Epimorfismos de Anéis

Thiago Landim

"As regras, a linguagem figurada e a gramática do Jogo constituem uma espécie de linguagem oculta e altamente evoluída de que participam várias ciências e artes, especialmente a matemática e a música (ou seja, a musicologia). Tal linguagem tem a possibilidade de expor o conteúdo e os resultados de quase todas as ciências e de relacioná-las entre si."

H. Hesse, O Jogo das Contas de Vidro

1 Introdução

Tentando descrever algumas relações entre a Álgebra e a Topologia Algébrica, Samuel Eilenberg e Saunders MacLane [1] criaram a Teoria das Categorias. Abandonando a ênfase conjuntista dada pela relação de pertencimento e os elementos de um conjunto, a Teoria das Categorias dá uma ênfase às funções (que agora serão chamadas de **morfismos**) entre os objetos possuindo uma mesma estrutura (grupos, anéis, espaços topológicos, etc.).

Não havendo mais a noção de elemento de um objeto, é necessário traduzir conceitos antigos de uma forma funcional. Para tanto, temos os seguintes resultados.

Proposição 1. Seja $f: A \to B$ uma função. Então são equivalentes:

(a) A função f é injetiva, ou seja,

$$f(a) = f(a') \implies a = a'.$$

(b) Para qualquer par de funções $\alpha_1, \alpha_2 \colon C \to A$, vale que:

$$f \circ \alpha_1 = f \circ \alpha_2 \implies \alpha_1 = \alpha_2.$$

(c) Existe uma função $g \colon B \to A$ tal que $g \circ f = 1_A$.

Note que as duas propriedades abaixo não fazem referência alguma a elementos de um conjunto, logo podem ser naturalmente generalizadas para uma categoria qualquer.

Definição 2. Sejam C uma categoria e $A, B \in C$ dois objetos.

• Dizemos que um morfismo $f: A \to B$ é um **monomorfismo** se para qualquer par de morfismos paralelos $\alpha_1, \alpha_2: C \to A$, vale que

$$f \circ \alpha_1 = f \circ \alpha_2 \implies \alpha_1 = \alpha_2.$$

• Dizemos que um monomorfismo $f: A \to B$ é uma **seção** (ou que ele cinde) se existe $g: B \to A$ tal que $g \circ f = 1_A$.

Analogamente, temos o seguinte resultado.

Proposição 3. Seja $f: A \to B$ uma função. Então são equivalentes¹:

(a) A função f é sobrejetiva, ou seja,

para todo $b \in B$, existe $a \in A$ tal que b = f(a).

(b) Para qualquer par de funções $\beta_1, \beta_2 \colon B \to C$, vale que:

$$\beta_1 \circ f = \beta_2 \circ f \implies \beta_1 = \beta_2.$$

(c) Existe uma função $g: B \to A$ tal que $f \circ g = 1_B$.

Novamente, as duas propriedades abaixo nos dão novas definições frutíferas.

Definição 4. Sejam C uma categoria e $A, B \in C$ dois objetos.

• Dizemos que um morfismo $f: A \to B$ é um **epimorfismo**² se, para qualquer par de morfismos paralelos $\beta_1, \beta_2: B \to C$, vale que

$$\beta_1 \circ f = \beta_2 \circ f \implies \beta_1 = \beta_2.$$

• Dizemos que um epimorfismo $f: A \to B$ é uma **retração** (ou que ele cinde) se existe $g: B \to A$ tal que $f \circ g = 1_B$.

Embora as definições sejam naturais, caracterizar esses morfismos pode ser complicado. Antes de explicar essa dificuldade com mais detalhes, vejamos mais algumas propriedades e definições.

Proposição 5. Em uma categoria C, as afirmações a seguir são verdadeiras.

1. Se $f: A \to B$ e $g: B \to C$ são monomorfismos, então $g \circ f: A \to C$ é monomorfismo.

¹Para a equivalência com (c), é necessário utilizar o Axioma da Escolha.

²Ok, isso é épico!

2. Se $f: A \to B$ e $g: B \to C$ são epimorfismos, então $g \circ f: A \to C$ é epimorfismo.

Demonstração. Iremos apenas provar a primeira afirmação. Se $\alpha_1, \alpha_2 \colon D \to A$ são dois morfismo paralelos, então, pela associatividade,

$$(g \circ f) \circ \alpha_1 = (g \circ f) \circ \alpha_2 \implies f \circ \alpha_1 = f \circ \alpha_2 \implies \alpha_1 = \alpha_2$$

como desejávamos.

Também recuperar um monomorfismo ou um epimorfismo de uma composição.

Proposição 6. Seja C uma categoria e $f: A \to B$ e $g: B \to C$ dois morfismos. Então:

- 1. Se $g \circ f \colon A \to C$ é um monomorfismo, então f é um monomorfismo.
- 2. Se $q \circ f: A \to C$ é um epimorfismo, então q é um epimorfismo.

Demonstração. Novamente, iremos apenas provar a primeira afirmativa. Se α_1 , α_2 : $D \to A$ são dois morfismo paralelos, então, pela associatividade,

$$f \circ \alpha_1 = f \circ \alpha_2 \implies (g \circ f) \circ \alpha_1 = (g \circ f) \circ \alpha_2 \implies \alpha_1 = \alpha_2,$$

como desejávamos.

A maioria das categorias que vemos no dia-a-dia são conjuntos com algumas estruturas adicionais (grupos, anéis, espaços topológicos, conjuntos ordenados), e funções que preservam essas estruturas (homomorfismos de grupos e de anéis, funções contínuas e crescentes). Embora isso não seja verdade, de modo geral, essa propriedade é importante o bastante para merecer um nome especial!

Definição 7. Chamaremos de categoria concreta um par (C, U), onde C é uma categoria e $U: C \Rightarrow Set$ é um funtor fiel (chamado de Funtor Esquecimento³).

Exemplo 8.

- Obviamente, a categoria de todos os conjuntos **Set** é concreta através do funtor identidade.
- Se Grp denota a categoria dos grupos, então ela é concreta através do funtor que associa a cada grupo seu conjunto subjacente e a cada função, ela mesma.
- Se Ring e CRing denotam a categoria dos anéis com unidade e anéis comutativos com unidade, então o mesmo funtor também nos diz que essas categorias são concretas.

³A notação U vem de Underlying set, e o funtor também pode ser chamado de Funtor Subjacente.

- Se R é um anel comutativo, então a categoria R-Mod dos R-módulos e também uma categoria concreta.
- Se Top e Haus denotam a categoria dos espaços topológicos e dos espaços Hausdorff, respectivamente, então temos mais duas categorias concretas.
- Seja hTop denota a categoria dos espaços topológicos, mas cujos morfismos são classes de homotopia de funções contínuas. Peter Freyd [3] mostrou que hTop não é concretizável.

Por simplicidade, se (C, U) e $A \in C$ é uma categoria concreta, então iremos denotar U(A) por $A \in U(f)$ por f, quando não for haver confusão.

A proposição abaixo nos diz que monomorfismos e epimorfismos não são hipóteses mais fortes que injetividade e sobrejetividade.

Proposição 9. Seja (C, U) uma categoria concreta $e f: A \to B$ um morfismo em C. Vale que:

- 1. Se U(f) é injetiva, então f é monomorfismo.
- 2. Se U(f) é sobrejetiva, então f é epimorfismo.

Demonstração. Provaremos a contrapositiva. Se $f: A \to B$ não é um monomorfismo, então existem $\alpha_1, \alpha_2: C \to A$ tais que $f \circ \alpha_1 = f \circ \alpha_2$, mas $\alpha_1 \neq \alpha_2$. Usando a funtorialidade e a fidelidade de U, nós temos que

$$U(f) \circ U(\alpha_1) = U(f) \circ U(\alpha_2), \text{ mas } U(\alpha_1) \neq U(\alpha_2).$$

Portanto U(f) não é injetiva, pela Proposição 1. A demonstração da segunda afirmação é totalmente análoga.

É possível formalizar a intuição que temos a respeito de que monomorfismos e epimorfismos são "conceitos análogos". De fato, eles são conceitos **duais**, isto é, se invertemos todas as setas da categoria ou dos diagramas, nós vamos de um conceito ao outro.

Apesar dessa dualidade, a complexidade dos conceitos é diferente. Em geral, monomorfismos são fáceis de descrever. Isso nem sempre é verdade para epimorfismos, como veremos.

Para descrever essa diferença, iremos introduzir um novo conceito.

Definição 10. Seja (C, U) uma categoria concreta. Chamaremos de **objeto livre** um par (L, a), onde $L \in C$ e $a \in U(L)$ tais que, para todo objeto $B \in C$ e todo $b \in U(B)$, existe um único morfismo $f: L \to B$ tal que Uf(a) = b. Na linguagem categórica, dizemos que (L, a) é uma representação do funtor U.

Objetos livres abundam na matemática, como podemos ver com os exemplos a seguir.

Exemplo 11.

- Em Set, o par $(\{0\}, 0)$ é um objeto livre.
- Em Grp, o par $(\mathbb{Z}, 1)$ é um objeto livre.
- Em Ring e em CRing, o par $(\mathbb{Z}[x], x)$ é um objeto livre.
- Em Top e em Haus, o par $(\{p\}, p)$ é um objeto livre.
- Em R-Mod, o par $(R, 1_R)$ é um objeto livre.

O lema abaixo é aplicável a todos os exemplos acima. Em particular, para a categoria dos anéis comutativos com unidade, o qual estamos estudando.

Lema 12. Seja (C, U) uma categoria concreta com um objeto livre (L, a). Então todo monomorfismo de C é uma injeção.

Demonstração. Seja $f: B \to C$ um morfismo que não é injetivo. Então existem $b_1, b_2 \in B$ tais que $f(b_1) = f(b_2)$. Sejam $\alpha_1, \alpha_2: L \to B$ dados pela propriedade universal de L tais que $\alpha_1(a) = b_1$ e $\alpha_2(a) = b_2$. Então $f \circ \alpha_1$ e $f \circ \alpha_2$ são dois morfismos de L em C tais que

$$f \circ \alpha_1(a) = f \circ \alpha_2(a).$$

Pela unicidade dada pela definição de objeto livre, segue que $f \circ \alpha_1 = f \circ \alpha_2$, logo f não é monomorfismo.

Assim, monomorfismos em categorias concretas não são particularmente interessantes. Por outro lado, nem sempre todo epimorfismo é uma sobrejeção.

Exemplo 13.

- Em Grp , todo epimorfismo é sobrejetivo. A demonstração usual desse resultado é não trivial e usa $amalgamação^4$.
- Em R-Mod, todo epimorfismo é sobrejetivo. Esse resultado é mais fácil, e segue do fato que essa categoria possui *conúcleos*.
- Em Haus, um morfismo é epimorfismo se e somente se sua imagem for densa. Assim, existem epimorfismos não sobrejetivos.
- Em CRing, também temos exemplos não sobrejetivos de epimorfismos. A inclusão $\iota \colon \mathbb{Z} \to \mathbb{Q}$ é um epimorfismo não sobrejetivo.

O último exemplo acima é generalizado pelo seguinte lema.

 $^{^4}$ Para uma demonstração elementar, veja C. E. Linderholm, A Group Epimorphism is Surjective. The American Mathematical Monthly, 77(2), pp. 176–177.

Lema 14. Se R é um anel comutativo com unidade e S um conjunto multiplicativo, então a localização $f: R \to S^{-1}R$ é um epimorfismo.

Demonstração. Se $f, g: S^{-1}R \to R'$ são morfismos tais que f(r) = g(r) para todo $r \in R$, então, em particular, f(s) = g(s) para todo $s \in S$. Portanto

$$f\left(\frac{a}{s}\right) = \frac{f(a)}{f(s)} = \frac{g(a)}{g(s)} = g\left(\frac{a}{s}\right),$$

e as funções são idênticas.

Pelo Teorema do Isomorfismo, toda imagem sobrejetiva de um anel R é um quociente R/I. Assim, mapas de localização e projeções nos dão exemplos canônicos de epimorfismos. Mais ainda, podemos compor essas funções e obter novos exemplos. Se $\kappa(p)$ denota o corpo residual de $R_{\mathfrak{p}}$, então $A \to \kappa(\mathfrak{p})$ se fatora por

$$A \to A_{\mathfrak{p}} \to \kappa(p),$$

que é a composição de um mapa de localização com uma projeção. Infelizmente, nem todo epimorfismo é dessa forma.

Exemplo 15.

• Se k é um corpo qualquer, a inclusão ι : $k[x, xy, xy^2 - y] \hookrightarrow k[x, y]$ é um epimorfismo que não é uma localização (e não pode ser projeção, pois é injetiva). De fato, note que, se f, g: $k[x, y] \to R$ são iguais no anel anterior, então

$$f(xy^{2}) = f(xy)f(y) = g(xy)f(y) = g(y)g(x)f(y)$$

= $g(y)f(x)f(y) = g(y)f(xy) = g(xy^{2}),$

de onde segue que f(y) = g(y). Como, por hipótese f(x) = g(x), segue que f = g. Por outro lado, as unidades em ambos os anéis são as mesmas, logo a inclusão não é uma localização.

• Se R é um anel qualquer e $a \in R$, então podemos formar o morfismo $f: R \to R_a \oplus R/(a)$, que veremos mais tarde que é epimorfismo.

Agora que já vimos diversas propriedades gerais e exemplos em diversas categorias, vamos nos voltar para o caso dos anéis comutativos com unidade.

2 Caracterizações Naturais

Primeiramente, note que para estudar um epimorfismo $f: R \to S$, podemos supor que $R \subseteq S$. De fato, temos a fatoração

$$R \to \operatorname{im} R \stackrel{\iota}{\hookrightarrow} S.$$

A primeira função, sendo sobrejeção, é sempre um epimorfismo, de onde segue que f é epimorfismo se e somente se ι é epimorfismo.

Assim, inspirados na topologia, usaremos seguinte definição.

Definição 16. Seja S um anel. Dizemos que um subanel R é denso em S se, para todo anel T e todo par de funções $f, g: S \to T$, vale que

$$\forall r \in R, f(r) = g(r) \implies f = g.$$

Para explorar a densidade de anéis, precisamos encontrar pares de morfismos saindo de S e dois morfismos naturais são $i_1, i_2 \colon S \to S \otimes_R S$ definidos por

$$i_1(s) = s \otimes 1$$
 e $i_2(s) = 1 \otimes s$.

Como $i_1(r) = i_2(r)$ para todo $r \in R$, segue que $i_1 = i_2$, isto é, $s \otimes 1 = 1 \otimes s$ para todo $s \in S$.

Reciprocamente, suponha que $s \otimes 1 = 1 \otimes s$ para todo $s \in S$, e sejam $f, g: S \to T$ pares de morfismos tais que f(r) = g(r) para todo $r \in R$. Então f e g induzem a mesma estrutura de R-módulo em T. Assim, a função $(s,s') \mapsto f(s)g(s')$ é R-bilinear, e induz um morfismo $p: s \otimes s' \mapsto f(s)g(s')$. Portanto $f(s) = p(s \otimes 1) = p(1 \otimes s) = g(s)$, logo R é denso.

A discussão acima não foi coincidência, o produto tensorial nos permite dar várias descrições de um epimorfismo.

Lema 17. Seja S um anel e R um subanel de S. São equivalentes:

- i) R é denso em S.
- ii) Para todo $s \in S$, $s \otimes 1 = 1 \otimes s$ em $S \otimes_R S$.
- iii) A operação de multiplicação $m \colon S \otimes_R S \to S$ definida por $s \otimes s' \mapsto s \cdot s'$ é injetiva (logo um isomorfismo de R-álgebras).
- iv) As inclusões $i_1, i_2 \colon S \to S \otimes_R S$ são sobrejetivas (logo isomorfismos de Rágebras).

Demonstração. Já vimos acima que i) \iff ii).

 $ii) \iff iii$): Vejamos que o núcleo da multiplicação é o ideal I gerado pelos elementos da forma $s \otimes 1 - 1 \otimes s$, de onde seguirá o resultado. É fácil de ver que I está no núcleo de da multiplicação, logo podemos descer o morfismo para o quociente

$$\overline{m} \colon (S \otimes_R S)/I \to S.$$

Note que $\overline{m} \circ i_1 = 1_S$ é a identidade. Por outro lado,

$$(i_1 \circ \overline{m})(s \otimes s') - s \otimes s' = ss' \otimes 1 - s \otimes s' = (s \otimes 1)(s' \otimes 1 - 1 \otimes s') = 0$$

em I, de onde concluímos a relação $(S \otimes_R S)/I \cong S$ através de \overline{m} .

 $iii) \iff iv$): A argumentação com i_1 e com i_2 é completamente análoga, portanto faremos só com a primeira. Note que $m \circ i_1 = 1_S$. Assim, se m possui inversa, ela deve ser igual a i_1 , logo i_1 é isomorfismo. Reciprocamente, se i_1 possui inversa, ela deve ser igual a m, de onde segue que m é isomorfismo.

O lema acima generaliza algumas propriedades clássicas de $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$, e cuja demonstração, em geral, se utiliza propriedades da localização. A proposição a seguir também generaliza alguns resultados da inclusão $\mathbb{Z} \hookrightarrow \mathbb{Q}$.

Proposição 18. Seja S um anel e R um subanel de S. São equivalentes:

- (a) R é denso em S.
- (b) A álgebra tensorial $T_R(S)^5$ é comutativa.
- (c) $S \otimes_R S/R = 0$.

Demonstração.

 $(a) \iff (b) \text{ Se } R \text{ \'e denso em } S, \text{ ent\~ao}$

$$s \otimes t = (s \otimes 1) \cdot (1 \otimes t) = (1 \otimes s) \cdot (t \otimes 1) = t \otimes s$$

e isso implica a comutatividade da álgebra tensorial.

Reciprocamente, suponha $T_R(S)$ é comutativo, então, em particular $s \otimes 1 = 1 \otimes s$ para todo $s \in S$.

 $(a)\iff(c)$ Note que a projeção $\pi\colon S\to S/R$ induz uma sobrejeção

$$\overline{\pi} = \mathrm{id} \otimes \pi \colon S \otimes_R S \to S \otimes_R S/R.$$

Por um argumento análogo ao feito na demonstração do Lema 3, é possível mostrar que o núcleo desse mapa é o módulo gerado pelos elementos da forma $s \otimes r$ (ou seja, os elementos da forma $s \otimes 1$). Assim, vemos que $S \otimes_R S/R = 0$ se e somente se i_1 é sobrejetivo, de onde segue a equivalência desejada.

Agora já temos as ferramentas necessárias para finalizar o último exemplo da primeira seção.

Exemplo 19. Vejamos que $R \to R_a \oplus R/(a)$ é um epimorfismo. Com efeito, observe que

$$R_a \otimes_R R/(a) = 0,$$

 $R_a \otimes_R R_a \cong R_a \in$
 $R/(a) \otimes_R R/(a) \cong R/(a).$

Assim, usando a distributividade,

$$(R_a \oplus R/(a)) \otimes_R (R_a \oplus R/(a)) \cong R_a \oplus R/(a).$$

⁵Se M é um R-módulo, definimos a álgebra tensorial $T_R(M)$ de M sobre R como sendo $T_R(M) = \bigoplus_{n>0} T^n(M)$, onde $T^0(M) = R$, $T^1(M) = M$, $T^2(M) = M \otimes_R M$ e assim por diante.

Intuitivamente, um epimorfismo é uma noção categórica para a sobrejeção. De que maneira epimorfismos e sobrejeções se relacionam? É isso que nós respondemos abaixo. Mas antes disso, vejamos uma nova definição.

Definição 20. Dizemos que um morfismo de anéis $f: R \to S$ é finito se S é finitamente gerado como um R-módulo.

Note que a inclusão $\mathbb{Z} \hookrightarrow \mathbb{Q}$ não é finita (ou seja, \mathbb{Q} não é finitamente gerado como um grupo abeliano). Mais geralmente, todo mapa de localização de um domínio não é finito.

Antes disso, precisamos de uma propriedade de módulos finitamente gerados.

Proposição 21. Seja R um anel e M um R-módulo finitamente gerado. Então existe uma filtração de R-módulos

$$0 = M_0 \subsetneq M_1 \subsetneq \cdots \subsetneq M_n = M$$

tal que cada quociente M_i/M_{i-1} é isomorfo a R/I_i para algum ideal $I_i \triangleleft R$.

Demonstração. Seja n a cardinalidade do menor conjunto de geradores de M. Faremos indução em n. Se n=1, então M=R/I para algum ideal I de R. Para o caso geral, seja m_1, \ldots, m_n um conjunto de geradores de M. Então $Rm_1=R/I$ para algum ideal I de R. Além disso, M/Rm_1 é gerado pelos outros n-1 elementos, logo pela hipótese indutiva, é possível encontrar a filtração, e o resultado segue do Terceiro Teorema do Isomorfismo.

Lema 22. Sejam R e S dois anéis e $f: R \to S$ um morfismo de anéis. Então são equivalentes:

- 1) f é epimorfismo e finito.
- 2) f é sobrejeção.

Demonstração.

- $(2) \implies (1)$ Já vimos que toda sobrejeção é um epimorfismo e é imediato que é finito.
- (1) \Longrightarrow (2) Suponha que S é finitamente gerado como um R-módulo, mas que $R \neq S$. Então podemos estender $0 \subseteq R \subseteq S$ para uma filtração como acima

$$0 = S_0 \subsetneq \cdots \subsetneq S_{n-1} \subsetneq S_n = S.$$

Por construção, existe um ideal I tal que $S/S_{n-1}=R/I$. Note, então, que R está contido no núcleo da projeção $\pi\colon S\to S/S_{n-1}$, portanto existe uma sobrejeção $\overline{\pi}\colon S/R\to S/S_{n-1}=R/I$. Por fim, note que, se $f\colon R\to S$ é epimorfismo, então $S\otimes_R S/R=0$, de onde segue que $S/R\otimes_R S/R=0$. Como $R\to R/I$ é sobrejeção, então $R/I\otimes_R R/I=R/I$. Assim, temos a sobrejeção

$$0 = S/R \otimes_R S/R \xrightarrow{\overline{\pi} \otimes \overline{\pi}} R/I \otimes R/I \neq 0,$$

o que é um absurdo! Portanto S = R, como desejávamos⁶.

Por fim, veremos que ser epimorfismo é uma propriedade local, portanto podemos sempre assumir que nosso anel é local. Antes disso, vejamos uma outra relação entre epimorfismos de produto tensorial que utilizaremos na demonstração.

Proposição 23. Seja $R \to S$ um epimorfismo de anéis e $R \to R'$ um morfismo qualquer. Então $R' \to S \otimes_R R'$ é epimorfismo de anéis.

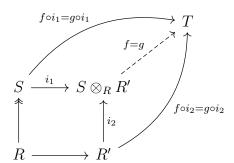
$$S \xrightarrow{i_1} S \otimes_R R'$$

$$\uparrow \qquad \qquad \downarrow^{i_2}$$

$$R \longrightarrow R'$$

Demonstração. A demonstração é um exercício de perseguir diagramas.

Suponha que $f, g: S \otimes_R R' \to T$ são morfismos de anéis tais que $f \circ i_2 = g \circ i_2$. Podemos compor com $R \to R'$ para trazer o domínio para R, e usar a comutatividade do diagrama e o fato que $R \to S$ é um epimorfismo para concluir que $f \circ i_1 = g \circ i_1$. Por fim, pela propriedade universal do produto tensorial, segue que existe um único morfismo $f = g: S \otimes_R R' \to T$ que é o produto de $f \circ i_1$ com $f \circ i_2$.



Assim, temos todas as ferramentas para provar a localidade dos epimorfismos.

Teorema 24. Ser epimorfismo é uma propriedade local, ou seja, são equivalentes:

- 1) $f: R \to S$ é epimorfismo.
- 2) $f_{\mathfrak{p}} \colon R_{\mathfrak{p}} \to S_{\mathfrak{p}}$ é epimorfismo para todo ideal primo $\mathfrak{p} \triangleleft R$.
- 3) $f_{\mathfrak{m}} \colon R_{\mathfrak{m}} \to S_{\mathfrak{m}}$ é epimorfismo para todo ideal maximal $\mathfrak{m} \triangleleft R$.

Demonstração.

1) \Longrightarrow 2) Pela proposição anterior, se $R \to S$ é epimorfismo e $R \to R_{\mathfrak{p}}$ é o mapa de localização, então $R_{\mathfrak{p}} \to S \otimes_R R_{\mathfrak{p}} = S_{\mathfrak{p}}$ é epimorfismo.

 $^{^6}$ Como $R \to S/R$ é o morfismo nulo, não podemos garantir que ele é epimorfismo e concluir que $S/R \otimes_R S/R = S/R$. Assim, precisamos usar a finitude de S e descer para o anel R.

- 2) \implies 3) Como todo ideal maximal é primo, o resultado é imediato.
- 3) \Longrightarrow 1) Sejam α , $\beta \colon S \to T$ morfismos de anéis tais que $\alpha \circ f = \beta \circ f$. Então ambas as funções induzem a mesma estrutura em T de R-módulo, e podemos ver α e β como morfismos de R-módulos. Localizando, vemos que $\alpha_{\mathfrak{m}} \circ f_{\mathfrak{m}} = \beta_{\mathfrak{m}} \circ f_{\mathfrak{m}}$, portanto $\alpha_{\mathfrak{m}} = \beta_{\mathfrak{m}}$. Como para todo R-módulo M, vale que $M \subseteq \prod_{\mathfrak{m}} M_{\mathfrak{m}}$, temos o seguinte diagrama comutativo.

$$R \xrightarrow{\alpha} S$$

$$\downarrow \qquad \qquad \downarrow$$

$$\prod_{\mathfrak{m}} R_{\mathfrak{m}} \xrightarrow{\prod_{\mathfrak{m}} \alpha_{\mathfrak{m}} = \prod_{\mathfrak{m}} \beta_{\mathfrak{m}}} \prod_{\mathfrak{m}} S_{\mathfrak{m}}$$

Assim, $\alpha = \beta$ e f é um epimorfismo.

3 Caracterização por Geradores

Primeiramente, precisamos do seguinte lema.

Lema 25. Sejam R um anel, M e N dois R-módulos, $\{m_i\}_{i\in I}$ uma família de geradores de M e $\{x_j\}_{j\in J}$ uma família de geradores de N. Para uma família $\{n_i\}_{i\in I}$ de suporte finito de elementos de N são equivalentes:

- (a) $\sum_{i \in I} m_i \otimes n_i = 0 \ em \ M \otimes_R N$.
- (b) Existe uma família $\{a_{i,j}\}_{i\in J,j\in J}$ de suporte finito de elementos de R tal que

para todo
$$i \in I$$
, $n_i = \sum_{j \in J} a_{i,j} x_j$
para todo $j \in J$, $\sum_{i \in I} a_{i,j} m_i = 0$.

É interessante pensar a configuração acima como sendo dada por uma matriz. Se $I = \{1, 2, ..., k\}$ e $J = \{1, 2, ..., \ell\}$, $\vec{x} = (x_1, ..., x_\ell)$, $\vec{n} = (n_1, ..., n_k)$ e $\vec{m} = (m_1, ..., m_k)$, então $A = [a_{i,j}]$ é uma matriz $k \times \ell$ tal que

$$\vec{n} = A\vec{x}$$
 e $\vec{0} = A^{\mathsf{T}}\vec{m}$.

Demonstração.

- $(b) \implies (a)$: Segue imediatamente da bilinearidade do produto tensorial.
- $(a) \implies (b)$: Como os m_i são geradores, existe uma sobrejeção $\varphi \colon A^I \to M$ definida por $\varphi(e_i) = m_i$. Assim, temos a sequência exata

$$\ker \varphi \to \bigoplus_{i \in I} A \to M \to 0.$$

Como o produto tensorial é exato à direita, nós conseguimos uma nova sequência exata

$$\ker \varphi \otimes_R N \to \bigoplus_{i \in I} N \to M \otimes_R N \to 0.$$

Assim, se $\sum_{i\in I} m_i \otimes n_i = 0$, então (n_i) está no núcleo do mapa acima, logo na imagem da inclusão $\ker \varphi \otimes_R N \hookrightarrow N^I$. Como $\{x_j\}$ são geradores de N, existem $(a_{i,j})_{i\in I} \in \ker \varphi$ tal que

$$\sum_{j \in J} (a_{i,j}) \otimes x_j = (n_i).$$

Olhando coordenada a coordenada e usando a correspondência natural, isso significa que

$$\sum_{i \in J} a_{i,j} x_j = n_i.$$

Além disso, como cada $(a_{i,j})_{i\in I} \in \ker \varphi$, então

$$\sum_{i \in I} a_{i,j} m_i = 0,$$

como desejávamos.

Com o resultado a seguir, podemos finalmente fazer conta com epimorfismos. Por simplicidade, usaremos a notação matricial.

Lema 26 (Lema Zigzag de Isbell). Sejam $R \to S$ um morfismo de anéis e $s \in S$. Então são equivalentes:

- (a) $s \otimes 1 = 1 \otimes s \ em \ S \otimes_R S$.
- (b) Existem $n \ge 1$, $C \in M_{1 \times n}(S)$, $D \in M_n(R)$ $e E \in M_{n \times 1}(S)$ tais que CD e DE $t \in m$ coeficientes em R e s = CDE.

Note que, para uma localização, não é difícil achar as matrizes do lema. De fato, podemos tomar $n=1,\,C=a/s,\,D=s$ e $E=s^{-1}$.

Demonstração.

 $(a) \Longrightarrow (b)$: Note que a igualdade acima significa que $s \otimes 1 + (-1) \otimes s = 0$. Assim, considere um conjunto de geradores $\{s_i\}_{i \in I}$ tal que $s_0 = 1$ e $s_1 = s$. Concluímos, pela lema anterior, que existem $a_{i,j} \in R$ tais que

$$\begin{split} s &= \sum_{j \in I} a_{0,j} s_j, \\ -1 &= \sum_{j \in I} a_{1,j} s_j, \\ 0 &= \sum_{j \in I} a_{i,j} s_j \quad \text{para todo } i \neq 0, \ 1 \text{ em } I, \\ 0 &= \sum_{i \in I} s_i a_{i,j} \quad \text{para todo } j \text{ em } I. \end{split}$$

Multiplicando a última equação por s_j e somando sobre todos os $j \in I$, ficamos com a equação

$$\sum_{i,j\in I} s_i a_{i,j} s_j = 0.$$

Isolando a 0-ésima linha, vemos que

$$s + \sum_{\substack{i \neq 0 \\ j \in I}} s_i a_{i,j} s_j = 0.$$

Como precisamos de uma matriz com mesma quantidade de linhas e colunas, precisamos tirar alguma coluna do somatório. Assim, ficamos com

$$s + \sum_{i,j \neq 0} s_i a_{i,j} s_j = a_{0,0}.$$

Por fim, note que $\sum_{i,j\neq 0} s_i a_{i,j} s_j$ está escrito como em (b) (isto é, na forma CDE) e $a_{0,0}$ também. Como os elementos que podem ser escritos dessa maneira formam uma álgebra, segue que s também pode ser escrito dessa maneira.

 $(b) \implies (a)$: Basta usar a R-bilinearidade do produto tensorial. De fato, se $s = CDE = \sum_{i,j=1}^{n} c_i d_{i,j} e_j$, então

$$s \otimes 1 = \left(\sum_{j=1}^{n} \left(\sum_{i=1}^{n} c_{i} d_{i,j}\right) e_{j}\right) \otimes 1$$

$$= \sum_{j=1}^{n} e_{j} \otimes \left(\sum_{i=1}^{n} c_{i} d_{i,j}\right)$$

$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{n} d_{i,j} e_{j}\right) \otimes c_{i}$$

$$= \sum_{i=1}^{n} 1 \otimes \left(\sum_{j=1}^{n} c_{i} d_{i,j} e_{j}\right)$$

$$= 1 \otimes s,$$

finalizando nossa demonstração⁷.

Corolário 27. A inclusão $R \to S$ é um epimorfismo de anéis se e somente se, para todo $s \in S$, existem $n \ge 1$, $C \in M_{1 \times n}(S)$, $D \in M_n(R)$ e $E \in M_{n \times 1}(S)$ tais que CD e DE têm coeficientes em R e s = CDE.

Vejamos agora duas aplicações desse nosso lema.

⁷Agora você vê por que o lema se chama *ziqzaq*?

Teorema 28. Seja $R \to S$ um epimorfismo de anéis e M, N dois S-módulos. Se $f: M \to N$ é um morfismo R-linear, então ele também é S-linear, isto é,

$$hom_{S\text{-Mod}}(M, N) = hom_{R\text{-Mod}}(M, N).$$

Assim, o funtor (esquecimento) restrição de escalar

$$U: S\operatorname{-Mod} \longrightarrow R\operatorname{-Mod}$$

é fielmente pleno (visto que é sempre fiel).

 $Primeira\ demonstração$. Novamente, usaremos o truque zigzag. Seja $m\in M$ fixado, $s\in S$ e s=CDE sua decomposição dada pelo lema. Então

$$f(sm) = f\left(\sum_{i,j} c_i d_{i,j} e_j m\right)$$

$$= f\left(\sum_j \left(\sum_i c_i d_{i,j}\right) e_j m\right) \quad \text{pois } \sum_i c_i d_{i,j} = [CD]_j \in R$$

$$= \sum_j \sum_i c_i d_{i,j} f(e_j m)$$

$$= \sum_i c_i f\left(\sum_j d_{i,j} e_j m\right) \quad \text{pois } \sum_j d_{i,j} e_j = [DE]_i \in R$$

$$= \left(\sum_{i,j} c_i d_{i,j} e_j\right) f(m)$$

$$= sf(m),$$

portanto $f \in S$ -linear.

Segunda demonstração. Note que, fixado $m \in M$, $(s, s') \mapsto s \cdot f(s'm)$ é uma transformação R-bilinear, logo induz um morfismo definido por $\varphi \colon s \otimes s' \mapsto sf(s'm)$. Assim,

$$f(sm) = \varphi(1 \otimes s) = \varphi(s \otimes 1) = s \cdot f(m),$$

de onde segue que f é S-linear.

Corolário 29. Se $R \to S$ é um epimorfismo e M, N são dois S-módulos, então

$$M \otimes_S N = M \otimes_R N$$
.

Demonstração. Primeiramente, observe que $(sm) \otimes n = m \otimes (sn)$. Com efeito, usando a notação matricial por simplicidade

$$(sm) \otimes n = (CDEm) \otimes n$$

$$= (Em) \otimes (CDn)$$

$$= (DEm) \otimes (Cn)$$

$$= m \otimes (CDEn)$$

$$= m \otimes (sn).$$

Portanto podemos induzir uma estrutura de S-módulo em $M \otimes_R N$ dada por $s(m \otimes n) := (sm) \otimes n = m \otimes (sn)$. Desse modo, a função

$$M \times N \to M \otimes_R N$$

 $(m,n) \mapsto m \otimes n$

é uma transformação S-bilinear pelo teorema acima, e existe um único morfismo S-linear

$$M \otimes_S N \to M \otimes_R N$$

 $m \otimes n \mapsto m \otimes n.$

Reciprocamente, sempre temos um morfismo de $M \otimes_R N \to M \otimes_S N$ definido dessa forma. Assim, uma função é a inversa da outra, e os dois módulos são isomorfos.

Teorema 30. Se $R \to S$ é um epimorfismo de anéis, então $|S| \le |R|$, onde |X| é a cardinalidade do conjunto X.

Demonstração. Assuma que R tem cardinalidade infinita, caso contrário R será Artiniano, e o epimorfismo será uma sobrejeção, como provaremos na próxima seção.

Note que a cada $s \in S$, podemos associar uma tripla (CD, D, DE) de matrizes com coeficientes em R. Além disso, não podemos ter dois elementos distintos com mesma tripla. De fato, se s = CDE, s' = C'D'E' e (CD, D, DE) = (C'D', D', D'E'), então

$$s = CDE = C'D'E = C'DE = C'D'E' = s'.$$

Portanto, a cardinalidade de S é limitada pelo tamanho de todas as triplas dessa forma, que tem cardinalidade $\sup_n |R|^n$. Como R é infinito, esse valor é igual a |R|, de onde segue o resultado.

4 Algumas propriedades de epimorfismos

Como epimorfismos estão intimamente ligados com produto tensorial, é natural ele se relacionar com a planaridade.

Definição 31.

- Dizemos que um morfismo $R \to S$ é **plano** se o funtor $(-) \otimes_R S$ é exato.
- Dizemos que $R \to S$ é fielmente plano quando

$$N_1 \to N_2 \to N_3$$
 é exato $\iff N_1 \otimes_R S \to N_2 \otimes_R S \to N_3 \otimes_R S$ é exato para quaisquer R -módulos N_1, N_2 e N_3 .

Lema 32. Se $R \to S$ é um epimorfismo fielmente plano, então é um isomorfismo.

Demonstração. Se $R \to S$ é epimorfismo, então $i_1: S \to S \otimes_R S$ é um isomorfismo. Por outro lado, note que i_1 é produto tensorial entre $R \to S$ e $1_S: S \to S$, portanto temos que $R \to S$ é isomorfismo.

Corolário 33. Se k é um corpo e A é uma k-álgebra tal que $k \to A$ é um epimorfismo, então A = k ou A = 0.

Primeira demonstração. Basta notar que toda k-álgebra não nula é fielmente plana (ver exemplo 5.5.9 de [8]). Assim, $k \to A$ é um isomorfismo.

Segunda demonstração. Para uma álgebra finitamente gerada, um argumento mais elementar é possível. Sabemos, em particular, que A é um k-espaço vetorial. Além disso, $\dim_k A \otimes_k A = (\dim_k A)^2$. Como o epimorfismo nos dá o isomorfismo $A \otimes_k A = A$, temos a igualdade

$$\dim_k A = (\dim_k A)^2,$$

de onde segue que $\dim_k A = 0$ ou $\dim_k A = 1$.

Teorema 34. Seja R um anel Artiniano e $R \to S$ um epimorfismo. Então $R \to S$ é uma sobrejeção.

Demonstração. Como epimorfismo é uma propriedade local, podemos assumir que R é anel local. Se \mathfrak{m} é o ideal maximal de R, então $S/\mathfrak{m}S$ é uma R/\mathfrak{m} -álgebra e temos um isomorfismo canônico

$$(S \otimes_R S) \otimes_R R/\mathfrak{m} = \frac{S}{\mathfrak{m}S} \otimes_{R/\mathfrak{m}} \frac{S}{\mathfrak{m}S}.$$

Dessa forma, o isomorfismo $S \xrightarrow{\sim} S \otimes_R S$ desce para um isomorfismo

$$\frac{S}{\mathfrak{m}S} = S \otimes_R R/\mathfrak{m} \xrightarrow{\sim} (S \otimes_R S) \otimes_R R/\mathfrak{m} = \frac{S}{\mathfrak{m}S} \otimes_{R/\mathfrak{m}} \frac{S}{\mathfrak{m}S},$$

pois tomar o tensorial preserva sobrejeção e o mapa é sempre injetivo. Assim, $R/\mathfrak{m} \to S/\mathfrak{m}S$ é um epimorfismo e como R/\mathfrak{m} é um corpo, segue que é sobrejetiva. Compondo com a projeção $R \to R/\mathfrak{m}$, vemos que $R \to S/\mathfrak{m}S$ também é sobrejetiva, ou seja, $S = R + \mathfrak{m}S$. De modo geral, isso implica que $S = R + \mathfrak{m}^nS$ para todo número natural n, mas como R é Artiniano local, $\mathfrak{m} = J(R)$ é nilpotente, logo $\mathfrak{m}^n = 0$ para algum n e S = R, como desejávamos.

Por fim, vejamos como epimorfismos se comportam com o nosso querido funtor Spec.

Teorema 35. Seja $f: R \to S$ um epimorfismo de anéis. Então:

- 1) Spec $f: \operatorname{Spec} S \to \operatorname{Spec} R \ \acute{e} \ injetiva.$
- 2) Se $\mathfrak{q} \triangleleft S$ está sobre $\mathfrak{p} \triangleleft R$, então $\kappa(\mathfrak{p}) = \kappa(\mathfrak{q})$.

Demonstração. Iremos provar as duas afirmações ao mesmo tempo. Lembre-se que os corpos residuais estão intimamente ligados com as fibras de Spec f. Com efeito, temos uma bijeção natural

$$\operatorname{Spec} S \otimes \kappa(\mathfrak{p}) = (\operatorname{Spec} f)^{-1}(\mathfrak{p})$$

(ver teorema 5.4.2 de [8]). Por outro lado, pela proposição 23, $\kappa(\mathfrak{p}) \to \kappa(\mathfrak{p}) \otimes_R S$ é um epimorfismo, e, como $\kappa(p)$ é um corpo, segue que

$$S \otimes_R \kappa(\mathfrak{p}) = 0 \text{ ou } S \otimes_R \kappa(\mathfrak{p}) = \kappa(\mathfrak{p}),$$

logo Spec f é injetiva.

Além disso, se $R \to S$ é epimorfismo, e \mathfrak{q} está sobre \mathfrak{p} , então $R_{\mathfrak{p}} \to S_{\mathfrak{q}}$ ainda é epimorfismo e podemos compor com a projeção para encontrar um epimorfismo $R \to S_{\mathfrak{q}}/\mathfrak{q}S_{\mathfrak{q}}$. Note que $\mathfrak{p}R_{\mathfrak{p}}$ está no núcleo desse morfismo, então ficamos com um epimorfismo

$$\kappa(\mathfrak{p}) = R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}} \to S_{\mathfrak{q}}/\mathfrak{q}S_{\mathfrak{q}} = \kappa(\mathfrak{q}).$$

Como é epimorfismo de corpos, é isomorfismo, logo $\kappa(\mathfrak{p}) = \kappa(\mathfrak{q})$.

Esse resultado parece generalizar o que sabemos a respeito da localização de anéis $R \to S^{-1}R$. Por outro lado, a localização nos dá algo ainda mais forte, um homeomorfismo com a sua imagem. Como veremos abaixo, isso ocorre porque localização é um funtor exato.

Como $S^{-1}M = M \otimes_R S^{-1}R$, temos que $R \to S^{-1}R$ é um epimorfismo plano. Note que isso não ocorre com quocientes, os quais nunca são planos.

Teorema 36. Se $f: R \to S$ é um epimorfismo plano e I é um ideal de S, então $I = f^{-1}(I) \cdot S$.

Demonstração. Primeiramente, observe que

$$S/I = S/I \otimes_S S = S/I \otimes_S (S \otimes_R S) = (S/I \otimes_S S) \otimes_R S = S/I \otimes_R S.$$

Além disso, se $J=f^{-1}(I)$, então temos uma injeção $R/J\to S/I$, a qual podemos tensorizar por S e ficar com o mapa injetivo

$$S/JS = R/J \otimes_R S \to S/I \otimes_R S = S/I.$$

Como esse mapa é trivialmente sobrejetivo, temos um isomorfismo, logo JS=I, como desejávamos.

Corolário 37. Se $f: R \to S$ é um epimorfismo plano, então Spec f é um homeomorfismo com a sua imagem.

Corolário 38. Se $f: R \to S$ é um epimorfismo plano e R é Noetheriano/Artiniano, então S é Noetheriano/Artiniano.

5 Outras Direções

Como vimos, a noção de epimorfismo não parece exatamente ser a melhor generalização de sobrejeção na categoria dos anéis. Por outro lado, como veremos abaixo, retração também não é a generalização correta, é uma hipótese muito restritiva.

Primeiramente, note que toda retração é sobrejetiva.

Proposição 39. Seja (C, U) uma categoria concreta $e \ f : A \to B$ uma retração. Então $Uf \ é$ sobrejetiva.

Demonstração. Como f é retração, existe um morfismo $g \colon B \to A$ tal que $f \circ g = 1_B$. Aplicando o funtor U, segue que $Uf \circ Ug = 1_{U(A)}$. Mas pela Proposição 2, isso significa que Uf é sobrejetiva.

Por outro lado, a recíproca não é verdadeira.

Exemplo 40. Seja n um inteiro qualquer e $\pi: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ a projeção. Então π é uma sobrejeção que não é uma retração.

Assim, surge a seguinte pergunta:

"Qual a noção correta de sobrejeção em CRing?"

Suponha que $f\colon R\to R'$ seja uma sobrejeção. Então, pelo Teorema do Isomorfismo, temos uma sequência exata

$$I \longrightarrow R \longrightarrow R'$$

onde $I=\ker f$. Mais ainda, se $\iota\colon I\to R$ denota a inclusão e $0\colon I\to R$ o morfismo trivial, então

$$I \stackrel{\iota}{\Longrightarrow} R \stackrel{f}{\longrightarrow} R'$$

satisfaz $f \circ \iota = f \circ 0$. Além disso, pela propriedade universal do quociente, para qualquer função $h \colon R \to S$ tal que $h \circ \iota = h \circ 0$, existe um único morfismo $g \colon R' \to S$ tal que o diagrama abaixo comuta.

$$I \xrightarrow{\iota} R \xrightarrow{f} R'$$

$$\downarrow \exists ! g$$

$$S$$

É claro, tudo acima foi feito de maneira informal (ou no fantástico mundo dos R-módulos), pois I não é um anel 8 e o morfismo 0 não é um morfismo de anéis. Por outro lado, ele nos permite definir uma generalização mais "correta" da noção de sobrejeção.

Definição 41. Um epimorfismo $f: R \to R'$ é dito **regular** se existem um anel S e morfismos paralelos $\alpha, \beta: S \to R$ tais que $f \circ \alpha = f \circ \beta$ e para todo anel T e todo morfismo $h: R \to T$ satisfazendo $h \circ \alpha = h \circ \beta$, existe um único morfismo $g: R' \to S$ tal que $h = g \circ f$, isto é, vale o seguinte diagrama.

$$S \xrightarrow{\alpha} R \xrightarrow{f} R'$$

$$\downarrow \exists ! g$$

$$T$$

Como vimos anteriormente, um morfismo pode ser épico e mônico⁹, e não ser isomorfismo, como é o caso da inclusão $\mathbb{Z} \hookrightarrow \mathbb{Q}$. Por outro lado, isso não ocorre quando adicionamos a hipótese da regularidade.

Proposição 42. Seja C uma categoria qualquer e $f: A \to B$ um monomorfismo e um epimorfismo regular. Então f \acute{e} isomorfismo.

Demonstração. Se f é um monomorfismo e um epimorfismo regular dado pelo diagrama

$$C \xrightarrow{\alpha} A \xrightarrow{f} B,$$

então $\alpha = \beta$. Logo a propriedade $h \circ \alpha = h \circ \beta$ é trivialmente satisfeita por todo morfismo que sai de A. Tomando $h = 1_A$, nós encontramos $g \colon B \to A$ tal que $g \circ f = 1_A$. Por fim, note que

$$(f \circ g) \circ f = f \circ (g \circ f) = f \circ 1_A = 1_B \circ f,$$

e como f é epimorfismo, então $f \circ g = 1_B$.

Exemplo 43. Se D é um domínio qualquer e S um conjunto multiplicativo, então a inclusão $D \hookrightarrow S^{-1}D$ não é um epimorfismo regular. De fato, já sabemos que ela é injetiva, logo monomorfismo. Assim, se fosse epimorfismo regular, também seria um isomorfismo, o que não pode ocorrer, pois não é bijeção.

A ideia do exemplo acima pode ser generalizada para mostrar que todo epimorfismo regular é sobrejetivo. De fato, se $f\colon R\to R'$ é um epimorfismo regular dado por

$$S \xrightarrow{\alpha \atop \beta} R \xrightarrow{f} R',$$

⁸Bem, ao menos se queremos que nossos anéis tenham identidade!

⁹Não confundir com morfismos cebolínicos!

então podemos descer o epimorfismo para o quociente

$$S \xrightarrow{\alpha'} R/\ker f \xrightarrow{\overline{f}} R'$$

onde $\alpha' = \pi \circ \alpha$, $\beta' = \pi \circ \beta$ e \overline{f} é o morfismo dado pela propriedade universal. Segue que \overline{f} é tanto monomorfismo quanto epimorfismo regular, logo é isomorfismo, e f é uma sobrejeção.

Assim, esperamos que a regularidade acabe com todos os problemas que havia anteriormente. Para descrever esses epimorfismos, queremos encontrar de maneira canônica um S e um par de funções cujo contradomínio é R, mas sabemos que pares de morfismos com mesmo domínio estão associados a produtos. Assim, um primeiro candidato seria tomar $S = R \times R$, $\alpha = \pi_1$ e $\beta = \pi_2$. Por outro lado, não é difícil de ver que essa construção não vai dar certo no caso geral, pois podemos não ter $f \circ \alpha = f \circ \beta$.

$$R \times R \xrightarrow{\alpha} R$$

$$\downarrow^{\beta} \qquad \qquad \downarrow^{f}$$

$$R \xrightarrow{f} R'$$

Nossa solução é forçar a comutatividade do diagrama.

Definição 44. Dados dois morfismos de anéis $f: R \to S$ e $g: R' \to S$, definimos seu **produto fibrado** (também chamado de **pullback**) como o anel

$$R \times_S R' := \{(r, r') \in R \times R' \mid f(r) = g(r')\}.$$

Assim, podemos tomar S o produto fibrado de $f: R \to R'$ com ele mesmo e α , β as projeções restritas a esse anel. Por construção, sabemos que $f \circ \alpha = f \circ \beta$.

Por fim, suponha que f é sobrejetiva. Então $R'\cong R/I$, onde $I=\ker f$. Se $g\colon R\to T$ satisfaz $g\circ\alpha=g\circ\beta$, então

$$f(r_1) = f(r_2) \implies g(r_1) = g(r_2),$$

de onde segue que $I \subseteq \ker g$. Pela propriedade universal do quociente, isso implica que existe um único $h \colon R/I \to T$ que faz o diagrama comutar, como desejávamos.

Assim, concluímos que, em CRing.

Retração \Longrightarrow Epimorfismo Regular = Sobrejeção \Longrightarrow Epimorfismo e nenhuma dessas setas é reversível.

References

- [1] Samuel Eilenberg & Saunders MacLane, General Theory of Natural Equivalences. Transactions of the American Mathematical Society Vol. 58, No. 2 (Sep., 1945).
- [2] Pierre Samuel, *Introduction*. Séminaire Samuel. Algèbre commutative, Tome 2 (1967-1968).
- [3] Peter Freyd, *Homotopy is not concrete*. The Steenrod Algebra and its Applications, Springer Lecture Notes in Mathematics Vol. 168, Springer-Verlag, 1970.
- [4] Epimorphism of Rings, The Stacks Project. Section 04VM. Último acesso em 2020-06-17.
- [5] Norbert Roby, *Diverses caractérisations des épimorphismes*. Séminaire Samuel. Algèbre commutative, Tome 2 (1967-1968).
- [6] Pierre Mazet, Caractérisation des épimorphismes par relations et générateurs. Séminaire Samuel. Algèbre commutative, Tome 2 (1967-1968).
- [7] Daniel Lazard, Épimorphismes plats. Séminaire Samuel. Algèbre commutative, Tome 2 (1967-1968).
- [8] Herivelto Borges & Eduardo Tengan, Álgebra Comutativa em quatro movimentos. IMPA, Projeto Euclides, 2015.