 ◦ η
 = f = f̃2 ◦ η.
From hypothesis (i), given any d ∈ Ã there must exist b, c ∈ A with η
(c) ∈ Ã×, such that d =

η(b)/η(c), so:

f̃1(d) = f̃1(η(b) · η(c)−1) = f̃1(η(b)) · f̃1(η(c))−1 =
= (̃f1 ◦ η)(b) · ((̃f1 ◦ η)(c))−1 = f (b) · f (c)−1 = (̃f2 ◦ η)(b) · ((f̃2 ◦ η)(c))−1 =

= f̃2(η(b)) · f̃2(η(c)−1) = f̃2(η(b) · η(c)−1) = f̃2(d)

Thus f̃1 = f̃2.
Existence of f̃ : We know that for every d ∈ Ã there are b, c ∈ A, η(c) ∈ Ã×, such that d = η(b) ·

η(c)−1. We define the following relation: f̃ = {(d, f (b) · f (c)−1)|d ∈ Ã} ⊆ Ã× B, which can be proved
to be a function.

Therefore, there exists exactly one function f̃ : Ã→ B such that f̃ ◦ η = f .
Note that, by the very definition of CanSη , CanSη [Sη] ⊆ A{S−1

η }× so there is a unique function C̃anSη :
Ã → A{S−1

η } such that C̃anSη ◦ η = CanSη . Now, from the universal property of CanSη there exists a
unique C∞-ring homomorphism, η̂ : A{S−1

η } → Ã, such that η̂ ◦ CanSη = η.
We claim that η̂ is a bijection whose inverse is C̃anSη . In fact, (̂η ◦ C̃anSη ) ◦ η = η̂ ◦ (C̃anSη ◦ η) =

η̂ ◦CanSη = η = idÃ ◦ η, so (̂η ◦ C̃anSη ) ◦ η = idÃ ◦ η. We have seen, however, that there is exactly one
function ϕ̃ such that ϕ̃ ◦ η = η, so it follows that idÃ = η̂ ◦ C̃anSη .

On the other hand, C̃anSη ◦ η̂ ◦ CanSη = C̃anSη ◦ η = CanSη = idA{S−1
η } ◦ CanSη , so by the universal

property of CanSη we have idA{S−1
η } = C̃anSη ◦ η̂. Hence C̃anSη is the C∞-rings isomorphism between η

and CanSη , that is, it is a C∞-rings isomorphism such that the following diagram commutes:

In order to smoothly invert larger subsets of C∞(Rn) for some n ∈ N, say 
 ⊆ C∞(Rn), which is a
set that contains possibly a non-countable amount of elements, we proceed as follows. First notice that
we can obtain the C∞-ring of fractions of C∞(Rn) with respect to the singleton 
 = {f : Rn → R},
provided that f �≡ 0 – as originally presented by I. Moerdijk and G. Reyes in [17]. Whenever 
 =
{f1, . . . , fk} for some k ∈ N, inverting 
 is equivalent to inverting

∏

 = f1 · f2 · · · fk−1 · fk. Now, if 
 is

infinite, we first decompose it as the union of its finite subsets 
 =⋃

′⊆fin
 
′.

Note that S = {
′ ⊆ 
|
′ is finite} is partially ordered by the inclusion relation. Also, whenever

′ ⊆ 
′′, since η
′′ [
′] ⊆ η
′′ [
′′] ⊆ (A{
′′−1})×, it follows from the universal property of η
′′ :
A→ A{
′′−1}, that there is a unique C∞-homomorphism α
′
′′ : A{
′−1} → A{
′′−1} such that the
following diagram commutes:
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It is simple to prove, using the “uniqueness part” of the C∞-homomorphism obtained via universal
property, that for any finite 
′ we have α
′
′ = idA{
′−1}, and that given any finite 
′, 
′′ and 
′′′
such that 
′ ⊆ 
′′ ⊆ 
′′′, α
′′
′′′ ◦ α
′
′′ = α
′
′′′ . Thus we have an inductive system {α
′
′′ :
A{
′−1} → A{
′′−1}|(
′, 
′′ ∈ S)&(
′ ⊆ 
′′)}. We take, then, the colimit of this system A{
−1} =
lim−→
′⊆fin


A{
′−′ } = lim−→
′⊆fin

A

{∏

′−1

}
:

Thus, given any C∞-ring A and any 
 ⊆ A, we take η
 = α
′ ◦ η
′ : A→ A{
−1}, which can be
easily proved to have the universal property that characterizes the C∞-ring of fractions of A with respect
to 
.

The concept of C∞-saturation of a subset of a C∞-ring enables us to state the Proposition 1.2 of [17]
in simple terms, as follows:

Remark 3.19. In the case that A = C∞(Rn) and 
 = {f : Rn → R}, we have 
∞−sat = {g ∈
C∞ (Rn)|Uf ⊆ Ug} = {g ∈ C∞ (Rn)|Z(g) ⊆ Z(f )}.

I. Moerdijk and G. Reyes show (for example, in [17]) that given ϕ ∈ C∞(Rn), denoting Uϕ = {x ∈
Rn|ϕ(x) �= 0} = Coz(ϕ) we have C∞(Uϕ) ∼= C∞(Rn+1)/〈{y · ϕ(x)− 1}〉.

We now state a result, credited to Ortega and Muñoz by I. Moerdijk and G. Reyes in [17], that shall
be used in the sequel:

Proposition 3.20. Let U ⊆ Rn be open, and g ∈ C∞(U). Then there are h, k ∈ C∞(Rn) with Uk = U
and g · k �U≡ h �U. where Uk = Rn \ Z(k) and Z(k) = {x ∈ Rn|k(x) = 0}.

Now we turn to prove a very useful result which describes, in detail, the elements of A{S−1}.

Theorem 3.21. Let A be a C∞-ring and S ⊆ A. An element λ = ηS(c)/ηS(b) (with c ∈ A and b ∈ S∞−sat)
is invertible in A{S−1} if, and only if, there are elements d ∈ S∞−sat and c′ ∈ A such that dc′c ∈ S∞−sat,
that is,

ηS(c)
ηS(b)

∈ (A{S−1})× ⇐⇒ (∃d ∈ S∞−sat)(∃c′ ∈ A)(d · c′ · c ∈ S∞−sat).

Proof. Suppose ηS(c)/ηS(b) ∈ (A{S−1})×, so there are c′ ∈ A and b′ ∈ S∞−sat such that:
ηS(c)
ηS(b)

· ηS(c′)
ηS(b′)

= 1A{S−1} = ηS(1A).

Thus,
ηS(c · c′) = ηS(b · b′)
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and
ηS(c · c′ − b · b′) = 0

By Theorem 3.17, there is some d ∈ S∞−sat such that:
d · (c · c′ − b · b′) = 0

that is, such that d · c · c′ = d · b · b′ ∈ S∞−sat, where d · b · b′ ∈ S∞−sat (since it is a product of elements
of S∞−sat, which is a submonoid of A).

Conversely, let ηS(c)/ηS(b) ∈ A{S−1} with b ∈ S∞−sat be an element for which there are d ∈ S∞−sat

and c′ ∈ A such that d · c · c′ ∈ S∞−sat. We have ηS(d · c′ · c) ∈ (A{S−1})× and b ∈ S∞−sat, so
ηS(b) ∈ (A{S−1})×, and

ηS(d · c′ · c)
ηS(b)

∈ (A{S−1})×.

Since
ηS(c)
ηS(b)

· ηS(d · c′) = ηS(d · c′ · c)
ηS(b)

∈ (A{S−1})×

it follows that ηS(c)/ηS(b) ∈ (A{S−1})×, for the product of invertible elements is, again, invertible.

Proposition 3.22. Let U ⊆ Rn be any open subset and define SU = {g ∈ C∞(Rn)|U ⊆ Ug} ⊆ C∞(Rn).
The C∞-ring of fractions of C∞(Rn) with respect to the set SU:

ηSU : C∞(Rn)→ C∞(Rn){SU
−1}

is isomorphic to the restriction map:
ρ : C∞(Rn) → C∞(U)

h �→ h �U

Proof. For a detailed proof, see Proposition 3.30 of [5].

Remark 3.23. Let A be a C∞-ring and a ∈ A. In general, the C∞-ring of fractions of A with respect to a
is not a local C∞-ring. Let us consider the case in which A = C∞(Rn) and a = f : Rn → R is such that
f �≡ 0. By Theorem 1.3 of [17], A{a−1} ∼= C∞(Rn){f−1}, and C∞(Rn){f−1} ∼= C∞(Uf ), where Uf =
Coz (f ) = Rn \ Z(f ). Thus, for every x ∈ Uf , we have a maximal ideal mx = {g ∈ C∞(Uf )|g(x) = 0},
hence a continuum of maximal ideals in C∞(Rn).

Remark 3.24. In the context of Proposition 3.22, note that if f ∈ C∞(Rn) is such that U = Uf , we have
SUf = {f }∞−sat.

Now we are ready to prove Theorem 3.17. We do so first proving the result for quotients and then for
colimits.

Proof of Theorem 3.17: The case where A = C∞(Rn) was proved in Proposition 3.22. Sup-
pose that A = C∞(Rn)/I for some ideal I and 
 = {f }. By Corollary 3.46 of [5], we have
(C∞(Rn)/I){(f + I)−1} ∼= C∞(Rn){f−1}/〈ηf [I]〉, so items (i) and (ii) of Theorem 3.18 hold for the
quotient. The slightly more general case, in which 
 is finite, follows immediately from the fact that
A{S−1} = A{∏

i=1 fi
−1}.

Now let A be a finitely generated C∞-ring and S ⊆ A be any set, so we can write S =⋃
S′⊆finS S′. Since

A{S−1} ∼= lim−→S′⊆S A{S′−1}, items (i) and (ii) hold for A{S−1}.
Finally, given any C∞-ring B (not a necessarily finitely generated one) and any set S ⊆ B, we write B

as the directed colimit of its finitely generated C∞-subrings, lim−→Bi⊆f.g.B
Bi and define Si = j�i [S], where
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ji : Bi � B is the injection in the colimit. Since by the cases already proven items (i) and (ii) hold for
every Bi{Si−1}, the same is true for B{S−1} ∼= lim−→Bi⊆finB Bi{Si−1}. �

Now we turn to the concept of a “C∞-radical ideal” in the theory of C∞-rings, which plays a similar
role to the one played by radical ideals in Commutative Algebra. This key concept was first introduced by
I. Moerdijk and G. Reyes in [17] in 1986, and explored in more details in [18]. Contrary to the concepts of
C∞-fields, C∞-domains and local C∞-rings, the concept of a C∞-radical of an ideal can not be brought
from Commutative Algebra via the forgetful functor. Recall that the radical of an ideal I of a commutative
unital ring R is given by

√
I = {x ∈ R|(∃n ∈ N)(xn ∈ I)}. The most fitting characterization of this

concept to Smooth Commutative Algebra is given below:
√

I =
⋂
{p ∈ Spec (R)|I ⊆ p} =

{
x ∈ R|

(
R
I

)
[(x+ I)−1] ∼= 0

}
.

Moerdijk and Reyes use the latter equality in order to motivate their “ad hoc” definition:

Definition 3.25. Let A be a C∞-ring and let I ⊆ A be an ideal. The C∞-radical of I is given by:
∞√I :=

{
a ∈ A|

(
A
I

)
{(a+ I)}−1 ∼= {0}

}
Unlike what happens in ordinary Commutative Algebra, it is not evident, up to this point, that

whenever I is an ideal of a C∞-ring, ∞
√

I is also an ideal. This fact shall be addressed later on.
The C∞-radical of an ideal may be characterized in terms of the smooth saturation, as we show in the

following:

Proposition 3.26 (Proposition 3.48 of [5]). Let A be a C∞-ring and let I ⊆ A be any ideal. We have the
following equalities:

∞√I = {a ∈ A|(∃b ∈ I)&(ηa(b) ∈ (A{a−1})×)} = {a ∈ A|I ∩ {a}∞−sat �= ∅}
where ηa : A→ A{a−1} is the morphism of fractions with respect to {a}.

Proposition 3.27. Let A and B be two C∞-rings and S ⊆ A and f : A→ B a C∞-homomorphism. By the
universal property of ηS : A→ A{S−1} we have a unique C∞-homomorphism fS : A{S−1} → B{f [S]−1}
such that the following square commutes:

A
ηS ��

f
��

A{S−1}
∃!fS
��

B
ηf [S]

�� B{f [S]−1}

.

Moreover, if f : A → B is surjective, i.e., B ∼= A/ker(f ), then fS : B → B{f [S]−1} is surjective and
B{f [S]−1} ∼= A{S−1}/ker(fS).

Proposition 3.28 (Theorem 3.41 of [5]). Let B be the directed colimit of a system {A

tj→ Aj|, j ∈ I} of
C∞-rings, that is,

B = lim−→∈I A

Ai

ti

����������������� tij �� Aj

tj

�����������������

is a limit co-cone, so given any u ∈ B, there are j ∈ I and uj ∈ Aj such that tj(uj) = u. Under those
circumstances, we have:
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lim−→
k≥j

Ak{u−1
k } ∼= B{u−1}

Using this proposition, we can prove that:

(
lim−→
i∈I

Si

)∞−sat

= lim−→
i∈I

S∞−sat
i ⊆ lim−→

i∈I
Ai

(for a detailed proof, see Corollary 3.43 of [5]).

4. Some classes of C∞-rings, the C∞-spectrum and C∞-saturation

In this section we present some distinguished classes of C∞-rings, such as C∞-fields, C∞-domains,
C∞-local rings and reduced C∞-rings. The concept of von Neumann regular C∞-ring is explored in
details in [6]).

In [17], we find definitions of C∞-fields, C∞-domains and C∞-local rings: they are C∞-rings
such that their underlying R-algebras are fields, domains and local rings in the ordinary sense,
respectively.

Following I. Moerdijk and G. Reyes, we use the C∞-version of the prime spectrum in Smooth
Commutative Algebra by taking, among all prime ideals of a C∞-ring, only the C∞-radical ones (since
“being prime” does not imply “ being C∞-radical”, cf. [18]). We denote the set of all prime proper C∞-
radical ideals of a C∞-ring A by Spec∞(A).

Proposition 4.1 (Proposition 4.3 of [5]). Let A be aC∞-ring and p ∈ Spec∞ (A). Then Ap := A{A \ p−1}
is a local C∞-ring whose unique maximal ideal is given by mp =

{
ηA\p(x)

ηA\p(y) |(x ∈ p)&(y ∈ A \ p)
}

.

Proposition 4.2 (Proposition 4.4 of [5]). Let A be a C∞-ring. The following assertions are equivalent.
i) A is a C∞-field;
ii) For every subset S ⊆ A \ {0}, the canonical map CanS : A→ A{S−1} is a C∞-ring isomorphism;
iii) For any a ∈ A \ {0}, we have that Cana : A→ A{a−1} is a C∞-isomorphism.

In ordinary Commutative Algebra, given an element x of a ring R, we say that x is a nilpotent
infinitesimal if and only if there is some n ∈ N such that xn = 0. Let A be a C∞-ring and a ∈ A. D.
Borisov and K. Kremnizer in [8] call a an∞-infinitesimal if, and only if A{a−1} ∼= 0. The next definition
describes the notion of a C∞-ring being free of∞-infinitesimals - which is analogous to the notion of
“reducedness”, of a commutative ring.

Definition 4.3. A C∞-ring A is C∞-reduced if, and only if, ∞
√

(0) = (0).

Among the C∞-reduced C∞-rings we can highlight the C∞-fields.
The following result is crucial to the proof of the main theorems of this work.

Theorem 4.4. Let A be a C∞-ring, S ⊆ A, and I ⊆ A any ideal. Then:

〈ηS[I]〉 =
{

ηS(b)

ηS(d)
|b ∈ I&d ∈ S∞−sat

}
Proof. Given h ∈ 〈ηS[I]〉, there are n ∈ N, b1, . . . , bn ∈ I and α1, . . . , αn ∈ A{S−1} such that h =∑n

i=1 αi · ηS(bi).
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For each i ∈ {1, . . . , n} there are ci ∈ A and di ∈ S∞−sat such that αi · ηS(di) = ηS(ci), so

h =
n∑

i=1
αi · ηS(bi) =

n∑
i=1

1
ηS(di)

· ηS(ci) · ηS(bi),

and denoting b′i := ci · bi ∈ I, we get:

h =
n∑

i=1

ηS(b′i)
ηS(di)

For each i = 1, . . . , n, let

b′′i = b′i
∏
j �=i

dj,

so

h =
ηS

(∏
j �=1 dj

)
ηS(b′1)

ηS(d1 . . . dn)
+

ηS
(∏

j �=2 dj
)

ηS(b′2)

ηS(d1 . . . dn)
+ · · · +

ηS
(∏

j �=n dj
)

ηS(b′n)

ηS(d1 . . . dn)

Hence:

h · ηS(d1 . . . dn) = ηS

⎛⎝∏
j �=1

dj

⎞⎠ ηS(b′1)+ ηS

⎛⎝∏
j �=2

dj

⎞⎠ ηS(b′2)+ · · · + ηS

⎛⎝∏
j �=n

dj

⎞⎠ ηS(b′n).

Let b′′i :=
(∏

j �=i di
)
·
∈I︷︸︸︷
b′i ∈ I, so we have h · ηS(d1 . . . dn) = ∑n

i=1 ηS(b′′i ) = ηS
(∑n

i=1 b′′i
)
. Since

ηS(d1 . . . dn) ∈ A{S−1}×, d = d1 . . . dn ∈ S∞−sat, so taking b = ∑n
i=1 b′′i , we have b ∈ I, since it is a

sum of elements of I, we can write h · ηS(d) = ηS(b), and h = ηS(b)

ηS(d)
, with b ∈ I and d ∈ S∞−sat.

The other way round is immediate.

As a consequence of Theorem 4.4, we characterize C∞-reducedness in terms of the C∞-saturation:

Corollary 4.5. If A is a reduced C∞-ring, then we have:

(∀a ∈ A)((0 ∈ {a}∞−sat)↔ (a = 0))

4.1. The C∞-radical of an ideal is an ideal

Given I ⊆ C∞(Rn) any ideal, Î = {A ⊆ Rn|A is closed and (∃f ∈ I)(A = Z(f ))} is a filter on the
set of all the closed subsets of Rn. Moreover, I is a proper ideal if, and only if, Î is a proper filter (see
Proposition 4.9 of [5]). Also, given any filter F on the set of all the closed subsets of Rn, we define
F̌ = {f ∈ C∞(Rn)|Z(f ) ∈ F}, which is an ideal of C∞(Rn). Moreover, F is a proper filter if, and only
if, F̌ is a proper ideal. (see Proposition 4.10 of [5]).

Let I ⊆ C∞(Rn) be any ideal. Then we have, by definition, Î = {A ⊆ Rn|(∃h ∈ I)(A = Z(h))}, and
therefore ˇ̂I = {g ∈ C∞(Rn)|(∃h ∈ I)(Z(g) = Z(h))}.

Let F be a proper filter on the set of all closed subsets of Rn. Since every closed subset B ⊆ Rn is a
zero set of some smooth function, we have:̂̌F = {A ⊆ Rn|(∃g ∈ F̌)(A = Z(g))} = {A ⊆ Rn|(∃g ∈ F̌)((Z(g) ∈ F)&(A = Z(g)))} = F

As a consequence of the discussion above, we have:
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Proposition 4.6 (Proposition 4.12 of [5]). Let I ⊆ C∞(Rn) be an ideal. Then ˇ̂I = {g ∈ C∞(Rn)|(∃h ∈
I)(Z(g) = Z(h))} = ∞√I. In particular, the C∞-radical of an ideal I of the free C∞-ring on finitely many
generators, C∞(Rn), is again an ideal.

As a consequence, we have the following:

Corollary 4.7. Let A = C∞(Rn) be a finitely generated free C∞-ring. I ⊆ C∞(Rn) is a C∞-radical ideal,
that is, ∞

√
I = I, if, and only if:

(∀g ∈ C∞(Rn))((g ∈ I)↔ (∃f ∈ I)(Z(f ) = Z(g))).

The following result gives us another characterization of “being C∞-radical” as a consequence of a
comment made by Moerdijk and Reyes in the p. 330 of [18]:

Corollary 4.8. Let C∞(Rn) be the free C∞-ring and let I ⊆ C∞(Rn) be a finitely generated ideal, that is,
I = 〈g1, . . . , gk〉, for some g1, . . . , gk ∈ C∞(Rn). I is a C∞-radical ideal if, and only if:

(∀x ∈ Z(g1, . . . , gk))(f (x) = 0)→ (f ∈ I)

Proof. Suppose I = ∞√I and let f ∈ C∞(Rn) be such that (∀x ∈ Z(g1, . . . , gk))(f (x) = 0). We have
g = g2

1 + · · · + g2
k ∈ I such that Z(g) ⊆ Z(f ), so Z(f ) ∈ Î (since Î is a filter) and by Proposition 4.6,

f ∈ ˇ̂I = ∞√I = I.
Now, suppose (∀x ∈ Z(g1, . . . , gk))(f (x) = 0)→ (f ∈ I). Given h ∈ ∞√I = ˇ̂I, we have Z(h) ∈ Î, so

there exists some g ∈ I such that Z(h) = Z(g), thus (∀x ∈ Z(g1, . . . , gk))(h(x) = 0). By hypothesis, this
means that h ∈ I, so ∞√I ⊆ I. Since I ⊆ ∞√I always holds, it follows that I is a C∞-radical ideal.

By Proposition 4.5 of [19], it follows that any finitely generated C∞-radical ideal I of C∞(Rn) is such
that:

(∀x ∈ Z(I))(f �x∈ I �x→ f ∈ I),

where Z(I) :=⋂
f∈I Z(f ). This (important) condition an ideal of a C∞-ring may satisfy is called “point-

determinacy.”
As a consequence, we have a particular version of the weak Nullstellensatz to finitely generated ideals:

Proposition 4.9. For any finitely generated C∞-radical ideal I of C∞(Rn), we have 1 ∈ I ⇐⇒ Z(I) = ∅.

Proof. See p. 45 of [19].

Let F be the set of all the filters on the closed parts of Rn and I be the set of all the ideals of C∞(Rn).
We have, so far, established that for every ideal I ⊆ C∞(Rn) we have ∞√I = ˇ̂I and for every filter F ∈ F

we have ̂̌F .
Next we show that the following diagram:

where ∧(I) = Î and ∨(F) = F̌ , is a Galois connection with ∧ � ∨.

Proposition 4.10 (Proposition 4.17 of [5]). The adjunction ∧ � ∨ is a covariant Galois connection
between the posets (F,⊆) and (I,⊆), i.e.,
(a)Given F1,F2 ∈ F such that F1 ⊆ F2 then F̌1 ⊆ F̌2;
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(b)Given I1, I2 ∈ I such that I1 ⊆ I2 then Î1 ⊆ Î2;
(c) For every F ∈ F and every I ∈ I, we have Î ⊆ F ⇐⇒ I ⊆ F̌ .

Proposition 4.11 (Proposition 4.18 of [5]). Let A = C∞(Rn) for some n ∈ N. The Galois connection
∧ � ∨ establishes a bijective correspondence between:
(a) proper filters of (F,⊆) and proper ideals of (I,⊆);
(b) maximal filters of (F,⊆) and maximal ideals of (I,⊆);
(c) prime filters of (F,⊆) and prime ideals of (I,⊆).
(d) filters on the closed parts of Rn, F, and the set of all C∞-radical ideals of C∞(Rn), I∞ = {I ⊆

C∞(Rn)| ∞√I = I}.

By Proposition 4.11, whenever p is a prime ideal of C∞(Rn), the filter associated with p, p̂, is a prime
filter. Again by Proposition 4.11, it follows that ˇ̂p = ∞√p is a prime ideal. Thus, whenever p is a prime
ideal of C∞(Rn), ∞√p is also a prime ideal.

A consequence of Proposition 4.11 combined with Proposition 4.6 is that given the C∞-ring C∞(Rn),
the operator ∨ ◦ ∧ = ∞√· : I → I is a closure operator (that is, it is idempotent, inflationary and
increasing). In virtue of these remarks, we have the following:

Theorem 4.12 (Theorem 4.21 of [5]). Let I, I1, I2 ⊆ C∞(Rn) be ideals. Then:
(a) ∞√I is an ideal of C∞(Rn) and I ⊆ ∞√I;
(b) I1 ⊆ I2 ⇒ ∞√I1 ⊆ ∞√I2
(c) ∞√ ∞√I = ∞√I

The following definition will be helpful to prove that whenever I is an ideal of any C∞-ring A, then
∞√I is also an ideal.

Definition 4.13. Let A be a C∞-ring. We say that A is admissible if for every ideal I ⊆ A, ∞
√

I is an ideal
in A.

We claim that every C∞-ring is admissible. We reason as follows: first, given two C∞-rings, A and A′
such that A ∼= A′, if A is admissible then so is A′. Then we use Proposition 3.27 to check that whenever
a C∞-ring, A, is admissible and J is one of its ideals, A/J is admissible. Finally, given a filtered diagram

of admissible C∞-rings, {Ai
hij→ Aj}, we prove that lim−→Ai is an admissible C∞-ring.

Summing all these results up yields:

Theorem 4.14. Given any C∞-ring A, whenever I is an ideal of A, ∞
√

I is also an ideal of A.

Now we present some properties of taking the C∞-radical of an ideal of an arbitrary C∞-ring.

Proposition 4.15. Let A be a C∞-ring, I, J ⊆ A any of its ideals. Then:
(i) I ⊆ J ⇒ ∞√I ⊆ ∞√J
(ii) I ⊆ ∞√I

Proof. Ad (i): Given a ∈ ∞√I, there is b ∈ I such that ηa(b) ∈ (A{a−1})×. Since I ⊆ J, the same b is a
witness of the fact that a ∈ ∞√J, for b ∈ J and ηa(b) ∈ (A{a−1}). Ad (ii): We prove its contrapositive:
A\ ∞√I ⊆ A\I. Given a ∈ A\ ∞√I, we have that (∀b ∈ I)(ηa(b) /∈ (A{a−1})×), so ηa[I]∩(A{a−1})× = ∅.
Since ηa(a) ∈ (A{a−1})×, it follows that ηa(a) /∈ ηa[I], so a /∈ I.

Proposition 4.16. Given any C∞-ring B and J ⊆ B any of its ideals, we have ∞√{0B/J} = ∞√J/J.
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Proof. We have a ∈ ∞√J ⇐⇒ (∃b ∈ J)(η(b) ∈ (B{a−1})×), so

a+ J = a ∈ ∞√{0B/J} ⇐⇒ (∃b ∈ {0B/J})(ηa(b) ∈ (
(B/J){(a+ J)−1})×)

⇐⇒ (B/J){(a+ J)−1} ∼= {0} ⇐⇒

⇐⇒ a ∈ ∞√J ⇐⇒ a+ J ∈
∞√J
J

Now, since J ⊆ ∞√J, if a′ + J = a+ J, then a ∈ ∞√J ⇐⇒ a′ ∈ ∞√J.

As an immediate consequence, we have the following:

Corollary 4.17. Let A be a C∞-ring. We have:
(a) An ideal J ⊆ A is a C∞-radical ideal if, and only if, (A/J) is a C∞-reduced C∞-ring
(b) A proper prime ideal p ⊆ A is C∞-radical if, and only if, (A/p) is a C∞-reduced C∞-domain.

Proposition 4.18 (Proposition 4.33 of [5]). Let A′, B′ be two C∞-rings and j : A′ → B′ be a
monomorphism. If B′ is C∞-reduced, then A′ is also C∞-reduced.

In ordinary Commutative Algebra, we say a commutative unital ring, R is reduced if, and only if,√
(0) = (0). Within the Commutative Algebra of C∞-rings, we say that a C∞-ring, A is C∞-reduced if,

and only if ∞
√

(0) = (0).
As a consequence of Propositions 4.18 and 3.26, we have the following:

Corollary 4.19. Every C∞-subring of a C∞-field is a C∞-reduced C∞-domain.

Proposition 4.20 (Proposition 4.37 of [5]). Let (I,≤) be a directed set and suppose that {Ai}i∈I is a directed
family of C∞-reduced C∞-rings. Then

B = lim−→
i∈I

Ai

is a C∞-reduced C∞-ring.

Theorem 4.21 (Theorem 4.38 of [5]). Let A and B be two C∞-rings, J ⊆ B a C∞-radical ideal in B and
f : A→ B any C∞-homomorphism. Then f �[J] is a C∞-radical ideal in A.

We register that, in general, holds:

Proposition 4.22 (Proposition 4.39 of [5]). Let A, B be C∞-rings, f : A→ B a C∞-homomorphism and
J ⊆ B any ideal. Then:

∞
√

f �[J] ⊆ f �[ ∞√J].

Remark 4.23. With exactly the same method used in the proof of Theorem 4.14, one proves that
whenever p ⊆ A is a prime ideal of an arbitrary C∞-ring, A, ∞√p is also a prime ideal.

At this point it is natural to look for a C∞-analog of the Zariski spectrum of a commutative unital
ring. With this motivation, we give the following:

Definition 4.24 (C∞-spectrum). For a C∞-ring A, we define Spec∞ (A) = {p ∈ Spec (A)|p is C∞ −
radical}, equipped with the smooth Zariski topology generated by the basic open sets D∞(a) = {p ∈
Spec∞ (A)|a /∈ p}.
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A detailed study of the smooth Zariski spectrum is made in Section 5.1 of [5].
Now we present some properties of C∞-radical ideals of an arbitrary C∞-ring A.

Proposition 4.25 (Proposition 4.42 of [5]). Given a C∞-ring, A, let I∞A denote the set of all its C∞-radical
ideals. The following results hold:
(a) Suppose that (∀α ∈ �)(Iα ∈ I∞A ). Then

⋂
α∈� Iα ∈ I∞A , that is, if (∀α ∈ �)(Iα ∈ I∞A ), then:

∞

√⋂
α∈�

Iα =
⋂
α∈�

Iα =
⋂
α∈�

∞√Iα

(b) Let {Iα|α ∈ 
} an upward directed family of elements of I∞A . Then
⋃

α∈
 Iα ∈ I∞A .

From the above result, it follows that I∞A is a complete Heyting algebra.

Lemma 4.26 (Lemma 1.12 of [18]). Let A be a C∞-ring and S ⊆ A any multiplicative subset. Consider
the following posets:

(Spec∞(A{S−1}),⊆)

and
({p ∈ Spec∞(A)|p ∩ S = ∅},⊆)

The following poset maps:
Can∗S : (Spec∞(A{S−1}),⊆) → ({p ∈ Spec∞(A)|p ∩ S = ∅},⊆)

Q �→ Can�S [Q]
and

CanS∗ : ({p ∈ Spec∞(A)|p ∩ S = ∅},⊆) → (Spec∞(A{S−1}),⊆)

P �→ 〈CanS[P]〉
are poset isomorphisms, each one inverse of the other.

Proposition 4.27. Let A be a C∞-ring. For every p ∈ Spec∞(A) let p̂ denote the maximal ideal of A{p} =
A{A \ p−1} and consider:

Canp : A→ A{p}.
We have the following equalities: Can�p[p̂] = p and Canp[p] = p̂.

Proof. Taking S = A \ p, since p̂ is a maximal ideal, it is the largest element of Spec∞(A{(A \ p)−1}).
Hence Can�p[p̂] is the largest element of {p′ ∈ Spec∞(A)|p′ ∩ (A \ p) = ∅}. Thus, by Lemma 4.26,
Can�p[p̂] = p.

Proposition 4.28. If D is a reduced C∞-domain, then D{a−1} ∼= {0} implies a = 0.

Proposition 4.29 (Proposition 4.47 of [5]). Any free C∞-ring is a reduced C∞-ring.

Proposition 4.30. Let {Ai}i∈I be a directed family of C∞-rings, so we have the diagram:

lim−→i∈I Ai

Ai

αi
����������������

αij
�� Aj

αj
����������������
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and let (pi)i∈I be a compatible family of prime C∞-radical ideals, that is:

(pi)i∈I ∈ lim←−
i∈I

Spec∞(Ai).

Under those circumstances,

lim−→
i∈I

pi =
⋃
i∈I

αi[pi]

is a C∞-radical prime ideal of lim−→i∈I Ai.

Proof. It suffices to prove that
lim−→i∈I Ai

lim−→i∈I pi

is a C∞-reduced domain.

It is a fact that colimits commute with quotients, so:

lim−→i∈I Ai

lim−→i∈I pi
∼= lim−→

i∈I

Ai
pi

Now, since every pi is a C∞-radical prime ideal of Ai, we have, for every i ∈ I, that
Ai
pi

is a C∞-reduced

C∞-domain.

The colimit of C∞-reduced C∞-domains is again a C∞-reduced C∞-domain, so
lim−→i∈I Ai

lim−→i∈I pi
is a domain

and:

lim−→
i∈I

pi

is a C∞-radical prime ideal of lim−→i∈I Ai.

5. Separation theorems for smooth commutative algebra

From the notions and results previously established, we are ready to state and prove the main result of
this work:

Theorem 5.1 (Separation Theorems). Let A be a C∞-ring, S ⊆ A be a subset of A and I be an ideal of A.
Denote by 〈S〉 the multiplicative submonoid of A generated by S. We have:
(a) If I is a C∞-radical ideal, then:

I ∩ 〈S〉 = ∅ ⇐⇒ I ∩ S∞−sat = ∅

(b) If S ⊆ A is a C∞-saturated subset, then:

I ∩ S = ∅ ⇐⇒ ∞√I ∩ S = ∅

(c) If p ∈ Spec∞ (A) then A \ p = (A \ p)∞−sat

(d) If S ⊆ A is a C∞-saturated subset, then:

I ∩ S = ∅ ⇐⇒ (∃p ∈ Spec∞ (A))((I ⊆ p)&(p ∩ S = ∅)).

(e) ∞√I =⋂{p ∈ Spec∞ (A)|I ⊆ p}
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Proof. Ad (a): Since 〈S〉 ⊆ S∞−sat, it is clear that (ii)→ (i). We show that (i)→ (ii) by contraposition.
Suppose there exists some b ∈ I ∩ S∞−sat, so ηS(b) ∈ (B{S−1})×. We have:

B{S−1} ∼=ψ lim−→
S′⊆finS

B{S′−1} ∼=ϕ lim−→
S′⊆finS

B
{∏

S′
−1}

,

so (ϕ ◦ ψ)(ηS(b)) ∈ lim−→S′⊆finS B{∏ S′−1} implies that there is some finite S′′ ⊆ S such that
ηS′′(b) ∈ B{S′′−1} ∼= B{∏ S′′−1}. Let a = ∏

S′′, so a ∈ 〈S〉. We have that ηa(b) ∈ B{S′′−1} implies
ηa(b) ∈ (B{a−1})×, and by hypothesis, b ∈ I so a ∈ ∞√I = I. Hence a ∈ I ∩ 〈S〉 �= ∅, and the result is
proved.

Ad (b): Given b ∈ ∞√I ∩ S, there must be some x ∈ I such that ηb(x) ∈ A{b−1}×, so
x ∈ {b}∞−sat ⊆ S∞−sat = S. Thus x ∈ I ∩ S and I ∩ S = ∅. The other way round is immediate
since I ⊆ ∞√I.

Ad (c): Since A \ p = 〈A \ p〉, by item (a) we have p ∩ (A \ p) = ∅ ⇐⇒ p ∩ (A \ p)∞−sat = ∅, so
(A \ p)∞−sat ⊆ A \ p. The other inclusion always holds, so A \ p = (A \ p)∞−sat.

Ad (d): Consider the set �S := {J ∈ I(A)|(I ⊆ J)&(S ∩ J = ∅)}, ordered by inclusion. It is
straightforward to check that (�S,⊆) satisfies the hypotheses of Zorn’s Lemma. Let M be a maximal
member of �S. We show that M ∈ Spec∞ (A).

Note that M is a proper prime ideal of A, since 1 ∈ S and S ∩M = ∅.
The proof that M is prime is made by contradiction. If a, a′ /∈ M, then by maximality there are

α, α′ ∈ A and m, m′ ∈ M such that m + α · a ∈ S and m′ + α′ · a′ ∈ S. Since C∞-saturated sets are
submonoids, it follows that (m+ α · a) · (m′ + α′ · a′) ∈ S. Thus,

(m ·m′ +m · α′ · a′ +m′ · α · a)︸ ︷︷ ︸
∈M

+(α · α′) · (a · a′) ∈ S

If a · a′ ∈ M, we get M ∩ S �= ∅, a contradiction. Thus, a, a′ /∈ M, and M is a prime ideal.

We claim that M = ∞√M. In fact, since M ∩ S = ∅ and S is C∞-saturated, by item (b) it follows that
∞√M∩ S = ∅, so ∞√M ∈ �S. Since M ⊆ ∞√M, ∞

√
M ∈ �S and M is a maximal element of �S, it follows

that M = ∞√M. Thus, M ∈ Spec∞ (A).
Ad (e): Clearly, ∞

√
I ⊆⋂{p ∈ Spec∞ (A)|I ⊆ p}, so we need only to prove the reverse inclusion. Let

a /∈ ∞√I, so Sa = {1, a, a2, . . .} ∩ ∞√I = ∅. Since
A
I
{(a + I)−1} ∼= A

I
{(ak + I)−1} for any k ∈ N such

that k ≥ 1 and since ∞√I is a C∞-radical ideal, by item (a), we have (Sa)∞−sat ∩ ∞√I = ∅, and by item
(d), there is some p ∈ Spec∞ (A) such that p ⊇ ∞√I ⊇ I such that a /∈ p.

Proposition 5.2. Let A be a C∞-ring and let {ai : i ∈ I} ⊆ A. Denote I := 〈{ai : i ∈ I}〉. Then the
following are equivalent:
(a) Spec∞(A) =⋃

i∈I D∞(ai)
(b) A = I

Proof. (b)⇒ (a): Since there exists {i1, . . . , in} ⊆ I such that 1A =∑n
j=1 λj.aij for some λ1, . . . , λn ∈ A,

then there is no p ∈ Spec∞(A) such that {ai1 , . . . , ain} ⊆ p, i.e., Spec∞(A) ⊆⋃
i∈I D∞(ai).

(a)⇒ (b): Suppose that A �= I. Then A× ∩ I = ∅. Since A× ⊆ A is a C∞-saturated subset of A
(A× = η−1

1 [(A{1−1})×]), then by the Separation Theorem 5.1.(b), it follows that A× ∩ ∞√I = ∅.
By the Separation Theorem 5.1.(d), there is p ∈ Spec∞(A) such that ∞

√
I ⊆ p, thus p ∈ Spec∞(A) \⋃

i∈I D∞(ai).
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6. Order theory of C∞-rings

The class of C∞-rings carries good notions of order theory for rings. As pointed out by Moerdijk and
Reyes in [18], every C∞-ring A has a canonical (strict) preorder - this and other aspects of the order
theory of C∞-rings are developed in [7]. The key point of this section is to introduce the notion of the
smooth real spectrum of a C∞-rings (made in [2], denoted by Sper∞) and to describe, as a consequence
of the separation theorems presented in the previous section, a spectral bijection from the smooth Zariski
spectrum to the real smooth spectrum of a C∞-ring: comparing this smooth algebraic scenario with the
usual commutative algebraic setting, this is a surprising result. We begin by describing the notion of
“order”:

Definition 6.1. Given a C∞-ring (A, �), we write:

(∀a ∈ A)(∀b ∈ A)(a ≺ b ⇐⇒ (∃c ∈ A×)(b− a = c2))

Note that if A �= {0}, ≺ is an irreflexive relation, i.e., (∀a ∈ A)(¬(a ≺ a)).

According to [17], we have the following facts about the order ≺ defined above.

Fact 6.2. Let A = C∞(RE)

I
for some set E. Then, given any f + I, g + I ∈ A, with respect to the relation

≺, given in Definition 6.1, we have:

f ≺ g ⇐⇒ (∃ϕ ∈ I)((∀x ∈ Z(ϕ))(f (x) < g(x)))

so ≺ is compatible with the ring structure which underlies A, i.e.:
(i) 0+ I ≺ f + I, g + I ⇒ 0 ≺ (f + I) · (g + I);
(ii) 0+ I ≺ f + I, g + I ⇒ 0 ≺ f + g + I

Fact 6.3. Let A = C∞(RE)

I
for some set E be a C∞-field, so I = ∞√I. The relation ≺, given in

Definition 6.1, is such that:

(∀f + I ∈ A)(f + I �= 0+ I→ (f + I ≺ 0+ I) ∨ (0+ I ≺ f + I))

We have the following:

Proposition 6.4 (Corollary 3.15 of [7]). For any C∞-ring A, we have:

1+
∑

A2 ⊆ A×,

where
∑

A2 = {∑n
i=1 a2

i |n ∈ N, ai ∈ A}. In particular, every C∞ ring A is such that its underlying
commutative unital ring, U(A) is a semi-real ring.

Fact 6.5. Let n ∈ N. We have:

h+ I ∈
(C∞(Rn)

I

)×
⇐⇒ (∃ϕ ∈ I)(∀x ∈ Z(ϕ))(h(x) �= 0)

Recall that a totally ordered field (F,≤) is real closed if it satisfies:
(a) (∀x ∈ F)(0 < x→ (∃y ∈ F)(x = y2));
(b) every polynomial of odd degree has, at least, one root;

Remark 6.6. A C∞-polynomial in one variable is an element of C∞(Rn){t} = A ⊗∞ C∞(R) (cf.
Section 4.3 of [4]). More generally, a C∞-polynomial in set S of variables is an element of A{S}.
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As pointed out in Theorem 2.10 of [17], we have the following:

Fact 6.7. Every C∞-field, F, together with its canonical preorder ≺ given in Definition 6.1, is such that
U(F) is a real closed field.

As a consequence of the above fact, given any polynomial p(x) ∈ F[x] and any f , g ∈ F such that
f ≺ g, if p(f ) < p(g) then there is some h ∈]f , g[ such that p(h) = 0.

We have the C∞-analog of the notion of “real closedness”:

Definition 6.8. Let (F,≺) be a C∞-field. We say that (F,≺) is C∞-real closed if, and only if:
(∀f ∈ F{x})((f (0) · f (1) < 0)&(1 ∈ 〈{f , f ′}〉 ⊆ F{x})→ (∃α ∈]0, 1[⊆ F)(f (α) = 0))

Fact 6.9. As proved in Theorem 2.10’ of [17], every C∞-field is C∞-real closed.

From the preceding proposition, we conclude that f + I ≺ g + I occurs if, and only if, there is a
“witness” ϕ ∈ I such that (∀x ∈ Z(ϕ))(f (x) < g(x)).

Given any C∞-ring A and any p ∈ Spec∞ (A), let:

kp :=
(

A
p

){
A
p
\ {0+ p}

−1}
,

that is, kp(A) is the C∞-field obtained by taking the quotient
A
p

:

qp : A→ A
p

and then taking its C∞-ring of fractions with respect to
A
p
\ {0+ p},

ηA
p
\{0+p}

:
A
p
→

(
A
p

){
A
p
\ {0+ p}

−1}
.

The family of C∞-fields {kp(A)|p ∈ Spec∞ (A)} has the following multi-universal property:
“Given any C∞-homomorphism f : A → K, where K is a C∞-field, there is a unique C∞-radical

prime ideal p and a unique C∞-homomorphism f̃ : kp(A) → K such that the following diagram
commutes:

A
αp ��

f

����
���

���
���

���
�� kp(A)

f̃
��

K

,

where αp = ηA
p
\{0+p}

◦ qp : A→ kp(A).”

Thus, given f : A → K, take p = ker(f ), so f is injective,
A
p

is a C∞-reduced C∞-ring. By the

universal property of the smooth fraction field kp(A), there is a unique arrow f̃ : kp(A)→ K such that
the following diagram commutes:

A
p

αp ��

f
		��

���
���

���
���

�� kp(A)

f̃
���
�
�

K
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Definition 6.10. Let F be the (proper) class of all the C∞-homomorphisms of A to some C∞-field. We
define the following relation R: given h1 : A → F1 and h2 : A → F2, we say that h1 is related with
h2 if, and only if, there is some C∞-field F̃ and some C∞-fields homomorphisms C∞ f1 : F1 → F̃ and
f2 : F2 → F̃ such that the following diagram commutes:

F1
f1

����
���

���
���

���

A

h1

����������������

h2
����

���
���

���
���

F̃

F2

h2

����������������

The relation R defined above is symmetric and reflexive.

Let h1 : A→ F1 and h2 : A→ F2 be two C∞-homomorphisms of A to the C∞-fields F1, F2 such that
(h1, h2) ∈ R, and let f1 : F1 → F̃ and f2 : F2 → F̃ be two C∞-homomorphisms to the C∞-field F̃ such
that f1 ◦ h1 = f2 ◦ h2, so:

(f1 ◦ h1)
�[{0}] = (f2 ◦ h2)

�[{0}]
Then

ker(h1) = h�1 [{0}] = h�1 [f �1 [{0}]] = h�2 [f �2 [{0}]] = h�2 [{0}] = ker(h2).

The above considerations prove the following:

Proposition 6.11. If h1 : A→ F1 and h2 : A→ F2 be two C∞-homomorphisms from the C∞-ring A to
the C∞-fields F1, F2 such that (h1, h2) ∈ R, then ker(h1) = ker(h2).

The above proposition has the following immediate consequence:

Corollary 6.12. Keeping the same notations of the above result, let Rt be the transitive closure of R. Then

Rt is an equivalence relation on F . We are going to denote the quotient set,
F
Rt , by F̃ .

Let F1, F2, F̃ be C∞-fields and f1 : F1 → F̃ and f2 : F2 → F̃ be two following C∞-fields
homomorphisms. Since C∞-fields homomorphisms must be injective maps, we have the following:

Proposition 6.13. The following relation

β = {([h : A→ F], ker(h))|F is a C∞ − field} ⊆ F̃ × Spec∞(A)

is a functional relation whose domain is F̃ .

Proof. Suppose [h : A→ F1] = [g : A→ F2], so there are maps f1 : F1 → F̃ and f2 : F2 → F̃ for some
C∞-field F̃, such that the following diagram commutes:

F
f1



	
		

		
		

	

A

h
��









g



	
		

		
		

	 F̃

F2

f2
����������

.



COMMUNICATIONS IN ALGEBRA® 2037

Now, if ([h : A→ F1], ker(h)), ([g : A→ F2], ker(g)) ∈ β are such that [h : A→ F1] = [g : A→
F2], then:

f1 ◦ h = f2 ◦ g

so

ker(h) = h�[{0}] = h�[f �1 [{0}]] = ker(f1 ◦ h) = ker(f2 ◦ g) = g�[f �2 [{0}]] = g�[{0}] = ker(g)

Definition 6.14. Let A be a C∞-ring. A C∞-ordering in A is a subset P ⊆ A such that:
(O1) P + P ⊆ P;
(O2) P · P ⊆ P;
(O3) P ∪ (−P) = A
(O4) P ∩ (−P) = p ∈ Spec∞ (A)

Definition 6.15. Let A be a C∞-ring. Given a C∞-ordering P in A, the C∞-support of A is given by:

supp∞(P) := P ∩ (−P)

Definition 6.16. Let A be a C∞-ring. The C∞-real spectrum of A is given by:

Sper∞ (A) = {P ⊆ A|P is an ordering of the elements of A}
together with the (spectral) topology generated by the sets:

H∞(a) = {P ∈ Sper∞ (A)|a ∈ P \ supp∞ (P)}
for every a ∈ A. The topology generated by these sets will be called “smooth Harrison topology,” and
will be denoted by Har∞.

Proposition 6.17. Given a C∞-ring A, we have a function given by:

supp∞ : (Sper∞(A), Har∞) → (Spec∞ (A), Zar∞)

P �→ P ∩ (−P)

which is spectral, and thus continuous, since given any a ∈ A, supp∞�[D∞(a)] = H∞(a) ∪H∞(−a).

Proof. Given P ∈ Sper∞(A), since P ∪ −P = A, we have P ∈ H∞(a) ∪ H∞(−a) if, and only if a ∈
(P\(P∩−P))∪(−P\(P∩−P)) if, and only if a ∈ A\supp∞(P) if, and only if supp∞(P) ∈ D∞(a).

Unlike what happens to a general commutative unital ring R, for which the mapping:

supp : Sper (R) → Spec (R)

P �→ P ∩ (−P)

is seldom surjective or injective, within the category of C∞-rings, supp∞ is, as a matter of fact, a bijection.
In order to prove this fact, we are going to need some preliminary results, given below.

Lemma 6.18. Let A be a C∞-ring and p any C∞-radical prime ideal, and let p̂ be the maximal ideal of
A{p}. Then:

Can�p[p̂] = p.

Proof. Let a ∈ p, then Canp(a) ∈ p̂, and p ⊆ Can�p[p̂]. Now, if a ∈ A\p then Canp(a) ∈ U(A{(A\p)−1}).

Since A{p} is a local ring, A{p} = p̂
·∪ U(A{(A \ p)−1}), so Canp(a) ∈ A{(A \ p)−1} \ p̂, and therefore

Can�p[p̂] ⊆ p.
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Theorem 6.19. Let A be a C∞-ring and Rt be the relation defined above. The function:

α′ : Sper∞ (A) → F
Rt

P �→ [ηP∩(−P)]
is the inverse function of:

β ′ : F
Rt → Sper∞ (A)

[h : A→ K] �→ h�[K2]

Proof. Note that:

(α′ ◦ β ′)([h : A→ F]) = α′(h�[F2]) = [ηsupp (h�[F2])],
where supp∞(h�[F2]) = h�[F2] ∩ (−h�[F]2) = h�[{0}] = ker(h).

Thus we have:

(α′ ◦ β ′)([h : A→ F]) = [ηker(h) : A→ kker(h)(A)].
We claim that β ′ is the left inverse function for α′, that is:

(∀P ∈ Sper∞(A))((β ′ ◦ α′)(P) = P).

Thus, it will follow that α′ is injective and β ′ is surjective.

We have β ′(α′(P)) = η�supp∞(P)[kp(A)2], so we need to show that:

η�supp(P)[kp(A)2] = P

Let p = supp∞(P).

Ab absurdo, suppose

η�p [kp(A)2] � P

There must exist some x ∈ A such that x ∈ η�p [kp(A)2] and x /∈ P. We have:

ηp(x) ∈
(

A{A \ p−1}
p̂

)2
and x /∈ P.

Now, since by Theorem 24, p. 97 of [5] (denoting mp by p̂ instead) the following diagram commutes:

A{A \ p−1}
p̂

ϕp

��

A

η′p
���������������������

ηp ���
����

����
����

�

(
A
p

){
A
p
\ {0+ p}

−1}
ψp

��

where ηp = ηA
p
\{0+p}

◦ qp and η′p = qp̂ ◦ ηA\p and ϕp and ψp are the isomorphisms described in that

theorem. Thus, we have:

ηp(x) ∈ (
kp(A)

)2 ⇒ ψp(ηp(x)) = η′p(x) ∈
(

A{A \ p−1}
p̂

)2
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and

ηp(x) ∈ (
kp(A)

)2 ⇒ (∃(g + p̂) ∈ A{A \ p−1}
p̂

)(η′p(x) = g2 + p̂)

Since qp̂ is surjective, given this g + p̂ ∈
(

A{A\p−1}
p̂

)
, there is some θ ∈ A{A \ p−1} such that

qp̂(θ) = g + p̂.

By Theorem 1.4, item (i) of [17], given this θ ∈ A{A \ p−1}, there are a ∈ A and b ∈ A \ p∞−sat, that
is,

Canp(b) ∈ (A{A \ p−1})×
such that:

θ = Canp(a)

Canp(b)

or equivalently, since (A \ p)∞−sat = A \ p:

b /∈ p (1)

Hence,

η′p(x) = g2 + p̂ = qp̂
(

Canp(a)

Canp(b)

)2 =
(

Canp(a)

Canp(b)

)2 + p̂

η′p(x) · (Can2
p(b)+ p̂) = Can2

p(a)+ p̂

Canp(x · b2 − a2) ∈ p̂.
(x · b2 − a2) ∈ Can�p [̂p].

By Lemma 6.18, p = Can�p [̂p], so

x · b2 − a2 ∈ p ⊆ P

Let y = x · b2 + (−a2) ∈ p ⊆ P. Note that since x /∈ P, x ∈ (−P) \ p and

x · b2 ∈ (−P) (2)

Since y ∈ P,

x · b2 = y︸︷︷︸
∈P

+
∈P︷︸︸︷
a2 ∈ P,

x · b2 ∈ P (3)

By (2) and (3), it follows that x ·b2 ∈ P∩ (−P) = p. Since p is prime, either x ∈ p or b2 ∈ p. However,
since x /∈ P, a fortiori, x /∈ p, so we must have b2 ∈ p. Once again, since p is prime, it follows that b ∈ p

which contradicts (1). Hence,

η′supp∞(P)
�
[(

A{A \ supp∞(P)−1}
p̂

)2]
⊆ P

.

Now we claim that:

P ⊆ η′supp(P)
�
[(

A{A \ supp∞(P)−1}
p̂

)2]
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Conversely, suppose, ab absurdo that

P � η′supp(P)
�
[(

A{A \ supp∞(P)−1}
p̂

)2]
(4)

so there must exist some x ∈ P such that

(∀(g + p̂) ∈ A{A \ p−1}
p̂

)(η′p(x) �= g2 + p̂) (5)

Equivalently, there must exist some (h+ p̂) ∈ A{A\p−1}
p̃

such that ηp(x) = −h2 + p̂.

Thus, since qp̂ is surjective, given such an h + p̂ ∈ A{A \ p−1}
p̂

there must be some ζ ∈ A{A \ p−1}
such that qp̃(ζ ) = h+ p̂. By item (i) of Theorem 3.18, there are c ∈ A and d ∈ A with:

Canp(d) ∈ A{A \ p−1}×,

equivalently

d ∈ (A \ p)∞−sat,

and since (A \ p)∞−sat = A \ p,

d /∈ p (6)

such that:

ζ = Canp(c)
Canp(d)

.

Hence,

ηp(x) = −Can2
p(c)

Can2
p(d)
+ p̂

Can2
p(c)+ Canp(x) · Can2

p(d) ∈ p̂

Canp(c2 + x · d2) ∈ p̂

so

c2︸︷︷︸
∈P

+
∈P︷ ︸︸ ︷

x · d2 = z = Can�p [̂p] = p ⊆ (−P)

x · d2 = z − c2 ∈ (−P)

Since x ∈ P, we also have x · d2 ∈ P, hence x · d2 ∈ p . Since p is prime, either x ∈ p or d2 ∈ p. Now, if
x ∈ p then Canp(x) = 02 + p, which contradicts our hypothesis (5). On the other hand, if d2 ∈ p, then
d ∈ p, and this contradicts (6). Hence x /∈ p and d2 /∈ p, so x · d2 /∈ p. Thus we achieved an absurdity:
(x · d2 ∈ p)&(x · d2 /∈ p). It follows that our premise (4) must be false, so:

P ⊆ η′supp(P)
�
[(

A{A \ supp∞(P)−1}
p̂

)2]
.

Hence P = η′supp(P)
�
[(

A{A\supp∞(P)−1}
p̂

)2
]

.

Now we need only to show that α′ ◦ β ′ = idF̃ .
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Let [h : A→ F] ∈ F̃ . We have:

(α′ ◦ β ′)([h : A→ F]) = α′(h�[F2]) = [ηsupp∞(h�[F2]) : A→ ksupp∞(h�[F2])(A)].
It suffices to show that [h] = [ηsupp∞(h�[F2])]. Note that supp∞(h�[F2]) = h�[F2 ∩ (−F2)] = ker(h).

By the universal property of the C∞-field of fractions of
(

A
ker(h)

)
, kker(h)(A), since h

[
A×

] ⊆ F×

(for C∞-homomorphisms preserve invertible elements), there is a unique C∞-homomorphism h̃ :
kker(h)(A)→ F such that the following diagram commutes:

A
ηp ��

h

����
���

���
���

���
��� kker(h)(A)

h̃
��

F

We have, then, the following commutative diagram:

F
idF

����
���

���
���

���
��

A

h
��

ηp ����
���

���
���

��� F

kker(h)

h̃

��

so [h : A→ F] = [ηker(h) : A→ kker(h)] and

(α′ ◦ β ′)([h : A→ F]) = [h : A→ F].
Hence it follows that α′ and β ′ are inverse bijections of each other.

Theorem 6.20. The map:

α : Spec∞ (A) → F̃
p �→ [ηp] = [q ◦ Canp]

is a bijection whose inverse is given by:

β : F̃ → Spec∞ (A)

[h : A→ F] �→ ker(h)

Proof. First we are going to show that α ◦ β = idF̃ , so β is an injective map and α is its left inverse,
hence it is surjective.

Let [h : A→ F] ∈ F̃. We have:

(α ◦ β)([h : A→ F]) = α(ker(h)) =
[
η′ker(h) : A→

(
A{A \ ker(h)−1}/k̂er(h)

)]
It suffices to show that [h : A→ F] =

[
η′ker(h)

: A→
(

A{A \ ker(h)−1}/k̂er(h)
)]

.

Since
(

A{A \ ker(h)−1}/k̂er(h)
)

is (up to C∞-isomorphism) the C∞-field of fractions of (A/ker(h)),

kker(h)(A), there is a unique C∞-homomorphism h̃ :
(

A{A \ ker(h)−1}/k̂er(h)
)
→ F such that the

following diagram commutes:
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and the equality holds, i.e.,

[h : A→ F] =
[
ηker(h) : A→

(
A{A \ ker(h)−1}/k̂er(h)

)]
It follows that α ◦ β = idF̃ , α is a surjective map and β is an injective map.

On the other hand, given p ∈ Spec∞(A), we have:

(β ◦ α)(P) = β([ηp : A→ kp]) = ker(ηp) = Can�p [̂p] = p

so:

(β ◦ α) = idSpec∞ (A)

as a Corollary of the theorems 6.19 and 6.20, we have:

Lemma 6.21. Let A be a C∞-ring, and define:
supp∞ : Sper∞ (A) → Spec∞ (A)

P �→ P ∩ (−P)

The following diagram commutes:

that is to say that:
α ◦ supp∞ = α′

and
supp∞ ◦ β ′ = β

Proof. Note that if we prove that α ◦ supp∞ = α′, then composing both sides with β ′ yields:

(α ◦ supp∞) ◦ β ′ = α′ ◦ β ′ = idF̃
so

α ◦ (supp∞ ◦ β ′) = idF̃
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and by the uniqueness of the inverse of α, it follows that:

supp∞ ◦ β ′ = β .

Now we are going to prove that α ◦ supp∞ = α′.

Given P ∈ Sper∞ (A) we have:

(α ◦ supp∞)(P) = α(supp∞(P)) = [ηsupp∞ (P) : A→ ksupp∞ (P)(A)] =: α′(P),

so the result holds.

About the map P �→ P ∩ (−P), from the real spectrum of a ring to the prime one, in p. 84 of [16],
M. Marshall points out that “This is neither surjective nor injective in general.” As an important result
of the theory of C∞-rings which distinguishes it from the theory of the rings, we have the following:

Theorem 6.22. Let A be a C∞-ring. The following map:

supp∞ : Sper∞ (A) → Spec∞ (A)

P �→ P ∩ (−P)

is a spectral bijection.

Proof. In Remark 6.17, we have already seen that supp∞ is a spectral function, so we need only to show
that is a bijection.

Just note that supp∞ = β ◦ α′ = α ◦ β ′, and since supp∞ is a composition of bijections, it is a
bijection.
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