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Lecture 1

Exercise 1.1. Prove Schur’s Lemma.
Exercise 1.2. Prove that any submodule of a semisimple module has complement.

Exercise 1.3. Show that module is semisimple iff it is a sum of simple modules.
Conclude that each submodule of a semisimples module is semisimples.

Exercise 1.4. Suppose that module M is finitely-generated and semisimple. Show
that M is a direct sum of finitely many simples.

Exercise 1.5. Let S be a simple module. Show that End 4(S™) = M,,(End4(5)).
Exercise 1.6. Show that M, (D) = M, (D)

Exercise 1.7. Given a finite-dimensional algebra A show that J"(A) = 0 for some
n.

Exercise 1.8. Suppose that A is f.d. algebra with J(A) = 0, show that there is a
finite set X so that
J(A) = M;
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(Hint: Consider all possible finite intersection:
Ip:= () M.
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The collection of all such ideals I has a minimal element /x. Prove that this
element has a desired property).
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and describe radical of algebra U,, (k).

Exercise 1.9. Let A = Uy(K) = ( ) Show that

Exercise 1.10. Suppose that chark = 0. Show that the group algebra k[G] of finite
group G is semi-simple.

Exercise 1.11. Let f : A — B be a surjective homomorphism of finite-dimensional
algebras show that f(J(A)) = J(B). (Hint: Treat B as an A-module via f. Then
use the property that rad (M) = J(A)M for each A-module).

Exercise 1.12. Show that the algebra k() is generated by p;,7 € Qy and a;, h € @4
with the following relations:

1) p} = pi, pip; = 0if i # j;
2) anpsny = an app; = 0if j # s(h);

2) pynyan = ap, psap = 0if ¢ # t(h).

Exercise 1.13. Supposing that () is acyclic, show that the radical of the algebra k@)
is generated by all the arrows in Q.

Exercise 1.14. Using Exercise 1.13, show that kQ/J(kQ) ~ [[.co. k
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Lecture 2

Exercise 2.1. Let C be a coalgebra and let ¢ € C such that A(c¢) = ¢® c. Prove that
ife(c) #0, thene(c) =1

Exercise 2.2. Let C be a k-vector space with basis {s, c}. Prove that C is a coalge-
bra with comultiplication A and counit ¢ defined by:

Als) =s®@c+c® s, g(s) =0,
Alc) =c®c—s®s, e(s) = 1.

Exercise 2.3. Let M (k) be a matrix coalgebra with basis {e;j }1<; j<» (see the class).
Prove that the dual algebra M¢(k)* is an (n, n)-matrix algebra over k.

Exercise 2.4. Let A be a finite-dimensional associative unital k-algebra.
(a) Prove that A* is a coalgebra. (Hint: Use that (A ® A)* = A* ® A*.

(b) Prove that B is a subalgebra of Aif and only if B* = {f: A — k| f(B) = 0}
is a coideal of A*.

(c) Prove that [ is a two-sided ideal of Aif and only if I+ = {f : A = k |f(]) =
0} is a subcoalgebra of A*.

Exercise 2.5. Let V, W be two vector spaces. Show that a natural map 7 : V* ®
W* — (V. ® W)* is always injective. And that 7 is isomorphism if either V or W
is finite-dimensional.

Exercise 2.6. Show that map m (see the class!) factors as A* o 7.

Exercise 2.7. Show that m = A* o 7 is an associative map, showing that the dia-
gram from the class is commutative.

Exercise 2.8. Let V' be a vector space, and let I, J C V* are subspaces. Show:
) r=IreV+VeJh

Exercise 2.9. Using Exercise 2.8 show the duality between coideals in C' and sub-
algebras in C* (respectively subcoalgebras in C' and ideals in C*).

Lecture 3

Exercise 3.1. Give a full definition of direct and inverse limit, filling in all the
details

Exercise 3.2. Write the coalgebra k[z] as a direct limit of fd coalgebras, dualise the
direct system, and check that k[z] is its inverse limit.

Exercise 3.3. If each A; (i € I) is a finite dimensional algebra, write down an

inverse system for A = [],.; A; and convince yourself that A is its inverse limit.

Exercise 3.4. If A = lim {A;, p;;} is an inverse limit of finite dimensional vector

spaces, the maps ,; might not be surjective. But check that {¢;(A), ¢;;} is another
inverse system with surjective maps, and that A is its limit.



Exercise 3.5. Check that a direct sum of coalgebras is a coalgebra. Convince your-
self that if each C; (resp. A;) is a finite dimensional coalgebra (resp. algebra), then

(Dc) =IIc . (I14) =Par

Exercise 3.6. 1. Understand k[[z]] as a subalgebra of [], . k[z]/2". Show that
it’s closed.
2. More generally, convince yourself that the following theorem is true:

“Every pseudocompact algebra is a closed subalgebra of a direct product of
discrete finite dimensional algebras.”

Exercise 3.7. Convince yourself that discrete finite dimensional vector spaces are
linearly compact.

Lecture 4

Exercise 4.1. Let V be a linearly compact vector space. Show that open subspaces
are closed, and that a closed subspace is open if, and only if, it has finite codimen-
sion.

Exercise 4.2. 1. Let Z be the set of open ideals of the pseudocompact algebra
A. If X is a closed subspace of A, show that
X=X+1).
IeT

[hint: use linear compactness. If y ¢ X then (y + X)N(,., I = @]
2. Show that maximal closed left ideals have finite codimension.

3. Show that every proper closed (left) ideal is contained in a maximal closed
(left ideal).

Exercise 4.3. Use Theorem 4.3 to show that every pseudocompact vector space
has the form [[,_; k for some set /. So although the open ideal /submodule struc-
ture of a pseudocompact algebra/module can be complicated, the underlying
vector space is always pretty easy.

Exercise 4.4. A pseudocompact A-module is semisimple if it’s a direct product of
simple A-modules. Show that a pseudocompact algebra A is semisimple if, and
only if, every pseudocompact A-module is semisimple.

Lecture 5

Exercise 5.1. Show that the algebra A = k[x]/(2™) is pointed and its radical J(A)
is generated by x.

ko klx]/x?
0 klz]/«?
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Exercise 5.2. Show that the algebra A = ( ) is basic and its radical

has the form



Exercise 5.3. Build the Gabriel quiver of the algebra A = U, (k).

Exercise 5.4. Let A = Us(k), and C be subalgebra consisting of all matrices

A1 A2 A
A= 0 Ao Ao
0 0 a3

such that A\;; = Ay» = As3. Show that C is isomorphic to kQ/I, where I =
(a?, 3%, af) is ideal in kQ, and @ is the following quiver

D

Exercise 5.5. Check we can multiply N x N-lower triangular matrices.

Exercise 5.6. Calculate the quivers of the algebra k[[z]] and of the algebra of N x N-
lower triangular matrices.

Exercise 5.7. Calculate ) and [ such that k[[z, y]] = k[Q]] /1.
Exercise 5.8. We described the algebra £[[@] when

Q= L PRI Pl |

Describe the algebra £[[Q]] when

Q= =32 10

Exercise 5.9. There is a description of representations that correspond to arbi-
trary pseudocompact k[(Q)]]-modules, but it’s a bit more fiddly. Write down the
representations corresponding to the k[[z]]-module k[z]] and do the same thing
for N x N-lower triangular matrices. Do the same thing for the algebra from the
previous question.

Note that they’re not “nilpotent”, but what you might call “pronilpotent”.



