Exercises for coalgebras, pseudocompact algebras and their representations

Kostiantyn Iusenko ${ }^{\text {a }}$ and John William MacQuarrie ${ }^{\text {b }}$
${ }^{\text {a }}$ Instituto de Matemática e Estatística, Univ. de São Paulo, São Paulo, SP, Brazil
${ }^{\text {b }}$ Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil

January 2023

Lecture 1

Exercise 1.1. Prove Schur's Lemma.
Exercise 1.2. Prove that any submodule of a semisimple module has complement.
Exercise 1.3. Show that module is semisimple iff it is a sum of simple modules. Conclude that each submodule of a semisimples module is semisimples.
Exercise 1.4. Suppose that module M is finitely-generated and semisimple. Show that M is a direct sum of finitely many simples.
Exercise 1.5. Let S be a simple module. Show that $\operatorname{End}_{A}\left(S^{n}\right) \cong M_{n}\left(\operatorname{End}_{A}(S)\right)$.
Exercise 1.6. Show that $M_{n}(D)^{o p} \cong M_{n}\left(D^{o p}\right)$
Exercise 1.7. Given a finite-dimensional algebra A show that $J^{n}(A)=0$ for some n.

Exercise 1.8. Suppose that A is f.d. algebra with $J(A)=0$, show that there is a finite set X so that

$$
J(A)=\bigcap_{i \in X} M_{i}
$$

(Hint: Consider all possible finite intersection:

$$
I_{\Phi}:=\bigcap_{M \in \Phi} M
$$

The collection of all such ideals I_{Φ} has a minimal element I_{X}. Prove that this element has a desired property).
Exercise 1.9. Let $A=\mathbb{U}_{2}(K)=\left(\begin{array}{ll}k & k \\ 0 & k\end{array}\right)$. Show that

$$
J(A)=\left(\begin{array}{cc}
0 & k \\
0 & 0
\end{array}\right),
$$

and describe radical of algebra $\mathbb{U}_{n}(k)$.
Exercise 1.10. Suppose that char $k=0$. Show that the group algebra $k[G]$ of finite group G is semi-simple.
Exercise 1.11. Let $f: A \rightarrow B$ be a surjective homomorphism of finite-dimensional algebras show that $f(J(A))=J(B)$. (Hint: Treat B as an A-module via f. Then use the property that $\operatorname{rad}_{A}(M)=J(A) M$ for each A-module).
Exercise 1.12. Show that the algebra $k Q$ is generated by $p_{i}, i \in Q_{0}$ and $a_{h}, h \in Q_{1}$ with the following relations:

1) $p_{i}^{2}=p_{i}, p_{i} p_{j}=0$ if $i \neq j$;
2) $a_{h} p_{s(h)}=a_{h} a_{h} p_{j}=0$ if $j \neq s(h)$;
3) $p_{t(h)} a_{h}=a_{h} p_{i} a_{h}=0$ if $i \neq t(h)$.

Exercise 1.13. Supposing that Q is acyclic, show that the radical of the algebra $k Q$ is generated by all the arrows in Q.
Exercise 1.14. Using Exercise 1.13, show that $k Q / J(k Q) \simeq \prod_{i \in Q_{0}} k$.

Lecture 2

Exercise 2.1. Let C be a coalgebra and let $c \in C$ such that $\Delta(c)=c \otimes c$. Prove that if $\varepsilon(c) \neq 0$, then $\varepsilon(c)=1$

Exercise 2.2. Let C be a k-vector space with basis $\{s, c\}$. Prove that C is a coalgebra with comultiplication Δ and counit ε defined by:

$$
\begin{array}{rlrl}
\Delta(s) & =s \otimes c+c \otimes s, & \varepsilon(s)=0, \\
\Delta(c) & =c \otimes c-s \otimes s, & & \varepsilon(s)=1 .
\end{array}
$$

Exercise 2.3. Let $M_{n}^{c}(k)$ be a matrix coalgebra with basis $\left\{e_{i} j\right\}_{1 \leq i, j \leq n}$ (see the class). Prove that the dual algebra $M_{n}^{c}(k)^{*}$ is an (n, n)-matrix algebra over k.

Exercise 2.4. Let A be a finite-dimensional associative unital k-algebra.
(a) Prove that A^{*} is a coalgebra. (Hint: Use that $(A \otimes A)^{*} \cong A^{*} \otimes A^{*}$.
(b) Prove that B is a subalgebra of A if and only if $B^{\perp}=\{f: A \rightarrow k \mid f(B)=0\}$ is a coideal of A^{*}.
(c) Prove that I is a two-sided ideal of A if and only if $I^{\perp}=\{f: A \rightarrow k \mid f(I)=$ $0\}$ is a subcoalgebra of A^{*}.

Exercise 2.5. Let V, W be two vector spaces. Show that a natural map $\tau: V^{*} \otimes$ $W^{*} \rightarrow(V \otimes W)^{*}$ is always injective. And that τ is isomorphism if either V or W is finite-dimensional.

Exercise 2.6. Show that map m (see the class!) factors as $\Delta^{*} \circ \tau$.
Exercise 2.7. Show that $m=\Delta^{*} \circ \tau$ is an associative map, showing that the diagram from the class is commutative.

Exercise 2.8. Let V be a vector space, and let $I, J \subset V^{*}$ are subspaces. Show:

$$
(I \otimes J)^{\perp}=I^{\perp} \otimes V+V \otimes J^{\perp}
$$

Exercise 2.9. Using Exercise 2.8 show the duality between coideals in C and subalgebras in C^{*} (respectively subcoalgebras in C and ideals in C^{*}).

Lecture 3

Exercise 3.1. Give a full definition of direct and inverse limit, filling in all the details

Exercise 3.2. Write the coalgebra $k[x]$ as a direct limit of fd coalgebras, dualise the direct system, and check that $k[[x]]$ is its inverse limit.

Exercise 3.3. If each $A_{i}(i \in I)$ is a finite dimensional algebra, write down an inverse system for $A=\prod_{i \in I} A_{i}$ and convince yourself that A is its inverse limit.

Exercise 3.4. If $A=\varliminf_{\longleftarrow}^{\lim }\left\{A_{i}, \varphi_{i j}\right\}$ is an inverse limit of finite dimensional vector spaces, the maps $\varphi_{i j}$ might not be surjective. But check that $\left\{\varphi_{i}(A), \varphi_{i j}\right\}$ is another inverse system with surjective maps, and that A is its limit.

Exercise 3.5. Check that a direct sum of coalgebras is a coalgebra. Convince yourself that if each C_{i} (resp. A_{i}) is a finite dimensional coalgebra (resp. algebra), then

$$
\left(\oplus C_{i}\right)^{*}=\prod_{C_{i}^{*}}, \quad\left(\prod_{i}\right)^{*}=\bigoplus_{i_{i}^{*}} .
$$

Exercise 3.6. 1. Understand $k[[x]]$ as a subalgebra of $\prod_{n \in \mathbb{N}} k[x] / x^{n}$. Show that it's closed.
2. More generally, convince yourself that the following theorem is true:
"Every pseudocompact algebra is a closed subalgebra of a direct product of discrete finite dimensional algebras."

Exercise 3.7. Convince yourself that discrete finite dimensional vector spaces are linearly compact.

Lecture 4

Exercise 4.1. Let V be a linearly compact vector space. Show that open subspaces are closed, and that a closed subspace is open if, and only if, it has finite codimension.

Exercise 4.2. 1. Let \mathcal{I} be the set of open ideals of the pseudocompact algebra A. If X is a closed subspace of A, show that

$$
X=\bigcap_{I \in \mathcal{I}}(X+I)
$$

[hint: use linear compactness. If $y \notin X$ then $(y+X) \cap \bigcap_{I \in \mathcal{I}} I=\varnothing$.]
2. Show that maximal closed left ideals have finite codimension.
3. Show that every proper closed (left) ideal is contained in a maximal closed (left ideal).

Exercise 4.3. Use Theorem 4.3 to show that every pseudocompact vector space has the form $\prod_{i \in I} k$ for some set I. So although the open ideal/submodule structure of a pseudocompact algebra/module can be complicated, the underlying vector space is always pretty easy.

Exercise 4.4. A pseudocompact A-module is semisimple if it's a direct product of simple A-modules. Show that a pseudocompact algebra A is semisimple if, and only if, every pseudocompact A-module is semisimple.

Lecture 5

Exercise 5.1. Show that the algebra $A=k[x] /\left(x^{m}\right)$ is pointed and its radical $J(A)$ is generated by x.
Exercise 5.2. Show that the algebra $A=\left(\begin{array}{cc}k & k[x] / x^{2} \\ 0 & k[x] / x^{2}\end{array}\right)$ is basic and its radical has the form

$$
J(A)=\left(\begin{array}{cc}
0 & k[x] / x^{2} \\
0 & x k[x] / x^{2}
\end{array}\right) .
$$

Exercise 5.3. Build the Gabriel quiver of the algebra $A=\mathbb{U}_{n}(k)$.
Exercise 5.4. Let $A=\mathbb{U}_{3}(k)$, and C be subalgebra consisting of all matrices

$$
\lambda=\left(\begin{array}{ccc}
\lambda_{11} & \lambda_{12} & \lambda_{13} \\
0 & \lambda_{22} & \lambda_{23} \\
0 & 0 & \lambda_{33}
\end{array}\right)
$$

such that $\lambda_{11}=\lambda_{22}=\lambda_{33}$. Show that C is isomorphic to $k Q / I$, where $I=$ $\left\langle\alpha^{2}, \beta^{2}, \alpha \beta\right\rangle$ is ideal in $k Q$, and Q is the following quiver

Exercise 5.5. Check we can multiply $\mathbb{N} \times \mathbb{N}$-lower triangular matrices.
Exercise 5.6. Calculate the quivers of the algebra $k[[x]]$ and of the algebra of $\mathbb{N} \times \mathbb{N}$ lower triangular matrices.

Exercise 5.7. Calculate Q and I such that $k[x, y]] \cong k[[Q] / I$.
Exercise 5.8. We described the algebra $k[[Q]]$ when

$$
Q=\cdots \stackrel{\alpha_{3}}{\longleftarrow} 3 \stackrel{\alpha_{2}}{\longleftarrow} 2 \stackrel{\alpha_{1}}{\longleftarrow} 1
$$

Describe the algebra $k[[Q]]$ when

$$
Q=\cdots \stackrel{\alpha_{3}}{\longleftarrow} 3 \stackrel{\alpha_{2}}{\longleftarrow} 2 \stackrel{\alpha_{1}}{\longleftarrow} 1 \stackrel{\alpha_{0}}{\longleftarrow} 0 \stackrel{\alpha_{-1}}{\longleftarrow}-1 \longleftarrow \cdots
$$

Exercise 5.9. There is a description of representations that correspond to arbitrary pseudocompact $k[[Q]$-modules, but it's a bit more fiddly. Write down the representations corresponding to the $k[[x]]$-module $k[[x]$ and do the same thing for $\mathbb{N} \times \mathbb{N}$-lower triangular matrices. Do the same thing for the algebra from the previous question.

Note that they're not "nilpotent", but what you might call "pronilpotent".

