Topologia Algébrica I – Lista de Exercícios 4

1 Homologia Singular

- 1. Mostre que X é conexo é conexo por caminhos se e somente se $H_0(X;R) \simeq R$.
- 2. Encontre a sequencia longa exata do par e a sequencia de Mayer-Vietoris para homologia reduzida. Descreva os morfismos de conexão ∂_* explicitamente.
- 3. Enuncie e demonstre o Lema do cinco.
- 4. Mostre que se (X, A, B) é uma tripla de espaços topológicos, então existe uma sequencia longa exata em homologia

$$\cdots \longrightarrow H_n(A,B) \longrightarrow H_n(X,B) \longrightarrow H_n(X,A) \longrightarrow H_{n-1}(A,B) \longrightarrow \cdots$$

Descreve o morfismo de conexão explicitamente e mostre que ele é natural.

- 5. Utilize a sequencia longa do par $(D^n, \partial D^n)$ para calcular os grupos de homologia da esfera.
- 6. Mostre que se $A \subset X$ é um retrato, então $i_*: H_n(A) \to H_n(X)$ é injetor.
- 7. Mostre que ∂D^n não é uma retração de D^n . Conclua que toda aplicação contínua $f:D^n\to D^n$ tem ponto fixo.
- 8. Decida se toda função contínua $f: \operatorname{int}(D^n) \to \operatorname{int}(D^n)$ tem ponto fixo. Prove ou dê um contra exemplo.
- 9. Seja $Con(A) = A \times I/A \times \{0\}$ o cone sobre A. Mostre que $H_n(X, A) \simeq \tilde{H}_n(X \cup Con(A))$.
- 10. Sejam X_{α} espaços topológicos e seja $X = \vee_{\alpha} X_{\alpha}$. Suponha que os pontos $x_{\alpha} \in X_{\alpha}$ identificados no produto wedge acima sejam tais que (X_{α}, x_{α}) é um bom par para todo α . Mostre que $\tilde{H}_n(X) \simeq \bigoplus_{\alpha} \tilde{H}_n(X_{\alpha})$.
- 11. Mostre que homotopia de cadeias define uma relação de equivalência no conjunta das aplicações de cadeia entre dois complexos de cadeia.
- 12. Mostre que $H_0(X, A) = 0$ se e somente se A intersecta todas as componentes conexas por caminhos de X.
- 13. Mostre que $H_1(X, A) = 0$ se e somente se $H_1(A) \to H_1(X)$ é sobrejetora, e cada componente conexa por caminhos de X contém no máximo uma componente conexa por caminhos de A.
- 14. Calcule $H_n(X, A)$ quando:

- (a) $X = S^2$ e A é um conjunto finito de pontos.
- (b) $X = S^{\times}S^{1}$ e A é um conjunto finito de pontos.
- (c) X=T#T e A é o circulo S^1 usado para fazer a identificação da soma conexa.
- (d) X = T # T e A é um circulo $S^1 \times \{1\}$ contido em um dos dois torus. (veja figura na página 132 do livro do Hatcher)
- 15. Mostre que $\tilde{H}_n(X) \simeq \tilde{H}_{n+1}(\Sigma X)$. Construa explicitamente uma aplicação de cadeias $s: C_n(X) \to C_{n+1}(X)$ que induz o isomorfismo.
- 16. Seja $f:(X,A)\to (Y,B)$ uma aplicação de pares de espaços topológicos tal que $f:X\to Y$, e $f:A\to B$ são equivalências de homotopia. Mostre que $f_*:H_n(X,A)\to H_n(Y,B)$ é um isomorfismo.
- 17. Seja $f:(D^n,S^{n-1})\to (D^n,D^n-0)$ a inclusão. Decida se f é uma equivalência de homotopia de pares, i.e., se existe $g:(D^n,D^n-0)\to (D^n,S^{n-1})$ tal que fg e gf são homotópicos à identidade através de aplicações de pares.
- 18. Mostre que todos os grupos de homologia de T^2 e $S^{\vee}S^1\vee S^2$ coincidem, mas que esses espaços não são homotopicamente equivalentes.
- 19. Mostre que se M é uma superfície topológica (uma variedade de dimensão 2 sem bordo) compacta e conexa, então $\chi(M) \leq 2$.
- 20. Defina o espaço projetivo quaterniônico e calcule seus grupos de homologia.
- 21. Calcule os grupos de homologia de \mathbb{RP}^n com coeficientes em \mathbb{Z}^2 . Determine o número de Euler de \mathbb{RP}^n .
- 22. Faça os exercícios da página 184 do livro do Hatcher.