MAT105 – Prova 1

Universidade Pública, Gratuita e de Qualidade. Dever do Estado, direito de todos! Resolva os exercícios abaixo. Justifique <u>TODAS</u> as suas respostas. Boa prova!

- 1. (2,5 pontos) Na figura 1 abaixo temos um cubo onde todas as arestas tem comprimento 1. Decida se as seguintes afirmações são verdadeiras ou falsas. Justifique suas respostas:
 - (a) $\overrightarrow{AG} + \overrightarrow{HE} + \overrightarrow{FD} = \overrightarrow{BC}$
 - (b) O conjunto $(\overrightarrow{AF}, \overrightarrow{AG}, \overrightarrow{AH})$ é linearmente dependente.
 - (c) O conjunto $(\overrightarrow{AD},\overrightarrow{GC},\overrightarrow{HG})$ é uma base de V^3 e o vetor \overrightarrow{AG} tem coordenadas (1,-1,1) nessa base.
 - (d) O conjunto $(\overrightarrow{AD},\overrightarrow{AB},\overrightarrow{AE})$ é uma base ortonormal de V^3 .
 - (e) O produto escalar de \overrightarrow{AG} com \overrightarrow{AF} é -1.

Figura 1: Cubo de aresta 1

2. (2,5 pontos) Seja $E=(\vec{e}_1,\vec{e}_2,\vec{e}_3)$ uma base de V^3 e sejam

$$\vec{f_1} = 2\vec{e_1} + \vec{e_3}, \quad \vec{f_2} = \vec{e_1} + \vec{e_2}, \quad \vec{f_3} = -\vec{e_1} - \vec{e_3}.$$

- (a) (0,5 pontos) Quais são as coordenadas dos vetores $\vec{f_1}$, $\vec{f_2}$, e $\vec{f_3}$ na base E?
- (b) (1 ponto) Mostre que $F = (\vec{f_1}, \vec{f_2}, \vec{f_3})$ é uma base de V^3 .
- (c) (1 ponto) Se as coordenadas de um vetor \vec{v} na base E são dadas por $\vec{v} = (2, 1, 0)_E$, encontre as coordenadas de \vec{v} na base F.
- 3. (3,5 pontos) Considere um triângulo ABC e seja $\overrightarrow{CA} = \vec{u}, \overrightarrow{CB} = \vec{v}$ e $\vec{w} = \vec{u} 2\vec{v}$. Encontre $\alpha \in \mathbb{R}$ tal que $X = A + \alpha \vec{w}$ é um ponto da reta AB.

- 4. Seja B uma base ortonormal de V^3 e sejam $\vec{f}_1=(1,1,1)_B, \ \vec{f}_2=(1,-1,0)_B, \ \vec{f}_3=(0,1,1)_B.$
 - (a) (0,5 pontos) Mostre que $F=(\vec{f_1},\vec{f_2},\vec{f_3})$ é uma base de $V^3.$
 - (b) (1,5 pontos) Aplique o método de Gram-Schmidt para obter uma base ortonormal $E=(\vec{e_1},\vec{e_2},\vec{e_3})$ a partir da base F.
 - (c) (1,5 pontos) Encontre as coordenadas do vetor $(1,2,-1)_E$ na base F.