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ON QUADRUPLES OF LINEARLY CONNECTED PROJECTIONS
AND TRANSITIVE SYSTEMS OF SUBSPACES

YULIA MOSKALEVA, VASYL OSTROVSKYI, AND KOSTYANTYN YUSENKO

Abstract. We study conditions under which the images of irreducible quadruples
of linearly connected projections give rise to all transitive systems of subspaces in a
finite dimensional Hilbert space.

Introduction

A number of recent papers are devoted to the study of families of projections {Pi}n
i=1,

in a complex separable Hilbert space H, which satisfy the linear relation

(1) α1P1 + · · ·+ αnPn = γI,

where all αi and γ are real non-negative numbers. In particular, the correspondence
between such irreducible families and associated systems of n subspaces in H, S =
(H;H1, . . . ,Hn) where Hi = Im(Pi), was noticed and studied in [3, 8].

The system of subspaces S is transitive (brick) if any operator in H which maps any Hi

into itself is scalar. In this case, we also say that the family {Pi}n
i=1 is transitive. In [3] it

was shown that there exists a one-to-one correspondence between transitive quadruples of
subspaces in a finite-dimensional Hilbert space and irreducible quadruples of projections,
P1,. . . ,P4, such that P1+P2+P3+P4 = γI for some γ ∈ R. For arbitrary n, in the finite-
dimensional case the images of an irreducible family of projections P1,. . . ,Pn satisfying
(1) form a transitive n-tuple of subspaces (see [8]). In the infinite-dimensional case, the
structure of transitive quadruples of subspaces is much more complicated (see, e.g., [2]).
Also, it is still unknown if there exist infinite-dimensional transitive triples of subspaces.

In this paper we show directly that all irreducible families of projections that satisfy
(1) are transitive in the case where n ≤ 4. The following question arises naturally:
given a fixed χn = (α1, . . . , αn), n ≤ 4, will all transitive systems arise as images of
the projections satisfying (1) with an appropriate γ? If χn = (1, . . . , 1) then the answer
is positive (see [3]). The investigation in the case where n < 4 is trivial. For the case
n = 4 we use the description of transitive systems in finite dimensional space given in
[1] to show that given a fixed χ4 = (α1, α2, α3, α4) the irreducible families of projections
satisfying (1) generate all transitive finite-dimensional quadruples of subspaces if and
only if χ4 = (1, 1, 1, 1).

1. Transitive systems of subspaces

Consider the category Sys(n), n ∈ N. Each object in this category, S ∈ Sysn, is a
system S = (H;H1, . . . ,Hn) of subspaces Hi in some Hilbert space H. A morphism
A ∈ Mor(S, S̃) between two systems S ∈ Sysn and S̃ ∈ Sysn is a linear bounded operator
A : H → H̃, such that

A(Hi) ⊂ H̃i, for all i = 1, . . . , n.
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Definition 1. A system S ∈ Sysn is transitive if the algebra of its endomorphisms is
trivial, i.e., Mor(S, S) = CIH.

Definition 2. Two systems S ∈ Sysn and S̃ ∈ Sysn are isomorphic if there exists a
bijective operator A ∈ Mor(S, S̃) such that

A(Hi) = H̃i, for all i = 1, . . . , n.

Definition 3. Two systems S ∈ Sysn and S̃ ∈ Sysn are called isomorphic up to a permu-
tation if there exists a permutation σ ∈ Sn such that the systems Sσ = (H,Hσ(1), . . . ,Hσ(n))
and S̃ are isomorphic.

Transitive systems are the simplest objects in the category Sysn.

Theorem 1 (S. Brenner [1]).
(1) For n = 1, there exist 2 non-isomorphic transitive systems,

S
(1)
1 = (C; 0), S

(1)
2 = (C; C).

(2) For n = 2, there exist 4 non-isomorphic transitive systems,

S
(2)
1 = (C; 0, 0), S

(2)
1 = (C; C, 0), S

(2)
3 = (C; 0, C), S

(2)
4 = (C; C, C).

(3) For n = 3, there exist 9 non-isomorphic transitive systems, 8 one-dimensional,

S
(3)
1 = (C; 0, 0, 0), S

(3)
2 = (C; C, 0, 0), S

(3)
3 = (C; 0, C, 0),

S
(3)
4 = (C; 0, 0, C), S

(3)
5 = (C; C, C, 0), S

(3)
6 = (C; C, 0, C),

S
(3)
7 = (C; 0, C, C), S

(3)
8 = (C; C, C, C),

and 1 two-dimensional,

S3
9 = (C2; C(0, 1), C(1, 0), C(1, 1)).

For n = 4, the description depends in an essential way on an important integer valued
invariant ρ(S), called a defect.

Definition 4. For a system S ∈ Sysn,

ρ(S) =
n∑

i=1

dimHi − 2 dimH.

It turned out that there exist a one-parameter continuous family of transitive systems
with defect 0, and four countable series of transitive systems with defect ρ(S) = ±2,±1,
respectively.

Theorem 2 (S. Brenner [1]). Let B(u, ρ) denote the set of systems S ∈ Sys4 such that
dim(H) = u and ρ(S) = ρ. Then we have the following.

(1) For every u > 2, u ∈ N, there exists a unique system S ∈ B(u,±1), up to
isomorphism and permutation.

(2) For every u = 2k + 1, k ∈ N, there exists a unique system S ∈ B(u,±2), up to
isomorphism and permutation. If the dimension of H is even, then there exist
no systems with defect ρ(S) = ±2.

(3) Besides the trivial one-dimensional systems with defect ρ(S) = 0, there exists the
one-parameter family B(2, 0). If Sλ = (C2;H1,H2,H3,H4) ∈ B(2, 0), then

H1 = C(1, 0), H2 = C(0, 1),

H3 = C(1, 1), H4 = C(1, θ), θ ∈ C \ {0, 1}.
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There exist no other transitive systems of four subspaces in a finite-dimensional Hilbert
space.

2. Projections with linear relation and Coxeter functors

Let χn = (α1, . . . , αn) be a vector in Rn
+ the components of which are ordered by

values. Consider the finitely generated ∗-algebra

Aχn = C〈p1, . . . , pn, q|pi = p∗i = p2
i , [q, pi] = 0, α1p1 + · · ·+ αnpn = q〉.

The generator q belongs to the center of the algebra, therefore, any irreducible ∗-
representation of this algebra is given by an irreducible collections of projections {Pi}n

i=1

that satisfy

(2) α1P1 + · · ·+ αnPn = γI

for some γ.

Remark 1. If two vectors χ̃n and χn are proportional, then the corresponding algebras
Aχn and Aχ̃n are ∗-isomorphic, so in what follows we will consider vectors χn from the
projective space PRn

+.

Proposition 1.
(1) If n < 3, then for all vectors χn ∈ PRn

+ all irreducible representations of the
algebras Aχn generate all transitive system of n subspaces.

(2) If n = 3, then all irreducible representations of the algebras Aχ3 generate all
transitive systems of 3 subspaces iff, for the vector χ3 = (α1, α2, α3), the following
holds:

α3 < α1 + α2.

Proof. The proof is trivial in the case where n < 3. Indeed, irreducible ∗-representations
of the algebra Aχn are one-dimensional and it is easy to see the statement.

For n = 3, there exist 8 one-dimensional ∗-representations of the algebra Aχ3 , but
irreducible two-dimensional representations exists iff α3 < α1 +α2, hence this proves the
statement. �

In the case of four subspaces the investigation is based on the structure of the set
Σχ4 , which is the set of those γ ∈ R for which there are quadruples of projections that
satisfy (2). Such set was completely described in paper [7] using the Coxeter functors
technique, developed in [4]. Namely there are two functors Φ+ and Φ− which establish
equivalence between the categories of ∗-representations of the algebras Aχn

with different
values of the vector χn (see [4] for the details). Using these functors it was proved that all
irreducible representations of the algebra Aχ4 are finite dimensional and representations
with defect ρ(Sπ) 6= 0 could be obtained starting from one-dimensional representations.
But there exists a hyperplane (corresponding to defect ρ(Sπ) = 0) invariant with respect
to the action of the Coxeter functors (it is defined by the condition α1+α2+α3+α4 = 2γ).
In what follows we conduct an investigation of these two possibilities.

At first we notice that the Coxeter functors preserve the transitivity and the defect.

Proposition 2. Coxeter functors Φ+ and Φ− preserve the defect value of the system in
the following sense: if π ∈ RepAχ4 and π+ = Φ+(π) and π− = Φ−(π), then

ρ(Sπ) = ρ(Sπ+), ρ(Sπ) = ρ(Sπ−).

Proof. The proof is clear after extending the action of the Coxeter functors to the vectors
of generalized dimension of representation π : Aχ4 → H, i.e., to the vectors

vπ = (dimH,dim(Im(π(p1))), . . . ,dim(Im(π(p1)))). �
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In [3] it was proved that the functors Φ+ and Φ− map transitive families of represen-
tations of A(1,...,1) into transitive families. The proof can be easily modified for a more
general situation of an arbitrary vector χn.

Proposition 3. The functors Φ+ and Φ− map representations that generate transitive
systems into representation that generate transitive systems. That is, if π ∈ RepAχn

and Sπ is a transitive system, then the systems Sπ+ and Sπ− are transitive, where π+ =
Φ+(π), π− = Φ−(π).

Corollary 1. If for a pair (χ4, γ) there exists an irreducible collection of projections
P1, P2, P3, P4 in space H such that

α1P1 + α2P2 + α3P3 + α4P4 = γI,

then there exist α ∈ R and an irreducible collection of projections P̃1, P̃2, P̃3, P̃4 in the
space H̃ such that

P̃1 + P̃2 + P̃3 + P̃4 = αI,

and the systems S = (H; Im(P1), Im(P2), Im(P3), Im(P4)) and S̃ = (H; Im(P̃1), Im(P̃2),
Im(P̃3), Im(P̃4)), are isomorphic in Sys4.

Proof. An arbitrary irreducible quadruple of projections such that α1P1 +α2P2 +α3P3 +
α4P4 = γI and γ 6= (α1 + α2 + α3 + α4)/2 could be obtained by the functor Φ+ starting
from a one-dimensional quadruple, hence it is a transitive system. On the other hand
irreducible collections of projections such that P̃1 + P̃2 + P̃3 + P̃4 = αI generate all
transitive systems. Hence there exists α such that the statement holds. �

3. The case of nonzero defect

Proposition 4. 1. If the vector χ4 satisfies

α1 + α4 < α2 + α3,

then all irreducible ∗-representations of the algebra Aχ4 generate all transitive systems
of four subspaces with the defect value ρ(S) = 1.

2. If the vector χ4 satisfies

α1 + α4 > α2 + α3,

then all irreducible ∗-representations of the algebra Aχ4 generate all transitive systems
of four subspaces with the defect value ρ(S) = −1.

Proof. Let χ4 satisfy α1 + α4 < α2 + α3. Then (see [7]) the set Σχ4 includes the infinite
series {α

2
− α1

2n
| n ∈ N

}
.

The corresponding infinite series of ∗-representations are representations of the dimen-
sions 3, 4, . . . . Such series is generated by the action of the functor Φ+ on one dimensional
representation P1 = 0, P2 = I, P3 = I, P4 = I with defect 1. Therefore using Proposi-
tion 2 and Theorem 3 we see that such series generate all transitive systems with defect
value ρ(S) = 1.

The case α1 + α4 < α2 + α3 is similar. �

Corollary 2. All irreducible ∗-representations of the algebra Aχ4 generate all transitive
systems with defect value ρ(S) = ±1 if and only if the vector χ4 satisfies

α1 + α4 = α2 + α3.

Proposition 5. Irreducible ∗-representations of the algebra Aχ4 generate all transitive
systems with defect value ρ(S) = ±2 if and only if χ4 = (1, 1, 1, 1) up to a multiplier.
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Proof. All irreducible representations with defect value ±2 are obtained using the functor
Φ+ starting from one-dimensional P1 = I, P2 = I, P3 = I, P4 = I and P1 = 0, P2 =
0, P3 = 0, P4 = 0. But due to the structure of the set Σχ4 [7] such series of representations
are infinite if and only if χ4 = (1, 1, 1, 1) up to a multiplier. �

4. The case of zero defect

Transitive systems of four subspaces with defect value 0 are generated by the quadru-
ples of projections that satisfy

(3) α1P1 + α2P2 + α3P3 + α4P4 = 2,

and with the equation
α1 + α2 + α3 + α4 = 4.

Such irreducible quadruples exist in dimension not grater than 2. It is easy to describe
one-dimensional quadruples and to see that for an arbitrary χ4 = (α1, α2, α3, α4) such
quadruples do not generate all one-dimensional transitive systems with defect value 0.

To investigate two-dimensional case we use explicit formulas for the solutions of (3)
(see [5])

P1 =
1

2α1λ

(
(λ− u1) (λ + u2)

√
− (λ2 − u2

1) (λ2 − u2
2)√

− (λ2 − u2
1) (λ2 − u2

2) − (λ + u1) (λ− u2)

)
,

P2 =
1

2α2λ

(
− (λ− v2) (λ + v1) eiχ

√
− (λ2 − v2

2) (λ2 − v2
1)

e−iχ
√
− (λ2 − v2

2) (λ2 − v2
1) (λ + v2) (λ− v1)

)
,

P3 =
1

2α3λ

(
− (λ− v2) (λ− v1) −eiχ

√
− (λ2 − v2

2) (λ2 − v2
1)

−e−iχ
√
− (λ2 − v2

2) (λ2 − v2
1) (λ + v2) (λ + v1)

)
,

P4 =
1

2α4λ

(
(λ + u2) (λ + u1) −

√
− (λ2 − u2

1) (λ2 − u2
2)

−
√
− (λ2 − u2

1) (λ2 − u2
2) − (λ− u2) (λ− u1)

)
,

(α4 − α1)/2 ≤ λ ≤ min((α2 + α3)/2, (α1 + α4)/2)), 0 ≤ χ < 2π,

where u1 = 1
2 (α4 − α1), u2 = 1

2 (α4 + α1), v1 = 1
2 (α3 − α2), v2 = 1

2 (α3 + α2).
The following theorem holds.

Theorem 3. All two-dimensional projections P1, P2, P3, P4 that satisfy (3) generate all
transitive systems of four subspaces with defect value 0 if and only if

(4) α1 = α2 = α3 = α4 = 1

up to a positive multiplier.

Proof. First we prove that the condition is sufficient. Let (4) hold, then the formulas for
P1, P2, P3, P4 take the following form:

P1 =
1
2

(
1 + λ

√
1− λ2

√
1− λ2 1− λ

)
, P2 =

1
2

(
1− λ eiχ

√
1− λ2

e−iχ
√

1− λ2 1 + λ

)
,

P3 =
1
2

(
1− λ −eiχ

√
1− λ2

−e−iχ
√

1− λ2 1 + λ

)
, P4 =

1
2

(
1 + λ −

√
1− λ2

−
√

1− λ2 1− λ

)
,

0 ≤ λ < 1,

{
0 < χ < π, λ = 0,

0 ≤ χ < 2π, 0 < λ < 1.

Let Ω ⊂ C be the set of complex numbers z ∈ C such that

|z| = 1− λ

1 + λ
, arg z = −χ.
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The set Ω selects the set of all two-dimensional, unitary non equivalent quadruples of
projections that satisfy (3). Topologically this set is homeomorphic to the sphere without
three points.

Consider the following complex function (Zhukovski function):

(5) θ(z) =
1
4

(
2 + z +

1
z

)
.

The following proposition proves sufficiency of the statement of the theorem.

Proposition 6. The Zhukovski function θ(z) maps conformally the domain Ω into the
domain C\{0, 1}. The system of subspaces that corresponds to the parameter z ∈ Ω is
isomorphic to transitive quadruples (3) with parameter θ = θ(z).

Proof. The domain Ω is the domain of univalence of the function θ(z). The function θ(z)
maps every circle |z| ∈ (0, 1) in Ω to an ellipse with focuses at the points 0 and 1. And
the arc |z| = 1 maps into the interval (0, 1).

The images of the projections P1, P2, P3, P4 are the following subspaces in C2:

Im(P1) = C(1,
√
|z|), Im(P4) = C(1,−

√
|z|),

Im(P2) = C(z,
√
|z|), Im(P3) = C(z,−

√
|z|).

A direct calculation shows that the matrix

M =

(
2ei arg z −2e2i arg z

√
|z|

z + 1 (z + 1)
√
|z|

−1

)
∈M2(C)

establishes an isomorphism between systems of subspaces generated by the images of
projections and with transitive quadruples with parameter θ = θ(z). �

Let us prove the necessary part of the statement. Let α1 6= α4, and assume that the
projections P1, P2, P3, P4 generate all transitive quadruples with defect value 0. Introduce
the following notation:

A =
1
2
(α4 − α1), B =

1
2
(α4 + α1), C =

1
2
(α3 − α2), D =

1
2
(α3 + α2),

and

K1 =

√
(λ + A)(B − λ)
(λ−A)(B + λ)

, K2 =

√
(λ− C)(D − λ)
(λ + C)(D + λ)

,

K3 =
λ + C

λ− C
K2, K4 =

λ−A

λ + A
K1.

In terms of the latter values the images of the projections could be written as follows:

Im(P1) = C(1,K1), Im(P4) = C(1,−K4),

Im(P2) = C(1, e−iχK2), Im(P3) = C(1,−e−iχK3).

For a fixed λ and χ from the set of possible parameters the system of subspaces (2) is
isomorphic to a transitive system with parameter θ that is defined as follows:

θ =
1

(K1 + K4)(K2 + K3)
(
K1K2 + K3K4 + K1K4e

iχ + K2K3e
−iχ
)
.

The latter formula is equivalent to the following:

θ =
1
4

(
2− 2AC

λ2
+

K1K
−1
2 (λ−A)(λ− C)

λ2
e−iχ

+
(λ2 −A2)(λ2 − C2)

λ4

λ2

K1K
−1
2 (λ−A)(λ− C)

e−iχ

)
.



ON QUADRUPLES OF LINEARLY CONNECTED PROJECTIONS 49

Let z be a complex number such that

|z| = K1K
−1
2 (λ−A)(λ− C)

λ2
, arg z = −χ,

and let M denote

M =
(λ2 −A2)(λ2 − C2)

λ4
,

then formula for θ takes the following form:

θ =
1
4

(
2− 2AC

λ2
+ z + M

1
z

)
.

Let us show that this function is not surjective in C \ {0, 1}. Indeed, for every fixed
λ the set of the corresponding values θ ∈ C is an ellipse in the complex plane symmetric
with respect to the real axis. It is clear that when λ grows, then the axis of the ellipse
also grows and the limit point for focuses are the points 0 and 1. Therefore there must
exist λ such that one of the half-axis of the ellipse equals zero; in fact this means that
M = |z|2 and the latter is equivalent to

B − λ

B + λ
=

D + λ

D − λ
.

But this means that λ = 0, which is possible if α1 = α4. This contradiction proves the
theorem. �
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