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Chapter 1

Finite-dimensional algebras and
their modules

1.1 Definitions and examples

Let k be a field. An algebra A over k is a k-vector space in which one can multiply
the vectors. More precisely there is a bilinear map (=product) m on from A×A to
A and element 1A so that:

a · (b · c) = (a · b) · c,
a · 1A = a = 1A · a.

As we will speak about coalgebras tying to dualize this construction, alterna-
tively, we define algebra as a k–vector space A together with two linear maps

m : A⊗ A→ A

η : k → A

so that the following diagrams commute:

A⊗ A⊗ A A⊗ A

A⊗ A A

idA⊗m

m⊗idA

m

m

A⊗ A A A⊗ A

A⊗ k A k ⊗ A

m m

idA⊗η idA η⊗idA

which reads off as the axioms:

m(m⊗ idA) = m(idA ⊗m),

m(η ⊗ idA) = idA = m(idA ⊗ η).

Indeed writing m(a⊗ b) = a · b, η(1) = 1A if is easy to see that this is equivalent to
the definition above.

Examples:.

a) k[x1, x2, . . . , xn] – polinomials with usuals product;
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b) Algebra k[x]/(x2) of ‘dual numbers’ consists of all pairs of the form a + bx,
where a, b ∈ k and x is an element such that x2 = 0;

c) Mn(A) — all n× n matrices with coefficients in some algebra A;

d)

Un(k) =


k k . . . k
0 k . . . k
...

... . . .
...

0 0 . . . k


the subset of all upper-triangular matrices Mn(k) is a subalgebra in Mn(k).

f) A = k⟨x1, x2⟩ – algebra of all polynomials of two noncommutative variables
x1 and x2 is a infinite dimensional algebra (called the free algebra).

g) Let G be a finite group with identity e. The group algebra k[G] is an algebra
whose basis is {ag | g ∈ G} and multiplication (on the basis) agah = agh and
then extended linearly for the whole algebra.

h) Another important source of algebra arrise from oriented graphs. Let Q be
oriented graph (=quiver). The path algebra kQ of Q is an k-algebra whose
basis is formed by all oriented paths in Q (including trivial path pi, i ∈ Q0),
and multiplication is defined by concatenation of paths. If two paths cannot
be concatenated, then their product is defined as 0. For instanse if

1 2
h

has a basis of 3 elements p1, p2 (trivial paths on the vertices) and h (path of
length 1), endowed by multiplication

p21 = p1, p22 = p2,

p1p2 = p2p1 = 0,

p1h = hp2 = h,

hp1 = p2h = h2 = 0.

One checks that there exists an isomorphism kQ ∼= U2(k), given by

p1 7→
(

1 0
0 0

)
, p2 7→

(
0 0
0 1

)
, h 7→

(
0 1
0 0

)
.

More generally, if Q = An the following quiver

1 2 3 . . . n− 1 n

Then kQ is isomorphic to Un(k).
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1.2 Modules over algebras

To study algebras it is convinient to study their modules (=representation). Given
a k-algebra A, by left module over A we mean a k-vector space M together with
the (left) action of A on M so that

a(bx) = (ab)x, 1Ax = x,

for all a, b ∈ A and all x ∈ M . If M,N are left A–modules, then a module map
f :M → N is a linear map which commutes with the A–actions, in the sense that

f(ax) = af(x), for all a ∈ A, x ∈M.

Definition 1.1. A module M is called simple if the only submodules of M are 0
and M .

Every module can be built up out of simple modules in the following sense.
Given a module M a composition series of M is a sequence of submodules:

0 =M0 ⊊M1 ⊊M2 ⊊ · · · ⊊Mn =M,

such that the modules Mi/Mi−1 are simple for all i. It is easy to see (exersise!) that
any finite-dimensional module M has a composition series. And, moreover, such
series are unique in a certain way:

Theorem 1.1 (Jordan-Hölder Theorem). Any two composition series of a module M
have the same length and the same composition factors, up to isomorphism.

Proposition 1.1 (Schur’s Lemma). . If S1 and S2 are simple modules over a finite-
dimensional k-algebra A then:

HomA (S1, S2) =

{
D if S1

∼= S2

0 otherwise
,

where D is a division algebra over k.

Simple modules are important due to the following property:

Proof. . Let f : S1 → S2. Then if f ̸= 0, then ker(f) is a proper submodule of S1, so
ker(f) = 0. Also, im(f) is a nonzero submodule of S2, so im(f) = S2. Therefore, f
is bijective, so is an isomorphism.

Another kind of module which can serve as a building block for all modules
are the indecomposable modules. These are more general than simple modules,
but the way in which every module is built up from indecomposables is much
simpler. A module M is called indecomposable if whenever M = N1⊕N2 for some
submodules N1, N2, we have N1 = 0 or N2 = 0.

Every simple module is indecomposable, but not-vice versa. For example, let
A = k[x]/(x2) and let M = A. Then M is indecomposable (show!) but not simple
because xM is a proper nonzero submodule of M .



CHAPTER 1. FINITE-DIMENSIONAL ALGEBRAS AND THEIR MODULES 5

Theorem 1.2 (Krull-Schmidt). Every finite-dimensional module M can be written as

M =M1 ⊕M2 ⊕ · · · ⊕Mn,

where the Mi are indecomposable. Furthermore, if

M1 ⊕M2 ⊕ · · · ⊕Mn
∼= N1 ⊕N2 ⊕ · · · ⊕Np

where the Ni are indecomposable, then n = p and the Mi are isomorphic to the Ns(i), for
some permutation s.

And, therefore, the following problem is crucial:

Problem. Given a finite-dimensional algebra A, classify (up to isomorphism) its finite-
dimensional indecomposable modules.

1.3 Semisimple modules and algebras

Definition 1.2. A module M is called semisimple if it decomposes as a direct sum
of simple modules.

Definition 1.3. An algebra A is called semisimple if A-as semisimple as module
over itself (equivalently if every left ideal in A has a complement, se Exercise 1.2)

Typical example of s.s. algebra is A =Mn(A). And a complete classification is
similar. Indeed, as A is semisimple hence decomposes as a FINITE! (see Exercise
1.4) direct sum of simples A =

⊕m
i=1 Si. Some of simples can be isomorphim but

we can reorded the simples so that

A =
n⊕

i=1

Sdi
i

Now, taking endomorphism algebra of A and keeping is mind Schur’s Lemma
we have

EndA = EndA

n⊕
i=1

(Sdi
i )

Schur′s lemma
====

n⊕
i=1

EndA(S
di
i )

Ex. 1.5
====

n⊕
i=1

Mdi(EndA(Si))

Schur′s lemma again!
====

n⊕
i=1

Mdi(Di)

As Aop ∼= EndA we have that

A =
n⊕

i=1

Mdi(D
op
i )

and this proves the following, fundamental theorem
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Theorem 1.3 (Wedderburn’s structure theorem). Given a finite-dimensional algebra
A, the following conditions are equivalent:

(i) A is semi-simple.

(ii) A ∼= Mn1(D1)× . . .Mnr(Dr)

The D1, . . . , Dr above are finite dimensional division k-algebras. The product is unique
up to permutation of the factors. In particular, if k is algebraically closed field thenDi

∼= k
for all i.

1.4 Jacobson radical

Another key concept in the structural theory of associative algebras is Jacobson
radical J(A) which is defined as the intersection of all maximal left ideals in A.
The following characterization is quite useful.

Proposition 1.2. One has:

J(A) =
⋂

( maximal left ideals of A)

= {x ∈ A | 1− ax has a left inverse for all a ∈ |}

Examples:.

a) J(k[x1, x2, . . . , xn]) = 0

b) J(k[x]/x2) = ⟨x⟩

c) J(Mn(A)) = 0

d) J(kQ) = ⟨arrows in Q⟩, if Q is acyclic.

Proposition 1.3. For a finite-dimensional k-algebraA the following conditions are equiv-
alente:

(i) J(A) = 0

(ii) A is semisimple;

Proof. (ii) ⇒ (i) follows directly from Wedderburn’s theorem. We prove that
(i)⇒ (ii).

By Exercise 1.8 if J(A) = 0 and dimk A = 0 then there exists finite set I of
maximal left ideals Mi, so that J(A) =

⋂
i∈I Mi = 0. Therefor the natural map

A→
⊕
i∈I

A/Mi

is injective. But
⊕

i∈I A/Mi is semisimples module hence A too! (see Exercise 1.3).

Therefore, for any finite-dimensional algebra A we have that

A/J(A) ∼= Mn1(D1)⊕ · · · ⊕Mnr(Dr),

sinceA/J(A) is always semi-simple. It turns out that for algebraically closed field
the projection map A 7→ A/J(A) splits as algebra map so that

A = J(A)⊕ A/J(A) ∼= J(A)⊕Mn1(D1)⊕ · · · ⊕Mnr(Dr)
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1.5 Exercices

Exercise 1.1. Prove Schur’s Lemma.

Exercise 1.2. Prove that any submodule of a semisimple module has complement.

Exercise 1.3. Show that module is semisimple iff it is a sum of simple modules.
Conclude that each submodule of a semisimples module is semisimples.

Exercise 1.4. Suppose that moduleM is finitely-generated and semisimple. Show
that M is a direct sum of finitely many simples.

Exercise 1.5. Let S be a simple module. Show that EndA(S
n) ∼= Mn(EndA(S)).

Exercise 1.6. Show that Mn(D)op ∼= Mn(D
op)

Exercise 1.7. Given a finite-dimensional algebra A show that Jn(A) = 0 for some
n.

Exercise 1.8. Suppose that A is f.d. algebra with J(A) = 0, show that there is a
finite set X so that

J(A) =
⋂
i∈X

Mi

(Hint: Consider all possible finite intersection:

IΦ :=
⋂
M∈Φ

M.

The collection of all such ideals IΦ has a minimal element IX . Prove that this
element has a desired property).

Exercise 1.9. Let A = U2(K) =

(
k k
0 k

)
. Show that

J(A) =

(
0 k
0 0

)
,

and describe radical of algebra Un(k).

Exercise 1.10. Suppose that chark = 0. Show that the group algebra k[G] of finite
group G is semi-simple.

Exercise 1.11. Let f : A→ B be a surjective homomorphism of finite-dimensional
algebras show that f(J(A)) = J(B). (Hint: Treat B as an A-module via f . Then
use the property that radA(M) = J(A)M for each A-module).

Exercise 1.12. Show that the algebra kQ is generated by pi, i ∈ Q0 and ah, h ∈ Q1

with the following relations:

1) p2i = pi, pipj = 0 if i ̸= j;

2) ahps(h) = ah ahpj = 0 if j ̸= s(h);

2) pt(h)ah = ah piah = 0 if i ̸= t(h).

Exercise 1.13. Supposing that Q is acyclic, show that the radical of the algebra kQ
is generated by all the arrows in Q.

Exercise 1.14. Using Exercise 1.13, show that kQ/J(kQ) ≃
∏

i∈Q0
k.



Chapter 2

Coalgebras

2.1 Definitions and examples

Reversing the arrows in diagramatic definition of an algebra leads to a notion of
coalgebra which seems much less intuitive then an algebra at first. But what we
will see is that in many example such notion appears naturally.

Definition 2.1. Suppose that C is a k-vector space together with a k-linear maps
∆ : C → C ⊗ C and ε : C → k. Then C is called a coalgebra, and the maps ∆ and
ε are called the comultiplication (or coproduct) and the counit respectively, if the
following two diagrams are commutative:

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆

∆

idC⊗∆

∆⊗idC

C ⊗ C C C ⊗ C

C ⊗ k C k ⊗ C

idC⊗ε idC

∆∆

ε⊗idC

Observe that in many common examples of product operations defining usual
algebras involve combining two elements in a some (natural) way such as mul-
tiplication of numbers or composition of functions. In coalgebra world, many
natural coproducts take an element and pull it apart into two pieces in all possi-
ble ways, summing over all the possibilities. Below we provide typical examples.

Example 2.1. The field k is a coalgebra in a canonical way, where ∆ : k → k ⊗ k
and ϵ are both the identity maps under the natural identification of k ⊗ k with
with k. This is called the trivial coalgebra.

Example 2.2. Algebra of polynomials C = k[x] is also a coalgebra with coproduct
and counit given (on the basis 1, x, x2, . . . ) by:

∆(xn) =
∑
i+j=n

xi ⊗ xj, ε(xn) = δ0n.

Example 2.3. Let C = Mn(k) be the k-algebra of n× n-matrices with entries in k.
For 1 ≤ i, j ≤ n let eij be matrix units. It is easy to check that eijest = δjseit. We
can give C a coalgebra structure by defining:

∆(eij) =
∑

1≤s≤n

eis ⊗ esj

8
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and
ε(eij) = δij,

and then extend operation linearly to C.

Example 2.4. Let C = kQ be a path algebra of a quiver (finite or infinite). C is a
coalgebra with the structure defined by:

∆(p) =
∑

p1p2=p

p1 ⊗ p2

for any path p and counit ε is given by ε(v) = 1 on each vertex v and ε(p) for any
path of positive length.

Example 2.5.

2.2 Algebras and coalgebras

The connection between algebras and coalgebras can be explained precisely using
the notion of dual vector space. Recall that given a vector space V over the field
k its dual space is

V ∗ = Homk(V, k)

= {all k-linear maps V to k}
= {linear functionals on V }.

When V is finite-dimensional then we have a canonical isomorphism between V
and V ∗∗. In what follows it is useful to use how duals interact with the tensor
product. For vector spaces V and W we always have a canonical linear transfor-
mation

τ : V ∗ ⊗W ∗ → (V ⊗W )∗,

where τ(f ⊗ g)(v ⊗ w) = f(v)g(w). One may check that τ is always an injective
linear transformation, and that when either V or W is finite dimensional, then τ
is an isomorphism, but not when both V and W are infinite dimensional.

Let (C,∆, ε) be a coalgebra over k, we claim that the dual space C∗ has a
natural k-algebra structure. Indeed for f, g ∈ C∗ = Homk(C, k), we can define a
product fg ∈ C∗ by

[fg](c) =
∑

f(c(1))⊗ g(c(2)) = (f ⊗ g) ◦∆(c), (2.1)

where
∆(c) =

∑
c(1) ⊗ c(2).

This defines a map m : C∗ ⊗ C∗ → C∗, which can be factorized (see Exercise ?) as
m = ∆∗ ◦ τ :

m : C∗ ⊗ C∗ τ−→ (C ⊗ C)∗ ∆∗
−→ C∗.
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Using this factorization and coassociativity of ∆ one checks that m is defining an
associative product on C∗. Indeed, we have by coassociativity, so the diagram

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆

∆

idC⊗∆

∆⊗idC

commutes. Dualizing we get that

C∗ (C ⊗ C)∗

(C ⊗ C)∗ (C ⊗ C ⊗ C)∗

∆∗

∆∗ (idC⊗∆)∗

(∆⊗idC)∗

commutes. Expanding, we consider the diagram

C∗ (C ⊗ C)∗ C∗ ⊗ C∗

(C ⊗ C)∗ (C ⊗ C ⊗ C)∗

C∗ ⊗ C∗ C∗ ⊗ C∗ ⊗ C∗

∆∗ τ

∆∗ (idC⊗∆)∗

(∆⊗idC)∗

τ
j

(∆∗◦τ)⊗idC

idC⊗(∆∗◦τ)

where j : C∗ ⊗ C∗ ⊗ C∗ → (C ⊗ C ⊗ C)∗ is the canonical map for three vector
spaces. One shows (exercise!) that the outside square commutes, and the outside
map C∗ ⊗ C∗ ⊗ C∗ → C∗ says that m = ∆∗ ◦ i is associative; in other words the
multiplication map diagram commutes.

Moreover a dual to a counit map ε defines a unit u = (ε)∗, which makes
(C∗,∆∗ ◦ τ, (ε)∗) to be an associative algebra.

One can also ask whether or not the dual A to an associative algebra A is al-
ways a coalgebra? WhenA is a finite-dimensional the answer is positive, while in
general one should restrict himself to the class of pseudocompact algebras which
we will discuss on the next lecture.

Example 2.6. Let C =Mn(k) be a coalgebra as in example ?.

Let (C,∆C , εC) and (D,∆D, εD) be two coalgebras. A linear map f : C → D is
a morphism of coalgebras if the following diagrams are commutative:

C D

C ⊗ C D ⊗D

∆C

f

∆D

f⊗f

C D

k

εC

f

εD

With such morphisms the k-coalgebras form a category denoted by Cogk, respec-
tively category of finite dimensional coalgebras form a category cogk. Now the
discussion above can be formilized as

Theorem 2.1. Passing to dual vector spaces (−)∗ gives rise a duality

(−)∗ : algk → cogk



CHAPTER 2. COALGEBRAS 11

2.3 Coideals, subcolagebras and correspondence be-
tween structures

Let C be a coalgebra. A subspace I ⊂ C is a coideal if

∆(I) ⊂ I ⊗ C + C ⊗ I

and ε(I) = 0. A subspace D ⊂ C is a subcoalgebra of C if

∆(D) ⊂ D ⊗D.

Proposition 2.1. Let C and D be coalgebras, and let f : C → D be a morphism of
coalgebras.

(1) If E is a subcoalgebra of C, then E is a coalgebra with ∆E = ∆C|E and εE = εC|V .

(2) If I is a coideal of C, then C/I is a factor coalgebra with

∆C/I(c+ I) =
∑

(c(1) + I)⊗ (c(2) + I),

εC/I(c+ I) = εC(c).

(3) Ker f is a coideal of C and Im f = f(C) is a subcoalgebra of D.

(4)

f̃ : C/Ker f → f(C)

c+Ker f 7→ f(c)

is an isomorphism of coalgebras

For any subset X ⊆ V define

X⊥ = {f ∈ V ∗ | f(x) = 0, x ∈ X}.

Theorem 2.2. Let C be a coalgebra, and let A = C∗ be the dual algebra. Then:

(1) If I is an ideal of A = C∗, then I⊥ is a subcoalgebra of C.

(2) If B is a subalgebra of A = C∗, then B⊥ is a coideal of C.

(3) If J is a coideal of C, then J⊥ is a subalgebra of A = C∗.

(4) If D is a subcoalgebra of C, then D⊥ is an ideal of A = C∗.

Corollary 2.1. If C is a finite dimensional coalgebra, then there are bijections:

{ideals of C∗} ←→ {subcoalgebras of C}
{subalgebras of C∗} ←→ {coideals of C}

given by (·)⊥.
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Example 2.7. Let C =Mn(k) be the matrix coalgebra. Let

I = span{eij | i > j} = {strictly lower triangular matrices},

It is easy to check that
∆(eij) ⊆ I ⊗ C + C ⊗ I

and ε(eij) = 0. Therefore I is a coideal. By Theorem ??

I⊥ = {e∗ij | i ≤ j}

is a subalgebra of C∗ ∼= Mn(k), and hence I⊥ is the subalgebra of upper triangular
matrices in Mn(k). On the other hand the algebra C∗ ∼= Mn(k) has no nontrivial
ideals (being simple) hence by the Theorem above C has only trivial subcoalge-
bras.

2.4 Fundamental theorem for coalgebras

Theorem 2.3. Let (C,∆, ε) be a coalgebra over a field k and x ∈ C. Then there exists
subcoalgebra D ⊆ C such that x ∈ D and dimkD <∞.

Proof. Let
∆(x) =

∑
i

bi ⊗ ci.

Consider the element

∆2(x) =
∑
i

∆(bi)⊗ ci =
∑
i,j

aj ⊗ bij ⊗ ci

Note that we may assume that (aj) are linearly independent and so are (ci).
LetD be a subspace spanned by (bij). Of course dimkD <∞. Furthermore x ∈ D,
because

x =
∑
i,j

ε(aj)ε(ci)bij

It reminds to show that D is a subcoalgebra, i.e. ∆(D) ⊆ D⊗D. Indeed, note that∑
i,j

∆(aj)⊗ bij ⊗ ci =
∑
i,j

aj ⊗∆(bij)⊗ ci,

an since ci are linearly independent, for all i we have∑
j

∆(aj)⊗ bij =
∑
j

aj ⊗∆(bij).

Thus ∑
j

aj ⊗∆(bij) ⊂ C ⊗ C ⊗D

and since aj are linearly independent, we obtain that ∆(bij) ∈ C ⊗ D for all i, j.
Analogously we show that ∆(bij) ∈ D ⊗ C. Thus

∆(bij) ∈ C ⊗D ∩D ⊗ C = D ⊗D.
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Corollary 2.2. Every coalgebra is the sum of its finite-dimensional subcoalgebras.

The Fundamental Theorem of Coalgebras is major diference between algebras
and coalgebras. For example consider the algebra k[x]. Whenever f ∈ k[x] is such
that deg(f) > 0, then a subalgebra generated by f is always infinite dimensional
(if deg(f) = 0 then subalgebra generated by f is k). This can never occur in
coalgebras. One can try to “dualise” seeking for the dual property that would
say, if A is an algebra and x ∈ A then there is an ideal I of finite codimension (i.e.
dimk A/I < ∞) that does not contain x. But, this fails for general algebras, e.g.
consider A = k(x) the field of rational functions. Algebra A has no ideals I with
A/I finite dimensional except I = A. (Note: Any simple infinite dimensional
algebra would have the same problem.) But such property is true (after proper
interpretation) for a special class of algebras called pseudocompact algebras (we
aim to discuss this in the next lecture).

Corollary 2.3. Let C be a coalgebra of dimension n. Then C is isomorphic to a quotient
of matrix coalgebra Mn(k).

2.5 Exercices

Exercise 2.1. Let C be a coalgebra and let c ∈ C such that ∆(c) = c⊗ c. Prove that
if ε(c) ̸= 0, then ε(c) = 1

Exercise 2.2. Let C be a k-vector space with basis {s, c}. Prove that C is a coalge-
bra with comultiplication ∆ and counit ε defined by:

∆(s) = s⊗ c+ c⊗ s, ε(s) = 0,

∆(c) = c⊗ c− s⊗ s, ε(s) = 1.

Exercise 2.3. LetM c
n(k) be a matrix coalgebra with basis {eij}1≤i,j≤n (see the class).

Prove that the dual algebra M c
n(k)

∗ is an (n, n)-matrix algebra over k.

Exercise 2.4. Let A be a finite-dimensional associative unital k-algebra.

(a) Prove that A∗ is a coalgebra. (Hint: Use that (A⊗ A)∗ ∼= A∗ ⊗ A∗.

(b) Prove that B is a subalgebra of A if and only if B⊥ = {f : A→ k | f(B) = 0}
is a coideal of A∗.

(c) Prove that I is a two-sided ideal of A if and only if I⊥ = {f : A→ k |f(I) =
0} is a subcoalgebra of A∗.

Exercise 2.5. Let V , W be two vector spaces. Show that a natural map τ : V ∗ ⊗
W ∗ → (V ⊗W )∗ is always injective. And that τ is isomorphism if either V or W
is finite-dimensional.

Exercise 2.6. Show that map m (see the class!) factors as ∆∗ ◦ τ .

Exercise 2.7. Show that m = ∆∗ ◦ τ is an associative map, showing that the dia-
gram from the class is commutative.

Exercise 2.8. Let V be a vector space, and let I, J ⊂ V ∗ are subspaces. Show:

(I ⊗ J)⊥ = I⊥ ⊗ V + V ⊗ J⊥.

Exercise 2.9. Using Exercise 2.8 show the duality between coideals in C and sub-
algebras in C∗ (respectively subcoalgebras in C and ideals in C∗).



Chapter 3

Pseudocompact algebras

Let k be a field. Remember from the last lecture the:

• Fundamental Theorem of coalgebras:Every coalgebra is a union of finite dimen-
sional coalgebras.

3.1 Motivation

The Fundamental Theorem says that although coalgebras can be very big, they
can be understood very well by studying their finite dimensional subcoalgebras.
This is a very powerful and unusual property.

We also saw that finite dimensional coalgebras and comodules are “the same
thing” as finite dimensional algebras and modules (formally: the respective cate-
gories are dual).

We also saw that for any coalgebra C, the dual space C∗ is an algebra. The task
today is to understand what algebras we get.

Example 3.1. I claim that k[x]∗ = k[[x]]: a map k[x] → k is freely determined by
where we send the basis {1, x, x2, . . .}, so as a vector space we can write it as the
product

k[x]∗ = k1 × kx × kx2 × . . .
where the vector (λ1, λx, λx2 , . . .) is the linear map sending 1 7→ λ1, x 7→ λx, etc.
What’s the multiplication? Denote by fxn the map sending xn to 1 and the other
xi to 0. The product is

C∗ ⊗ C∗ τ−→ (C ⊗ C)∗ −◦∆−−→ C∗

and so the product of fx with fx is by definition

(fx ⊗ fx)∆.
Applying to x2 we get

(fx ⊗ fx)∆(x2) = (fx ⊗ fx)(1⊗ x2 + x⊗ x+ x2 ⊗ 1) = 0 + 1 + 0 = 1,

and
(fx ⊗ fx)∆(xn) = 0 ∀n ̸= 2,

so that fx · fx = fx2 . This can be formalized to get the isomorphism k[x]∗ = k[[x]].

Q: More generally, what algebras do we get by dualizing coalgebras?

14



CHAPTER 3. PSEUDOCOMPACT ALGEBRAS 15

3.2 Direct and inverse limits

Definition 3.1. A partially ordered set I is

• directed above if for every x, y ∈ I there is z with z ⩾ x, y.

• directed below if for every x, y ∈ I there is z with z ⩽ x, y.

If I is a partially ordered set, we can think of I as a category, with objects the
elements of I and a map x→ y whenever x ⩾ y.

Definition 3.2. If C is a category (eg. of algebras or coalgebras or modules or
comodules),

• a direct system {Ci, ψij, I} in C is the image of a (covariant) functor F : I → C,
where I is directed below.

• an inverse system {Di, φij, I} in C is the image of a functor F : I → C, where
I is directed above.

Example 3.2. Let C be a coalgebra and C be the category of k-coalgebras. The
set of finite dimensional subcoalgebras of C with inclusion maps forms a direct
system: it’s directed below because if X, Y are finite dimensional subcoalgebras,
then X + Y is a finite dimensional subcoalgebra that contains them both.

Definition 3.3. • The direct limit lim−→Ci of a direct system {Ci, ψij, I} is the
categorical colimit: it’s an object C of C together with maps ψi : Ci → C
for every i ∈ I such that all triangles commute, and universal as such.

• The inverse limit lim←−Di of an inverse system {Di, φij, I} is the categorical
limit: it’s an object D of C together with maps φi : D → Di for every i ∈ I
such that all triangles commute, and universal as such.

Exercise 1: give a full definition of direct and inverse limit, filling in all the
details

Example 3.3. The direct limit of the direct system from the last example is pre-
cisely the union of the finite dimensional subcoalgebras of C. The fundamental
theorem of coalgebras says exactly that C = lim−→Ci!

So now:

• A coalgebra C is the direct limit of its finite dimensional subcoalgebras
{Ci, ψij}, where ψij : Ci → Cj is inclusion.

• Apply duality. This is a contravariant functor, so the arrows swap direction.
So we get an inverse system of finite dimensional algebras {Ci

∗, φij = ψij
∗}.

• Duality commutes with (co)limits, and so

C∗ = lim←−Ci
∗.

That is, the algebras that come from dualizing coalgebras are precisely in-
verse limits of finite dimensional algebras.
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Exercise 2: write k[x] as a direct limit of fd coalgebras, dualise the direct sys-
tem, and check that k[[x]] is its inverse limit.

Example 3.4. Let I be a set and for each i ∈ I , let Ai be a finite dimensional
algebra. Then

A =
∏
i∈I

Ai

is an inverse limit of finite dimensional algebras.
Exercise 3: to check this!

3.3 Topologies

The true power of pseudocompact objects comes from topology. To get the idea,
consider vector spaces:

Example 3.5. k – field, V – k-vector space. As we all know:

V ∼= V ∗∗ ⇐⇒ dim(V ) <∞.

It’s annoying that V ̸∼= V ∗∗ when dim(V ) is infinite!
But look what happens when we work in the category of topological vector

spaces (k has the discrete topology).
Suppose V has basis B = {b1, b2, b3, . . .}, then

V =
⊕
bi∈B

k.

Like in Example 3.1,
V ∗ =

∏
bi∈B

k.

These are topological vector spaces, so the product should be a topological product.
That means V ∗ has the product topology. A basis of open neighbourhoods of 0 is
given by

Bn = {(0, . . . , 0, λn, λn+1, . . .) |λi ∈ k}
Now V ∗∗ = Homk(V

∗, k). But these are topological vector spaces, so “Hom”
means continuous homs. k is discrete so if f ∈ V ∗∗ then Ker(f) = f−1(0) is open.
This means that f has to send almost every coordinate to 0. In other words

V ∗∗ ∼=
⊕
bi∈B

k = V !

Definition 3.4. k – field, given the discrete topology. A pseudocompact algebra is
an inverse limit of discrete finite dimensional associative k-algebras, taken in the
category of topological k-algebras.

Proposition 3.1. A topological algebra A is pseudocompact if, and only if, it has a basis
B of open neighbourhoods of 0 consisting of finite codimension ideals such that⋂

I∈B

I = 0 and A = lim←− I∈BA/I.
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Example 3.6. • Fd algebras are pseudocompact.

• Products of fd algebras (with the product topology) are pseudocompact.

• k[[x]], with basis of neighbourhoods of 0 given by the ideals (xn) (n ∈ N) is
pseudocompact.

• G – profinite group, N – set of open normal subgroups of G. Then

k[[G]] := lim←−N∈Nk[G/N ]

is pseudocompact. This is the algebra to study to understand the represen-
tation theory of G.

Theorem 3.1. The category of coalgebras and coalgebra homomorphisms is dual to the
category of pseudocompact algebras and continuous algebra homomorphisms. In both
directions, the duality is given by X 7→ X∗ = Homk(X, k) (where Hom always means
continuous homs!).

Exercise 6:
“Every pseudocompact algebra is a closed subalgebra of a direct product of

discrete finite dimensional algebras.”

If you know about profinite groups, the best thing about them is that they are
compact. Pseudocompact algebras are not usually compact. For instance A = k is
discrete, so already isn’t compact when k is infinite. But they sort of morally are:

Definition 3.5. An affine subspace of a vector space is a coset of a subspace. A
topological vector space V is linearly compact if whenever Wi (i ∈ I) are closed
affine subspaces of V such that

⋂
i∈I Wi = ∅, then Wi1 ∩ . . . ∩Win = ∅ for some

{i1, . . . , in} ⊆ I .

Exercise 7: Discrete finite dimensional vector spaces are linearly compact.

Proposition 3.2. Pseudocompact algebras are linearly compact.

Proof. Products of linearly compact spaces are linearly compact (this is just like
Tychonoff’s theorem) and closed subspaces of linearly compact spaces are lin-
early compact (this is easy).

3.4 Exercises

Exercise 3.1. Give a full definition of direct and inverse limit, filling in all the
details

Exercise 3.2. Write the coalgebra k[x] as a direct limit of fd coalgebras, dualise the
direct system, and check that k[[x]] is its inverse limit.

Exercise 3.3. If each Ai (i ∈ I) is a finite dimensional algebra, write down an
inverse system for A =

∏
i∈I Ai and convince yourself that A is its inverse limit.

Exercise 3.4. If A = lim←−{Ai, φij} is an inverse limit of finite dimensional vector
spaces, the maps φij might not be surjective. But check that {φi(A), φij} is another
inverse system with surjective maps, and that A is its limit.
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Exercise 3.5. Check that a direct sum of coalgebras is a coalgebra. Convince your-
self that if each Ci (resp. Ai) is a finite dimensional coalgebra (resp. algebra), then(⊕

Ci

)∗
=

∏
Ci

∗ ,
(∏

Ai

)∗
=

⊕
Ai

∗.

Exercise 3.6. 1. Understand k[[x]] as a subalgebra of
∏

n∈N k[x]/x
n. Show that

it’s closed.

2. More generally, convince yourself that the following theorem is true:

“Every pseudocompact algebra is a closed subalgebra of a direct product of
discrete finite dimensional algebras.”

Exercise 3.7. Convince yourself that discrete finite dimensional vector spaces are
linearly compact.



Chapter 4

Basic structure of pseudocompact
algebras

We’ll see that the structure of pseudocompact algebras is just as well behaved
as that of finite dimensional algebras! Let k be a field and A a pseudocompact
k-algebra.

4.1 The Jacobson radical and semisimple algebras

Definition 4.1. The (topological) Jacobson radical J(A) of A is the intersection of
the maximal closed left ideals of A.

Exercise:

1. Let I be the set of open ideals of A. If X is a closed subspace of A, show that

X =
⋂
I∈I

X + I.

[hint: use linear compactness. If y ̸∈ X then (y +X) ∩
⋂

I∈I I = ∅.]

2. Show that maximal closed left ideals have finite codimension.

3. Show that every proper closed (left) ideal is contained in a maximal closed
(left ideal).

Example 4.1. It’s not true that every maximal ideal of finite codimension is closed!
LetA be the Fp-algebra

∏
N Fp. Let I be the (topologically dense!) ideal

⊕
N Fp and

let M be a maximal ideal containing I . Since A is commutative, A/M is a field in
which xp = x ∀x, so A/M ∼= Fp has codimension 1. But it’s not closed, because it’s
dense!

Example 4.2. 1. But J (
∏

N k) = 0 because

In = k × . . .× k︸ ︷︷ ︸
n times

×0× k × k × . . .

is a maximal closed ideal, and
⋂

n In = 0.

19



CHAPTER 4. BASIC STRUCTURE OF PSEUDOCOMPACT ALGEBRAS 20

2. J(k[[x]]) = (x) – because k[[x]] is local! Note that

k[[x]]/J(k[[x]]) = k[[x]]/(x) ∼= k

is a semisimple algebra. This is different from the algebra k[x]: the intersec-
tion J(k[x]) of its maximal ideals is 0, so k[x]/J(k[x]) is not semisimple!

Since there are more abstract maximal ideals than closed maximal ideals, it
might be surprising that:

Proposition 4.1. The topological Jacobson radical is equal to the abstract Jacobson radi-
cal.

Proof. Call them tJ(A) and aJ(A) respectively. Then aJ(A) ⊆ tJ(A) is clear so we
do the other. If x ̸∈ aJ(A) then by Lecture 1, 1− yx is not left invertible for some
y, so that A(1 − yx) ⊊ A, which is closed so contained in a maximal closed left
ideal M . But then

1− yx ∈M =⇒ 1 ∈ yx+M =⇒ yx ̸∈M =⇒ x ̸∈M =⇒ x ̸∈ tJ(A).

Definition 4.2. The pseudocompact algebra A is (topologically) semisimple if for
every closed left ideal I of A, there’s a closed left ideal L of A such that A = I⊕L.

Theorem 4.1. The following are equivalent for a pseudocompact algebra A:

1. A is semisimple

2. J(A) = 0

3. A is an inverse limit of finite dimensional semisimple algebras

4. A is a direct product of algebras Mn(∆), for ∆ a finite dimensional k-division
algebra.

Proof.

1 =⇒ 2) If A is semisimple and J(A) ̸= 0 then A = J(A)⊕ I for I closed and proper,
so I ⊆M for M a maximal closed left ideal. But then J(A) ̸⊆M .

2 =⇒ 3) For I an open ideal, let πI : A→ A/I be the projection. Now

J(A/I) = πI(J(A)) = πI(0) = 0,

so each A/I is semisimple.

3 =⇒ 4) This is a bit of work to make precise but morally: by 3 and an exercise
from the last lecture, A is an inverse limit of finite products of matrices with
surjective maps φij between them. Because matrices are simple, the kernel
of φij on a factor is either 0 or everything, so φij just kills some factors.
This is the inverse system whose limit is the product, so A is a product of
matrices.
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4 =⇒ 1) Fix a closed ideal I of A and some matrix factor Ai =Mn(∆) in the product.
If π : A → Mn(∆) is the projection then π(I) is a left ideal so it has some
complement Li. The product of these Li is a complement to I in A.

Example 4.3. The topology is important! The algebra A =
∏

N k is topologically
semisimple by the theorem, but it’s not semisimple as an abstract algebra. For
instance, the (non-closed!) ideal I =

⊕
N k intersects every non-zero ideal of A.

Example 4.4. Let G be a profinite group and suppose char(k) = 0. By Maschke’s
Theorem, every finite dimensional k[G/N ] is semisimple, so by the theorem above,
k[[G]] is just some massive product of matrix algebras. This implies that the char-
acteristic 0 representation theory of profinite groups is essentially the same as for
finite groups.

Example 4.5. If A is pseudocompact, J(A/J(A)) = 0, so A/J(A) is semisim-
ple. We saw this for k[[x]] above and also saw that it is false in general, because
J(k[x]) = 0.

4.2 Modules for a pseudocompact algebra

If A is a pseudocompact algebra, a pseudocompact A-module is an inverse limit of
discrete finite dimensional topological A-modules.

Theorem 4.2. The category of (left) pseudocompact A-modules is dual to the category of
(left) A∗-comodules.

We can’t quite have a Krull-Schmidt Theorem for pseudocompact modules:
for instance if A =

∏
N k, then A as an A-module is an infinite product of simple

modules. But we get very close:

Theorem 4.3. If M is a finitely generated pseudocompact A-module, then M is a direct
product of indecomposable pseudocompact modules, and the decomposition is essentially
unique.

Proof. Just the idea. We need:

Proposition 4.2. If M,X are pseudocompact A-modules and M is finitely generated,
then HomA(M,X) is pseudocompact.

Proof. If X = lim←−Xi, by the definition of inverse limit we have

HomA(M,X) = HomA(M, lim←−Xi) = lim←−HomA(M,Xi).

But HomA(M,Xi) is finite dimensional because Xi is finite dimensional and a hom
is determined by where I sent the finitely many generators of M .

“So” E = EndA(M) = HomA(M,M) is a pseudocompact algebra. The functor
HomA(M,−) sends pseudocompact A-modules to pseudocompact E-modules.
But HomA(M,M) is free, so (result of Gabriel) a product of indecomposable pro-
jectives. So M is also a product of indecomposables!
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Exercise: Use the theorem to show that every pseudocompact vector space has
the form

∏
i∈I k for some set I . So although the open ideal/submodule structure

of a pseudocompact algebra/module can be complicated, the underlying vector
space is always pretty easy.

Exercise: A pseudocompact A-module is semisimple if it’s a direct product of
simple A-modules. Show that a pseudocompact algebra A is semisimple if, and
only if, every pseudocompact A-module is semisimple.

4.3 Exercises

Exercise 4.1. Let V be a linearly compact vector space. Show that open subspaces
are closed, and that a closed subspace is open if, and only if, it has finite codimen-
sion.

Exercise 4.2. 1. Let I be the set of open ideals of the pseudocompact algebra
A. If X is a closed subspace of A, show that

X =
⋂
I∈I

(X + I).

[hint: use linear compactness. If y ̸∈ X then (y +X) ∩
⋂

I∈I I = ∅.]

2. Show that maximal closed left ideals have finite codimension.

3. Show that every proper closed (left) ideal is contained in a maximal closed
(left ideal).

Exercise 4.3. Use Theorem 4.3 to show that every pseudocompact vector space
has the form

∏
i∈I k for some set I . So although the open ideal/submodule struc-

ture of a pseudocompact algebra/module can be complicated, the underlying
vector space is always pretty easy.

Exercise 4.4. A pseudocompact A-module is semisimple if it’s a direct product of
simple A-modules. Show that a pseudocompact algebra A is semisimple if, and
only if, every pseudocompact A-module is semisimple.



Chapter 5

Representations of pseudocompact
algebras

5.1 Basic algebras

Recall, that indecomposable modules are sort of building blocks for any module
over f.d. algebra.

In what follows we need the notion of basic and pointed algebras. We call the
algebra A basic if A/J(A) is isomorphic to

∏
iDi with Di are finite dimensional

division k-algebras. Algebra A is called pointed if A/J(A) is isomorphic to
∏

i k.
Basic algebras play a fundamental role in the theory of representations of

finite-dimensional algebras due to the following theorem

Theorem 5.1. For any finite-dimensional algebra A exists a basic finite dimensional
algebra B so that there are equivalences of categories:

A-Mod ∼= B-Mod, A-mod ∼= B-mod.

So the study of the representations of all finite-dimensional algebras “reduces”
to the study of the representations of basic algebras. In what follows we show that
for any arbitrary basic algebra A its representations can be studied in a combina-
torial way (reduces the problem to some linear algebra problems) via representa-
tions of oriented graphs (=quivers).

5.2 Quivers and path algebras

A quiver Q is an oriented graph. We define a quiver Q as a tuple (Q0, Q1, s, t)
where Q0 is the set of vertices, Q1 is a set of edges (arrows), and for a given arrow
h ∈ Q1, denote by s(h), t(h) ∈ Q0 its initial and terminal vertex:

s(h) t(h).
h

A representation of a quiverQ is the setting a vector space Vi for each vertex i ∈ Q0,
and a linear mapping Vh : Vs(h) → Vt(h) for each arrow h ∈ Q1. They form an
abelian category Rep(Q) (resp. rep(Q) when all Vi are finite-dimensional) with
naturally defined morfisms.

23
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The path algebra kQ of a quiver Q is an k-algebra whose basis is formed by
all oriented paths in Q (including trivial paths pi, i ∈ Q0), and multiplication is
defined by concatenation of paths. If two paths cannot be concatenated, then
their product is defined as 0.

Example 5.1. The path algebra of a quiver

1 2
h

has a basis of 3 elements p1, p2 (trivial paths on the vertices) and h (path of length
1), endowed by multiplication

p21 = p1, p22 = p2,

p1p2 = p2p1 = 0,

p1h = hp2 = h,

hp1 = p2h = h2 = 0.

One checks that there exists an isomorphism kQ ∼= U2(k), given by

p1 7→
(

1 0
0 0

)
, p2 7→

(
0 0
0 1

)
, h 7→

(
0 1
0 0

)
.

Given a module over path algebra M ∈ kQ-Mod one associates the represen-
tation V M of the quiver Q in the following way:

V M
i := eiV,

V M
h (x) := hx = et(h)hx ∈ V M

t(h), x ∈ Vs(h).

And vice-versa if V is a representation of the quiver Q, one cheks that MV :=⊕
i∈Q0

Vi has a structure of kQ-Mod. More precisely the correspondense

V 7→MV , M 7→ V M ,

gives the equivalences of categories:

kQ-Mod ∼= Rep(Q), kQ-mod ∼= rep(Q).

Another fundamental result is the following.

Theorem 5.2 (P. Gabriel). Let A be a pointed finite dimensional algebra over alge-
braically closed field. There exists a quiver QA and an admissible ideal I in kQA such
that A is isomorphic to kQA/I .

Where by admissible ideal I we mean a two-sided ideal I ⊂ kQ so that

Rm
Q ⊆ I ⊆ R2

Q,

for a m ≥ 2, and RQ is the two-sided ideal in algebra kQ generated by all arrows
of Q. In other words, I is admissible, if it does not contain arrows of Q and
includes all paths of length ≥ m. Therefore, if field is algebraically closed, for
each finite-dimensional algebra A we have

A-mod ∼= B-mod ∼= kQB/I-mod ∼= rep(QB, I).
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Construction of QA

• “vertices” in QA are basis in A/J(A)

• “arrows” are basis in J/J2

5.3 Pseudocompact algebras

All this works very well for pseudocompact algebras. Let k be algebraically
closed. Then we know from the last lecture that A/J(A) =

∏
i∈I Mni

(k) and we
say that a pseudocompact algebra B is basic if B/J(B) =

∏
k.

Proposition 5.1. A is Morita equivalent to a basic pseudocompact algebra.

Proof. Just like fd algebras:

• if A/J(A) =
∏

i∈I Mni
(k) then as a left module, A =

∏
i∈I Pi

ni with each Pi

indecomposable.

• The module X =
∏

i∈I Pi is finitely generated, so the algebra B = EndA(X)
is pseudocompact.

• B is basic and Morita equivalent to A.

Let R be a finite quiver. The path algebra kR might not be finite dimensional,
but for any n, the subspace kR>n with basis the paths of length bigger than n is
an ideal and the algebra kR/kR>n is finite dimensional. We get an inverse system
of finite dimensional algebras and we define

k[[R]] = lim←− n∈NkR/kR>n,

the completed path algebra of R.

Example 5.2. If R = • x
yy

, then kR/kR>n
∼= k[x]/(xn) and so

k[[R]] = lim←− kR/kR>n
∼= lim←− k[x]/(x

n) = k[[x]].

Now let Q be an arbitrary quiver. Then Q is the union (= direct limit) of its
finite subquivers: Q =

⋃
Ri. If Ri ⊆ Rj , then the inclusion yields an algebra

homomorphism k[[Rj]] → k[[Ri]] (order swapped!) by sending a path of Rj to
itself if it’s in Ri, or to 0 otherwise. So the direct system of quivers gives an
inverse system of pseudocompact algebras, and we define

k[[Q]] := lim←− k[[Ri]],

the completed path algebra of Q.
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Example 5.3. The infinite quiver

Q = · · · 3
α3oo 2

α2oo 1
α1oo

is the union of the finite quivers

Rn = n · · ·oo 3
α3oo 2

α2oo 1
α1oo .

For each n, k[Rn] = k[[Rn]] is isomorphic to lower triangular n× n-matrices:

k[R3] =

 e1 0 0
α1 e2 0
α2α1 α2 e3

 .

The inclusions yield obvious projections, for instance

2 1
α1oo ↪→ 3 2

α2oo 1
α1oo

yields the projection  e1 0 0
α1 e2 0
α2α1 α2 e3

 ↠

(
e1 0
α1 e2

)
.

The inverse limit k[[Q]] is the algebra of “lower triangular N× N-matrices”

k[[Q]] =


e1 0 0 0
α1 e2 0 0 · · ·
α2α1 α2 e3 0
α3α2α1 α3α2 α3 e4

... . . .

 .

Theorem 5.3. Let B be a basic pseudocompact algebra. There is a quiver Q and a closed
ideal I of k[[Q]] contained in J2(k[[Q]]) such that

B ∼= k[[Q]]/I.

Proof. Just like for fd algebras, but being careful that the functor R → k[[R]] is
contravariant, so some dualities appear:

• B/J(B) =
∏

i∈I k since it’s basic. The vertices of Q are the primitive idem-
potents {ei | i ∈ I}.

• For each i, j we have a linearly compact vector space ej(J(B)/J2(B))ei. It is
dual to a discrete vector space Vji. The arrows from ei to ej are a basis of Vji.

• Just like for fd algebras, we get a continuous surjective algebra map k[[Q]] ↠
B, and its kernel I is contained in J2(k[[Q]]).
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Representations

Definition 5.1. Let Q be a quiver. A representation of Q is a vector space for every
vertex, and a linear map for every arrow.

To simplify the conversation, let’s focus on finite dimensional representations:
so that’s a finite dimensional vector space in finitely many vertices. Not every
finite dimensional representation will correspond to a topological k[[Q]]-module:

Example 5.4. If Q = • x
yy

, then k[[Q]] = k[[x]]. The representation [a] id
uu

does
not give a k[[x]]-module: consider y =

∑∞
i=0 x

i ∈ k[[x]]. Then

y · a = a+ a+ a+ . . . – doesn’t make sense in k!

Proposition 5.2. The category of finite dimensional pseudocompact k[[Q]]-modules is
equivalent to the category of finite dimensional nilpotent representations. This means
that there exists n ∈ N such that the LT corresponding to any path of length (at least) n
is 0.

Example 5.5. So by linear algebra, the representations of the indecomposable fi-
nite dimensional pseudocompact k[[x]]-modules look like this:

kn



0 0 0 0
1 0 · · · 0 0
0 1 0 0

. . .
0 0 1 0


uu

.

5.4 Exercises

Exercise 5.1. Show that the algebra A = k[x]/(xm) is pointed and its radical J(A)
is generated by x.

Exercise 5.2. Show that the algebra A =

(
k k[x]/x2

0 k[x]/x2

)
is basic and its radical

has the form

J(A) =

(
0 k[x]/x2

0 xk[x]/x2

)
.

Exercise 5.3. Build the Gabriel quiver of the algebra A = Un(k).

Exercise 5.4. Let A = U3(k), and C be subalgebra consisting of all matrices

λ =

 λ11 λ12 λ13
0 λ22 λ23
0 0 λ33


such that λ11 = λ22 = λ33. Show that C is isomorphic to kQ/I , where I =
⟨α2, β2, αβ⟩ is ideal in kQ, and Q is the following quiver
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Exercise 5.5. Check we can multiply N× N-lower triangular matrices.

Exercise 5.6. Calculate the quivers of the algebra k[[x]] and of the algebra of N×N-
lower triangular matrices.

Exercise 5.7. Calculate Q and I such that k[[x, y]] ∼= k[[Q]]/I .

Exercise 5.8. We described the algebra k[[Q]] when

Q = · · · 3
α3oo 2

α2oo 1
α1oo

Describe the algebra k[[Q]] when

Q = · · · 3
α3oo 2

α2oo 1
α1oo 0

α0oo −1α−1
oo · · ·oo

Exercise 5.9. There is a description of representations that correspond to arbi-
trary pseudocompact k[[Q]]-modules, but it’s a bit more fiddly. Write down the
representations corresponding to the k[[x]]-module k[[x]] and do the same thing
for N × N-lower triangular matrices. Do the same thing for the algebra from the
previous question.

Note that they’re not “nilpotent”, but what you might call “pronilpotent”.
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