MAT0134 IME – Prova 2 – 29/10/2025

Modelo A

NT	Q	N
Nome :	1	
NOLICE	2	
$N^{\underline{o}}$ USP :	3	
	4	
	5	
	Total	

Respostas sem justificativa não serão consideradas!

- Desligue celulares, smartfones, smartwatches;
- A prova pode ser feita à lápis;
- É proibido o uso dos livros, cadernos, apostilas, anotações;
- Qualquer tipo de cola = nota "zero"na prova!!!

 $\mathbf{1}^{\underline{a}}$ Questão: (2 pontos). Seja $T:\mathbb{R}^3\to\mathbb{R}^3$ o operador linear definido por

$$T(x, y, z) = (x - y, y - z, z - x)$$

Encontre a base e dimenção para Ker(T) e Im(T). T é um isomorfismo?

 $\mathbf{2}^{\underline{a}}$ Questão: (2.0 pontos). Seja T um operador linear, tal que:

$$T(1,0,0) = (1,0,0);$$

 $T(1,1,0) = (-1,3,-1);$
 $T(0,1,1) = (-5,3,-2).$

- (a) Verifique que T é um isomorfismo;
- (b) Encontre uma matriz que represente o seu inverso.

- **3**^{α} **Questão:** (2.0 pontos). Em todos casos do espaço vetorial V e duas bases dados \mathcal{B} , \mathcal{C} , encontre matriz mudança de base \mathcal{B} para \mathcal{C} e matriz mudança de base \mathcal{C} para \mathcal{B} . Para vetor v encontre as suas coordenadas em base \mathcal{B} .
 - a) $\mathcal{B} = \{(1,1), (-1,1)\}, \mathcal{C} = \{(1,2), (0,1)\}$ duas bases em $V = \mathbb{R}^2$. Vetor v = (3,4).
 - b) $\mathcal{B} = \{1, t+1, t^2+1\}$, $\mathcal{C} = \{1, t-1, t^2-1\}$ duas bases em $V = P_2(\mathbb{R})$. Vetor $v = 1 + t + t^2$.

4^a **Questão:** (3.0 pontos). Encontrar uma base (e dimenção) do Ker(T), Im(T), $Ker(T) \cap Im(T)$ e Ker(T) + Im(T) em casos:

(a)

$$T: \mathbb{R}^3 \to \mathbb{R}^3,$$

$$T(x, y, z) = (x + y, y + z, x - z).$$

(b)

$$T: P_2(\mathbb{R}) \to P_2(\mathbb{R}),$$

$$T(p)(t) = p'(t) - p(0).$$

 $5^{\underline{a}}$ Questão: (1.0 ponto). Responda Sim ou Não, justificando brevemente cada resposta.

- 1. No espaço vetorial $P_2(\mathbb{R})$, o conjunto $\{1, 1+x, 1-x, x^2\}$ gera $P_2(\mathbb{R})$.
- 2. Em $M_2(\mathbb{R})$, o conjunto

$$B = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 2 & -1 \end{pmatrix} \right\}$$

é uma base.

- 3. Se $B = \{(1,1,0), (0,1,1), (1,0,1)\}$ é uma base de \mathbb{R}^3 , então as coordenadas do vetor (1,1,1) em relação a B são (1/2,1/2,1/2).
- 4. Considere $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por

$$T(x, y, z) = (x + 2y, y + 2z, z + 2x).$$

A matriz de T em relação à base canônica é simétrica.

- 5. Para $T:P_2(\mathbb{R})\to P_2(\mathbb{R})$, definido por T(p(x))=p'(x), temos $\dim(\ker T)=1$ e $\dim(\operatorname{Im} T)=2$.
- 6. Seja

$$S = \left\{ \begin{pmatrix} a & b \\ b & c \end{pmatrix} : a, b, c \in \mathbb{R} \right\} \subset M_2(\mathbb{R}).$$

Os espaços S e $V = \{p(t) \in P_3(\mathbb{R}) \mid p(t) = 0\}$ são isomorfos?