Aula $[20.03 .2020]$
Equasores Diofantinas
Def. "Equasão Diofantina" é qualquer equasio com 1 on mais incognitas que assumirem apenas valores inteiros.

Exemplos:
a) $a \cdot x+b \cdot y=1, \quad x, y$-incognitas em \mathbb{Z} a, b - inteiros olados Lequas90 diofantina linear.
b) $x^{n}+y^{n}=z^{n}$

Se $n=2$, assim \circledast tem unmero infinito das solusoes; por exemplo:

$$
(3,4,5),(5,12,13),(6,8,10) \ldots
$$

Lema (Enler) Para quaisquer inteiros $n, m \in \mathbb{Z}$ $x=m^{2}-n^{2}, y=2 m n, z=m^{2}+n^{2}$ satisturem (6).

$$
\begin{aligned}
\text { Prova } x^{2} & =\left(m^{2}-n^{2}\right)^{2}=m^{4}-2 m^{2} n^{2}+n^{4} \\
y^{2} & =4 m^{2} n^{2}, \\
\Rightarrow \quad x^{2}+y^{2} & =m^{4}-2 m^{2} n^{2}+n^{4}+4 m^{2} n^{2}=n^{4}+2 n^{2} m^{2}+m^{4}=\left(n^{2}+m^{2}\right)^{2}
\end{aligned}
$$

Obs Ultima Teorema de Ferma (amunciada em 1637 e provado em 1995) afirme que ** nâo possui as solusoes positivas para $n>2$.

Equas90 $a \cdot x+b \cdot y=c$
Obs. Equasso acima pode ter varios Solusioes, por exe mplo se $a=3, b=6, c=18$

$$
\begin{aligned}
& 3 \cdot 4+6 \cdot 1=18 \\
& 3 \cdot(-6)+6 \cdot 6=18 \\
& 3 \cdot 10+6 \cdot(-2)=18
\end{aligned}
$$

Em contrasto hão há solus0̂es da equasso

$$
2 \cdot x+10 \cdot y=17
$$

Pois $2 \cdot x+10 \cdot y$ é par e 17 é impar.
Teorema0 [Criterio da existencia das solusobes]
Equasao
$a \cdot x+b \cdot y=c$ tem $\longleftrightarrow \operatorname{mdc}(a, b) \mid c$ solnsao

Prova
$[\Longrightarrow$ Sejam $a \cdot x+b \cdot y=c$ para algums $x, y \in \mathbb{Z}$ e Seja $\operatorname{mdc}(a, b)=d$.
$d|a=d| b \Rightarrow d|\underbrace{\mid I \cdot x+b \cdot y}_{c} \Rightarrow d| c$.
$[\not]$ Seja $d=\operatorname{mde}(a, b)$. Pelo T. de Bezout
existem x_{0}, y_{0} tais que:

$$
a \cdot x_{0}+b \cdot y_{0}=d
$$

Como mede $(a, b) \mid c$, assim $c=d \cdot q$
Ou seja

$$
\begin{aligned}
& \text { seja } \\
& c=d \cdot q=\left(a \cdot x_{0}+b \cdot y_{0}\right) q=a \cdot\left(x_{0} q\right)+b \cdot\left(y_{0} q\right) \\
& x=x_{0} q, y=y_{0}
\end{aligned}
$$

Assim $a \cdot x+b \cdot y=c$ tem solussio $x=x_{0} 9, y=y 09$
Teorema 1 Equasso diofantina $a \cdot x+b \cdot y=c$ tem solunao se e só se $\operatorname{mdc}(a, b) \mid c$ Se $x_{0}, y_{0} e^{e}$ qualquer solusao da equa 3s0, assin todos outros solusoes
são dados pelo:

$$
\varepsilon x^{x}=x_{0}+(b / d) \cdot t, \quad y=y_{0}-(a / d) \cdot t
$$ variando inteiro t, com $d=m d c(a, b)$.

Prova. Primeira parte já foi provado em Teorema O.
Seja x_{0}, y_{0} \& qualquer solusso da equasso particular. Se $x^{\prime} e y^{\prime}$ é uma outra Solu 亿aO, assim

$$
\begin{aligned}
& a \cdot x_{0}+b \cdot y_{0}=c=a \cdot x^{\prime}+b \cdot y^{\prime} \\
& \Rightarrow \quad a \cdot\left(x_{0}-x^{\prime}\right)=b \cdot\left(y^{\prime}-y_{0}\right)
\end{aligned}
$$

Como $d=\operatorname{mdc}(a, b)$, assim existerm $r, s \in \mathbb{Z}$ primos entre $s i$, tal que
$a=d \cdot r$, e $\quad b=d \cdot s$, portanto

$$
d \cdot r \cdot\left(x_{0}-x^{\prime}\right)=d \cdot s\left(y^{\prime}-y_{0}\right)
$$

$\Rightarrow \quad \sim \mid s \cdot\left(y^{\prime}-y_{0}\right)$, mas $\operatorname{mdc}(r, s)=1$, assim $\sim \mid\left(y^{\prime}-y_{0}\right)$, on seja $y_{0}-y^{\prime}=r \cdot t$, para algam ${ }^{t}$
Substituindo, temos

$$
\begin{aligned}
& \quad r \cdot\left(x_{0}-x^{\prime}\right)=s\left(y^{\prime}-y_{0}\right)=s \cdot(-r \cdot t) \\
& \Rightarrow \quad x^{\prime}-x_{0}=s \cdot t, \text { assim } \\
& {\left[\begin{array}{l}
x^{\prime}=x_{0}+s \cdot t=x_{0}+(b / d) \cdot t \\
y^{\prime}=y_{0}-r \cdot t=y_{0}-(a / d) \cdot t
\end{array}\right]}
\end{aligned}
$$

Facil ver que tais x^{\prime}, y^{\prime} satisfuzem equasai para todos $t \in \mathbb{Z}$, pois

$$
\begin{aligned}
& \text { todos } t \in \mathbb{Z}, \text { pois } \\
& a \cdot x^{\prime}+b \cdot y^{\prime}
\end{aligned}=a \cdot\left[x_{0}+\frac{b}{d} \cdot t\right]+b\left[y_{0}-\frac{a}{d} \cdot t\right]=\left\{\begin{array}{c}
\\
\\
=a \cdot x_{0}+\frac{a \cdot b}{d} \cdot t+b \cdot y_{0}-\frac{a b}{d} \cdot t=c
\end{array}\right.
$$

Exemplo Considere equa<40

$$
a=3 x+3 y=7 b^{11} \quad * * \quad \operatorname{mdc}(a, b)=1
$$

Para aplicar o Teorema acima basta enkcontrar uma, solus so pasticular da * Cbviamente
$2 \cdot 2+3 \cdot 1=7$, on seja
$x_{0}=2$ e $y_{0}=1$ é solu sà particular Assim todos os outros solusôes tem forma:

$$
\begin{aligned}
& x=x_{0}+(b / 0) \cdot t=2+3 / 1 \cdot t=2+3 \cdot t \\
& y=y_{0}-(a / d) \cdot t=1+(-2 / 1) \cdot t=1-2 t
\end{aligned}, t \in \mathbb{Z}
$$

Assim $x=2+3 t, \quad y=1-2 t$ todas as Solusoes de (\rightarrow^{*}.
Exemplo Considese (5) $x+\left(22 \cdot y=(18)^{\prime \prime}\right.$ $\operatorname{molc}(5,22)=1 \mid 18 \Rightarrow h a^{\prime}$ solusoes. Obviamente $x_{0}=8$ e $y_{0}=-1$ é solus40 particular, pois $5 \cdot 8+22 \cdot-1=18$. Para encontrar a solusao é possivel tmb aplicar o Algoritmo de Enclides. Vamos ver isso neste caso particalar:

$$
\begin{aligned}
22 & =5 \cdot 4+2 \\
5 & =2 \cdot 2+1 \\
2 & =1 \cdot 2+0
\end{aligned}
$$

Inver ten do temos:

$$
\begin{aligned}
1 & =5 \cdot 1-2 \cdot 2 \\
& =5 \cdot 1-(22 \cdot 1-5 \cdot 4) \cdot 2 \\
& =5 \cdot 9-22 \cdot 2
\end{aligned}
$$

Portanto $\quad 5 \cdot 9+22 \cdot(-2)=1$
Multiplicando por 18 temos
$5 \cdot(9 \cdot 18)+22 \cdot(-2.18)=18$, on dej9
$x_{0}=9.18, \quad y_{0}=-2.18, e^{\prime}$ Solustio particular
Aplieando 0 fornula eni Teorema tenos:

$$
\begin{aligned}
& x=x_{0}+\frac{b}{d} \cdot t=9 \cdot 18+\frac{22}{1} \cdot t=162+22 t \\
& y=y_{0}-\frac{a}{d} \cdot t=-2 \cdot 18-\frac{5}{1} \cdot t=-36-5 t
\end{aligned}
$$

todas as solusoes:
Exercicio (p/ casa). Encontre as solusoes da equasao:

$$
172 x+20 y=1000
$$

Exercicio 2 (pr casa)
Um menino comprou 12 frutas (masas + laranjas). Snjouiha que uma masa custa $3 R \$$ a mais. do que 1 larauja.
Quantas mazas e laranjas foram compradas?

Gabarito:
12 masas, ou
8 masas +4 laranjas, on
4 masas +8 laranjas, an
12 laranjas

