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CHAPTER 1

The Classification Problem for Compact Surfaces

1. Introduction

In this Chapter we will introduce and start dealing with the classification problem for compact
surfaces. Giving a complete solution to this problem is one of the main goals of the course. It
will serve as motivation for many of the concepts that will be introduce.
Our approach to the classification problem will be the following:

(1) We will give a list of compact connected surfaces, all of which will be constructed from
a polygonal region in the plane by identifying its edges in pairs.

(2) We will show that any compact connected surface is homeomorphic to one in the list.
(3) We will show that any two surfaces in the list are not homeomorphic to each other.

Parts (1) and (2) will be dealt with in this chapter, while part (3) will be done only after we
introduce the fundamental group and learn how to calculate it (via the Seifert - Van Kampen
Theorem). To be a bit more precise about part (2) in the plan above, what we will show is that
any triangulable compact surface is homeomorphic to one in the list. It turns out that every
compact surface is in fact triangulable, and we hope to come back to this at some point in the
course.

2. Topological Manifolds

The main objects that will be studied in this chapter are topological surfaces, which are simply
2-dimensional topological manifolds.

Definition 1.1. An n-dimensional topological Manifold is a topological space (X,T )
which satisfies the following properties:

(1) X is Hausdorff;
(2) X admits a countable open cover {Ui}i∈N such that each Ui is homeomorphic to an

open set in R
n.

Each open Ui together with a homeomorphism ϕi : Ui → Vi ⊂ R
n will be called a coordinate

chart of X.

Remark 1.2. The second condition in the definition above can be restated as: X is second countable
and each point of X admits an open neighborhood which is a chart. It the follows that X is lo-
cally compact and second countable, and thus metrizable, i.e., the topology of X is induced by a
metric.

Definition 1.3. A surface is a 2-dimensional topological manifold.

Example 1.4 (The Sphere S2). We define the sphere S
2 to be the quotient space obtained from

a square by identifying its border according to the Figure 1. Thus, if we denote the unit interval
[0, 1] by I, then

S
2 = {(x, y) ∈ I × I}/ ∼

where we identify (0, y) ∼ (1− y, 1), and (x, 0) ∼ (1, 1 − x).
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The sphere obtained from a square glueing as indicated in the picture

Figure 1.

Exercise 1.1. (1) Show that S2 is homeomorphic to the standard sphere

{(x, y, z) ∈ R
3 : x2 + y2 + z2 = 1.}

(2) Show that it is a surface.

Example 1.5 (The Torus T2). We define the torus T
2 to be the quotient space obtained from

the unit square by identifying its border according to the Figure 2. Thus,

T
2 = {(x, y) ∈ I × I}/ ∼

where we identify (0, y) ∼ (1, y), and (x, 0) ∼ (x, 1).

a a aa

b

b

b

a

b

Figure 2.

Exercise 1.2. Let S1 = {(x, y) ∈ R
2 : x2 + y2 = 1} be the standard circle.

(1) Show that the torus T2 is homeomorphic to a S
1 × S

1.
(2) Show that it is a surface.

Example 1.6 (The Projective Space P2). We define the projective space P
2 to be the quotient

space obtained from the unit square by identifying its border according to the Figure 3. Thus,

P
2 = {(x, y) ∈ I × I}/ ∼

where we identify (0, y) ∼ (1, y), and (x, 0) ∼ (1− x, 1).

Exercise 1.3. Let D ⊂ R
2 denote the (closed) disk of radius 1.

(1) Show that P
2 is homeomorphic to the quotient space obtained from D by identifying

its border S1 via the antipodal map (Figure 4)

A : S1 → S
1, A(x, y) = (−x,−y).
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Figure 3.

(2) Show that P2 is homeomorphic to the quotient space obtained from the standard sphere
by identifying a point p with its antipodal −p.

(3) Show that P2 is homeomorphic to the space of lines through the origin in R
3.

(4) Show that it is a surface.
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Lines in the space determined by

 their intersections with the sphere 

The relevant information to recover the lines 

Project down (homeomorphically) 

      onto the disc 

The disc on which we still have to glue  

the antipodal points on its circle boundary

Figure 4.

There is a very basic operation which allows us to construct a new manifold out of two given
manifolds.

Definition 1.7. Given two topological manifolds M and N of the same dimension, define
their connected sum, denoted M#N as follows: remove from M and N two “small balls” B1

and B2 and glue M −B1 and N −B2 along the sphere ∂B1 = ∂B2.

For surfaces, it means that we remove two small disks and we glue the remaininig spaces along
the bounday circles (Figure 5). We can describe this operation with more details:

Remove an Open Disk: We remove from M and N an open subset D1 and D2 each of
which is homeomorphic to an open disk in R

2.
Glue along the Boundary: We fix a homeomorphism ϕ : ∂D1 → ∂D2 and we take the

quotient space

M#N = (M −D1)
∐

(N −D2)/ ∼

where x ∼ y if and only if x = y or x ∈ ∂D1, y ∈ ∂D2, and ϕ(x) = y.
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make holes 

glue

Figure 5. Connected Sum

Example 1.8. The connected sum of two tori is the double torus T2. Repeating the operation
of connected sum, one obtains all tori with arbitrary number of holes (see Figure 6 for the g = 2):

Tg = T# . . .#T
︸ ︷︷ ︸

g times

.

Figure 6. Double Torus.

Similarly, one considers the connected sum of h copies of P2:

Ph = P
2# . . .#P

2

︸ ︷︷ ︸

h times

.

Exercise 1.4. Show that the connected sum M#S2 of any surface M with the sphere S2 is
homeomorphic to M itself.

We could, in principal, consider more surfaces by considering other examples of connected
sums (for example of a torus with a projective space), but as we will soon see, we have already
obtained a complete list of all compact connected surfaces:

Theorem 1.9. Any compact connected surface is homeomorphic to one of the following:

(1) A sphere S
2,

(2) A connected sum of Tori (plural of Torus) Tg, with g ∈ N, or
(3) A connected sum of projective spaces Ph, with h ∈ N.
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3. The Basic Building Blocks: Polygonal Regions

In this section we will show how to construct surfaces out of polygonal regions of the plane,
by identifying its edges in pairs. Intuitively, a polygonal region is a subset of the plane which
“looks like” in Figure 7. Let us explain how to make this precise.
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Figure 7. Polygonal Region.

• Fix a circle in R
2, pick n+1 points on it and order them in counterclockwise direction

{p0, . . . , pn}.
• For each 0 < i ≤ n consider the line passing through pi−1 and pi. It divides R

2 into
two half-planes. Let Hi be the half-plane which contains all the other points pj.

• Let P be the set
P = H1 ∩H2 ∩ · · · ∩Hn.

Definition 1.10. An n-sided polygonal region of the plane is any subset of R2 obtained by
the “recipe” above.

Associated to a polygonal region will will use the following notation:

Vertices: The points pi will be called vertices of P . The set of all vertices of P will be
denoted by V (P ).

Edges: The line segment joining pi−1 and pi will be denoted by ei, and will be called an
edge of P . The set of all edges of P will be denoted by E(P )

Border: The union of all edges of P will be denoted by ∂P and will be called the border
of P .

Interior: The complement of ∂P in P will be denoted by Int(P ) and will be called the
interior of P .

It will also be important to introduce orientations on the edges of a polygon, and to specify
what a “map” between edges is (this is how we will be able the make precise the notion of
“glueing one edge to another”).



8 1. THE CLASSIFICATION PROBLEM FOR COMPACT SURFACES

Definition 1.11.

(1) Let L ⊂ R
2 be a line segment. An orientation of L is a choice of ordering of its

end points. Such an orientation will be represented by an arrow, and we will say that
L is a line from a to b (Figure 8).

(2) If L is a line from a to b, and L′ is a line segment from c to d, then a positive

linear map from L to L′ is the homeomorphism h : L → L′ which associates to
x = (1− t)a+ tb ∈ L the point h(x) = (1− t)c+ td.
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x

h(x)

the linear transformation h

Figure 8. Positive Linear Maps.

4. Glueing the Edges of a Polygonal Region

Since we will be considering (disjoint unions of) polygonal regions with several identifications
on the borders, we must find a convenient way of keeping track of such “glueing procedures”.
For this, we will introduce the concept of labels:

Definition 1.12. A labeling of a polygonal region P is a map E(P ) → Λ from the set of
edges of P to a set Λ, whose elements will be called labels.

Given a polygonal region along with: (1) a labeling of its edges, and (2) an orientation on
edge, we consider the space

X = P/ ∼

where

• If p ∈ Int(P ), then p is equivalent only to itself, i,e,m p ∼ p;
• If ei and ej are edges with the same label, we let h : ei → ej be a positive linear map
and we set

x ∈ ei ∼ h(x) ∈ ej .

In this case we say that X was obtained from P by glueing its edges together according to the
orientation and the labeling.
We remark that we also allow X to be obtained from a finite disjoint unit of polygonal regions

with identifications on the edges. Thus X may be either connected or disconnected. As an
illustration of spaces obtained in this way, consider the following examples:

Example 1.13. The disk can be obtained from a triangle with two labels (a and b) and orien-
tations on the edges as shown in the Figure 9 below.

Example 1.14. As we have seen in Figure 1 the sphere can be obtained from a square with to
labels and orientations on the edges.
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a a

b

X  =

homeomorphism

Figure 9. The Disk

Example 1.15. In Figure 10 we illustrate the fact that since we allow X to be obtained
by glueing the edges of more than one polygonal regions, it follows that X is not necessarily
connected.

d

a

a

b c c

d

e

d

a

a

b c

d

ef

Figure 10. X can be connected or disconnected.

Finally, in order to keep track of the orientations of the edges along with the labels, we will
now introduce the notion of a labeling scheme. Let ek is an edge of P with label aik . If ek is
oriented from pk−1 to pk, then we put en exponent +1 on aik . If ek is oriented from pk to pk−1,
then we put an exponent −1 on aik . Then P , its labels, and the orientations on its edges is
totally specified up to a homeomorphism which respects the quotient space X by the symbol

w = aǫ1i1a
ǫ2
i2
· · · aǫnin , ǫi = ±1.

Definition 1.16. The symbol w = aǫ1i1a
ǫ2
i2
· · · aǫnin will be called a labeling scheme for P with

respect to its labels and orientations.

In Figure 11 are some examples of how to go back and forth from a (disjoint union of) polygonal
regions with labels and orientations to labeling schemes.

5. Operations on Labeling Schemes

It is important to note that we are interested in the quotient space X obtained from a polyg-
onal region by gluing its edges and not on the labeling scheme itself. With this in mind, we will
now introduce some operations we can perform on the labeling scheme (or equivalently on the
polygonal region) which will leave the resulting quotient space unchanged.

I) Cutting: The operation of cutting is described at the level of labeling schemes as
follows. Suppose that w = aǫ1i1 · · · a

ǫp
ip
a
ǫp+1

ip+1
· · · aǫnin is a labeling scheme and let b be a



10 1. THE CLASSIFICATION PROBLEM FOR COMPACT SURFACES
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c

c

Labeling Scheme

Reconstructing the
Polygonal Region

Labeling Scheme

Reconstructing the
Polygonal Region

−1w = a babw = a bab−1

bb

a

a

w = a ccbb−1 −1

−1w = ad a c
−1 −1

Figure 11. Labeling Schemes.

label which does not appear elsewhere in the scheme. Then we may replace w by a pair
of labeling schemes

w1 = aǫ1i1 · · · a
ǫp
ip
b, and w2 = b−1a

ǫp+1

ip+1
· · · aǫnin .

For a geometric interpretation see the Figure 12.
II) Glueing: The reverse operation of cutting is known as glueing. In terms of the

labeling scheme it can be described as follows: If

w1 = aǫ1i1 · · · a
ǫp
ip
b, and b−1a

ǫp+1

ip+1
· · · aǫnin

are labeling schemes, and the label b only appears where it is indicated above, then we
may replace w1 and w2 by the labeling scheme w = aǫ1i1 · · · a

ǫp
ip
a
ǫp+1

ip+1
· · · aǫnin .

CUTTING

GLUEING

b b

P Q1 Q2

Figure 12. Cutting & Glueing

Before we go on with the description of the operations, let us take a small break to write down
more formally the result of cutting and glueing:
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Proposition 1.17. Suppose that X is obtained by glueing the edges of n polygonal regions
with labeling scheme

w1 = y0y1, w2, . . . , wn.

Let b be a label that does not appear in the scheme. If both y0 and y1 have length at least 2, then
X can also be obtained by n+ 1 polygonal regions with labeling scheme

y0b, b
−1y1, w2, . . . , wn.

Exercise 1.5. The purpose of this exercise is to prove the proposition above. Denote by
P1, . . . , Pn the original n polygonal regions and by Q0, Q1, P2, . . . Pn the n+1 polygonal regions
obtained by cutting P1. Denote also by X = (

∐n
i=1 Pi)/ ∼ the space obtained by glueing the

edges before cutting, and by Y = (Q0
∐

Q1
∐n

i=2 Pi)/ ∼ the space obtained after performing
the cutting operation. Consider the obvious map

Φ : Q0

∐

Q1

n∐

i=2

Pi −→
n∐

i=1

Pi.

Show that:

(1) Φ induces a well defined map ϕ : Y → X, i.e., if q ∼ q′, then Φ(q) ∼ Φ(q′).
(2) ϕ is continuous (use the definition of the quotient topology).
(3) ϕ is injective, i.e., if Φ(q) ∼ Φ(q′), then q ∼ q′.
(4) ϕ is surjective.
(5) X and Y are both compact and Hausdorff.
(6) ϕ is a homeomorphism.

With only the operations of cutting and gluing we can now easily understand how to construct
the connected sums of tori (and projective spaces) out of polygonal regions with identification
on the borders:

Example 1.18 (The Double Torus T
2). Let P be the 8-sided polygonal region with labeling

scheme w = aba−1b−1cdc−1d−1. In order to see that X = P/ ∼ is homeomorphic to a double
torus, we will apply the cutting and glueing operations described above (see Figure 13). Thus we
first cut P into two 5-sided polygonal regions Q1 and Q2, with labeling schemes w1 = aba−1b−1e
and w2 = e−1cdc−1d−1 respectively. Now, it is clear that after identifying the vertices of Q1

correspond to the endpoints of e, we obtain the usual representation of the torus as a quotient
of the unit square, but with an open disk removed. The edge e then becomes the border of the
open disk. The same is obviously true also for Q2. Thus, if we now apply the glueing operation,
what we obtain is the quotient of two copies of the torus, both with an open disk removed by
identifying the border of the disk. This is precisely the construction of the connected sum.

Exercise 1.6. Show that Tg is obtained from a 4g-sided polygonal region with labeling scheme

w = (a1b1a
−1
1 b−1

1 ) · · · (agbga
−1
g b−1

g ).

Example 1.19. A similar argument as the one presented above shows that for h > 1, Ph can
be obtained from a 2h-sided polygonal region with labeling scheme

w = (a1a1) · · · (ahah).

We now continue to describe the rest of the operations that may be performed on the labeling
scheme. We suggest that you convince yourself that each of these operations leave the quotient
space unchanged.
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Figure 13. Connected Sum of Two Tori.
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Figure 14. Connected Sum of Two Projective Spaces.

Definition 1.20. Let w1, w2, . . . , wn be a labeling scheme and let y be a string of labels that
appears in the labeling scheme (it may appear in more that one place of the scheme). We will
say that y is a removable string if
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(1) all labels of y are distinct, i.e., y = aǫ1i1 · · · a
ǫk
ik

with aip 6= aiq for all ip 6= iq, and

(2) the labels of y do not appear elsewhere (outside of y) in the labeling scheme, i.e., for
all 1 ≤ p ≤ k, if aip appears in the labeling scheme, then it belongs to the string y.

III) Unfolding Edges: If y is a removable string of a labeling scheme, then we may
replace y by a label that does not appear elsewhere in the scheme. Geometrically, this
can be interpreted as replacing a sequence of edges (a “folded line segment”), by a
single edge (a line segment) (See Figure 15).

IV) Folding Edges: The reverse operation to unfolding edges is that of folding edges
described by: replace all appearances of a single label by a removable string of labels.

UNFOLDING

FOLDING

b

c

a1

a2

a3 a1

a2

a3

b

c

a a

Figure 15. Fold/Unfold

V) Reversing Orientations: We may change the the sign of the exponent of all occur-
rences of a single label in the labeling scheme. In order to understand why the quotient
space is left unchanged, recall that we are identifying the points on two oriented edges
with the same label by means of a positive linear map. Note that if the orientation on
both edges are reversed, the identification remains unchanged.

VI) Cyclic Permutation: It is clear that if instead of writing the labeling scheme of a
polygonal region by starting with the label on the edge e1, we decide to start with the
label on a different edge and then continue in the same counterclockwise direction, then
the quotient space X is unchanged. We may think of this as performing a rotation on
the polygonal region. The effect on the labeling scheme is to take a cyclic permutation
of its labels

aǫ1i1 · · · a
ǫn
in

−→ aǫ2i2 · · · a
ǫn
in
aǫ1i1 .

VII) Flip: We may replace a labeling scheme by its formal inverse:

w = aǫ1i1 · · · a
ǫn
in

−→ a−ǫn
in

· · · a−ǫ1
i1

.

Geometrically this corresponds to flipping the polygonal region as in Figure 16 (and
then performing a cyclic permutation if necessary) .

Remark 1.21. The operations of permutation and flipping should be thought of as instances of
the same phenomena. If may apply any Euclidean transformation of the plane (i.e., translations,
reflections and rotations) to our original polygonal region, the resulting object will be again a
polygonal region whose quotient space is homoemorphic to the original one.

Finally, for completeness and also for further reference, we describe two operations that are
obtained by composing the operations of cutting/glueing with that of folding/unfolding:
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b

b

a a

a

a

b b

FLIP

(UN)FLIP

Figure 16. Flip/Unflip

VIII) Cancel: We may replace a labeling scheme of the form y0aa
−1y1 by y0y1 provided

that a does not appear elsewhere in the labeling scheme, and both y0 and y1 have length
at least 2. Geometrically, this operation is represented by the sequence of diagram in
Figure 17.

IX) Uncancel: Under the same conditions as above, we may reverse the operation of
canceling by replacing a scheme y0y1 by the labeling scheme y0aa

−1y1, as indicated in
Figure 17.

It should clear that the operations above leave the quotient space X unchanged. Thus, it is
natural to pose the following definition:

Definition 1.22. Two labeling schemes are equivalent if one can be obtained from the other
by applying the operations (I) - (IX) described above.

Exercise 1.7. Show that this defines an equivalence relation on the set of all labeling schemes.

Example 1.23. We have seen that the Klein bottle is the quotient of the unit square by the
identification whose labeling scheme is aba−1b. Let us prove that the Klein bottle is homeomor-
phic to the connected sum of two projective spaces:

aba−1b −→ abc & c−1a−1b (cutting)

−→ cab & b−1ac (permuting and flipping)

−→ cabb−1ac (glueing)

−→ caac (canceling)

−→ aacc (permuting).

6. Geometric Surfaces

In this section we will consider surfaces which are obtained from a polygonal region by iden-
tifying it edges in pairs. We wil then show that every such surface is homeomorphic to one in
the list given in Theorem 1.9.

Definition 1.24. A compact and connected topological surface X is called a geometric sur-

face if it can be obtained from a polygonal region by glueing its edges in pairs.
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Figure 17. Cancel/Uncancel

The remainder of this section will be dedicated to proving the following theorem:

Theorem 1.25 (Classification of Geometric Surfaces). Let X be a geometric surface. Then
X is homeomorphic to one of the following: S

2, Tg, or Ph (for some g, h ∈ N).

The idea of the proof is to consider labeling schemes which give rise to geometric surfaces
(known as proper labeling schemes) and then to show that any proper labeling scheme can be
put into a normal form by means of the operations introduced in the last section.

Definition 1.26. A labeling scheme w1, . . . , wm (for m polygonal regions) is called a proper

labeling scheme if each label appears exactly twice in the scheme.

Remark 1.27. We note that if we start with a proper labeling scheme, then by applying
any of the operations introduced in the preceding section gives rise to another proper labeling
scheme.

We can now restate Theorem 1.25 into a more algebraic form:

Theorem 1.28 (Normal Forms of Proper Labeling Schemes). Let w be a proper labeling scheme
of length greater or equal to 4 (of a single polygonal region). Then w is equivalent to one of the
following labeling schemes:

(1) aa−1bb−1,
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(2) abab,
(3) (a1b1a

−1
1 b−1

1 ) · · · (agbga
−1
g b−1

g ), or
(4) (a1a1)(a2a2) · · · (ahah).

Remark 1.29. Of course, in the list above (1) is a sphere, (2) is a projective space, (3) is a
connected sum of tori, and (4) is a connected sum of projective spaces.

The first step in the proof of Theorem 1.28 is to distinguish between two classes of proper
labelings that will then be treated separately:

Definition 1.30. Let w be a proper labeling scheme for a single polygonal region. If every
label of w appears one with an exponent +1 and once with exponent −1 we say that w is of
torus type. Otherwise, we say that w is of projective type.

We begin by dealing with labeling schemes of projective type:

Proposition 1.31. Let w be a labeling scheme of projective type. The w is equivalent to a
labeling scheme of the following form:

w ∼ (a1a1) · · · (akak)w1,

where w1 is a labeling scheme of torus type.

The proof of this proposition will follow from the following lemma:

Lemma 1.32. If w is a proper labeling scheme of the form w = [y0]a[y1]a[y2], where each [yi]
is a string of labels (which may be empty), the w is equivalent to a labeling scheme of the form

w ∼ aa[y0y
−1
1 y2].

Proof. We separate the proof into two cases:
Case 1: [y0] = ∅. In this case w = a[y1]a[y2].

• If [y1] is empty, then we are done.
• If [y2] is empty, the we proceed as follows:

w = a[y1]a −→ a−1[y−1
1 ]a−1 (flipping)

−→ a−1a−1[y−1
1 ] (permuting)

−→ aa[y−1
1 ] (reversing orientation of a).

• If both [y1] and [y2] are not empty, the we apply the operations described in Figure 18.

Case 2: [y0] 6= ∅. Again we exclude the most trivial case first. If both [y1] and [y2] are empty,
then w = [y0]aa and a permutation brings w to the desired form. Assume now that either [y1]



6. GEOMETRIC SURFACES 17

CUT
a a

y2

y1

b
a

y1

b

a

y2

b

y1

b
a a

b

y2

GLUE

y1

b b

y2

ROTATE AND FLIP

y2

b b

y1

 FLIP
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Figure 18. Case 1

or [y2] are non-empty. Then:

w = [y0]a[y1]a[y2] −→ [y0]ab & b−1[y1]a[y2] (cutting)

−→ [y−1
0 ]b−1a−1 & a[y2]b

−1[y1] (flipping and permuting)

−→ [y−1
0 ]b−1[y2]b

−1[y1] (glueing and canceling)

−→ b−1[y2]b
−1[y1y

−1
0 ] (permuting)

−→ b−1b−1[y−1
2 y1y

−1
0 ] (case 1)

−→ [y0y
−1
1 y2]bb (flipping)

−→ aa[y0y
−1
1 y2] (permuting and relabeling).
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�

Exercise 1.8. Write the algebraic sequence of arguments presented in the proof of case 1,
and make diagrams to describe the geometric sequence of arguments presented in case 2 of the
proof.

Proof (of Proposition 1.31). Let w be a labeling scheme of projective type. Then there
is at least one label of w which appears twice with the same sign. Thus,

w = [y0]a[y1]a[y2]

and by using the lemma, we obtain that w is equivalent to aa[y0y
−1
1 y2]. If [y0y

−1
1 y2] is of torus

type then we are done. Otherwise, there is a label b is [y0y
−1
1 y2] which appears twice with the

same sign, and thus we may assume that w is equivalent to

w ∼ aa[z0]b[z1]b[z2].

We apply the lemma again, this time to the labeling scheme [aaz0]b[z1]b[z2], to obtain that

w ∼ bbaa[z0z
−1
1 z2].

If [z0z
−1
1 z2] is of torus type we are done. Otherwise we continue this process which will end as

soon as we have put w into the desired form w ∼ (a1a1) . . . (akak)w1 with w1 a labeling scheme
of torus type. �

Remark 1.33. We can conclude from Proposition 1.31 that if w is a proper labeling scheme,
then either: (1) w is of torus type, or (2) w is of the form (a1a1) . . . (akak)w1 with w1 a labeling
scheme of torus type, or (3) w is of the form (a1a1) . . . (akak) in which case we are done (X is
a connected sum of projective spaces).

We must now examine how to reduce w to a simpler form when w is of the form (1) or (2).

Exercise 1.9. Show that if w is a proper labeling scheme of length 4, then w must be
equivalent to one of the following labeling schemes:

aabb, abab aa−1bb−1, aba−1b−1

From now on we assume that w has length greater then 4, and moreover, that it is irreducible,
i.e., it does not contain any adjacent terms having the same label, but opposite signs (in which
case we could perform the operation of canceling to reduce the length of w). In this case we
have the following lemma:

Lemma 1.34. Suppose that w is a proper labeling scheme of the form w = w0w1, where w1 is
an irreducible scheme of torus type. Then w is equivalent to a scheme of the form w0w2, where
w2 has the same length as w1, and has the form:

w2 = aba−1b−1w3,

where w3 is of torus type or is empty.

Proof. We will divide the proof of this lemma into several steps.

Step 1: We may assume that w is of the form

w = w0[y1]a[y2]b[y3]a
−1[y4]b

−1[y5],

where some of the strings of labels [yi] may be empty.

To see this we proceed as follows. Let a be the label in w1 whose occurrences are as close
as possible (with the minimal amount of labels in between them). If a appears first with an
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exponent −1, then we revert the orientation of both appearances of a. Next, let b be any label
in between a and a−1. Then, since a and a−1 are the closest labels to each other in w1, it follows
that either b−1 appears after a−1, in which case we are done, or b−1 appears in front of a, in
which case we simply exchange the labels of b and a.

Step 2: (1st Surgery) w is equivalent to

w ∼ w0a[y2]b[y3]a
−1[y1y4]b

−1[y5].

We may assume that [y1] 6= ∅ (or else there is nothing to prove). Then, we perform the
following operations:

w = w0[y1]a[y2]b[y3]a
−1[y4]b

−1[y5]

−→ [y2]b[y3]a
−1[y4]b

−1[y5]w0c & c−1[y1]a (permuting and cutting)

−→ [y4]b
−1[y5]w0c[y2]b[y3]a

−1 & ac−1[y1] (permuting)

−→ [y4]b
−1[y5]w0c[y2]b[y3]c

−1[y1] (glueing)

−→ w0a[y2]b[y3]a
−1[y1y4]b

−1[y5]. (permuting and relabeling)

Step 3: (2nd Surgery) w is equivalent to

w ∼ w0a[y1y4y3]ba
−1b−1[y2y5].

First of all, assume that w0, y1, y4, and y5 are all empty. Then

w ∼ a[y2]b[y3]a
−1b−1

and the result follows by permuting and relabeling.
Now assume that at least one of the strings w0, y1, y4, or y5 is non-empty. Then, we can

perform the following sequence of operations:

w ∼ w0a[y2]b[y3]a
−1[y1y4]b

−1[y5]

−→ a[y2]b[y3]a
−1c & c−1[y1y4]b

−1[y5]w0 (permuting and cutting)

−→ [y3]a
−1ca[y2]b & b−1[y5]w0c

−1[y1y4] (permuting)

−→ [y3]a
−1ca[y2][y5]w0c

−1[y1y4] (glueing)

−→ w0c
−1[y1y4y3]a

−1ca[y2y5] (permuting)

−→ w0a[y1y4y3]ba
−1b−1[y2y5]. (relabeling)

Step 4: (3nd Surgery) w is equivalent to

w ∼ w0aba
−1b−1[y1y4y3y2y5].
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We perform the following sequence of operations:

w ∼ w0a[y1y4y3]ba
−1b−1[y2y5]

−→ [y1y4y3]ba
−1c & c−1b−1[y2y5]w0a (permuting and cutting)

−→ a−1c[y1y4y3]b & b−1[y2y5]w0ac
−1 (permuting)

−→ a−1c[y1y4y3][y2y5]w0ac
−1 (glueing)

−→ w0aba
−1b−1[y1y4y3y2y5]. (permuting and relabeling)

�

The following graph summarizes the results that we have obtained so far:

aa−1bb−1 or aba−1b−1 // Done!

Torus Type

length =4
22fffffffffffffffffffffffffff

length≥4

Lemma 1.34
// (a1b1a

−1
1 b−1

1 ) · · · (agbga
−1
g b−1

g ) // Done!

w

(3)
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@

(1)

88pppppppppppppppp

(2)
//
w = (a1a1) · · · (akak)w1

with w1 of torus type
Lemma

1.34
// (a1a1) · · · (akak)(b1c1b

−1
1 c−1

1 ) · · · (bmcmb−1
m c−1

m ) // ???

length =4
// aabb−1 ∼ abab // Done!

w = (a1a1) · · · (ahah) // Done!

Remark 1.35. The three arrows coming out of w correspond to remark 1.33, while the cases
where the length of w is equal to 4 follow from exercise 1.9.

Thus, in order to conclude the proof of Theorem 1.28 we need to describe what the connected
sum of tori and projective spaces correspond to, i.e., to reduce

w = (a1a1) · · · (akak)(b1c1b
−1
1 c−1

1 ) · · · (bmcmb−1
m c−1

m )

to its normal form. This follows from the following lemma:

Lemma 1.36. If w = w0(aa)(bcb
−1c−1)w1 is a proper scheme, then

w ∼ w0(aabbcc)w1.

Proof. We will make use repeatedly of Lemma 1.32 which states that

[y0]a[y1]a[y2] ∼ aa[y0y
−1
1 y2].
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To prove the lemma we consider the following sequence of operations:

w = w0(aa)(bcb
−1c−1)w1

−→ (aa)[bc][cb]−1[w1w0] (permuting)

−→ [bc]a[cb]a[w1w0] (Lemma 1.32)

−→ [b]c[a]c[baw1w0] (regrouping the terms)

−→ [cc]b[a−1]b[aw1w0] (Lemma 1.32 and regrouping the terms)

−→ w0(bbccaa)w1. (Lemma 1.32 and permuting)

The result then follows by relabeling the terms. �

We can thus conclude from the Lemma, by applying it several times if necessary, and then
relabeling, that

(a1a1) · · · (akak)(b1c1b
−1
1 c−1

1 ) · · · (bmcmb−1
m c−1

m ) ∼ (a1a1) · · · (ak+2mak+2m).

This finishes the proof of Theorem 1.28.

Exercise 1.10. Throughout this section we have implicitly described an algorithm to reduce
any proper labeling scheme to one in the normal form of Theorem 1.28. Write down this
algorithm explicitly.

Exercise 1.11. Use the algorithm you developed in the exercise above to determine which
surface corresponds to the following labeling schemes:

(1) abacb−1c−1

(2) abca−1cb
(3) abbca−1ddc−1

(4) abcda−1c−1b−1d−1

(5) abcdabdc
(6) abcda−1b−1c−1d−1

7. Triangulated Surfaces

In this section we will introduce the notion of a triangulation on a compact Hausdorff topo-
logical space. We will then show that:

Theorem 1.37. Any triangulated compact connected surface can be obtained from a single
polygonal region by identifying its edges with respect to a proper labeling scheme.

Theorem 1.9 will then follow from Theorem 1.28 and the following result which we will not
prove now (but we intend to come back to it if time permits).

Theorem 1.38. Every compact connected surface is triangulable (i.e., can be triangulated).

We begin with the definition of a triangulation:

Definition 1.39. Let X be a compact Hausdorff topological space.

• A curved triangle in X is a subspace A together with a homeomorphism h : T → A,
where T is a triangular region in the plane. If v ∈ T is a vertex, then h(v) is called a
vertex of A. Similarly, if e ∈ T is an edge, then h(e) is called an edge of A.
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• A triangulation of X is a collection A1, . . . , An of curved triangles of X which cover
X,

∪iAi = X,

and such that if Ai ∩Aj 6= ∅, then either
(1) Ai ∩Aj = {v} is a vertex, or

(2) Ai ∩ Aj = e is an edge, and furthermore, the map h−1
j ◦ hi which maps the edge

h−1
i (e) of Ti to the edge h−1

j (e) of Tj is a linear homeomorphism.

Remark 1.40. By condition (2) in the definition above we mean the that if we pick an ori-
entation on h−1

i (e) then h−1
j ◦ hi induces a choice of orientation on h−1

j (e) for which h−1
j ∩ hi :

h−1
i (e) → h−1

j (e) becomes a positive linear map.

For an example of a triangulation of the sphere, see Figure 19.

TRIANGULATION

LABELING SCHEME

Figure 19.

Exercise 1.12. For each of the following spaces exhibit an explicit triangulation.

(1) A torus
(2) a cylinder
(3) a cone
(4) a projective space
(5) a Möbius band,
(6) a Klein bottle
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A triangulation {A1, . . . , An} of a compact Hausdorff space X induces a labeling scheme,
which will be called the labeling scheme of the triangulation, as follows:

Polygonal Regions: For each curved triangle Ai, let hi : Ti → Ai be the corresponding
homeomorphism defined on the triangular region Ti. The polygonal region we will
consider is the disjoint union of the triangles Ti’s.

Orientation on Edges: Let e ⊂ X be an edge appearing in the triangulation (i.e., it is
the edge of at least one of the curved triangles). Let v and w be the vertices at the
endpoints of e. Choose an orientation on e by declaring it to go from v to w. Then if
h−1
i (e) is an edge of Ti, we orient it from h−1

i (v) to h−1
i (w).

Labels: Let

Λ = {e ⊂ X : e is the edge of (at least) one of the curved triangles}

be the set of edges of the triangulation. Then if h−1
i (e) is an edge of Ti, we associate

to it the label e ∈ Λ.

Example 1.41. Figure 19 exhibits a triangulation on the sphere, and also the labeling scheme
of the triangulation.

Exercise 1.13. For each of the spaces in exercise 1.12, determine the labeling scheme of the
triangulation.

Proposition 1.42. If X is a compact triangulated surface, then the labeling scheme of the
triangulation is proper.

Proof. We need to show that each label appears exactly twice in the labeling scheme. The
arguments needed to do this are intuitively clear. However, the easiest way to make them precise
is by using the notion of fundamental group. Thus, we will sketch the proof now, but leave the
details as an exercise that should be done after the fundamental group is introduced.
The first step is to show that each label appear at least twice in the labeling scheme. Thus,

assume that a label appears only once. This means that there is an edge e which is the edge
of only one curved triangle. Exercise 1.14 bellow shows that this cannot happen. The intuitive
idea is that if x ∈ e, then by removing x we will not “create a hole” in X, but on the other
hand, if we remove any point from an open set in R

2, then we do “create a hole”
The next step is to show that there is at most two appearances of each label. Again this will

follow by a “removing one point trick”. If a label appears more than twice, then there are more
than two triangles which intersect in a single edge. Intuitively, this will mean that there is a
“multiple corner” which cannot be smoothened into an open subset of R2 (see figure 20). The
precise argument is given in exercise 1.15 bellow.

�

Exercise 1.14 (To be done after the definition of homotopy). Let T be a triangle and x ∈ T
be a point in one of the edges of T and let U be any neighborhood of x. Show that any loop in
U −x is homotopic to a constant path. Conclude that x does not have any neighborhood which
is homeomorphic to an open set of R2.

Exercise 1.15 (To be done after the Seifert van Kampen Theorem). Consider the space
obtained by glueing together k triangles along a common edge e, with k > 2 (Figure 20 shows
the case when k = 3). Let x ∈ e be a point in this common edge. Show that any neighborhood
U of x contains a possibly smaller neighborhood V ⊂ U such that V −x is homotopy equivalent
to a bouquet of k − 1 circles. Conclude by computing the fundamental group of V − x that x
does not have any neighborhood which is homeomorphic to an open subset of R2.

Proposition 1.43. If X is a compact triangulated surface, then X is homeomorphic to the
space obtained from

∐
Ti by glueing its edges according to the labeling scheme of the triangulation.
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e

Figure 20.

Exercise 1.16. Consider the map h :
∐

Ti → X obtained by putting together all of the maps
hi : Ti → Ai ⊂ X. Consider the space X ′ obtained by identifying two points p and q of

∐
Ti if

and only if h(p) = h(q). Show that X ′ is homeomorphic to X.

Proof. Let us denote Y the quotient space obtained from
∐

Ti by identifying it edges
with respect to the labeling scheme of the triangulation. It is an immediate consequence of the
exercise above, that h factors through a continuous map f : Y → X, i.e.,

∐

i Ti

��

h

""
E

E
E

E
E

E
E

E

Y
f

// X.

Moreover, since h is surjective, it follows that f is also surjective. Thus, in order to prove the
proposition, it suffices to show that f is injective (because Y is compact and X is Hausdorff).
Let us denote by [p] ∈ Y the equivalence class – with respect to the labeling scheme of the

triangulation – of a point p in
∐

Ti. Assume that f([p]) = f([q]), for some p 6= q. Then,
by definition, it follows that h(p) = x = h(q). Thus, either x belongs to some edge e of the
triangulation on X, in which case it is clear that [p] = [q], or x is a vertex. In this case, in order
to show that [p] = [q] (so that f is injective) we must verify that the identification of p with q is
“forced” as a consequence of the identification of the edges of the triangles Ti’s (see also exercise
1.20).
Suppose that Ai and Aj intersect at a vertex v. What we need to show is that we can find a

sequence

Ai = Ai1 , Ai2 , . . . Aim = Aj ,

such that Aik intersects Aik+1
on a common edge which contains v as its endpoint (as illustrated

in Figure 21). This is the content of the following exercise.
�

Exercise 1.17. Given v, define two curved triangles Ai and Aj with vertex v to be equivalent
if we can find a sequence Aik as above. Use the “remove the one point trick” to show that
if there is more that one equivalence class of curved triangles with vertex v, then v does not
have any neighborhood in X which is homeomorphic to an open set of R2, and thus X is not a
surface.

We now are ready to finish the proof of Theorem 1.37. What we will show is that we may
glue the triangles Ti together in order to obtain the desired polygonal region. In fact, start by



7. TRIANGULATED SURFACES 25

Ai = Ai1

Aj = Aim

Aim-1

Ai2

Figure 21.

choosing one of the triangles, say T1. If Ti is another triangle which has a label on one of its
edges which is equal to a label of T1, then (after possibly flipping Ti) we may glue both triangles
together. The effect of this is to reduce the original number of triangles by two, at the expense
of adding one polygonal region (which in this case has 4 sides) which we denote by P1. Next,
we look at the edges of P1. If one of the triangles Tj , with j 6= 1, i, has a label equal to one of
the labels of P1, then, after flipping Tj if necessary, we may glue it to P1 obtaining in this way
a new polygonal region P2. We continue this process as long as we have two polygonal regions
containing edges that have a common label.
At some point we will reach a situation where either we obtain the polygonal region Pn+1 that

we were looking for, or we obtain more then one disconnected polygonal region in which none
of the labels appearing in one of them appear also in the other region. However, it is easy to see
that this cannot happen, for in this case the quotient space X will necessarily be disconnected.

Exercise 1.18. Determine the space obtained from the following labeling schemes:

(1) abc, dae, bef, cdf .
(2) abc, cba, def, dfe−1.

Exercise 1.19. Show that the projective space P
2 can be obtained from two Mobius bands

by glueing them along there boundary.

Exercise 1.20. Let X be the space obtained from a sphere by identifying its north and south
poles (X is not a surface). Find a triangulation on X such that the labeling scheme of the
triangulation determines a sphere (i.e., the surface obtained by glueing the edges of the triangles
with respect to the labeling scheme of the triangulation is homeomorphic to a sphere). Conclude
that two non-homeomorphic compact Hausdorff spaces can have triangulations which induce the
same labeling scheme. (We remark that this exercise gives an example of a triangulated space
for which the map f from the proof of Proposition 1.43 is not injective.)



CHAPTER 6

Attaching cells

1. Cells

Definition 6.1. Let X be a Hausdorff topological space. An open n-cell in X is a subspace
e ⊂ X together with a homeomorphism

◦
he:

◦
D

n
−→ e ⊂ X.

It is called an n-cell if
◦
he extends to a continuous map

he : Dn −→ X.

We call he the defining map of the n-cell, and we also say that e is an n-cell with defining map
he, or that e is the image of the n-cell. The cell boundary of e is defined by:

∂cell(e) := e − e,

where e is the closure of e in X. The characteristic map χe of e is defined as the restriction

χe := he|Sn−1 : Sn−1 −→ X.

Remark 6.2. Since
◦
D

n
is dense in Dn (hence each point x ∈ Dn can be written as the limit

of a sequence of points in the interior) and he must be continuous (hence preserves the limits),
given

◦
he, the extension he will be unique.

In conclusion, an n-cell in the space X is just a subspace e ⊂ X together woth a continuous
map he : Dn −→ X which, when restricted to

◦
D

n
, is a homeomorphism between

◦
D

n
and e.

Here are some simple examples (more will come later).

Example 6.3. Note that, for n = 0, a 0-cell in X is the same thing as a point of X.
An interesting 1-cell is e = S1 − {(1, 0)} which is a 1-cell in S1 with defining map

he(t) = (cos(πt), sin(πt)).

Example 6.4. Various cells inside the sphere are shown in Figure 1.

Example 6.5. In general, an open n-cell may fail to be an n-cell. This is already clear when
n = 1 and X = R. A subspace e ⊂ R is an open n-cell (with some defining map) if and only
if e = (a, b) is an open interval (with a and b- real numbers or plus/minus infinity). Indeed,
any such open cell will be a connected subspace of R hence it must be an interval. From the
discussions inthe previous chapter, it must be an open interval.

On the other hand, if e = (a, b) is a bounded interval (hence a, b are finite), then e (together
with some defining map) is a 1-cell. However, un-bounded intervals cannot be made into 1-cells.
This will also follow from the next proposition (which imply that the closure e of e in X must
be compact), but let’s check it directly here for the open 1-cell e = (1,∞) together with the
defining map:

◦
he: (−1, 1) −→ R, t &→ 2

t + 1
83
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2ïcell 

(the sphere minus
the north pole)

0ïcell

1ïcell

0ïcell 2ïcells

six 0ïcells

eight 1ïcells 

four 2ïcells (the quarter spheres)

(the quarters of the circles)

Figure 1.

This cannot have a continuous extension to [−1, 1] because xn = −1 + 1
n converges to −1, but

◦
he (xn) = 2n does not have a finite limit.

Exercise 6.1. Let X be the one-point compactification of the space obtained from D2 by
removing two points on its boundary. Describe X in R3 and show that it is the closure of a
2-cell.

Here are the main properties of n-cells.

Proposition 6.6. If e ⊂ X is an n-cell with defining map he : Dn −→ X, then

he(Dn) = e, he(Sn−1) = ∂cell(e).

Moreover, as a map from Dn into e, he is a topological quotient map.

Proof. Since he is continuous, we have

he(B) ⊂ he(B)

for all B ⊂ Dn (prove this!). Choosing B =
◦
D

n
, we obtain he(Dn) ⊂ e.

On the other hand,
e = he(

◦
D

n
) ⊂ he(Dn),

and he(Dn) is compact (as the image of a compact by a continuous map), hence closed in X
(since X is Hausdorff). This implies e ⊂ he(Dn). Since the opposite inclusion has been proven,
we get he(Dn) = e. We now prove

he(Sn−1) = e − e.

We first show the inverse inclusion: for y ∈ e − e, by the first part, y = he(x) for some x ∈ Dn

and, since e = he(
◦
D

n
), x cannot be in

◦
D

n
; hence x ∈ Sn−1. We now prove the direct inclusion.

So let y = he(x) with x ∈ Sn−1, and we want to prove that y /∈ e. Assume the contrary, i.e.
y = he(x′) with x′ ∈

◦
D

n
. Since x and x′ are distinct, we find U, V ⊂ Dn opens (in Dn) such that

x ∈ U, x′ ∈ V,U ∩ V = ∅.

We may assume that V ⊂
◦
D

n
. Since

◦
he is a homeomorphism, he(V ) is open in e, hence also in

e. Since he : Dn −→ e is continuous, h−1
e (he(V )) will be open in Dn; but it contains x, hence
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we find ε > 0 such that
Dn ∩ B(x, ε) ⊂ h−1

e (he(V ))
(where the ball is with respect to the usual Euclidean metric). Since x ∈ U and U is open in
Dn, we may choose ε so small so that

Dn ∩ B(x, ε) ⊂ U.

Pick up an element z ∈
◦
D

n
∩B(x, ε). By the inclusion above, we find z′ ∈ V such that he(z) =

he(z′). But then both z and z′ are in
◦
D

n
hence we must have z = z′. Hence z ∈ V . But z ∈ U

hence we obtain a contradiction with U ∩ V = ∅. Finally, he is a topological quotient map as a
continuous surjection from a compact space to a Hausdorff space. !

2. Attaching one n-cell

Definition 6.7. Let X be a Hausdorff space and A ⊂ X closed.
We say that X is obtained from A by attaching an n-cell if there exists an n-cell e ⊂ X (with

some defining map he) such that

X = A ∪ e,A ∩ e = ∅.

Example 6.8. It is clear that the n-ball Dn is obtained from ∂Dn = Sn−1 by attaching an
n-cell (the defining map being the identity map). From example 6.3, we see that S1 can be
obtained from a point (which is a 0-cell!) by attaching a 1-cell. In general, Sn can be obtained
from a point by attaching an n-cell (see also example 6.13 below).

To treat examples treated in the previous lectures such as the torus, the Moebius band etc,
the following lemma is very useful.

Lemma 6.9. Let X = Dn or X = [0, 1]n, and let Y be a quotient of X obtained by gluing
(certain) points on the boundary ∂(X). Assume that Y is Hausdorff,

Let π : X −→ Y be the quotient map, and let B = π(∂(X)) (i.e. the space obtained from ∂(X)
by the original gluing). Then Y is obtained from B by attaching an n-cell.

Proof. Since Dn and X = [0, 1]n are homeomorphic by a homeomorphism which preserves
their boundary, we may assume that X = Dn. We then choose as defining map for the n-cell
the quotient map

h : Dn −→ Y,

hence the n-cell will be e := h(
◦
D

n
). Note that B = π(Sn−1). Clearly, Y = B ∪ e. Next, since

no element on the boundary of Dn is equivalent (identified) with an interior element, we have
B ∩ e = ∅. Next, since no two interior points of Dn are equivalent, the restriction of h to

◦
D

n
is

injective, hence

h| ◦
D

n :
◦
D

n
−→ e

is a continuous bijection. We still have to prove that this map is a homeomorphism, and for this
it is enough to show that it sends closed sets to closed sets. So, let F be closed in

◦
D

n
; write

F =
◦
D

n
∩K with K ⊂ Dn closed. Then K is compact (as a closed inside a compact), hence

h(K) will be compact. Since Y was assumed to be Hausdorff, we deduce that h(K) is closed in
Y . So, to show that h(F ) is closed in e, it suffices to show that

h(
◦
D

n
∩K) = e ∩ h(K).
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The direct inclusion is clear. For the converse, note that if y belongs to the right hand side we
have y = h(x) and y = h(x′) with x ∈

◦
D

n
and x′ ∈ K, but since interior points are not being

identified with any other points, we must have x = x′, hence y belongs to the left hand side. !
Remark 6.10. The case n = 2 is particularly important: many spaces X can be obtained from

D2 by identifying certain parts of ∂D2 = S1, and the identification can be shown on the picture
by labeling by letters the parts that are to be identified. In the quotient B = S1/ ∼= π(S1),
each letter will appear only once (because we identified all the parts labeled by the same letter).
When going one time around the circle, we will meet various labels that will give us a word
whose letters are labels. Reading this word in the space B describes the characteristic map.

Example 6.11. Consider the torus as a quotient of X = [0, 1] × [0, 1] (see Section 5) of the
first chapter, or of D2. We can apply the previous lemma. The resulting space B is shown in
the picture (Figure 2) and it consists of two circles on the torus touching each other in one point
(a and b on the picture). This space can be drawn (is homeomorphic to) the space consisting of
two circles in the plane touching in one point only (a bouquet of two circles). In conclusion, T 2

can be obtained from a bouquet of two spheres by attaching a 2-cell.

p

q

a a

b

b

a

b

b

a

b 
a

Figure 2.

Note that, according to the conventions from the previous remark, the characteristic map
χ : S1 −→ S1 ∨ S1 can be described symbolically as:

χ = bab−1a−1

and which is further pictured in Figure 3.

q

the description of  the

a a

b

b
b

b

a a

b a characteristic map
ï1

b a b  a   
ï1

Figure 3.
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Example 6.12. A similar discussion applies to the Moebius band (section 4 in the first
chapetr). The resulting space B, shown in Figure 4) is made of the three segments a, b and c
on the Moebius band (hence B is the “boundary” of the Moebius band plus the segment a).
The space B alone (as a topological space itself) is homeomorphic to the space consitsting of
the circle S1 together with a segment joining the north and the south pole (see the picture). In
conclusion, the Moebius band can be obtained from this space by attaching a 2-cell.

aa

b

s

n

s

n
a, b and c together form a space B homeomorphic to:

a cb

a

cb

aa

cb

c

Figure 4.

The characteristic map can be described in symbols as:
χ = caba

(on the picture, put the directions for b and c so that this formula is correct!). This, as a map
defined on S1, is further pictured in Figure 5.

the direction of the path followed by the characteristic map

B

a cb

a

cb

aa

cb

c

b

aa

Figure 5.

Exercise 6.2. Show that S2 can be obtained by attaching a 2-cell to the interval [0, 1]. Describe
at least two different ways of realizing this (and explain the characteristic maps).

(Hint: see Figure 12 and Figure 13 in Chapter 1).
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Exercise 6.3. Do the same for P2 (see Section 7 of the first chapter).

Exercise 6.4. Do the Klein bottle.

Exercise 6.5. Show that P2 can be obtained by attaching a 2-cell to the the Moebius band.

Example 6.13. Consider the sphere Sn. We already know that Sn = Dn/∂Dn, i.e. Sn

can be obtained from Dn by gluing all the points of ∂Dn = Sn−1 together into a single point
(See Section 3 and Figure 11 in the first chapter and Example 3.24.iii in the previous chapter).
Hence we can apply the previous lemma. The resulting space B clearly consists of one point
only, hence Sn can be obtained from one point by adjoining an n-cell (the attaching map is, of
course, just the constant map).

Example 6.14. Consider the projective space Pn. We recall that Pn “is equal to” the space
Dn/ ∼ obtained by identifying (gluing) the antipodal points on ∂Dn = Sn−1 (see e.g. Exercise
1.27 in the first chapter). Hence, we can apply the previous lemma. The space B resulting from
the lemma will be Sn−1/ ∼- the space obtained from Sn−1 by gluing its antipodal points. This
is just another description of the projective space and we see that B “is equal to” Pn−1. In
conclusion, Pn can be obtained from Pn−1 by adjoining an n-cell.

Exercise 6.6. In the previous example, “is equal to” really means that “is homeomorphic to”.
Via the sequence of “is equal to” that is used in the example, it appears that Pn−1 is a subspace
of Pn. Write out the “equalities” (i.e. homeomorphisms) that we used to conclude that the way
we see Pn−1 as a subspace of Pn is via the canonical inclusion

Pn−1 ↪→ Pn

which associates to a line l inside Rn the line inside Rn+1 = Rn × R given by

l × {0} = {(x, 0) : x ∈ l} ⊂ Rn+1.

3. The characteristic map

Note that, using Proposition 6.6, we see that the characteristic map of e can be viewed as a map

χe : Sn−1 −→ A.

The role of the characteristic map is that “it describes the way that A and e interact inside X”, or,
equivalently, that it describes “the relationship between the inclusion i : A ↪→ X and the defining map
h : Dn −→ X . This relationship is h|Sn−1 = i◦χe which should be interpreted as a commutative diagram:

Sn−1inclusion!!

χe

""

Dn

he

""
A

i !! X

But the real reason that the characteristic map χe is important comes from the fact that X can be
reconstructed from the subspace A and the characteristic map χe. The aim of this section is to prove the
following:

Theorem 6.15. For any Hausdorff space A and any continuous map χ : Sn−1 −→ A, there is a space
X which is unique up to homeomorphism, with the property that X is obtained from A by adjoining an
n-cell with characteristic map equal to χ.

We first estabilish the following universal property from which we will be able to deduce unqueness by
a formal argument.
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Proposition 6.16. (the universal property) Assume that X is obtained from A by adjoining an n-cell
e with defining map he : Dn −→ X. Let Y be another topological space. Then a map

f : X −→ Y

is continuous if and only if
f |A : A −→ Y, f ◦ he : Dn −→ Y

are continuous. Moreover, the correspondence

f &→ (f |A, f ◦ he)

defines a 1-1 correspondence between
• continuous maps f : X −→ Y
• pairs (fA, fe) with fA : A −→ Y and fe : Dn −→ Y continuous satisfying fA ◦ χe = fe|Sn−1 .

Sn−1 !!

χe

""

Dn

he

""
fe

##!
!!

!!
!!

!!
!!

!!
!!

A
i !!

fA

$$""""""""""""""""" X
f

%%#
##

##
##

#

Y

Proof. If f is continuous, it is clear that f |A and f ◦ he are continuous. For the converse, assume
that f |A and f ◦ he are continuous. To show that f is continuous, we will show that, for B ⊂ Y closed,
f−1(B) is closed in X . Note that

f−1(B) ∩ A = (f |A)−1(B), f−1(B) ∩ e = he((f ◦ he)−1(B)).

From the first equality and the continuity of f |A, we deduce that f−1(B)∩A is closed in A, hence (since
A is closed in X), also in X . On the other hand, (f ◦ he)−1(B) is closed in Dn, hence compact. Then
he((f ◦he)−1(B)) is a compact inside the Hausdorff X , hence it is closed in X . Since f−1(B) is the union
of two closed subspaces of X (namely f−1(B)∩A and f−1(B)∩e), it is itself closed in X . This concludes
the proof of the equivalence.

For the second part we remark that, given fA and fe, the conditions

fA = f |A, fe = f ◦ he

determine f uniquely because X = A ∪ Im(he):

f(x) = fA(x) if x ∈ A, f(x) = fe(v) if x = he(v) ∈ e.

Moreover, under the assumption fA ◦ χe = fe|Sn−1 , the previous formulas define f un-ambiguously: if x
is both in A and of type he(v) with v ∈ Dn, then fA(x) = fe(v). Indeed, since he(v) ∈ A, v must be in
Sn−1, hence we can write x = χe(v) and we can use the assumption. The continuity of the maps involved
follows from the first part. !

The fact that X only depends on A and χe is even stronger indicated by the following:

Corollary 6.17. Let A be a Hausdorff space and let χ : Sn−1 −→ A be a continuous map.
For i ∈ {1, 2}, assume that Xi is a space which is obtained from A by adjoining an n-cell ei,
and let χi : Sn−1 −→ A be the characteristic map of ei. If χ1 = χ2, then X1 and X2 are
homeomorphic.

Proof. Let χ = χ1 = χ2, and let hi be the maps defining the n-cell ei. We apply the last part of the
previous proposition to X = X1, Y = X2 and to the pair (i2, h2), where i2 : A −→ X2 is the inclusion.
We find that there is one and only one continuous map f1,2 : X1 −→ X2 continuous such that

f1,2i1 = i2, f2,1h1 = h2.

These conditions mean that: for a ∈ A, f1,2(a) = a, while for y ∈ h1(Dn), writing y = h1(x), f1,2(y) =
h2(x). Since X1 = A∪he1(Dn), these formulas do define f1,2 uniquely, but what the universal property is
telling us is that f1,2 is well defined and it is continuous. Of course, this could have been checked directly
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(and that is precisely what we have done when proving the universal property), but the hole point of the
“universal property philosophy” is that everything can be done by using this property alone (and not the
fact that Xi is obtained from A by adjoining and n-cell).

Leaving aside the “philosophical arguments”, and choosing one of the two (rather equivalent) ways of
defining the map f1,2, we end up with our continuous map f1,2 : X1 −→ X2. Similarly (by exchanging
the role of X1 and X2), we obtain a map f2,1 : X1 −→ X2. Our maps fit into the following diagram:

Sn−1 !!

χe

""

Dn

h1

""
h2

##!
!!

!!
!!

!!
!!

!!
!!

h1

&&$
$$

$$
$$

$$
$$

$$
$$

$$
$$

$$
$$

$$
$

A
i1 !!

i2

$$"""""""""""""""""

i1

''%%%%%%%%%%%%%%%%%%%%%%%%%%%% X1

f1,2

%%&
&&

&&
&&

&

X2

f2,1

%%#
##

##
##

#

X1

We claim that f1,2 and f2,1 are inverse to each other, i.e. f1,2f2,1 = IdX1 and f2,1f1,2 = IdX2 . If
we choose to use the explicit description of f1,2 and f2,1, this is immediate and concludes the proof.
Alternatively (but equivalently!), these relations are, again, a consequence of the universal property. For
instance, using the formulas that f1,2 and f2,1 satisfy (by their definition via the universal property), we
deduce that f := f1,2f2,1 : X1 −→ X2 satisfies:

f ◦ i1 = f2,1 ◦ i2 = i1 = IdX1 ◦ i1,

f ◦ he1 = f2,1 ◦ he2 = he1 = IdX1 ◦ he1 .

Using now the universal property for X = X1, Y = X1 (the uniqueness part!), we deduce that f = IdX1 .
Similarly, f2,1f1,2 = IdX2 . This proves that X1 and X2 are homeomorphic (... for any two spaces X1 and
X2 which satisfy the universal property). !

Finally, we show how to reconstruct X from the subspace A and the characteristic map χe. So, let’s
start with a Hausdorff topological space A and a continuous map

χ : Sn−1 −→ A.

We construct our space in two steps.
• We consider the disjoint union

A
∐

Dn.

As a set, it is the union of disjoint copies of A and Dn. Any subset of A
∐

Dn is of type U
∐

V
with U ⊂ A and V ⊂ Dn. On A

∐
Dn we consider the topology consisting of those subsets

U
∐

V with U open in A and V open in Dn.
• We consider the quotient of A

∐
Dn obtained by identifying each point x ∈ Sn−1 with χ(x) ∈ A;

we denote by A ∪χ Dn the result. Hence

A ∪χ Dn = A
∐

Dn/ ∼,

where ∼ is the smallest equivalence relation in A
∐

Dn with the property that

x ∼ χ(x), ∀ x ∈ Sn−1.

Remark 6.18. Note that the construction of X is inspired by the universal property; actually, X is
constructed by “brute force”, forcing the universal property to hold. To explain this, we remind that
maps out of X (i.e. defined on X) should correspond to certain pairs of maps, one out of A and one
out of Dn. The first step (taking the disjoint union of A and Dn) takes care of this property. However,
the inclusion of A into the disjoint union, and the inclusion of Dn into the disjoint union (a map out of
A together with a map out of Dn!) do not satisfy the formula appearing in the universal property (for
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x ∈ Sn−1, x itself and χ(x) ∈ A are distinct elements in the disjoint union!). The second step in our
construction forces the desired formula (by identifying x with χ(x)).

Some more explanations now.
• First about A. In the first step, A is a subspace of A

∐
Dn. Passing to the quotient A ∪χ Dn,

note that the equivalence class of an element a coming from A can be safely denoted by the
same symbol a (two elements coming from A are equivalent only if they are equal!). In this
way we view A as a subset of A ∪χ Dn.

• Now Dn. As before, Dn is a subspace of A
∐

Dn. Passing to the quotient, we obtain a map
which associates to x the equivalence class of x, and which we denote by

h : Dn −→ A ∪χ Dn.

In other words, h is the restriction of the quotient map π : A
∐

Dn −→ A ∪χ Dn to Dn. The
map h will be the defining map for our n-cell.

• In particular, we define the n-cell

e := h(
◦
D

n

) ⊂ A ∪χ Dn.

Exercise 6.7. Show that A is a subspace of A ∪χ Dn, i.e. the topology induced on A (the restricted
topology) coincides with the original topology of A.

Exercise 6.8. Show that the restriction of h to
◦
D

n

defines a homeomorphism between
◦
D

n

and e.

Exercise 6.9. We now know that A ∪χ Dn is obtained from A by adjoining the n-cell e. Check that
the characteristic map of e coincides with χ.

Exercise 6.10. Haven’t we forgotten something? Prove that A ∪χ Dn is Hausdorff.

Putting together everything, we deduce Theorem 6.15.

4. Adjoining more cells; cell complexes

Definition 6.19. Let X be a Hausdorff space and let A ⊂ X be closed. We say that X is
obtained from A by adjoining n-cells if we are given n-cells ei ⊂ X (with i running in an index
set I) such that

X = A ∪ (∪i∈Iei)
and the following conditions are satisfied:

(1) A ∩ ei = ∅ for all i, ∂cell(e) ⊂ A and ei ∩ ej = ∅ for all i /= j.
(2) F ⊂ X is closed if and only if F ∩ A is closed, and F ∩ ei-closed for all i ∈ I.

Remark 6.20. It follows that
• ei is open in X (for this one uses the last condition for F = X − ei).
• since ei’s are open and ei ∩ ej = ∅ for i /= j, we deduce that ei ∩ ej = ∅ for all i /= j

(indeed, X − ej will be a closed set containing ei, hence also its closure).
Hence the characteristic maps χi of ei will be continuous maps

χi : Sn−1 −→ A.

As in the case of one n-cell, the characteristic maps together with A determine X uniquely
(the arguments we have presented before extend to an arbitrary number of cells without much
trouble).

Definition 6.21. Let X be a Hausdorff space. A cell decomposition of X is a sequence of
closed subspaces

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ X2 ⊂ . . .

with:
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• ∪nXn = X.
• For each n ≥ 0 integer, Xn is obtained from Xn−1 by attaching n-cells (the n-cells,

together with the defining maps, are part of the structure!).
• A subset F ⊂ X is closed if and only if F ∩ Xn is closed for all n ≥ 0.

The space X together with a cell decomposition is called a cellular space (note that the cells
themselves, together with their defining maps, are viewed as part of the structure). The subspace
Xn is called n-skeleton of X.

Given a cell complex X which is compact, define the Euler number of the cell complex X as

χ(X) = #(0 − cells) − #(1 − cells) + #(2 − cells) − . . . .

Remark 6.22. Hence, for each n, Xn is obtained from Xn−1 by adjoining a family of n-cells:

{en
i : i ∈ In}

(In- a set indexing the n-cells). Note that

X0 = {e0
i : i ∈ I0},

is a closed set of points in X,
X = ∪n,i∈Inen

i ,

and each en
i is open in Xn, but not in X.

The following exercise explains the compactness condition we added when defining the Euler
number of a cell complex.

Exercise 6.11. Let X be a cell complex. Show that
the total number of cells is finite if and only if X is compact.

Example 6.23. Given a topological space X, it may admit many different cell decompositions.
For instance, for X = S1, we know that S1 can be obtained from a point by adjoining a 1-cell,
i.e. it has a cell decomposition with one 0-cell and one 1-cell. However, it can also has a cell
decomposition with two 0-cells and two 1-cells, or one with three 0-cells and three 1-cells, etc
(see Figure 6).

We would also like to mention here that, although the definition of χ(X) uses a cell-decomposition
of X, it does not depend on the cell-decomposition one uses, but only X as a topological space
X. This is a non-trivial result of algebraic topology which will not be proven in this course.

Example 6.24. Here is a cell-decomposition of R (figure 7) the zero cells are the integers,
while the one cells are

en = (n, n + 1),
one for each integer n, with defining map

hn : D1 = [−1, 1] −→ R, t &→ t + 2n + 1
2

.

Exercise 6.12. Deduce Euler’s formula: for any polyhedra, V −E+F = 2 where V = number
of vertices, E = number of edges, F = number of faces.

Exercise 6.13. Describe a cell-decomposition of the plane R2.

Exercise 6.14. Describe a cell decomposition and compute the Euler number of the space X
consisting of two circles joined by a line (Figure 8). Do the same for the space drawn in Figure
9.

And also for the space consisting of the sides and the diagonal of a square (the left hand side
of Figure 10).
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c

b

a

and three 1ïcells (the arches a, b and c)
A cell decomposition of the circle with three 0ïcells (p, q and r)

r

q

p

Figure 6.

ï1 0 1 2 n n+1

  .  .  .
en

Cell decomposition of the real line

Figure 7.

Figure 8.

Exercise 6.15. Describe a cell decomposition of the cylinder, C = S1 × [0, 1].

Example 6.25. Consider B to be a bouquet of two circles (two unit circles touching each
other in one point). It is obtained from a point (the common point) by attaching two 1-cells
(the connected components of the space that remains after removing the point).

On the other hand, we know that by (suitably) attaching a 2-cell to X one ends up with the
torus T 2 (see Example 6.11). Hence T 2 has a cell decomposition with one 0-cell (the point), two
1-cells, and a 2-cell (see Figure 11). Symbolically, we write

T 2 = c0 ∪ c1 ∪ c1 ∪ c2.
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Figure 9.

                    a bouquet of four circlesX

Figure 10.

Cellular decomposition of the torus 

one 2ïcell

two 1ïcells 

one 0ïcell

Figure 11.

Example 6.26. Consider the space B which, after adjoining a 2-cell, gives the Moebius band
M (see Example 6.12). This is obtained the south and the north pole by adjoining three 1-cells,
as shown in Figure 12: the 0-cells are denoted n and s there, while the 1-cells are a, b and c.
Hence the Moebius band has a cell decomposition with two 0-cells, three 1-cells and one 2-cell
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(see the picture):
M = c0 ∪ c0 ∪ c1 ∪ c1 ∪ c1 ∪ c2.

Moebius band: two 0ïcells (n and s), three 1ïcells (a, b and c), one 2ïcell.

B is:

s

n

s

n

a cb

a

cb

aa

cb

c

b

aa

Figure 12.

Exercise 6.16. Do the Klein bottle?

Exercise 6.17. Show that T 2 and S2 are not homeomorphic. Do the same for S2 and S3.

Exercise 6.18. For P2:
(i) describe a cell decomposition of type

c0 ∪ c0 ∪ c1 ∪ c1 ∪ c1 ∪ c2 ∪ c2.

(ii) can you find one of type

c0 ∪ c0 ∪ c0 ∪ c1 ∪ c1 ∪ c1 ∪ c1 ∪ c2 ∪ c2 ∪ c2?

(Hint for (i): Moebius).

Exercise 6.19. Find a cell decomposition of the annulus

A(R, r) = {(x, y) ∈ R2 : r2 ≤ x2 + y2 ≤ R2}.

Then generalize this to arbitrary dimensions.

Exercise 6.20. Show that the annulus A(R, r) is not homeomorphic to the closed disk D2.

Exercise 6.21. Consider the spaces from Figure 13.
(a) For each of these spaces, describe a cell decomposition (indicate it on the picture).
(b) Which of these spaces are homeomorphic among them? Explain your answer.
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Y Z

(a sphere together with a line (a sphere together with a line (a sphere together with a line
joiniing the north and the 
south pole, half of which is outside

joining the north and thejoininig the north and the
south pole, and which stays
inside the ball)

south pole, and which stays 
outside the ball) the ball, and half of which is

inside the ball)

X

Figure 13.

Example 6.27. From example 6.13 we know that
Sn = c0 ∪ cn

(i.e. the n-sphere has a cell decomposition with one 0-cell and one n-cell). This can be pictured
as shown in the first picture in Figure 14. However, there is yet another interesting cell decom-
position of Sn. We already know that the two (open) semi-spheres Sn

+ and Sn
− are n-cells, hence

Sn can be obtained from Sn−1 by adjoining two n-cells (see Figure 14).

S : one 0ïcell and one nïcell 
two nïcells

S    obtained from S      by adjoining
nï1nn

nï1

ï
n

+
n

S

S

S

Figure 14.

One could now use the previous cell decomposition applied to Sn−1 to deduce that

Sn = c0 ∪ cn−1 ∪ cn ∪ cn.

Alternatively, one could iterate our argument and deduce that Sn can be obtained from S0 (two
points!) by adjoining two 1-cells, and then two 2-cells, etc, and at the end two n-cells:

Sn = c0 ∪ c0 ∪ c1 ∪ c1 ∪ . . . ∪ cn ∪ cn.

Example 6.28. The way we expressed Sn as obtained from Sn−1 by adjoining two n-cells
(previous example) is interesting when looking at the projective space Pn. Realizing Pn as
Sn/Z2, note that the two cells will be identified in the quotient, and will define a single n-cell in
Pn. Since Sn−1 goes in the quotient to a copy of Pn−1, we deduce that Pn can be obtained from
Pn−1 by adjoining an n-cell. One can check that this coincides with the decomposition that we
have discussed in Example 6.14- this is a matter of unraveling the definitions (exercise).

Example 6.29. Since Pn can be obtained from Pn−1 by adjoining and n-cell, continuing
inductively, we find a cell decomposition of Pn of type

Pn = c0 ∪ c1 ∪ . . . ∪ cn.
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Exercise 6.22. Consider the square X = [0, 1] × [0, 1] and let A be the subset consisting of
its corners:

A = {(0, 0), (0, 1), (1, 0), (1, 1)}.
Consider the quotient space:

Y = X/A

(with the induced quotient topology).
(i) Make a picture of Y .
(ii) PROVE that, indeed, Y can be embedded in R3.
(iii) Describe a cell-decomposition of Y .

Exercise 6.23. Draw a picture, describe a cell decomposition and compute the Euler number
of the space X which is the one point compactification of the space consisting of the xOy plane
together with the upper half plane of the unit sphere (Figure 15).

XY Axis

Figure 15.

Exercise 6.24. Draw a picture, describe a cell decomposition and compute the Euler number
of the space X which is the one point compactification of a plane with a handle (i.e. the XOY
plane together with a segment whose end points belong to the plane, but which does not intersect
the plane in any other point). (Figure 16).

Figure 16.

Exercise 6.25. Draw a picture, describe a cell decompositionand compute the Euler number
of the space X which is the one point compactification of the space consisting of the xOy plane
together with the upper half of the Z axis (Figure 17).

Exercise 6.26. Consider an octogon X in the plane and the equivalence relation ∼ on X
which identifies the sides of ∂X as shown in the Figure 18.

(1) Show that ∂X/ ∼ is homeomorohic to a bouquet S1 ∨ S1 ∨ S1 ∨ S1 of four circles.
(2) Show that X/ ∼ us homeomorphic to the double torus T2. (Figure 19).
(3) Describe a cell decomposition of the double torus T2.
(4) Compute the Euler number of the double torus.
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Figure 17.

b2

a2

b2

a2

b1

a1

b2

a1

Figure 18.

Figure 19.

Exercise 6.27. Consider the unit circle

S1 = {z ∈ C : |z| = 1}.
Let n ≥ 1 integer and define

fn : S1 → S1, fn(z) = zn.

Let Xn be the space obtained from S1 by attaching a two cell with characteristic map fn. Describe
Xn as a quotient of D2. Do you recognize X2?



CHAPTER 7

The fundamental group

1. Homotopies and homotopy equivalences

Definition 7.1. Let X and Y be topological spaces. We denote by Cont(X,Y ) the set of all
continuous maps from X to Y . Given f0, f1 ∈ Cont(X,Y ), a homotopy between f0 and f1 is a
continuous map

H : X × [0, 1] −→ Y

with the property that
H(x, 0) = f0(x), H(x, 1) = f1(x),

for all x ∈ X. We say that f0 and f1 are homotopic, and we write

f0 ∼ f1,

if there exists a homotopy H between f0 and f1.

Remark 7.2. A homotopy between f0 and f1 should be viewed as a “continuous deformation”
of f0 into f1: the homotopy H defines for each t ∈ [0, 1] a continuous map Ht ∈ Cont(X,Y ),

Ht : X −→ Y, x &→ H(t, x),

and the family {Ht} goes from H0 = f0 to H1 = f1.

Proposition 7.3. Given topological spaces X, Y , Z,
(i) The homotopy relation ∼ is an equivalence relation on Cont(X,Y ).
(ii) If f0, f1 ∈ Cont(Y,Z) are homotopic, and g0, g1 ∈ Cont(X,Y ) are homotopic, then f0g0

and f1g1 are homotopic.

Proof. We first check (i). For any f : X −→ Y we have f ∼ f via the homotopy h(x, t) =
f(x). If f ∼ g via the homotopy H, then g ∼ f via the homotopy H− defined by H−(x, t) =
H(x, 1 − t). Assume now that f ∼ g via a homotopy H and g ∼ h via a homotopy H ′. Then
we define H ′′ by

H ′′(x, t) =
{

H(x, 2t) if 0 ≤ t ≤ 1
2

H ′(x, 2t − 1) if 1
2 ≤ t ≤ 1. .

Clearly, it satisfies H ′′
0 = f , H ′′

1 = h (why is it continuous?). !
Example 7.4. If Y = Rn, any two continuous maps f0, f1 : X −→ Rn are homotopic. Indeed,

H(x, t) = (1 − t)f0(x) + tf1(x)

is a homotopy between f0 and f1. The same happens if Rn is replaced by any C ⊂ Rn which is
convex (i.e. tx + (1 − t)y ∈ C for all x, y ∈ C and all t ∈ [0, 1]).

Example 7.5. The map

f : R2 − {0} −→ R2 − {0}, x &→ x

||x||
99
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is homotopic to the identity map. For this we consider

H(x, t) = (1 − t)
x

||x|| + tx

(which takes values in R2 − {0}!). See Figure 1.

   minus a point is homotopic equivalent to the circle|R 2

Figure 1.

Definition 7.6. We say that a continuous function f : X −→ Y is a homotopy equivalence
if there exists a continuous function g : Y −→ X such that

g ◦ f ∼ IdX , f ◦ g ∼ IdY .

The map g will be called a homotopy inverse of f . Given two topological spaces X and Y , we
say that they are homotopic equivalent if there exists a homotopy equivalence f : X −→ Y .

We say that a space X is contractible if it is homotopic equivalent to the one-point space (a
topological space with only one point).

Example 7.7. Example 7.4 implies that Rn is contractible. Indeed, taking an arbitrary
X = {x0} with x0 ∈ Rn arbitrary, f : Rn −→ X the constant map and g : X −→ Rn the
inclusion, f ◦ g is the identity, while g ◦ f : Rn −→ Rn is homotopic to (any other map hence
also to) the identity. The same applies to any convex subset C ⊂ Rn.

Exercise 7.1. Give an example of a subspace C ⊂ Rn which is not convex but is contractible.

Regarding contractibility, one has the following characterization.

Exercise 7.2. For a topological space C, show that the following are equivalent:
(i) C is contractible.
(ii) The identity map IdC : C −→ C is homotopic to a constant map.
(iii) For any other topological space X, any two continuous maps f, g : X −→ C are homo-

topic.
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Example 7.8. Similar to the previous example, R2 − {0} is homotopic equivalent to S1. To
see this, we consider the inclusion i : S1 −→ R2 and the map

r : R2 − {0} −→ S1, r(x) =
x

||x|| .

Clearly, r ◦ i = IdS1. We still have to check that

i ◦ r : R2 − {0} −→ R2 − {0},
is homotopic to the identity map, but this is precisely the map from Example 7.5.

Note that the same argument shows that D2 − {0} is homotopic equivalent to S1. Similarly,
Rn − {0} and to Dn − {0} are homotopic equivalent to Sn−1 for any n ≥ 1 integer, with the
homotopy equivalences given by the inclusion of Sn−1.

Example 7.9. Similarly, the space obtained by removing two points from R2 is homotopic
equivalent to a bouquet of two circles, as indicated in Figure 2.

|R
2
   minus two points is homotopic equivalent to a bouquet of two circles

a b

Figure 2.

Exercise 7.3. Show that the cylinder C = S1 × [0, 1] is homotopic equivalent to a circle.
Similarly, the Moebius band is homotopic equivalent to a circle. Try to write down the explicit
formulas.

Exercise 7.4. More generally, show that for any space X, the associated cylinder Cyl(X) is
homotopic equivalent to X.

Exercise 7.5. Show that, for any space X, the cone of X, C(X), is contractible.

Exercise 7.6. Show that the spaces in Figure 3 are homotopic equivalent.

Exercise 7.7. Go back to Exercise 6.14. Show that the spaces from Figure 8 and Figure 9
are both homotopic equivalent to a bouquet of two circles. Then show that the two spaces drawn
in Figure 10 are homtopic equivalent.

Exercise 7.8. Consider the cylinder C = S1 × [0, 1]. Show that
(1) For any p = (x, t) ∈ C with t /∈ {0, 1}, C − {p} is homotopic equivalent to S1 ∨ S1.
(2) For any p = (x, t) ∈ C with t ∈ {0, 1}, C − {p} is homotopic equivalent to S1.

Exercise 7.9. Show that, after removing two points from the sphere, the resulting space is
homotopic equivalent to a circle.
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U0

V0

equivalent to:

equivalent to:

is homotopic  

is homotopic  

Figure 3.

Example 7.10. Similar to Example 7.8, the space obtained from the square by removing one
point from its interior is homotopic equivalent to its boundary, hence (also) to S1. See Figure
4. This also follows directly from Example 7.8 because the square is homeomorphic to the disk.
More generally, for any convex subspace X ⊂ Rn and any interior point x0 ∈

◦
X, one can prove

Figure 4.

that X − {x0} is homotopic equivalent to Sn−1.

Exercise 7.10. Show that the space after removing three points from the plane is homotopic
equivalent to a bouquet of three circles.

Example 7.11. The torus minus a point is homotopic equivalent to a bouquet of two circles.
To see this, recall first that the torus can be obtained from the square by gluing its opposite
sides. Hence the torus minus a point can be obtained from the same procedure, but starting
with X which a square minus a point in its interior. We have remarked that this last space is
homotopic equivalent to a circle. Onthe other hand, this homotopy equivalence preserves the
boundary of the square, hence it induces a homotopy equivalence between the space X/R (X is
the square minus a point, and R is the equivalence relation encoding the gluing) and S1/R- the
space obtained from S1 by performing the induced gluings. The result is S1 ∨ S1. See Figure 5.

Exercise 7.11. What if we remove a small disk from the torus?
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q

a a

b

b

a

b

b

a

b 
b

a

p

Figure 5.

Exercise 7.12. Prove that the space obtained by removing a point from P2 is homotopic
equivalent to a circle.

Exercise 7.13. What happens for the Moebius band?

More generally, one has the following.

Exercise 7.14. Assume that X is obtained from A by adjoining an n-cell. Prove that, for
any point x ∈ X − A, the inclusion

i : A −→ X − {x}

is a homotopy equivalence. Write down the complete proof carefully.

Exercise 7.15. Go back to Exercise 6.21. Which one of the spaces there do you think is
homtopic equivalent to the space W from Figure 6?

W:

(a sphere together with 

a circle touching the sphere

in the north pole)

Figure 6.

Remark 7.12 ((The homotopy category)). Some of the constructions here can be nicely interpreted
using the language of “category theory”. Precisely, a category C consists of

• certain objects of C, which we will denote by capital letters (e.g. X , A, etc).
• for any two objects X and Y , a set of HomC(X, Y ) which are called morphisms (or arrows)

from X to Y , and which we will denote by small letters. Given an arrow f ∈ HomC(X, Y ), we
also write f : X −→ Y .
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• for any three objects X , Y and Z, a map

HomC(Y, Z) × HomC(X, Y ) −→ HomC(X, Z),

which is called the composition of arrows, and which is denoted by (a, b) &→ a ◦ b. The compo-
sition is required to satisfy:

(a ◦ b) ◦ c = a ◦ (b ◦ c),

(whenever the composition is defined).
• for any object X , there is a specified arrow IdX ∈ HomC(X, X), called the identity arrow of X .

It is required that, for any a ∈ HomC(X, Y ),

a ◦ IdX = IdY ◦ a = a.

Each category C has its own notion of isomorphisms: we say that a morphism a ∈ HomC(X, Y ) is an
isomorphism if there exists b ∈ HomC(Y, X) such that

b ◦ a = IdX , a ◦ b = IdY .

Standard examples are:
(i) The category of sets has as objects the sets, the morphisms in this category between two sets

X and Y are the usual functions f : X −→ Y , and the composition is the usual composition of
functions. The isomorphisms of this category correspond to bijective functions.

(ii) The category of groups has as objects all groups, the morphisms in this category between two
groups G and H are the usual group homomorphisms f : G −→ H , and the composition is the
usual composition of maps. The isomorphisms in this category correspond to the usual group
isomorphisms.

(iii) The category of topological spaces has as objects the topological spaces, the morphisms between
two space X and Y are the continuous maps f : X −→ Y and, again, the composition is the
usual composition of maps. The isomorphisms of this category are the homeomorphisms.

Back to the previous proposition, for any two spaces X and Y we consider the set of homotopy classes
of maps from X to Y :

[X, Y ] := Cont(X, Y )/ ∼ .

For f : X −→ Y continuous, we denote by [f ] ∈ [X, Y ] the equivalence class of f . The proposition
ensures that there is a well-defined map

[Y, Z] × [X, Y ] −→ [X, Z], ([f ], [g]) &→ [f ] ◦ [g] := [f ◦ g]

What we have really done was to define a new category, called the homotopy category of spaces: it has
as objects all topological spaces, while the set of morphisms from X to Y is [X, Y ] with the composition
that we have just described. In this language, two spaces are homotopic equivalent if and only if they
are isomorphic in the homotopy category,

2. Path homotopies

Recall that a path in a topological space X is a continuous map

γ : [0, 1] −→ X.

The point x = γ(0) is called the initial (or start) point of γ, while the point y = γ(1) is called
the final (or end) point of γ. We also say that γ is a path (in X) from x to y. We denote by

P (X,x, y)

the set of all paths in X from x to y.

Definition 7.13. Given a space X, x, y ∈ X, we say that two paths

γ, γ′ ∈ P (X,x, y)

are path homotopic, and we write
γ ∼p γ′
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if there exists a homotopy H between γ and γ′ such that each Ht(−) = H(−, t) : [0, 1] −→ X is
a path from x to y.

We say that a path γ ∈ P (X,x, x) is null-homotopic if it is path homotopic to the constant
path cx ∈ P (X,x, x) (cx(t) = t for all t).

Remark 7.14. A path homotopy H should be viewed a “continuous deformation” of γ into
γ′ through paths from x to y. Explicitly,

H : [0, 1] × [0, 1] −→ X

must satisfy
H(s, 0) = γ(s),H(s, 1) = γ′(s),

H(0, t) = x,H(1, t) = y.

for all s, t ∈ [0, 1].

Proposition 7.15. Let X be a space, x, y ∈ X. The path homotopy relation ∼p is an equiv-
alence relation on P (X,x, y).

Proof. One just remarks that all the homotopies in the proof of Proposition 7.3 are path-
homotopies. !

How can one “compose” paths?

Definition 7.16. Let X be a topological space, x, y, z ∈ X. For γ ∈ P (X,x, y) and γ′ ∈
P (X, y, z), we define the concatenation of γ and γ′ as the new path γ ∗ γ′ ∈ P (x, z) defined by

(γ ∗ γ′)(s) =
{

γ(2s) if 0 ≤ s ≤ 1
2

γ′(2s − 1) if 1
2 ≤ s ≤ 1. .

Note that, by the pasting lemma (Lemma ??), γ ∗ γ′ is continuous.
Note that the concatenation of paths does not behave “like a composition”- for instance, it is

not associative. Things become much nicer is we pass to homotopy classes of paths.

Definition 7.17. Given a space X and x, y ∈ X, we define the set of homotopy classes of
paths from x to y as

Π(X,x, y) := P (X,x, y)/ ∼p .

For γ ∈ P (X,x, y), the induced equivalence class is denote by [γ] ∈ Π(X,x, y).

Proposition 7.18. Let X be a topological space. Then, for any x, y, z ∈ X, the map

Π(X,x, y) × Π(X, y, z) −→ Π(X,x, z),
([γ], [γ′]) &→ [γ] ∗ [γ′] := [γ ∗ γ′]

is well defined. Moreover
(1) For x ∈ X, denote by cx ∈ P (X,x, x) the constant path, and 1x = [cx] ∈ Π(X,x, x).

Then for any a ∈ Π(X,x, y),

1x ∗ a = a ∗ 1y = a.

(2) Given a = [γ] ∈ Π(X,x, y), define a−1 ∈ Π(X, y, x) as follows: write a = [γ] with
γ ∈ P (X,x, y) and put a−1 = [γ−] where γ− ∈ P (X, y, x) is given by γ−(t) = γ(1 − t).
Then a−1 is well-defined and

a ∗ a−1 = 1x, a−1 ∗ a = 1y.

(3) The new operation ∗ is associative:

(a ∗ b) ∗ c = a ∗ (b ∗ c),

for all a ∈ Π(X,x, y), b ∈ Π(X, y, z), c ∈ Π(X, z, u) (with x, y, z, u ∈ X).
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Proof. We will use the following construction: for a, b ∈ R, we consider the affine function
la,b which sends a to 0 and b to 1:

la,b : [a, b] −→ [0, 1], la,b(s) =
l − a

b − a
.

With the help of this, if we have a path γ : [0, 1] −→ X, and we want to reparametrize it to
obtain a path defined on [a, b] which has the same image as γ, we will consider

γ ◦ la,b : [a, b] −→ X, γa,b(s) = γ(
l − a

b − a
).

For the first part of the theorem, write a = [γ], and we have to show that cx ∗ γ ∼p γ,
γ ∗ cy ∼p γ. We prove the first one (the second one being similar). To produce paths ht with
h0 = γ, h1 = cx ∗ γ, look first at cx ∗ γ:

(cx ∗ γ)(s) =
{

x if 0 ≤ s ≤ 1
2

γ(2s − 1) if 1
2 ≤ s ≤ 1 .

We will construct Ht by considering the points pt ∈ [0, 1] and defining Ht|[0,pt] to be constant
equal to x, and Ht|[pt,1] to be γ reparametrized (i.e. γ1,pt described above). We need to choose
pt so that p0 = 0 (so that H0 = γ) and p1 = 1

2 (so that H1 = cx ∗ γ). The simples choice is the
linear one: pt = t

2 , which produces the homotopy

H(s, t) = Ht(s) =
{

x if 0 ≤ s ≤ t
2

γ(2s−t
2−t ) if t

2 ≤ s ≤ 1 .

Next, for γ ∈ P (X,x, y), we have to show that γ ∗ γ− ∼p cx and γ− ∗ γ ∼p cy. We prove
the first one (the second one being similar). The intuition is the following: (γ ∗ γ−)(s) covers
γ([0, 1]) when s covers the first half of [0, 1], and then comes back covering the same path on
the second half of the interval. To construct the homotopy Ht, we consider the path which, in
the first half of the interval covers γ([0, t]) and then comes back. With this intuition, we define

H(s, t) =
{

γ(2st) if 0 ≤ s ≤ 1
2

γ(2(1 − s)t) if 1
2 ≤ s ≤ 1

which realizes the desired path homotopy.
For the last part of the theorem, assume that a = [γ], b = [γ′], c = [γ′′], and consider the

paths H0 = (γ ∗ γ′) ∗ γ′′, H1 = γ ∗ (γ′ ∗ γ′′). Hence

H0(s) =







γ(4s) if 0 ≤ s ≤ 1
4

γ′(4s − 1) if 1
4 ≤ s ≤ 1

2
γ′′(2s − 1) if 1

2 ≤ s ≤ 1
,

H1(s) =







γ(2s) if 0 ≤ s ≤ 1
2

γ′(4s − 2) if 1
2 ≤ s ≤ 3

4
γ′′(4s − 3) if 3

4 ≤ s ≤ 1
.

Remark that both H0 and H1 are of the following type. One divides the interval [0, 1] into three
intervals, by using two numbers p and q (0 < p < q < 1). On the first interval, i.e. on [0, p], one
consider γ reparametrized by l0,p, (which, when s goes from 0 to p, will cover the whole path
γ). Next, on [p, q], one considers γ′ reparametrized by lp,q and, on [q, 1], γ′′ reparametrized by
lq,1. Putting together these three pieces, we find a curve constructed out of the curves γ, γ′ and
γ′′, and of the numbers p and q. With these, H0 is obtained for

p = p0 =
1
4
, q = q0 =

1
2
,
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while H1 is obtained for

p = p1 =
1
2
, q = q1 =

3
4
.

We are looking for a homotopy consisting of paths Ht (between H0 and H1). For this we consider
(see Figure 7)

pt =
t + 1

4
, qt =

t + 2
4

(the affine maps which have the described values p0, p1, q0, q1), and we consider the path Ht

given by the procedure we have just described, applied to p = pt, q = qt. We find the desired
homotopy

H(s, t) = Ht(s) =







γ( 4s
t+1 ) if 0 ≤ s ≤ t+1

4
γ′(4s − t − 1) if t+1

4 ≤ s ≤ t+2
4

γ′′(4s−t−2
2−t ) if t+2

4 ≤ s ≤ 1
.

!

4
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Figure 7.

Exercise 7.16. Let γ : [0, 1] −→ X be a path from x to y, and 0 = a0 < a1 < . . . < ap <
ap+1 = 1. For each 0 ≤ i ≤ p integer define

γi : [0, 1] −→ X, γi(s) = γ((1 − s)ai + sai+1).

Show that
[γ] = [γp] ∗ . . . ∗ [γ1] ∗ [γ0].

Remark 7.19 ((The homotopy groupoid)). The previous proposition too, should be viewed
from the point of view of category theory. It says that, given the space X, there is an associated
category Π(X) with

• The objects of Π(X) are the points of X.
• The set of morphisms from x ∈ X to y ∈ Y is Π(X,x, y).
• The composition of morphisms comes from the concatenation of paths.

The last part of the proposition says that this category has one more property: any morphism
is an isomorphism. Categories with this property are called groupoids. For this reason, Π(X) is
called the fundamental groupoid of X.
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3. The fundamental group

Definition 7.20. The fundamental group of X with base point x, (X-a topological space, x ∈
X), is defined as

π(X,x) := Π(X,x, x),
with the group structure is the one induced by the concatenation of paths.

We first discuss the functoriality of the fundamental group (what happens if we change the
space?).

Theorem 7.21. If f : X −→ Y is a continuous map and x ∈ X, then the map

f∗ : π(X,x) −→ π(Y, f(x)), [γ] &→ [f ◦ γ]

is well defined and is a morphism of groups. If g : Y −→ Z is another continuous map, then

g∗ ◦ f∗ = (g ◦ f)∗.

In particular, if f : X −→ Y is a homeomorphism, then π(X,x) is isomorphic to π(Y, f(x)), for
all x ∈ X.

Proof. The map γ &→ f ◦ γ (from paths in X to paths in Y ) is compatible with path
homotopies: if H is a path homotopy between γ and γ′, then f ◦ f is a path homotopy between
f◦γ and f◦γ′. This implies that f∗ is well defined. Next, using the definition of the concatenation
of paths, we see that

f ◦ (γ ∗ γ′) = (f ◦ γ) ∗ (f ◦ γ′)
or all γ, γ′ ∈ P (X,x, x), which implies that f∗ is a group homomorphism. Given another function
g, we have:

(g∗ ◦ f∗)([γ]) = g∗([f ◦ γ]) = [g ◦ f ◦ γ] = (g ◦ f)∗([γ],
proving that (g∗ ◦ f∗) = (g ◦ f)∗. Finally, if f is a homeomorphism, denoting by g : Y −→ X
its inverse and by g∗ : π(Y, y) −→ π(X, g(y)) the induced map, where y = f(x), we have
g∗◦f∗ = (g◦f)∗ = (IdX)∗ = Id, and similarly f∗◦g∗ = Id, proving that f∗ is an isomorphism. !

Next, what happens if we change the base point?

Theorem 7.22. Given a space X, and α a path in X from x to y, the map

α̂ : π(X,x) −→ π(X, y),

α̂([γ]) = [α]−1 ∗ [γ] ∗ [α]
is well defined and is an isomorphism of groups.

In particular, if X is path connected, then for any two points x, y ∈ X the groups π(X,x) and
π(X, y) are isomorphic.

Proof. Let a = [α] ∈ Π(X,x, y). We have to show that

â : π(X,x) −→ π(X, y),φ(u) = a−1 ∗ γ ∗ u

is a group isomorphism. First of all, note that if b ∈ Π(Y,Z), then

b̂ ◦ â = â ∗ b.

Indeed, for all u ∈ Π(X,x, x),

(̂b ◦ â)(u) = b−1 ∗ (a−1 ∗ u ∗ a) ∗ b

= (b−1 ∗ a−1) ∗ u ∗ (a ∗ b)

= (a ∗ b)−1 ∗ u ∗ (a ∗ b) = â ∗ b(u).
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In particular, this implies that â is bijective with inverse b̂ with b = a−1. Next, â is a group
homomorphism:

â(u) ∗ â(v) = (a−1 ∗ u ∗ a) ∗ (a−1 ∗ v ∗ a)
= a−1 ∗ u ∗ (a ∗ a−1) ∗ v ∗ a

= a−1 ∗ u ∗ 1y ∗ v ∗ a

= a−1 ∗ (u ∗ v) ∗ a = â(u ∗ v).(3.1)

When X is path connected, then for any two points x, y ∈ X we can find a path γ from x to y,
and then γ̂ will provide an isomorphism between π(X,x) and π(X, y). !

Finally, we show that two spaces which are homotopic equivalent (Definition 7.1) have iso-
morphic fundamental groups.

Theorem 7.23. If f : X −→ Y is a homotopy equivalence then, for any x0 ∈ X, the induced
map

f∗ : π(X,x0) −→ π(Y, f(x0))
is an isomorphism of groups.

Proof. Let g : Y −→ X be a homotopy inverse of f (see Definition 7.1), x0 ∈ X, and the
maps

f∗ : π(X,x0) −→ π(Y, f(x0)), g∗ : π(Y, f(x0)) −→ π(X, g(f(x0)))
the maps induced in the fundamental groups. It suffices to show that g∗f∗ and f∗g∗ are isomor-
phism. Indeed, the injectivity of g∗f∗ implies that f∗ is injective, while the surjectivity of f∗g∗
implies that f∗ is surjective (show this!).

Due to the symmetry, it suffices to show that g∗f∗ = (gf)∗ is bijective. Let h = gf . We are in
the following situation: we have a continuous function h : X −→ X which is homotopic to the
identity map, x0 ∈ X, and we want to prove that

h∗ : π(X,x0) −→ π(X,h(x0))

is an isomorphism. Since h is homotopic to IdX , we find

H : X × [0, 1] −→ X

such that H(x, 0) = x, H(x, 1) = h(x) for all x ∈ X. Consider

α : [0, 1] −→ X,α(s) = H(x0, s).

This is a path from x0 to h(x0), hence the previous theorem (Theorem 7.22) provides us with a
group isomorphism

α̂ : π(X,x0) −→ π(X,h(x0)), [γ] &→ [α]−1 ∗ [γ] ∗ [α].

We will show that h∗ = α̂. Given [γ] ∈ π(X,x0), we have to check that

[h ◦ γ] = [α]−1 ∗ [γ] ∗ [α].

Using the properties of the concatenation (see Proposition 7.18), we have to check that

[α] ∗ [h ◦ γ] = [γ] ∗ [α],

i.e. that the paths γ ∗ α and α ∗ (h ◦ γ) are path homotopic. For this, we define

G : [0, 1] × [0, 1] −→ X,

G(s, t) =
{

H(α(2st), 2s(1 − t)) if 0 ≤ s ≤ 1
2

H(α(1 − 2(1 − s)(1 − t)), 1 − 2(1 − s)t) if 1
2 ≤ s ≤ 1 .

One checks directly that G is a path homotopy between γ ∗ α and α ∗ (h ◦ γ) (check it!). !
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Exercise 7.17. Explain (on a picture) the formula for the homotopy G given in the previous
proof.

Example 7.24.
• If X is a contractible space, the π(X,x) is trivial (i.e. consisting only of the identity

element 1x) for all x ∈ X. In particular,

π(Rn, x) = 0.

• Consider the inclusion i : Sn−1 −→ Rn − {0}. Since this is a homotopy equivalence
(Example 7.8), we deduce that we have an isomorphism

i∗ : π1(Sn−1, x) ∼−→ π1(Rn − {0}, x),

for all x ∈ Sn−1. We will see that the left hand side equals to Z if n = 1, and is trivial
otherwise.

• Consider the Moebius band M . Inside it, one finds a copy of the circle S1, and, as
in the previous example, the inclusion S1 −→ M is a homotopy equivalence (Exercise
7.3). We deduce that the homotopy group of M is isomorphic to the homotopy group
of S1.

Definition 7.25. We say that a space X is simply connected if π(X,x) is trivial for any
x ∈ X. We say that X is 1-connected if it is path connected and simply connected.

Exercise 7.18. We are not quite ready to prove that the sphere S2 (and Sn for all n ≥ 2) is
simply connected. However, using the stereographic projection, try to explain this result.

Exercise 7.19. Show that, for any two topological spaces X and Y , and x ∈ X, y ∈ Y , one
has an isomorphism of groups:

π(X × Y, (x, y)) ∼= π(X,x) × π(Y, y).

4. Covering spaces and the homotopy group of S1

So far, we know that the homotopy group of the spaces Rn (or any contractible space) is
trivial. In this section we will compute the fundamental group of the circle; more precisely, we
will show that it isomorphic to the cyclic group in one generator, i.e. to (Z,+), and we will
produce an explicit isomorphism

deg : π(S1, 1) −→ Z.

The idea behind this map is quite simple: it associates to the (equivalence class) of a path γ
(starting and ending at 1 ∈ S1) its rotation number, i.e. the total number of rotation of S1,
counted in a the counterclockwise direction (so that a path that goes once around the circle, but
on the clockwise direction, has degree −1). There are some standard paths: for each n there is
the path γn which rotates n times around the circle (and has degree n). In general, any path γ
in S1 satrting end nding at 1 ∈ S1 is path homotopic to the path γn for n = deg(γ). Intuitively
this can be explained as follows. Interpret it as a rope which goes around a rigid S1. It may go
for some time in one direction, then turn back for a while, then change direction again, etc. See
Figure 8 for a path of degree two. Hold now the piece of rope by its ends, and start pulling it,
as long as it is possible. Note that the pulling process does not change the degree. We can keep
on pulling untill all the “turnings” of the rope will be smoothened out, and we will end up with
γn. The process of pulling defines the homotopy between γ and γn.

The remaining part of this section will make these idea more precise. In particular, we will
introduce some tools (covering spaces) which may be used in various other situations. The basic
idea is to relate S1 to R, by the map

p : R −→ S1, p(t) = (cos(2πt), sin(2πt)).
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Figure 8.

We will use the base point 1 ∈ S1. Note that p−1 = Z. It is useful to picture this map as follows:
spiral R above the circle (on a cylinder), as shown in Figure 9, and then p is just the projection
into the circle. In particular, we see that the pre-image p−1 of small opens U ⊂ S1 will consist of
a disjoint family of copies of U . It is precisely this property that allows us to compute π(S1, 1).
What we will actually do is to look at more general maps which have this property (which

p

1
S

|R

Figure 9.

will be called covering maps), and extract the relevant information about fundamental groups.
Returning to our example, we will be able to conclude the computation of π(S1, 1).

Definition 7.26. Let p : E −→ B be a continuous map. Given U ⊂ B an open subset, a
partition of p−1(U) into slices is a family {Vi}i∈I of opens in E such that
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• {Vi} is a partition of p−1(U);
• p|Vi : Vi −→ U is a homeomorphism for each i ∈ I.

A covering map is a continuous surjective map p : E −→ B with the property that each point
b ∈ B has an open neighborhood U such that p−1(U) admits a partition into slices.

We also say that p is a covering of B, or that E is a covering space of B with covering
projection p.

Exercise 7.20. Show that p : R −→ S1 is a covering map.

Exercise 7.21. View the unit circle as

S1 = {z ∈ C : |z| = 1}

Show that for any integer n ≥ 1, the map

fn : S1 → S1, fn(z) = zn.

is a covering map.

Proposition 7.27. Let p : E −→ B be a covering map, and let b0 ∈ B. Consider
• a path γ : [0, 1] −→ B starting at b0.
• a lift e0 of b0, i.e. e0 ∈ p−1(b0).

Then there exists an unique path γ̃ : [0, 1] −→ E such that
• γ̃ starts at e0;
• γ̃ is a lift of γ, i.e. p ◦ γ̃ = γ.

Proof. First we prove the uniqueness. Assume that γ̃ and ˜̃γ are two lifts of γ starting at
the same point e0. We consider

S = {s ∈ [0, 1] : γ̃|[0,s] = ˜̃γ ˜̃γ},

and we prove that S is both closed and open in [0, 1]this will imply that S = [0, 1], proving the
uniqueness.

We first show that S is open. Let s0 ∈ S. Choose an open neighborhood U of γ(s0) such
that p−1(U) = ∪Vi is a partition into slices. Choose i such that γ̃(s0) ∈ Vi. Since γ̃ and ˜̃γ are
continuous, we find a neighborhood D = (s0 − ε, s0 + ε) ∩ [0, 1] of s0 in [0, 1] such that

γ̃(D) ⊂ Vi, ˜̃γ(D) ⊂ Vi.

Since p|Vi : Vi −→ U is a homeomorphism and p ◦ γ̃ = p ◦ ˜̃γ, we deduce that γ̃|D = ˜̃γ|D, which
implies that D ⊂ S.

We now show that S is closed. Let s0 ∈ S, and we show that s0 ∈ S. For any s < s0,
(s, s0) ∩ S /= ∅, which implies that γ̃(s) = ˜̃γ(s) (for all s < s0). We still have to show that this
equality also holds for s = s0. Assume it does not, and let e = γ̃(s0), e′ = ˜̃γ(s0). Let U be
as above, with p−1(U) = ∪Vi, and choose i and j such that e ∈ Vi, e′ ∈ Vj. Note that, due to
the assumption e /= e′ and the fact that p|Vi is a homeomorphism, we must have i /= j, hence
Vi ∩ Vj = ∅. On the other hand, due to continuity, we find a neighborhood D of s0 such that

γ̃(D) ⊂ Vi, ˜̃γ(D) ⊂ Vj .

But this contradicts the fact that γ̃(s) = ˜̃γ(s) for all s < s0. This concludes the proof of the
fact that S is closed.

Before we prove the existence part, let us point out the following consequence.
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Corollary 7.28. Let p : E −→ B be a covering map, and let f : X −→ B be a continuous
function defined on a space X. A lift of f is a continuous map f̃ : X −→ E such that pf̃ = f .

If X is path connected, then any two lifts of f which coincide in the same point of X must
coincide everywhere.

Proof. Let x0 ∈ X such that f̃(x0) = ˜̃f(x0). For x ∈ X arbitrary, choose a path α from
x0 to x. Then f̃ ◦ α and ˜̃f ◦ α are two lifts of f ◦ α which coincide at the initial point. By the
uniqueness proven above, they coincide everywhere; in particular, the end points (i.e. f̃(x) and
˜̃f(x)) must coincide. !

We now return to the proof of the proposition (existence part). Let S′ ⊂ [0, 1] be the set of
those s with the property that γ|[0,s] admits a lift starting at e0. One can proceed as above and
prove that S′ is open and closed in [0, 1]. We give here a slightly different argument. Remark
first that if s ∈ S′, then all t < s are in S′. This implies that S′ = [0, s0] or S′ = [0, s0) for
some s0 ∈ [0, 1]. Also, we can find a lift γ̃ : [0, s0) −→ E of γ|[0,s0). To see this, we may assume
s0 /= 0, and then s0 − 1

n ∈ S′ for n large enough. Choose γ̃n : Dn −→ E lifts of γ|Dn starting at
e0 defined on Dn = [0, s0 − 1

n ]. The uniqueness proven above implies that γ̃n and γ̃m coincide
on Dn ∩ Dm for all n and m, hence we can define γ̃ on D0 = [0, s0) so that γ̃|Dn = γ̃n for all n,
and this will be the desired lift.

Hence S′ = [0, s0] or S′ = [0, s0) for some s0 ∈ [0, 1], and γ has a lift γ̃ on [0, s0), starting at
e. Let U be an open neighborhood of γ(s0) such that p−1(U) = ∪Vi is a partition into slices.
Choose ε such that D = (s0−ε, s0+ε)∩[0, 1] is sent by γ inside U . Consider also D′ = (s0−ε, s0).
Since continuous maps send connected spaces to connected spaces, γ̃(D′) must be connected;
but it lies in the disjoint union of the Vi’s, hence we find i such that

γ̃(D′) ⊂ Vi.

Since p|Vi is a homeomorphism, we must have

γ̃(s) = (p|Vi)
−1(γ(s))

for all s ∈ D′. But we can take this formula as the definition of γ̃ also for s ∈ D, and we obtain
a lift γ̃ defined on D. Hence

D = (s0 − ε, s0 + ε) ∩ [0, 1] ⊂ S′.

Recalling that S′ = [0, s0] or S′ = [0, s0), we see that the only possibility is when S = [0, 1]. !

Remark 7.29. In particular, we obtain a map

(4.1) φe0 : P (B, b0, b0) −→ p−1(b0)

which associates to a path γ the end-point γ̃(1) of its lift evaluated at the end point.

Example 7.30. Apply the previous lemma to the covering map p : R −→ S1 and e0 = 0. For
any path in S1 starting and ending at 1 ∈ S1 we find a path γ̃ in R starting at 0 such that

γ(t) = (cos(2πγ̃(t)), sin(2πγ̃(t))).

Note that γ̃(1) ∈ p−1(0) = Z.

Definition 7.31. Given a path γ in S1 starting and ending in 1 ∈ S1, we define the degree
of γ by

deg(γ) := γ̃(1) ∈ Z.
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For instance, for each n ∈ Z, the path which goes around the circle n times:

γn(t) = (cos(2πnti), sin(2πnti)),

has as lift
γ̃n(t) = nt,

hence
deg(γn) = n.

Our next aim is to show that the degree (or, more generally, the map (4.1)) only depends on
path homotopy classes of paths.

Lemma 7.32. Let p : E −→ B be a covering map, b0 ∈ B, e0 ∈ E a lift of b0. Let γ, γ′ ∈
P (B, b0, b0), and consider their lifts γ̃, γ̃′ which start at e0. If γ and γ′ are path homotopic, then
γ̃ and γ̃′ have the same end-point and they are path homotopic.

Proof. Let H : [0, 1] × [0, 1] be a path homotopy between γ and γ′. Let γt(s) = H(s, t)
(so that γ0 = γ, γ1 = γ′). For each t we consider the lift γ̃t of γt starting at e0 (which, by the
previous proposition, exists and is unique). Put H̃(s, t) = γ̃t(s). Locally, H is the inverse of the
restriction of p to a slice, composed with H, from which one deduces that H is continuous (fill
in the details!). On the other hand, t &→ H̃(1, t) is a lift of the constant path H(1, t) = b0, hence
will be constant (use the uniqueness part of previous proposition). In conclusion, H̃ is a path
homotopy between γ̃0 = γ̃ and γ̃1 = γ̃′. !

Remark 7.33. Continuing the previous remark, the map (4.1) will define a map

φe0 : π(B, b0) −→ p−1(b0).

In particular, for the covering map p : R −→ S1 we find that the notion of degree induces a map

deg : π(S1, 1) −→ Z.

Theorem 7.34. deg : π(S1, 1) −→ Z is an isomorphism of groups.

Proof. We have already seen that deg(γn) = n, where γn(t) = p(nt) for t ∈ [0, 1]. Hence
deg is surjective. To show it is injective, assume that

deg(γ) = deg(γ′).

This means that, choosing lifts γ̃ and γ̃′ as above (starting at 0), γ̃(1) = γ̃′. But we know
that R is simply connected- any two paths which start and end at the same point are path
homotopic. Hence γ̃ and γ̃′ are path homotopic, which implies that γ and γ′ are path homotopic
(in explicit formulas, H̃(s, t) = (1 − t)γ̃(s) + tγ̃′(s) is a path homotopy between γ̃ and γ̃′, while
H(s, t) = p(H(s, t)) is a path homotopy between γ and γ′.

Hence deg is bijective. To see it is a group homomorphism it suffices to check that deg(γn ∗
γn) = deg(γn) + deg(γm) for all n,m ∈ Z. By the definition of concatenation, we have

(γn ∗ γm)(t) =
{

p(2nt) if 0 ≤ t ≤ 1
2

p(m(2t − 1)) if 1
2 ≤ t ≤ 1 ,

which has as lift

t &→
{

2nt if 0 ≤ t ≤ 1
2

m(2t − 1) + n if 1
2 ≤ t ≤ 1 ,

hence
deg(γn ∗ γm) = m(2 · 1 − 1) + n = m + n = deg(γn) + deg(γm).

!
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Exercise 7.22. Consider again fn : S1 −→ S1, fn(z) = zn and consider the induced map

(fn)∗ : π(S1, 1) → π(S1, 1).

After identifying π(S1, 1) with (Z,+), show that (fn)∗ is identified with
multn : Z → Z, r &→ nr.

Exercise 7.23. If p : E −→ B is a covering map defined on a simply connected space E,
b0 ∈ B, e0 ∈ p−1(b0), then

φe0 : π(B, b0) −→ p−1(b0)
is a bijection.

Exercise 7.24. Let f : [0, 1] −→ S1 be a continuous map with f(0) = f(1) = 1. If deg(f) = n,
prove that the equation

f(x) = 1
has at least n + 1 solutions.

Corollary 7.35. There are no continuous retractions of D2 into S1 (i.e. continuous maps
r : D2 −→ S1 such that r(x) = x for all x ∈ S1).

Proof. Assume such a retraction r : D2 −→ S1 exists. Let i : S1 −→ D2 be the inclusion.
Consider the maps induced in the fundamental groups

π(S1, 1) i∗−→ π(D2, 1) r∗−→ π(S1, 1).

Since r ◦ i = IdS1 , we have r∗ ◦ i∗ = Id : π(S1, 1) −→ π(S1, 1). But π(D2, 1) = 0 (trivial) because
D2 is contractible, hence Id = r∗i∗ will be constant. But this can only happen if π(S1, 1) was
trivial- which is not. Hence r does not exist. !

Corollary 7.36. (Brouwer fixed point theorem) Any continuous function f : D2 −→ D2 has
at least one fixed point.

Proof. Assume that f : D2 −→ D2 has no fixed point. For each x ∈ D2, since f(x) /= x,
we can talk about the line through x and f(x). This line intersects S1 in two points, and let
r(x) be the point with the property that x lies between r(x) and f(x). Then r : D2 −→ S1 will
be a retraction of of D2 into S1- contradiction. !

Related to the last corollary, here is one exercise.

Exercise 7.25. In general, given a topological space X and a subset A ⊂ X, a retraction of
X into A is a continuous map r : X −→ A with the property that r(a) = a for all a ∈ A.

Prove that if r is a retraction of X into A, then the map induced in the fundamental groups:
r∗ : π(X, a) −→ π(A, a)

is surjective for all a ∈ A. What about the map induced by the inclusion of A into X?

Exercise 7.26. Prove that the Moebius band cannot be retracted into its boundary.





ADDENDUM TO CHAPTER 7

1. Action of the Fundamental Group

Throughout these notes, p : E → B will denote a covering map, and
E and B are path connected topological spaces.

We have seen that for any path γ : [0, 1] → B and e ∈ p−1(γ(0)) there
exists a unique lift γ̃

e
: [0, 1] → E of γ starting at e (Proposition 7.27).

Moreover, it was shown that if γ1 and γ2 are path homotopic, then
their lifts (starting at the same point) have the same end points and
are also path homotopic (Lemma 7.32). What we will now explain is
that from both of these properties we obtain a (right) action of π(B, b)
on the fiber p−1(b).

Definition 1.1. Let X be a topological space and G a topological
group (i.e., a topological space endowed with a group structure such
that the multiplication m : G × G → G and the inversion ι : G → G
are continuous). An (left) action of G on X is a continuous map

Ψ : G×X → X, (g, x) 7→ Ψ(g, x) = g · x

which satisfies:

• (gh) · x = g · (h · x) for all g, h ∈ G and x ∈ X , and
• 1 · x = x for all x ∈ X .

Similarly, a right action of G on X is a continuous map X×G → X
which satisfies:

• x · (gh) = (x · g) · h for all g, h ∈ G and x ∈ X , and
• x · 1 = x for all x ∈ X .

For an action of G onX we define for each x the orbit of G through

x to be the set

O
x
= {g · x : g ∈ G} ⊂ X,

and the isotropy of G at x to be

G
x
= {g ∈ G : g · x = x} ⊂ G.

Exercise 1. Show that G
x
is a subgroup of G.

Exercise 2. Show that for any x ∈ X there is a bijection between O
x

and G/G
x
, where G/G

x
denotes the quotient of G by the equivalence

relation g ∼ h if and only if gh−1 ∈ G
x
.

We can now explain the action of π(B, b) on p−1(b). It is defined as
follows: for each pair (e, [γ]) ∈ p−1(b) × π(B, b) we take e · [γ] = γ̃

e
(1)

where γ̃
e
is the unique lift of γ which starts at e.

1
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Exercise 3. Let E and B be path connected topological spaces and
p : E → B a covering map:

(1) Show that the map (e, [γ]) 7→ γ̃
e
(1) is well defined and deter-

mines a right action of π(B, b) on p−1(b).
(2) Show that the action is transitive, i.e., for every e ∈ p−1(b) we

have that O
e
= p−1(b).

(3) Show that the isotropy of π(B, b) at e is isomorphic to π(E, e).
(4) Show that there is a bijection between p−1(b) and π(B, b)/p∗π(E, e).
(5) Conclude that if E is simply connected then there is a bijection

between p−1(b) and π(B, b).

Exercise 4. Consider the map f : Sn → Pn which associates to each x
in the sphere Sn the line in Rn which passes through x and the origin.

(1) Show that f is a covering map.
(2) Assuming that Sn is simply connected, for n ≥ 2, compute the

fundamental group of Pn.

2. Properly Discontinuous Actions

Definition 2.1. A (continuous) action of G on X is said to be prop-

erly discontinuous if for every x ∈ X there exists a neighborhood U
x

of x in X such that g · U
x
∩ U

x
6= ∅ implies that g = 1.

The importance of properly discontinuous actions for us is given by
the following proposition:

Proposition 2.2. If E is a path connected and simply connected topo-
logical space, and G acts properly discontinuously on E, then the quo-
tient map p : E → E/G is a covering map, and moreover, π(E/G, x) ∼=
G, for any x ∈ E/G.

Exercise 5. Prove the proposition above by following these steps:

(1) For e ∈ E, let U
e
be a neighborhood such that g · U

e
∩ U

e
6= ∅

implies that g = 1. Show that g · U
e
is a neighborhood of g · e

which satisfies the same property.
(2) Show that V[e] = p(U

e
) is an open neighborhood of [e] in E/G.

(3) Show that V[e] is evenly covered (i.e., that p−1(V[e]) admits a
partition into slices). Conclude that p is a covering map.

(4) Fix e ∈ E and show that the map G → π(B, b) which associates
to any g ∈ G the homotopy class of p ◦ γ̃ (where γ̃ is any path
joining e to g · e), is an isomorphism of groups.

Exercise 6. Show that the action of Z on R given by (n, x) 7→ n + x
is properly discontinuous. Conclude that π(S1, p) = Z.

Exercise 7. Show that the action of Z on R
2 given by (n, (x, y)) 7→

(n+x, y) is properly discontinuous. Conclude that π(Cylinder, p) = Z.
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Exercise 8. Show that the action of Z2 on R2 given by ((n,m), (x, y)) 7→
(n+ x,m+ y) is properly discontinuous. Conclude that π(T2, p) = Z2.

Exercise 9. Show that Z2 = {1,−1} acts properly discontinuously on
the sphere S

n. What is the quotient space?

Exercise 10. Show that a covering of a simply connected space is a
homeomorphism.

Exercise 11. Can S2 be obtained from a properly discontinuous action
of a group on R2? What about P2?

Exercise 12. Let K be the Klein bottle.

(1) Show that there is a covering map T
2 → K.

(2) Show that K can be obtained from R2 as the quotient by a prop-
erly discontinuous action.

(3) Compute the fundamental group of K.

Exercise 13. Show that the quotient of a topological manifold by a
properly discontinuous action of a group is also a topological manifold.

Exercise 14. Show that if p : E → B is a covering, and B is a
topological manifold of dimension n, then E is a topological manifold
of dimension n.



CHAPTER 8

The Seifert- van Kampen theorem

1. The statement and first explanations

The Seifert- van Kampen theorem allows us to compute the fundamental group of a space by
breaking it into pieces.

Theorem 8.1. (Seifert- van Kampen theorem) Let X be a topological space and assume that
X = U ∪ V with U, V ⊂ X opens such that U ∩ V is path connected and let x0 ∈ U ∩ V . We
consider the a commutative diagram

π(U, x0)
j1

!!!
!!!!!!!!!

π(U ∩ V, x0)

i1
"""""""""""""

i2

#############
π(X,x0)

π(V, x0)

j2
$$$$$$$$$$$$

where all the maps are induced by the inclusions. Then, for any group H and any group homo-
morphisms φ1 : π(U, x0) −→ H, φ2 : π(V, x0) −→ H such that

φ1i1 = φ2i2,

there exists and is unique a group homomorphism φ : π(X,x0) −→ H such that φ1 = φj1,
φ2 = φj2.

π(U, x0)
j1

!!!
!!!!!!!!!

φ1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

π(U ∩ V, x0)

i1
"""""""""""""

i2 #############
π(X,x0)

φ
&& H

π(V, x0)
j2

$$$$$$$$$$$$ φ2

''&&&&&&&&&&&&&&&&&&&&&&&&&&&

1.1. Explanation. Although it may not be clear from the statement, the theorem describes
the way that π(X,x0) is determined by π(U, x0), π(V, x0) and π(U ∩V, x0). To understand this,
we will look at the property described in the theorem in a slightly more general setting.

117
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Starting data: Start with (N,G1, G2, i1, i2) where N,G1 and G2 are groups and i1 : H −→
G1, i2 : N −→ G2 are group homomorphisms:

(1.1) G1

N

i1

$$"""""""""""""

i2

!!#############

G2

Consider: triples (G, j1, j2) consisting of a group G and group homomorphisms j1 : G1 −→ G,
j2 : G2 −→ G such that j1i1 = j2i2, i.e. “commutative fillings” of the starting data (1.1):

G1
j1

(('
''

''
''

'

N

i1
))((((((((

i2

(()
))

))
))

) G

G2

j2
))********

Definition 8.2. We say that a triple (G, j1, j2) as above satisfies the universal property (with
respect to the starting data (1.1)) if for any other such triple (H,φ1,φ2), there exists and is
unique a group homomorphism φ : G −→ G′ such that φ1 = φj1, φ2 = φj2:

G1
j1

(('
''

''
''

'
φ1

**++++++++++++++++++++

N

i1
))((((((((

i2 (()
))

))
))

) G
φ

&& H

G2

j2

))******** φ2

++,,,,,,,,,,,,,,,,,,,,

We now show that the universal property determines G uniquely up to isomorphism.

Lemma 8.3. If (G, j1, j2) and (G′, j′1, j
′
2) are two triples which satisfy the universal property

with respect to the starting data (1.1), then there exists (and is unique) an isomorphism of groups

φ : G
∼−→ G′

such that j′1 = φj1, j′2 = φj2

Proof. Due to the universal property of G, there exists a unique homomorphism φ : G −→
G′ satisfying the equations in the lemma. We have to prove that it is an isomorphism. Inter-
changing G and G′ (and applying the universal property for G′), we find a unique homomorphism
φ : G′ −→ G satisfying j1 = φj′1, j2 = φj′2. We will prove that φ′φ = IdG. Due to the universal
property of G (the uniqueness part!), it suffices to check that

(φ′φ)j1 = j1, (φ′φ)j2 = j2,

which is immediate from the identities defining φ and φ′. Hence φ′φ = IdG and, similarly,
φφ′ = IdG′ , proving that φ is an isomorphism. !

Definition 8.4. The amalgamated free product associated to the starting data (1.1) is a triple
(G, j1, j2) satisfying the universal property. We also say that G is the free product of G1 and G2

over N (but keep in mind the maps involved!).
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Remark 8.5. Hence, what the Seifert- van Kampen tells us is that π(X,x0) is uniquely
determined by π(U, x0), π(V, x0) and π(U ∩ V, x0), as the amalgamated free product associated
to the starting data

π(U, x0)

π(U ∩ V, x0)

i1
++--------------

i2

**..............

π(V, x0)

Back to the general discussion, we know from the previous lemma that the amalgamated
free product is unique up to isomorphism. One can also prove that it exists (for any starting
data (1.1)), but the explicit general construction is not allways useful. Instead, it willbe more
interesting to look at particular cases first (Cases A-D below). But first, let us reformulate the
Seifert- van Kampen theorem using this new language.

Theorem 8.6. (Seifert- van Kampen theorem reformulated) Let X be a topological space and
assume that X = U ∪ V with U, V ⊂ X opens such that U ∩ V is path connected and let
x0 ∈ U ∩ V . We consider the a commutative diagram

π(U, x0)
j1

!!!
!!!!!!!!!

π(U ∩ V, x0)

i1
"""""""""""""

i2

#############
π(X,x0)

π(V, x0)

j2
$$$$$$$$$$$$

where all the maps are induced by the inclusions. Then π(X,x0), together with the maps j1 and
j2, is the amalgamated free product associated to π(U, x0), π(V, x0) and π(U ∩V, x0) (with maps
i1, i2).

2. The case G1 = G2 = {1}

Hence assume that G1 and G2 are trivial. Then all the maps involved (i1, i2, j1 etc) are the
constant maps and all the equations are automatically satisfied. Hence we are looking for a group
G with the property that for any other group H, there exists a unique group homomorphism
φ : G −→ H. Of course, G = {1} does the job.

Corollary 8.7. (Corollary A) Let X,U, V, x0 be as in the Seifert-van Kampen theorem. If
π(U, x0) and π(V, x0) are trivial, then so is π(X,x0).

In particular, we deduce

Corollary 8.8. π(Sn, p) = {1} for all n ≥ 2 and all p ∈ Sn.

Proof. Choose U = Sn − {pN} and V = Sn − {pS}, where pN is the north pole, pS is the
south pole. We know that U and V are homeomorphic to Rn (by the stereographic projection),
hence they have trivial fundamental groups. Also, since n ≥ 2, U ∩ V is path connected, hence
Corollary A applies. !

Exercise 8.1. Use the covering projection Sn −→ Pn to deduce that π(Pn, p) is isomorphic
to Z2 for all n ≥ 2 and p ∈ Pn.
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3. The case N = G2 = {1}

Look now at the case when N and G2 are trivial. Also in this case there is an obvious solution
to the universal property: namely G = G1, j1 = Id (while j2 can only be one thing: the trivial
map).

Corollary 8.9. (Corollary B) Let X,U, V, x0 be as in the Seifert-van Kampen theorem. If
π(V, x0) and π(U ∩ V, x0) are trivial, then the map induced by inclusion

i1 : π(U, x0) −→ π(X,x0)

is an isomorphism of groups.

Using this, we will prove the following result whose importance comes from the fact that it
shows that cells of dimension higher then three do not affect the fundamental group.

Proposition 8.10. Let X be space which is obtained from a path connected subspace A ⊂ X
by adjoining an n-cell e with n ≥ 3. Then, for any a ∈ A, the inclusion i : A −→ X induces an
isomorphism of groups:

i∗ : π(A, a) −→ π(X, a).

Before we prove the proposition let us mention the following consequence which follows after
applying the proposition repeatedly to eliminate cells of dimension ≥ 3.

Corollary 8.11. If X is a compact, path connected space then, for any cell decomposition of
X, the inclusion of the 2-skeleton X2 into X, i : X2 −→ X, induces an isomorphism of groups
(for any base point x ∈ X2):

i∗ : π(X2, x) ∼−→ π(X,x).

Proof. (of the Proposition 8.10) Let h : Dn −→ X be the defining map for e, so that the
restriction to the open ball is a homeomorphism onto e, and the restriction to Sn−1 = ∂Dn is
the characteristic map of e, χ : Sn−1 −→ A. We consider

U = X − {h(0)}, V = e.

Remark that
(1) V is simply connected, because it is homeomorphic to

◦
D

n
(via h).

(2) U ∩ V is simply connected. Indeed, U ∩ V = h(
◦
D

n
−{0}) is homeomorphic to

◦
D

n

−{0} (via h) which, in turn, is homotopic equivalent to Sn−1. Since Sn−1 has trivial
fundamental group for n − 1 ≥ 2, the same will be true for U ∩ V .

(3) U is homotopic equivalent to A. More precisely, the inclusion

i : A −→ U

is a homotopy equivalence (Exercise 7.14). In particular, the map induced in the
fundamental groups,

k∗ : π(A, a) −→ π(U, a)
is an isomorphism for all a ∈ A.

Due to the first two remarks, we can apply Corollary B, hence

jx
1 : π(U, x) −→ π(X,x)

is an isomorphism for all x ∈ U ∩ V = e − {h(0)}. We use the super-script “x” to indicate that
we use x as a base point. We claim that the same holds also for base points a ∈ A (i.e. for ja

1 ).
So, let a ∈ A. Choose x ∈ U ∩ V . There exists a path α in U starting at a and ending at x.
Indeed, since e− {h(0)} = h(Dn − {0}), this space is path connected, hence we can join x with
any point y ∈ ∂e = χ(Sn−1) ⊂ A by a path inside e − {h(0)} ⊂ U . On the other hand, since
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A is path connected, y can be connected with a by a path inside A ⊂ U . Using the path α to
change the base point (from a to x), we have a commutative diagram:

π(U, a)
ja
1 &&

bα
,,

π(X, a)

bα
,,

π(U, x)
jx
1 && π(X,x)

(the commutativity follows immediately from the definition of j1 and α̂. Since both vertical
maps α̂, as well as ja

1 , are isomorphisms, from α̂ja
1 = jx

1 α̂ it follows that

ja
1 = α̂−1jx

1 α̂

is an isomorphism. Composing with the map k∗ (see the third remark above), the statement
follows. !

4. The case G2 = {1}

Let us now look at a slightly more general case, when only G2 is assumed to be trivial (this
is what we need if we want to have an analogue of Proposition 8.10 in the case of two-cells).
Assume first that N is a subgroup of G1 and

i1 : N ↪→ G1

is the inclusion map. In this case j2 must be trivial and the equation j1i1 = j2i2 becomes
j1i1 = 1, i.e.

j1(n) = 1, ∀ n ∈ N.

Recall that for any group homomorphism j1, its kernel is defined by

Ker(j1) := {g ∈ g1 : j1(g) = 1}.
Hence, what we are looking at are pairs (G, j1), with j1 : G1 −→ G a group homomorphism with
the property that N ⊂ Ker(j1). The universal property reads: for any other such pair (H,φ1),
there exists a unique group homomorphism φ : G −→ H such that φ1 = φj1. The existence of
an universal pair (G, j1) brings us to some elementary constructions on groups which we now
recall:

• For a subgroup N of G1 and g ∈ G1, the N -coset defined by g is

gN = {gn : n ∈ N} ⊂ G1.

These subsets (when g varies) form a partition of G1. The quotient of G1 by N is the
set

G1/N := {gN : g ∈ G1}.
Equivalently, the action of N on G1 defines an equivalence relation on G1:

g1 ∼ g2 ⇐⇒ ∃ n ∈ N : g2 = g1n,

the orbit through g ∈ G1 is precisely the coset gN , hence

G1/N = G1/ ∼ .

• A subgroup N of G1 is called a normal subgroup if

gng−1 ∈ N, ∀ g ∈ G1, n ∈ N.

The importance of this notion is that, in this case, G1/N can be made into a group
with the multiplication defined by:

(gN) · (g′N) = (gg′)N
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(if N was not normal, this multiplication would not have been well defined). Denoting
by j1 the quotient map

j1 : G1 −→ G1/N, g -→ gN,

one knows from group theory (and it is an easy exercise- see also below) that (G1/N, j1)
has precisely the universal property that we are looking for.

• Let’s now go back to the case where N is a subgroup of G1 which is not necessarily
normal. Since arbitrary intersections of normal subgroups of G1 is a normal subgroup,
we can talk about the smallest normal subgroup of G1 containing N (which is the
intersection of all normal subgroups of G1 containing N), which we will denote by N .
Since the kernel Ker(j1) of any group homomorphism j1 : G1 −→ G is a normal group,
we have:

j1 ◦ i1 = 1 ⇐⇒ N ⊂ Ker(j1) ⇐⇒ N ⊂ Ker(j1).
Let us now consider the general case when i1 : N −→ G1 is a group homomorphism (not

necessarily an inclusion). In this case i1(N) is a subgroup of G1 and we can apply the discussion
above to i1(N).

Lemma 8.12. Consider the starting data (1.1) with G2 = {1}. Let i1(N) ⊂ G1 be the image
of i1 (a subgroup of G1), let i1(N) be the smallest normal subgroup of G1 containing i1(N) and
consider the quotient group and the associated quotient map

π : G1 −→ G1/i1(N).

Then (G1/i1(N),π, 1) has the universal property with respect to the starting data (1.1) with
G2 = 1.

Another triple (G, j1, 1) has the universal property with respect to this data if an only if

j1 : G1 −→ G

is surjective with kernel equal to i1(N). In particular j1 will induce a group isomorphism

G ∼= G1/i1(N).

Proof. The universal property with respect to the starting data (1.1) is equivalent to the
universal property with respect to:

G1

i1(N)

incl
""/////////////

i2

##0000000000000

{1}

(where “incl” is the inclusion). Hence we may assume that N is a subgroup of G1 and i1 : N −→
G1 is the inclusion.

Let (H,φ1) be an arbitrary pair with φ1i1 = 1. We have remarked that this implies

N ⊂ Ker(φ1).

We have to show that there exists an unique homomorphism φ : G1/N −→ H such that φ1 = φπ.
Explicitly, this equation translates into:

φ(gN ) = φ1(g)
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for all g ∈ G1. This equation determines φ uniquely: it proves that φ will be unique, and
provides us with the formula defining φ. We still have to check that this φ is well defined, i.e.
we still have to show that, if g′N = g′′N then φ1(g′) = φ1(g′′). Taking n = g′−1g′′, we have
n ∈ N and we have to show that φ1(n) = 1, and this follows from the inclusion we mentioned
at the beginning of the proof. The last part of the lemma follows from the uniqueness insured
by Lemma 8.3. !

Corollary 8.13. (Corollary C) Let X,U, V, x0 be as in the Seifert-van Kampen theorem. If
π(V, x0) is trivial, then the map

j1 : π(U, x0) −→ π(X,x0)

is surjective and it induces an isomorphism of groups

π(U, x0)/Im(i1)
∼−→ π(X,x0),

where Im(i1) is the smallest normal subgroup of π(U, x0) containing the image of i1 : π(U ∩
V, x0) −→ π(U, x0).

We can now prove the following version of Proposition 8.10 in the case of two-cells.

Proposition 8.14. Assume that X is obtained from A by adjoining a two-cell e with charac-
teristic map χe : S1 −→ A. Consider a = χe(1), and denote by α ∈ π(A, a) the class of the path
t -→ χe(e2πti). Then the map induced by inclusion i : A −→ X,

i∗ : π(A, a) −→ π(X,x)

is surjective and has as kernel the smallest normal subgroup of π(A, a) containing α, denoted by
〈α〉. In particular, there is an isomorphism of groups:

π(X, a) ∼= π(A, a)/〈α〉.

Proof. We proceed like in the proof of Proposition 8.10. First of all, we use the same
notations, and the Remarks 1 and 3 apply also to this case. In particular we can apply Corollary
C to deduce that, for any x ∈ U ∩ V = e − {h(0)}, we have a sequence of maps:

π(U ∩ V, x)
ix1−→ π(U, x)

jx
1−→ π(X,x)

with jx
1 - surjective with the kernel equal to the smallest normal subgroup containing the image

of ix1 . Take x = h(v0), where v0 ∈
◦
D

2
−{0}. Since U ∩ V is homeomorphic to

◦
D

2
−{0} which is

homotopic equivalent D2−{0} (the last two spaces are both homotopic equivalent to the circle),
we find that the image of ix1 coincides with the image of the map induced by h : D2−{0} −→ U ,

h∗ : π(D2 − {0}, v0) −→ π(U, x).

We now proceed again as in the proof of Proposition 8.10. Take a path α0 in D2 − {0} going
from 1 to v0, and consider the path α = h ◦α0- a path in U going from a == h(1) to x = h(v0).
We then have a commutative diagram

π(D2 − {0}, 1) h∗ &&

cα0

,,

π(U, a)
ja
1 &&

bα
,,

π(X, a)

bα
,,

π(D2 − {0}, v0)
h∗ && π(U, x)

jx
1 && π(X,x)

where all the vertical maps are isomorphisms. From the similar property of the bottom line, we
deduce that the upper line has the property that ja

1 is surjective with the kernel equal to the
smallest normal subgroup containing the image of h∗. But, since S1 ↪→ D2 − {0} is a homotopy
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equivalence, π(D2 − {0}, 1) is the free group in one generator [γ1], where γ1(t) = e2πti. Hence
the image of

h∗ : π(D2 − {0}, 1) −→ π(U, a)
coincides with the group generated by

h∗([γ1]) = [h ◦ γ1] ∈ π(U, a).

Finally, by Remark 3,
k∗ : π(A, a) −→ π(U, a)

is an isomorphism, and, from the definition of α in the statement, we have

k∗(α) = [h ◦ γ1],

hence i∗ is surjective and has as kernel the subgroup generated by α. !
Example 8.15. Consider the torus T = X/ ∼, where X is the square and ∼ is the equivalence

relation which identifies the opposite sides of ∂X (see Section 5). Recall (see Example 6.11) that
T is obtained from a bouquet of two circles by attaching a 2-cell (see also the picture which comes
with that example). The bouquet of two circles arises as ∂X/ ∼, and we view it as a subspace
of the torus as shown in the picture (Figure 1), where a labels the first circle S1 ∨ {p} ⊂ T and
b labels the second circle {p} ∨ S1 ⊂ T . The attaching map comes from the homeomorphism
χ̃ : S1 −→ ∂X which transforms the circle to the boundary of the square (e.g. by taking 4
points on the circle and pulling them apart straightening the arcs between the points). The
attaching map itself is χ = π ◦ χ̃ where π0 : ∂X −→ ∂X/ ∼= S1 ∨ S1 is the quotient map.
In other words, when x ∈ S1 goes one time around the circle in the counterclockwise direction
starting at q, during the first quarter of the circle χ(x) goes around the first circle S1 ∨ {p} ⊂ T
(in the direction of a), during the next quarter χ(x) covers the second circle {p} ∨ S1 ⊂ T (in
the direction of b), during the third quarter χ(x) goes again around the first circle S1 ∨ {p} ⊂ T
but in the direction opposite to a, and in the last quarter it goes again around the second circle
{p} ∨ S1 ⊂ T (in the direction opposite to b). Symbolically, we write χ(S1) = aba−1b−1.

p

q

a a

b

b

a

b

b

a

b 
a

Figure 1.

We denote by the same letters a and b the elements

a, b ∈ π(T, p)

represented by the paths in T which go once around the two circles S1 ∨ {p} and {p} ∨ S1, in
the direction indicated in the picture. We see that the path defined by χ in π(T, p) is precisely

α = aba−1b−1,
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hence
π(T, p) = π(S1 ∨ S1)/〈aba−1b−1〉.

We will complete this computation in Example 8.20 below.

5. The case N = {1}

Assume now that N = {1}. The way to recognize the groups which have the universal property
is described in the following lemma.

Lemma 8.16. Consider the starting data (1.1) with N = {1}. Then a triple (G, j1, j2) has the
universal property if and only if, for any g ∈ G, there exists and are unique elements

a1, . . . , an ∈ G1, b1, . . . , bn ∈ G2

with ai 2= 1 for all i ≥ 2 and bj 2= 1 for all j ≤ n − 1, such that

(5.1) g = j1(a1)j2(b1) . . . jn(an)jn(bn).

Before we prove this lemma, we show how to construct a group with this property. We start
by considering “words in G1 and G2”, i.e. sequences

(5.2) w = (g1)(g2) . . . (gn),

where each gi is either in G1 or in G2. To avoid confusion and/or too complicated notations,
we assume that G1 and G2 are disjoint (otherwise, if a ∈ G1 ∩ G2, we would have to make the
distinction between the word which contains a as an element of G1, and the word which contains
a as an element of G2). One can realize this by taking a copy of G2 which is disjoint from G1.

We also allow the empty word
w∅ = ( ).

For any two words w and w′, one can consider a new word, ww′, which is made from w and
w′ put next to each other (juxtaposition).

A word (5.2) is called reduced if, for each i

• gi is neither the unit of G1, nor the unit of G2.
• gi and gi+1 are not in the same group.

Starting with an arbitrary word w, one can always produce a reduced word wred by applying
repeatedly the following operations

• If gi is the unit of G1 or of G2, delete it (and the parenthesis around it) from the w.
• If gi and gi+1 belong to the same group, then replace w by

(g1) . . . (gi−1)(gigi+1)(gi+2) . . . (gn).

We now define
G1 ∗ G2 := {w : w is a reduced word in G1 and G2},

which is a group with:
• the multiplication of two words given by

w ∗ w′ := (ww′)red.

• the unit element w∅ = ( ) (the empty word).
There are two group homomorphisms,

k1 : G1 −→ G, k2 : G2 −→ G

sending an element g ∈ G1 or g ∈ G2 to the word of length one (g).
We can now improve Lemma 8.16 as follows:
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Lemma 8.17. Consider the starting data (1.1) with N = {1}. Then (G1 ∗ G2, k1, k2) has the
universal property.

For any other triple (G, j1, j2) which has the universal property with respect to this data, one
has a group isomorphism

φ : G1 ∗ G2 −→ G,

uniquely determined by the condition that it sends g1 ∈ G1 to j1(g1) ∈ G and g2 ∈ G2 to
j2(g2) ∈ G.

Proof. (of Lemma 8.16 and of Lemma 8.17). We first show that if (G, j1, j2) has the
property described in Lemma 8.16, then it satisfies the universal property. This will apply in
particular to (G1 ∗ G2, k1, k2) (which clearly has that property,). So, starting with (H,φ1,φ2),
we have to find φ : G −→ H such that φ1 = φj1, φ2 = φj2. This means that

φ(j1(g1)) = φ1(g1),φ(j2(g2)) = φ2(g2)

for all g1 ∈ G1, g2 ∈ G2. For g ∈ G arbitrary, consider its unique decomposition (5.1), we must
have

φ(g) = φ1(a1)φ2(b1) . . . φ1(an)φ2(bn).
This formula determines φ: it proves the uniqueness of φ, and also provides us with the defining
formula. One still has to show that φ is a group homomorphism, which is left as an exercise.

The last part of the Lemma 8.17 follows from the uniqueness insured by Lemma 8.3. This
also implies the remaining part of Lemma 8.16, namely that if (G, j1, j2) has the universal
property, then any g has a unique decomposition as in the lemma. Indeed, using the isomorphism
φ : G1 ∗ G2 −→ G, it suffices to prove the similar property for (G1 ∗ G2, k1, k2), which is clear
from the construction of the free product. !

Corollary 8.18. (Corollary D) Let X,U, V, x0 be as in the Seifert-van Kampen theorem. If
π(U ∩ V, x0) is trivial, then π(X,x0) is isomorphic to the free product of π(U, x0) and π(V, x0).
More precisely, there is a unique group homomorphism

φ : π(U, x0) ∗ π(V, x0) −→ π(X,x0)

which sends g1 ∈ π(U, x0) to j1(g1) and g2 ∈ π(V, x0) to j2(g2), and φ is an isomorphism.

Remark 8.19. (generators and relations): To be able to write down some of the groups we
obtain, it is useful to represent groups by generators and relations.

First of all, starting with G1 = F (a1)-the free group (= the infinite cyclic group) with generator
a1:

F (a) = {(a1)n : n ∈ Z},
and G2-the free group with generator a2, the free product G1 ∗ G2 is the free group with two
generators, denoted F (a, b):

F (a1, a2) = F (a1) ∗ F (a2).
The free group in three generators is defined similarly

F (a1, a2, a3) = F (a1, a2) ∗ F (a3).

Inductively, one defines the free group generated by finite number of generators. More generally,
for any set S, we can define the free group generated by S, denoted by

F (S).

This means that we have generators as, one for each s ∈ S, and each element of g ∈ F (S)
different from the identity element can be uniquely written as a product

g = an1
s1

. . . a
np
sp ,
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with p ∈ Z positive integer, n1, . . . , np ∈ Z non-zero, and s1, . . . , sp ∈ S with si 2= si+1 for all i.
Given a subset R ⊂ F (S), we denote by

〈R〉 ⊂ F (S)

the smallest normal subgroup of F (S) containing R (the intersection of all normal subgroups of
F (S) containing R), and we will consider the quotient:

F (S)/〈R〉.
By considering this quotient, what we actually do is to force the elements of R to be trivial.

To write a group as such a quotient F (S)/〈R〉 is known as describing the group by generators
(the elements of S) and relations (the elements of R).

A group can be represented by generators and relations in many ways. For instance, (Z2,+)
can be written as

F (a, b)/〈aba−1b−1〉, F (a, b, c)/〈aba−1c, bc〉.
On the other hand, any group G can be realized in this way, i.e. there exist S and R such that
G is isomorphic to F (S)/〈R〉 (the problem is that there are many such choices). For instance,
one could take S = G, R = {agg′a

−1
g′ a−1

g : g, g′ ∈ G} ∪ {a1}.

Example 8.20. Let us consider a bouquet of two circles X = S1 ∨ S1, and let p ∈ X be
the common point of the two circles. See Figure 2. Let U0 be a small neighborhood of p in the

ba

equivalent to:
homotopic  

equivalent to:
homotopic  

0V

0U

V:

U:

Figure 2.

second circle, let V0 be a small neighborhood of p in the first circle, and let

U = S1 ∨ U0, V = V0 ∨ S1.

The intersection U ∩ V is contractible to p, hence we can apply the previous result. Note also
that the inclusion

f1 : S1 = S1 ∨ {p} ↪→ U

is a homotopy equivalence. Passing to fundamental groups, since π(S1) is free in one generator,
we find that π(U, p) = 〈a〉 is the free group in one generator a, where a is the homotopy class of
the path which starts and ends at p going around the first circle once. Similarly, π(V, p) = 〈b〉
is the free group in one generator b, where b is the homotopy class of the path which starts
and ends at p going around the second circle once. We deduce from the previous corollary that
π(S1 ∨ S1, p)

π(S1 ∨ S1, p) = F (a, b)
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is the free group in two generators a and b shown in the picture.
We can now complete the computation of the fundamental group of the torus started in

Example 8.15. We find
π(T 2, p) = F (a, b)/〈aba−1b−1〉

which is the commutative group in two generators, hence isomorphic to Z2.

Example 8.21. Consider Y = S1 ∨ S1 ∨ S1 a bouquet of three circles. We can use the
previous example in two ways: both the result obtained there, as well as the idea for the
computation. First of all, take X = S1 ∨ S1 ∨ {p} (p is the common point of the circles),
U = S1 ∨S1∨U0, V = W0∨V0∨S1, with U0, V0,W0-small neighborhoods of p. The intersection
U ∩V is contractible. The inclusion X ↪→ U is a homotopy equivalence, hence π(U, p) = 〈a1, a2〉
is the free group in two generators: a1-represented by the path which goes once around the
first circle, and a2-represented by the path which goes once around the second circle. Similarly,
π(V, p) = 〈a3〉 is the free group in one generator with a3-represented by the path which goes
once around the third circle. Applying the previous proposition, we find π(Y, p) = 〈a1, a2, a3〉.
Applying repeatedly this argument, we find the fundamental group of any finite bouquet of
circles:

π(S1 ∨ . . . ∨ S1
︸ ︷︷ ︸

n−times

, p) = F (a1, . . . , an),

the free group in n generators.

6. The general case

To explain the general case (i.e. when no restriction are made on the starting data (1.1)),
we will represent our groups using generators and relations (explained in Remark 8.19). The
Seifert- van Kampen theorem takes the following form.

Corollary 8.22. Let X,U, V, x0 be as in the Seifert-van Kampen theorem. Assume that

π(U, x0) = F (S1)/〈R1〉,
π(V, x0) = F (S2)/〈R2〉

π(U ∩ V, x0) = F (S)/〈R〉,
where S1 and S2 are chosen to be disjoint. For each s ∈ S, choose fs ∈ F (R1) such that

i1(as) = fs〈R1〉 ∈ F (S1)/〈R1〉,
and similarly choose gs ∈ F (R2) such that i2(as) = gs〈R2. Consider

R′ = {fsg
−1
s : s ∈ S} ⊂ F (S1 ∪ S2).

Then
π(X,x0) = F (S1 ∪ S2)/〈R1 ∪ R2 ∪ R′〉.
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7. Some more exercises

Here are some more exercises about the fundamental group.

Exercise 8.2. Prove that

X = {(x, y, z) ∈ R3 : x2 + y2 2= 0}
is not homeomorphic to R3. Also, compute the fundamental group of X.

Exercise 8.3. Compute the fundamental group of the spaces appearing in Figures 8 and 9
of Section 4, Chapter 6.

Exercise 8.4. Compute the fundamental group of the spaces appearing in Figures 6 of
Chapter 7, Section 1.

Exercise 8.5. Compute the fundamental group of the spaces appearing in Figure 10 of
Section 4, Chapter 6. Do the same for the spaces from Figure 13 of the same section.

Exercise 8.6. Compute the fundamental group of all the spaces appearing in Exercises 6.22,
4.21, 6.24, 6.25.

Exercise 8.7. Compute the fundamental group obtained by removing one point from the
torus.

Exercise 8.8. Compute the fundamental group obtained by removing two points from the
sphere. Similarly for the torus instead of the sphere.

Exercise 8.9. Go back to exercise 6.26, and compute the fundamental group of the double
torus.

Exercise 8.10. Compute the fundamental group of the Klein bottle.

Exercise 8.11. Find a topological space whose fundamental group is isomorphic to G in
each of the following cases:

(i) G = Zn.
(ii) G = Zn × Zm.
(iii) G = Zn ∗ Zm.

where n and m are arbitrary positive integers.
(Hint: look at exercise 6.27).

Exercise 8.12. Let x0 be a point in the torus p. We know that any homeomorphism
f : T −→ T such that f(x0) = x0 induces a group isomorphism f∗ : π(T, x0) −→ π(T, x0). Show
the converse: any group isomorphism arises in this way (for some f).

Exercise 8.13. Find a map f : T −→ S1 which is not null-homotopic (i.e. is not homotopic
to the constant map). Similarly for the Moebius band instead of the torus.

Exercise 8.14. Show that any map f : Sn −→ S1 is null-homotopic, when n ≥ 2.





CHAPTER 9

How to compute fundamental groups: a summary and examples

1. Summary and some example

So: how does one compute fundamental groups? Assume one wants to compute the funda-
mental group of a space X. Recall that, if X is path connected, one may choose any (convenient)
point as the base point (cf. Theorem 7.22). Here are some possible steps.

1.1. Step 0: Try to see if your space is homotopic equivalent to a space X ′ which is simpler
or whose fundamental group you already know. Then you can replace X by X ′ (cf. Theorem
7.23).

1.2. Step 1: Try to find a cell decomposition of X. Then you can throw away the n-cells
with n ≥ 3 (cf. Proposition 8.10 or Corollary 8.11).

Cell decompositions can be found by looking at the picture. Another useful way to find a cell
decomposition is to realize your space as a quotient space obtained from the square or the disc,
by identifying certain points on the boundary: then one can use (maybe repeatedly) Lemma
6.9 which we now recall (in slightly different notations): Let X be a Hausdorff space which is
obtained from Dn (or any other space homeomorphic to Dn) by identifying certain points on
∂Dn = Sn−1 and let A = ∂Dn/ ∼. We denote by

χ : Sn−1 = ∂Dn −→ ∂Dn/ ∼= A

the quotient map. Then X is obtained from A by attaching an n-cell whose characteristic map
is χ.

The case n = 2 is particularly important: many spaces X can be obtained from D2 by
identifying certain parts of ∂D2 = S1, and the identification can be shown on the picture by
labeling by letters the parts that are to be identified. In the quotient A = ∂D2/ ∼, each letter
will appear only once (because we identified all the parts labeled by the same letter). When
going once around the circle, we will meet various labels that will give us a word whose letters
are labels. Reading this word in the space A describes the characteristic map χ : S1 −→ A. We
have already seen this in the case of the torus (see Figure 1): in that case A was a bouquet of
two circles A and B (two circles touching each other in one point), and the characteristic map
χ : S1 −→ A gave us the word aba−1b−1, which we can read in the picture of A to describe the
characteristic map itself.

1.3. Step 2: You have reduced the problem to the computation of the fundamental group
of the 2-skeleton X2 (what remains after throwing away the n-cells with n ≥ 3). Try to apply
Step 0 to X2. Otherwise, use Proposition 8.14 to get rid of the 2-cells. Applying the proposition
repeatedly for each 2-cell, you will find that the fundamental group you are interested in is
isomorphic to the quotient of π(X1) by the smallest normal subgroup generated by paths induced
by the characteristic maps of the 2-cells.

131
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Figure 1.

1.4. Step 3: Hence you reduced the computation to the computation of the fundamental
group of X1. Try to apply Step 0 again. Otherwise, choose U and V inside X1 so that you can
apply Corollary D.

One should be aware that these steps should not be followed blindly- also think about simpli-
fying them! For instance, the use of covering maps (e.g. of Exercise 7.23), of the fundamental
group of the product (Exercise 7.19), or the trick of taking out points (Exercise 7.14) should not
be underestimated.

Here are a few spaces whose fundamental group has been computed:

• The fundamental group of spaces like Rn, Dn,
◦
D

n
, or any other convex space in Rn is

zero. In particular, since Sn − {p} (a sphere minus a point) is homeomorphic to Rn,
its fundamental group is zero as well.

• The fundamental group of Sn is zero for all n ≥ 2.
• The fundamental group of S1 is the free group in one generator (hence isomorphic to

Z), where the generator is induced by the path t -→ e2πti. In particular, since spaces
like

R2 − {0},D2 − {0},
◦
D

2
−{0}

are all homotopic equivalent to S1, the fundamental group of all such spaces is isomor-
phic to (Z,+).

• The fundamental group of a bouquet of n circles is the free group in n generators, each
generator being defined by the path which goes once around one of the n circles.

• Various other spaces are homotopy equivalent to bouquets of circles. For instance -as
we have seen- the torus T from which we remove one point is homotopic equivalent to
a bouquet of two circles, hence its fundamental group is isomorphic to the free group
in two generators.

• The fundamental group of the torus is isomorphic to Z2. This has been explained in
this chapter using the Seifert van Kampen theorem.

Example 9.1. The fundamental group of S2 ×S2 can be computed using Exercise 7.19, and
the result is the trivial group.

Example 9.2. We have seen the computation of the fundamental group of the torus based on
the Seifert van Kampen theorem. The advantage of this proof is that the same idea applies to
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many other examples. However, since the torus is homeomorphic to the product of two circles,
it suffices to use Exercise 7.19 and immediately get the result.

Example 9.3. Consider X obtained from the sphere by removing two points:

X = S2 − {pN , pS}.
Since S2 minus a point is homeomorphic to R2, X is homeomorphic to R2−{0} (by stereographic
projection, see Figure 2), hence it is homotopic equivalent to the circle S1 ⊂ X (homotopy that
can be seen directly). Hence the fundamental group of X (let’s say with base point (1, 0, 0)) is
isomorphic to (Z,+), with the generator induced by the path that goes once around the middle
circle.

p

p

N

S

By stereographic projection (sending the red points to the blue ones), the spehere
minus two points is homeomorphic to the plane minus the origin, hence it is 
                         homotopic equivalent to the midle circle

Figure 2.

Example 9.4. Consider the Euclidean plane from which we remove two points. For instance,
take

X = R2 − {(−1, 0), (0, 1)}.
Similar to the fact that R2 minus a point is homotopic equivalent to the circle, we have already
seen that X is homotopic equivalent to a bouquet of two circles (Figure 3). We conclude that
π(X, 0) is a free group in two generators a and b shown in the picture.

|R
2
   minus two points is homotopic equivalent to a bouquet of two circles

a b

Figure 3.
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2. The Moebius band

Let us look at the Moebius band M . We have already remarked that M is homotopic equivalent
to S1 (with S1 sitting inside M as the middle circle, hence the homotopy group of M is isomorphic
to (Z,+).

Let us compute this group differently, using a cell-decomposition of M . Since M can be
described as a quotient of the square, as mentioned above, we can use Lemma 6.9 to find a cell
decomposition of M . But that is precisely what we have done in the second part of the Example
6.12. The conclusion is that M is obtained from the space B shown in Figure 4 by adjoining a
2-cell, with characteristic map described in the picture. Hence π(M) is isomorphic to π(B)/〈α〉,
where α is the path which the characteristic map follows (“cab−1a”). On the other hand, by

the direction of the path followed by the characteristic map

B

a cb

a

cb

aa

cb

c

b

aa

Figure 4.

collapsing “a” in the picture, we see that B is homotopic equivalent to a bouquet of two circles
(“b” and “c”), and α is sent to cb−1. Hence the group we are interested in is isomorphic to

F (c, b)/〈cb−1〉

the quotient obtained from the free group in two generators c and b by imposing cb−1 = 1, i.e.
the free group in one generator.

3. The double torus

Consider the double torus T2 (Figure 5). It can be obtained as a quotient of D2 in the following
way (indicated already in the last two exercises of Section 5). First cut the double torus by a
circle in the middle. We obtain two “cut tori”, where a cut torus is obtained from a torus from
which we remove a small open ball. Going backward, i.e. identifying the two cut torus along
their boundary circles as shown in the picture, gives us back T2. This is the description of T2 as
the “connected sum T#T” (to be explained below).

So, let’s first look at the cut torus Tc. Since the torus is obtained from the square by identifying
its opposite points, a cut torus can be obtained from a square from which we remove a small
ball e as shown in the picture (Figure 6), followed by the identification of its opposite sides. In
turn, [0, 1] × [0, 1] − e can be cut at the origin (0, 0) to produce a pentagon. Going back from
the pentagon to the cut-tours amounts to making the identifications described by the labeling
in the picture (the c-side is not identified with any other segment!). This describes the cut-torus
as obtained from te pentagon by identifying its sides according to the labeling.
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The double torus obtained from two cutïtori by glueing the boundary circles 
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identifying (some of) its sides
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c
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b
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Figure 6.

Back to the double torus, we apply the previous construction to one of the cut torus, and we
obtained a pentagon whose sides are labeled by a1, b1, c. We do the same for the other cut torus,
and we obtain another pentagon whose sides are labelled by a2, b2, c. See Figure 22. The label
c is the same because it represents the initial cut in the double torus; so, when glueing back, we
also have to glue the two copies of c. However, one can start with gluing the two copies of c first,
and leave the other identifications for later. This produces an octogone with the sides labelled
as in the picture (Figure 7), and this gives a description of T2 as obtained from an octagon by
identifying its sides according to the labeling. To compute the fundamental group, we continue
as before (e.g. as in the case of the torus, of the Moebius band, or of P2). We find that T2 is
obtained by adjoining to a bouquet of four circles (labeled a1, b1, a2, b2):

S1 ∨ S1 ∨ S1 ∨ S1

a 2-cell with characteristic map χ : S1 −→ S1 ∨ S1 ∨ S1 ∨ S1 described by

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 .
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Denoting by ai, bi the resulting elements in the fundamental group of S1 ∨S1 ∨S1 ∨S1, we find

π(T2) ∼ F (a1, b1, a2, b2)/〈a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 〉.
More generally, consider

Tg = T# . . . #T
︸ ︷︷ ︸

g times

,

the “connected sum” of g copies of the torus, which can be visualized as the torus with g
wholes. Repeating the arguments above, one obtains a description of Tg as obtained starting
from a 4g-sided polygon with the labeling of its sides:

cg = a1b1a
−1
1 b−1

1 . . . agbga
−1
g b−1

g ,

and making the identifications dictated by the labeling. The fundamental group of Tg will be
the quotient

π(Tg) ∼ F (a1, b1, . . . , ag, bg)/〈cg〉.

4. The projective space

Let us look at the projective space Pn. As in the case of the torus and the Moebius band,
it is not really necessary to use the Seifert-van Kampen theorem (however, it is again a good
illustration of the theorem).

First of all, recall that Pn admits a cell decomposition with 2-skeleton equal to P2 -see Example
6.29- hence we reduce the computation to the case n = 2 (cf. Proposition 8.10 or Corollary
8.11). But we have seen (see Section 7) that P2 can be obtained from the square [0, 1] × [0, 1]
by identifying its opposite sides as shown in the picture, hence, as above, we can use Lemma
6.9. We can actually use the picture of the Moebius band because P2 can be obtained by
the identifications made to obtain the Moebius band, plus one more: one also identifies b−1

and c in the picture (the notation “b−1” refers to the fact that we change the orientation).
Hence, denoting by ∼ the equivalence relation on B which identifies b−1 and c, P2 is obtained
from A = B/ ∼ by attaching a 2-cell. Hence A is obtained from B by folding it along the
middle vertical line, and the result is clearly (homeomorphic to) a circle. See Figure 8. Hence
π(A) = F (u) (with generator u = ca on the picture). Also, the path followed by the characteristic
map (which was “cab−1a” in B) becomes “caca”, i.e. it goes twice around the circle. Hence
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the characteristic map induces in the fundamental group the element u2 ∈ π(A). Hence the
fundamental group of P2 is F (u)/〈u2〉, or, in additive notation, Z/2Z. Hence, for each n ≥ 2,

π(Pn) ∼= Z2.

5. Surfaces

Definition 9.5. An n-dimensional topological manifold is a topological spaces M with the
following properties:

• M is Hausdorff and second countable.
• it is locally homeomorphic to Rn i.e. for each x ∈ M , there exists a neighborhood U of

x in M which is homeomorphic to Rn.
A (topological) surface is a 2-dimensional (topological) manifold.

There is a very basic operation which allows us to construct a new manifold out of two given
one.

Definition 9.6. Given two topological manifolds M and N of the same dimension, define
their connected sum, denoted M#N as follows: remove from M and N two “small balls” B1

and B2 and glue M − B1 and N − B2 along the sphere ∂B1 = ∂B2.

For surfaces, it means that we remove two small disks and we glue the remaininig spaces along
the bounday circles.

Example 9.7. The connected sum M#S2 of any surface M with the sphere S2 is homeo-
morphic to M itself.

Example 9.8. The connected sum of two tori is the double torus. Repeating the operation
of connected sum, one obtains all tori with arbitrary number of wholes:

Tg = T# . . . #T
︸ ︷︷ ︸

g times

.

Similarly, one considers the connected sum of g copies of P2:

Uh = P2# . . . #P2

︸ ︷︷ ︸

h times

.

Example 9.9. Example 1.23 tells us that, after removing a small disk from P2, one obtaines
a Moebius band. On the other hand, Exercise 1.21 tells us that the Klein bottle can be obtained
by gluing two copies of the Moebius band along the boundary circle. In other words, the Klein
bottle can be constructed out of P2, as the connected sum P2#P2.
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And here is one of the most beautiful theorems of topology:

Theorem 9.10. Any compact surface is homeomorphich to one, and only one, of the surfaces
Tg with g ≥ 0, or Uh with h ≥ 1 (we define T0 = S2).

What we are able to prove here is that any two of these spaces are not homeomorphic. The
proof is based on the computation of the fundamental group. We have already done it for Tg.
The computation for Uh is completely analogous. Starting from the fact that U1 = P2 can be
obtained from a square with its sides label led in the order

aabb = a2b2,

we find that Uh is obtained by starting from a 2h-sided polygon with the labeling of its sides:

dh = (a1)2 . . . (ah)2,

and making the identifications dictated by the labeling. Finally,
π(Uh) = F (a1, . . . , ah)/〈(a1)2 . . . (ah)2〉.

Since these fundamental groups are rather wild, in order to compare them, we will use one
trick coming from group theory: their abelianization. Recall that, for a group G, one defines
the abelianization of G as:

Gab = G/{ghg−1h−1 : g, h ∈ G},
the quotient of G by the smallest normal subgroup containing all the elements of type ghg−1h−1

(in this way we force in the quotients all commutation relations). Two isomorphic groups have
isomorphic abelianizations. Hence, to prove that the fundamental groups of the surfaces Tg and
Uh are not isomorphic, it suffices to show that their abelianizations are not isomorphic. First of
all, for Tg, we use the computation from Section 3: the abelianization is obtained by imposing
the new relations which say that any two of the generators of F (a1, . . . , ah) commute, and we
obtain the abelian group in 2g generators

π(Tg)ab ∼ (Z2g,+).

In particular, Tg and Tg′ cannot be homeomorphic if g 2= g′. Similarly, for Uh, we will have
F (a1, . . . , ah)/〈(a1)2 . . . (ah)2〉 to which we have to impose the new relations aiaj = ajai for all
i and j. We find that π(Uh) is isomorphic to the quotient of Zh by the subgroup generated by

2a1 + 2a2 + . . . 2ah

(note that we passed from the multiplicative notation for the group composition, to the additive
notation- which is the one used fro Zr) where ai = (0, . . . , 0, 1, 0, . . . , 0) is the i-the generator (1
is on the i-th place). Hence we are talking about the subgroup

Nh = {(2n, . . . , 2n) : n ∈ Z} ⊂ Zh.

It is not difficult to see that

Zh/Nh -→ Zh−1 × Z2, (n1, . . . , nh) -→ (n1, . . . , nh−1, ̂n1 + . . . + nh−1)

is an isomorphism, hence
π(Uh)ab ∼ Zh−1 × Z2.

This implies that Uh and Uh′ are not homeomorphic if h 2= h′ and that Tg is not homeomorphic
to Uh for all g and h.
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