Lista 4

MAT $0460/5737 - 1^{\circ}$ Semestre de 2020

Exercício 1.

Seja R um anel não-nulo e seja Σ the o conjunto de todos subconjuntos multiplicativamente fechados $S \subset R$ tal que $0 \notin S$. Mostre que Σ tem o elementos máximais e que $S \in \Sigma$ é máximo se e somente se $R \setminus S$ é um ideal primo mínimo de R.

Exercício 2.

Um subconjunto multiplicativamente fechado S de um anel R é chamado saturado se

$$xy \in S \iff x \in S, y \in S.$$

Prove que:

- (1) S saturado se e somente se R \ S é uma união de ideais primos.
- (2) Se S é qualquer subconjunto multiplicativamente fechado de R, existe um menor subconjunto saturado multiplicativamente fechado \bar{S} contendo S, e que \bar{S} é o complemento em R da união de todos os ideais primos que não cruzam S. (\bar{S} é chamado de *saturação* de S.)

Se $S = 1 + \mathfrak{a}$ para um ideal \mathfrak{a} , encontre \bar{S} .

Exercício 3.

Seja A um anel, S um conjunto multiplicativo e f : $M \rightarrow N$ um R-homomorfismo. Mostre que:

- 1) Se f é injetor (respetivamente sobrejetor, bijetor) então S^{-1} f é injetor (respetivamente sobrejetor, bijetor).
- 2) Localização comuta com kernels, cokernels e imagens, i.e., temos isomorfismos:
 - (a) $Ker(S^{-1}f) \simeq S^{-1}(Ker(f))$.
 - (b) $\operatorname{Coker}(S^{-1}f) \simeq S^{-1}(\operatorname{Coker}(f)).$
 - (c) $Im(S^{-1}f) \simeq S^{-1}(Im(f))$.
- 3) Localização comuta com quocientes: Se N é um submódulo de M então

$$S^{-1}\Big(\frac{M}{N}\Big) \simeq \frac{S^{-1}(M)}{S^{-1}(N)}$$

Exercício 4.

Se N e P são submódulos de um R-módulo M, mostre que:

1)
$$S^{-1}(N+P) = S^{-1}N + S^{-1}P$$
;

2) $S^{-1}(N \cap P) = S^{-1}N \cap S^{-1}P$. Mas se $M_i \subseteq M$ para todo $i \in I$ em geral não é verdade que $S^{-1}(\cap_{i \in I} M_i) = \cap_{i \in I} S^{-1}M_i$. Pelo menos uma inclução vale?

Exercício 5.

Se M e N são R-módulos mostre que existe um isomorfismo de S⁻¹R-módulos

$$S^{-1}(M \otimes_R N) \simeq (S^{-1}M) \otimes_{S^{-1}R} (S^{-1}N).$$

Exercício 6.

Seja $f: M \to N$ um homomorfismo, prove que são equivalentes:

- 1) f é injetiva (sobrejetiva, bijetiva);
- 2) $f_{\mathfrak{p}}: M_{\mathfrak{p}} \to N_{\mathfrak{p}}$ é injetiva (sobrejetiva, bijetiva) para todo $\mathfrak{p} \in Spec R$;
- 3) $f_{\mathfrak{m}}: M_{\mathfrak{m}} \to N_{\mathfrak{m}}$ é injetiva (sobrejetiva, bijetiva) para todo $\mathfrak{m} \in SpecmR$;

Exercício 7.

Para qualquer R-módulo M, mostre que são equivalentes:

- 1) M é um R-módulo plano;
- 2) $M_{\mathfrak{p}}$: é um $R_{\mathfrak{p}}$ -módulo plano para todo $\mathfrak{p} \in \operatorname{Spec} R$;
- 3) $M_{\mathfrak{m}}$: é um $R_{\mathfrak{m}}$ -módulo plano para todo $\mathfrak{m} \in SpecmR$;

Exercício 8.

Seja I um ideal de R, mostre que $S^{-1}\sqrt{I}=\sqrt{S^{-1}I}$. Em particular, se N(R) é o nilradical de R então $N_{S^{-1}R}=S^{-1}N(R)$.

Exercício 9.

Seja M um R-módulo e I um ideal de R. Suponha que $M_{\mathfrak{m}}=0$ para todo $\mathfrak{m}\in SpecmR$ tal que $I\subseteq \mathfrak{m}$. Prove que M=IM.

Exercício 10.

Seja R um anel. Suponha que, para cada $\mathfrak{p} \in SpecR$, o anel local $R_{\mathfrak{p}}$ não tenha elementos nilpotentes não nulos. Mostre que R não tem elementos nilpotentes não nulos. Se cada $R_{\mathfrak{p}}$ for um domínio de integridade, então necessariamente R é um domínio de integridade?

Exercício 11.

Seja R um anel e seja F o R-módulo livre Rⁿ. Mostre que todo conjunto de n geradores de F é uma base de F (i.e. é LI sobre R).