Topologia Algébrica I – Lista de Exercícios 1

1 Complexo Simplicial, Homologia Simplicial, Etc.

- 1. Exiba uma triangulação, calcule a homologia e o número de Euler em cada um dos seguintes espaços:
 - (a) Cilindro
 - (b) Faixa de Möbius
 - (c) Disco
 - (d) \mathbb{P}^2
 - (e) Garrafa de Klein
 - (f) Cone (sobre \mathbb{S}^1)
 - (g) $\mathbb{T}^2 \# \mathbb{T}^2$.
- 2. Defina a homologia de um Δ -complexo (veja por exemplo no livro do Hatcher).
- 3. Mostre que ao fazer duas subdivisões baricentricas de um Δ -complexo, se obtém um complexo simplicial.
- 4. Mostre que a homologia de um Δ -complexo coincide com a homologia de sua subdivisão baricientrica. (OBS: Depois de fazer os exercícios 2, 3, 4, você pode usar a estrutura de Δ -complexo para calcular a homologia simplicial de um espaço).
- 5. Calcule a homologia simplicial dos espaços do exercício 1. Faça o mesmo com coeficientes em \mathbb{Z}_2 .
- 6. Encontre uma boa definição para uma componente conexa de um complexo simplicial \mathcal{K} . Determina a homologia de \mathcal{K} em função da homologia de suas componentes conexas.
- 7. Seja \mathcal{K} um complexo simplicial conexo, e \mathcal{L} um complexo simplicial qualquer. Seja $f: \mathcal{K} \to \mathcal{L}$ uma aplicação simplicial.
 - (a) Mostre que o homomorfismo induzido na homologia 0-dimensional é injetor.
 - (b) O que se pode dizer se \mathcal{K} não for conexo?
- 8. Considere um complexo simplicial \mathcal{K} e seja $\mathcal{K}^{(p)}$ o seu p-esqueleto, i.e.,

$$\mathcal{K}^{(p)} = \{ \tau \in \mathcal{K} : \tau \text{ \'e um } k\text{-simplexo, com } k \leq p \}.$$

Mostre que:

(a)
$$H_k(\mathcal{K}) \simeq \mathcal{K}^{(p)}$$
 para todo $k < p$

- (b) $H_k(\mathcal{K}^{(p+1)}, \mathcal{K}^{(p)})$ é um grupo abeliano livre gerado pelos p+1-simplexos de \mathcal{K} se k=p+1, e o grupo nulo se $k\neq p+1$.
- 9. Sejam $\mathcal{H} \subseteq \mathcal{L} \subseteq \mathcal{K}$ complexos simplicias. Mostre que a sequencia

$$0 \longrightarrow C_p(\mathcal{L}, \mathcal{H}) \longrightarrow C_p(\mathcal{K}, \mathcal{H}) \longrightarrow C_p(\mathcal{K}, \mathcal{L}) \longrightarrow 0$$

é exata. Escreva a sequência longa exata em homologia. Descreva o homomorfismo de bordo desta sequência explicitamente.

- 10. Dado um complexo simplicial \mathcal{K} , defina o complexa de cadeias $C_p = H_p(\mathcal{K}^{(p)}, \mathcal{K}^{(p-1)})$, com o morfismo de bordo induzido como no exercício anterior pela sequência longa exata da tripla $\mathcal{K}^{(p-2)} \subseteq \mathcal{K}^{(p-1)} \subseteq \mathcal{K}^{(p)}$. Mostre que a homologa deste complexo é isomorfo a homologia simplicial de \mathcal{K} .
- 11. Seja \mathcal{K} um complexo simplicial finito contido em $\mathbb{R}^N \subset \mathbb{R}^{N+1}$, e $v \in \mathbb{R}^{N+1} \mathbb{R}^N$. O cone sobre \mathcal{K} com vértice v, $Con_v(\mathcal{K})$, é o complexo simplicial cujos simplexos são os simplexos de \mathcal{K} , e os simplexos da forma $(v, v_0, \dots v_p)$, onde (v_0, \dots, v_p) é um simplexo de \mathcal{K} . Fixando uma orientação em cada simplexo de \mathcal{K} obtemos uma orientação natural em cada simplexo de $Con_v(\mathcal{K})$. Considere a aplicação

$$h: C_p(Con_v(\mathcal{K})) \longrightarrow C_{p+1}(Con_v(\mathcal{K}))$$

que associa para cada $[v_0 \ldots, v_p] \in \mathcal{K}$, o simplexo $[v, v_0, \ldots, v_p]$. Mostre que h é uma homotopia de cadeia entre a identidade em $C_p(Con_v(\mathcal{K}))$ e a aplicação induzida pela aplicação constante v. Conclua que $Con_v(\mathcal{K})$ tem a mesma homologia de um $\{v\}$.

- 12. Seja \mathcal{K} como no exercício acima. A suspensão de \mathcal{K} , $\Sigma(\mathcal{K})$ é o complexo simplicial $Con_v(\mathcal{K}) \cup Con_{-v}(\mathcal{K})$. Calcule a homologia de $\Sigma(\mathcal{K})$.
- 13. Seja \mathcal{K} uma pseudo-variedade. Mostre que $Con_v(\mathcal{K})$ é uma pseudo variedade com bordo. Decida quando ela é orientável.
- 14. Seja \mathcal{K} uma pseudo-variedade. Mostre que $\Sigma(\mathcal{K})$ é uma pseudo variedade. Decida quando ela é orientável.
- 15. Seja \mathcal{K} uma pseudo-variedade e seja $v \in \mathcal{K}$ um vértice. Mostre que $\mathcal{K} v$ é homotopicamente equivalente á uma pseudo-variedade com bordo.
- 16. Calcule os grupos de homologia de (alguma triangulação de) D^{n+1} e do seu bordo S^n . (Para a esfera, use indução em n)
- 17. Seja \mathcal{K} uma pseudo-variedade fechada, irredutível de dimensão n. Mostre que $H_n(\mathcal{K}, \mathbb{Z}_2) \simeq \mathbb{Z}_2$. (Em geral, dizemos que \mathcal{K} é orientável sobre o anel R se $H_n(\mathcal{K}, R) \simeq R$. Ou seja, toda pseudo variedade fechada é orientável sobre \mathbb{Z}_2 .
- 18. Decida se os números de Betti são independentes da escolha do corpo. Prove ou dê um contra-exemplo.

- 19. Uma inclusão de pares $(\mathcal{K}_1, \mathcal{L}_1) \to (\mathcal{K}_2, \mathcal{L}_2)$ é dita uma excisão se $\mathcal{K}_1 \mathcal{L}_1 = \mathcal{K}_2 \mathcal{L}_2$. Mostre que uma excisão induz um isomorfismo nas homologias relativas. (Dica: Se A e B são subgrupos de C, então $\frac{A}{A \cap B} \simeq \frac{A+B}{B}$)
- 20. Sejam \mathcal{K}_1 e \mathcal{K}_2 pseudo-variedades, n-dimensionais, orientadas, contidas em \mathbb{R}^N . Supunha que $\mathcal{K}_1 \cap \mathcal{K}_2$ consiste de um único n-simplexo σ , e que as orientações sobre σ são opostas. Considere a soma conexa $\mathcal{K}_1 \# \mathcal{K}_2 = (\mathcal{K}_1 \cup \mathcal{K}_2) \operatorname{int}(\sigma)$. Calcule os grupos de homologia de $\mathcal{K}_1 \# \mathcal{K}_2$ em termos dos grupos de homologia de \mathcal{K}_1 e \mathcal{K}_2 .
- 21. Seja X um Δ -complexo finito. Mostre que:
 - (a) O número de Euler de X coincide com $\sum (-1)^p n_p$, onde n_p = número de p-simplexos na estrutura de Δ -complexo. (OBS: Se você tomar a soma acima como a definição de número de Euler, então mostre que ela coincide com a soma alternada dos números de Betti).
 - (b) Conclua que esta soma \acute{e} um invariante topológico de X.
- 22. Seja \mathcal{K} uma pseudo-variedade de dimensão $n \in p : E \to |\mathcal{K}|$ um recobrimento de m folhas. Assuma que E admite uma triangulação como pseudo-variedade com m k-simplexos para cada k-simplexo de \mathcal{K} (isto é verdade mas não é fácil de provar..... tente!).
 - (a) Encontre uma relação entre a característica de Euler de K e a de E.
 - (b) Mostre que se um grupo G age de forma propriamente descontínua em uma esfera de dimensão par, então G tem no máximo dois elementos.
 - (c) Mostre que existe um recobrimento $\mathbb{T}_g \to \mathbb{T}_h$, se e somente se g = mn+1 e h = m+1 para algum $m, n \in \mathbb{Z}$. (Aqui \mathbb{T}_q denota a soma conexa de g cópias do Torus \mathbb{T}^2).
- 23. Calcule os grupos de homologia e o número de Euler de cada um dos seguintes espaços: (OBS: vc pode usar o fato que não provamos aínda que a homologia de X só depende do tipo de homotopia de X.
 - (a) $X = \mathbb{T}^2 \# \mathbb{T}^2$ (figura 1)

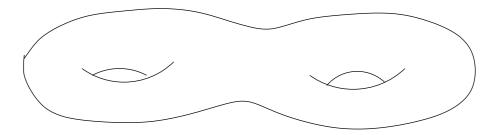


Figura 1: 2-Torus.

- (b) $X = \mathbb{T}^2 \vee \mathbb{T}^2$ (figura 2)
- (c) X = colar de n pérolas (figura 3). Aqui X é o espaço obtido de n esferas $(n \geq 3)$, $\mathbb{S}^2_1, \ldots, \mathbb{S}^2_n$, tomando dois pontos distintos p_i e q_i em cada uma delas identificando $p_i \in \mathbb{S}^2_i$ com um de $q_{i+1} \in \mathbb{S}^2_{i+1}$ (para i < n), e $p_n \in \mathbb{S}^2_n$ com $q_1 \in \mathbb{S}^2_1$.

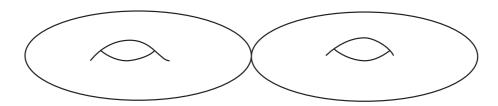


Figura 2: Produto Wedge \mathbb{T}^2 com \mathbb{T}^2 .

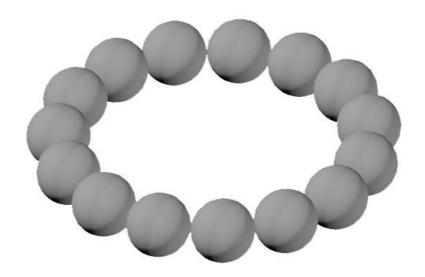


Figura 3: Colar de Pérolas.

- (d) $X=\mathbb{S}^2\vee\mathbb{S}^2\vee\mathbb{S}^2\vee\mathbb{S}^2\vee\mathbb{S}^1$ (figura 4)
- (e) X é um torus com quatro discos preenchidos (figura 5).
- 24. (a) Mostre que se Σ_1 e Σ_2 são duas superfícies, então $\chi(\Sigma_1 \# \Sigma_2) = \chi(\Sigma_1) + \chi(\Sigma_2) 2$
 - (b) Calcule o número de Euler dos seguintes espaços:

 - 2. $\mathbb{T}_g^2 = \mathbb{T}^2 \# \cdots \# \mathbb{T}^2 \ (g \text{ vezes})$ 3. $\mathbb{P}_h^2 = \mathbb{P}^2 \# \cdots \# \mathbb{P}^2 \ (h \text{ vezes})$

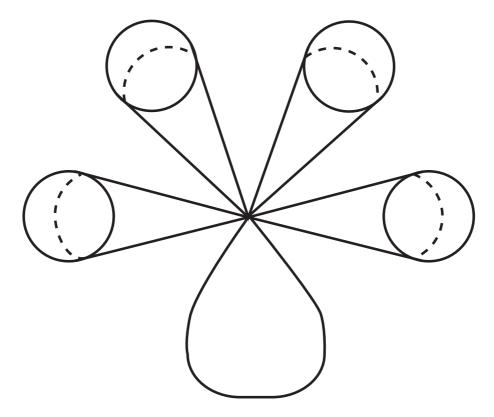


Figura 4: $X = \mathbb{S}^2 \vee \mathbb{S}^2 \vee \mathbb{S}^2 \vee \mathbb{S}^2 \vee \mathbb{S}^1$.

25. Seja X um espaço topológico. A suspensão de X é definida por

$$\Sigma X = (X \times [-1, 1]) / \sim,$$

onde \sim é a menor relação de equivalência tal que $(x,1)\sim(y,1)$, e $(x,-1)\sim(y,-1)$ para todo $x,y\in X$. (Este espaço também é chamado de cone duplo sobre X)

- (a) Calcule o seu número de Euler.
- (b) Mostre que X é um retrato por deformação de $\Sigma X \{[(x,1)], [(x,-1)]\}$. (Escreva a retração e as homotopias explicitamente).
- (c) Mostre que $\Sigma \mathbb{T}^2$ não é uma variedade topológica, mas é uma pseudo-variedade irredutível, fechada, e orientável. Calcule seu número de Euler.

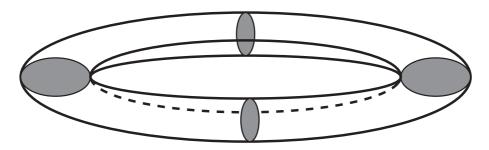


Figura 5: Torus com quatro discos preenchidos.