MAT105 – Prova 1

Nome:		
Número USP:		

Universidade Pública, Gratuita e de Qualidade. Dever do Estado, direito de todos!

Resolva os exercícios abaixo. Justifique TODAS as suas respostas. Boa prova!

1. (2 pontos) Seja \mathcal{E} uma base de V^3 e sejam

$$\vec{u} = (1, a, 1), \quad \vec{v} = (0, a, 1), \quad \vec{w} = (1, 1, a).$$

Determine todos os valores de $a \in \mathbb{R}$ para os quais $\mathcal{B} = (\vec{u}, \vec{v}, \vec{w})$ é uma base de V^3 .

- 2. Sejam $\vec{v}_1, \dots, \vec{v}_k \in V^3$. Decida se as seguintes afirmações são verdadeiras ou falsas. Justifique suas respostas *sucintamente* com uma demonstração ou um contra-exemplo.
 - (a) (0,5 pontos) Se $\vec{v}_1, \ldots, \vec{v}_k$ são linearmente dependentes e $\vec{u} \in V^3$ então $\vec{v}_1, \ldots, \vec{v}_k, \vec{u}$ são necessariamente linearmente dependentes.
 - (b) (0,5 pontos) Se $\vec{v}_1, \ldots, \vec{v}_k$ são linearmente independentes então $\vec{v}_1, \ldots, \vec{v}_{k-1}$ são necessariamente linearmente independentes.
 - (c) (0,5 pontos) Se k=3 então $B=(\vec{v}_1,\ldots,\vec{v}_k)$ é necessariamente uma base de V^3 .
 - (d) (0,5 pontos) Se $\vec{u}, \vec{v}, \vec{w}$ são vetores linearmente dependentes e \vec{u}, \vec{v} são linearmente independentes, então necessariamente \vec{u}, \vec{w} ou \vec{v}, \vec{w} são linearmente dependentes.
- 3. Considere o seguinte sistema de equações lineares:

$$\begin{cases} x + 2z = 1 \\ x - ay + z = -1 \\ y + 2z = b \end{cases}$$

- (a) (1 ponto) Determine todos os valores de $a, b \in \mathbb{R}$ para os quais o sistema admite uma única solução (i.e., o sistema é possível determinado).
- (b) (1 ponto) Encontre todos os valores de $a, b \in \mathbb{R}$ para os quais o sistema não admite nenhuma solução (i.e., o sistema é impossível).
- (c) (1 ponto) Encontre uma solução geral do sistema **em forma vetorial** quando a=1/2 e b=4.
- 4. Na figura 1 abaixo (vire a página!) temos um cubo. Sejam M, N, O os pontos médios dos seguimentos DH, CG, BF respectivamente. Considere a base $\mathcal{B} = (\overrightarrow{EH}, \overrightarrow{EF}, \overrightarrow{EA})$ de V^3 .

- (a) (1 ponto) Encontre as coordenadas dos vetores $\overrightarrow{BM}, \overrightarrow{FN}, \overrightarrow{AO}$ na base \mathcal{B} .
- (b) (1 ponto) Mostre que $\mathcal{E}=(\overrightarrow{BM},\overrightarrow{FN},\overrightarrow{AO})$ é uma base de V^3 .
- (c) (1 ponto) Se $\vec{u} = (-3, 6, -\frac{3}{2})_{\mathcal{B}}$, encontre as coordenadas de \vec{u} na base \mathcal{E} do item (c).

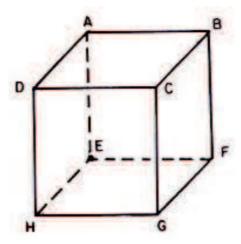


Figura 1: Cubo