MAT105 - Geometria Analítica – Lista 3

- 1. Sejam O, A, B, C pontos de R³ que são vértices de um tetraedro. Explique porque os vetores $\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}$ formam uma base de V^3 .
- 2. Dados os vetores L.I. $\vec{u}, \vec{v}, \vec{w}$ constroem-se, a partir de um ponto arbitrrio O os pontos

$$A = O + \vec{u} - 2\vec{v} + \vec{w}, \quad B = O - \vec{u} + \vec{v} - 2\vec{w}$$

$$C = O + \lambda \vec{u} + \vec{v} - \vec{w}, \quad D = O - 2\vec{u} - \lambda \vec{v}.$$

Determine λ de modo que os vetores, \overrightarrow{AB} , \overrightarrow{AC} e \overrightarrow{AD} sejam coplanares.

- 3. Sejam $\vec{v}_1, \dots, \vec{v}_k \in V^3$. Decida se as seguintes afirmações são verdadeiras ou falsas. Justifique suas respostas com uma demonstração ou um contra-exemplo.
 - (a) Se $\vec{v}_1, \ldots, \vec{v}_k$ são linearmente dependentes e $\vec{u} \in V^3$ então $\vec{v}_1, \ldots, \vec{v}_k, \vec{u}$ são linearmente dependentes.
 - (b) Se $\vec{v}_1, \ldots, \vec{v}_k$ são linearmente independentes então $\vec{v}_1, \ldots, \vec{v}_{k-1}$ são linearmente independentes.
 - (c) Se k=3 então $B=(\vec{v}_1,\ldots,\vec{v}_k)$ é uma base de V^3 .
 - (d) Se $\vec{u}, \vec{v}, \vec{w}$ são vetores linearmente dependentes e \vec{u}, \vec{v} são linearmente independentes, então \vec{u}, \vec{w} ou \vec{v}, \vec{w} são linearmente dependentes.
 - (e) Se três vetores geram V^3 então eles são linearmente independentes.
- 4. Na figura 1 abaixo temos um cubo. Sejam M, N, O os pontos médios dos seguimentos DH, CG, BF respectivamente.
 - (a) Explique porque $\mathcal{B} = (\overrightarrow{EH}, \overrightarrow{EF}, \overrightarrow{EA})$ é uma base de V^3 .
 - (b) Encontre as coordenadas dos vetores $\overrightarrow{BM}, \overrightarrow{FN}, \overrightarrow{AO}$ na base $\mathcal B$ do item (a).
 - (c) Mostre que $\mathcal{E} = (\overrightarrow{BM}, \overrightarrow{FN}, \overrightarrow{AO})$ é uma base de V^3 .
 - (d) Se $\vec{u} = (-1, 2, 1)_{\mathcal{B}}$, encontre as coordenadas de \vec{u} na base \mathcal{E} do item (c).
- 5. Seja ${\mathcal E}$ uma base de V^3 e sejam

$$\vec{u} = (1, a, 1), \quad \vec{v} = (0, a, 1), \quad \vec{u} = (-1, a, 1).$$

Determine todos os valores de $a \in \mathbb{R}$ para os quais $\mathcal{B} = (\vec{u}, \vec{v}, \vec{w})$ é uma base de V^3 .

6. Seja \mathcal{E} uma base de V^3 e sejam $\vec{a} = (1, 1, 1)_{\mathcal{E}}$, $\vec{b} = (1, -1, 1)_{\mathcal{E}}$. Encontre todos os valores de $z \in \mathbb{R}$ tais que $\vec{c} = (-1, 2, z)$ pode ser escrito como combinação linear de \vec{a} e \vec{b} .

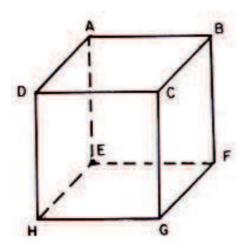


Figura 1: Cubo

- 7. Decida se as seguintes afirmações são verdadeiras ou falsas. Justifique sua resposta com uma demonstração ou um contra-exemplo:
 - (a) Se \mathcal{B} é uma base de V^3 e $\vec{u}=(a,b,c)_{\mathcal{B}}, \vec{v}=(x,y,z)_{\mathcal{B}}$ então $\vec{u}=\vec{v}$ se e somente se a=x,b=y, e c=z.
 - (b) O vetor nulo $\vec{0}$ tem coordenadas (0,0,0) em qualquer base de V^3 .
 - (c) Se \mathcal{B} e \mathcal{E} são bases de V^3 , e $\vec{u} \neq \vec{0}$ é um vetor que tem as mesmas coordenadas em ambas as bases, ou seja $\vec{u} = (a, b, c)_{\mathcal{B}} = (a, b, c)_{\mathcal{E}}$, então podemos concluir que $\mathcal{B} = \mathcal{E}$.