# Lista 2

## MAT0460/MAT6674 — $2^{\circ}$ semestre de 2018

Let k be a field. All modulos M are left modules.

## Exercício 1.

Let A be a  $\mathbb{F}_q$ -algebra and let S be a simple A module so that  $\text{End}_A(S) \cong \mathbb{F}_{q^d}$ . For a positive integer n, put M = nS. Show

- (a) The number of composition series of M is  $[n]_{q^d}$ !
- (b) For each  $0 \leq r \leq n$ , the number of submodules X of M with  $X \cong rS$  is  $\binom{n}{r}_{a^d}$ .

#### Exercício 2.

Let A be a  $\mathbb{F}_q$ -algebra and let M, N be finite-dimensional A-modules. Suppose that  $\text{Hom}_A(N, M) = 0$ . Show that  $F_{M,N}^{M \oplus N} = 1$ .

## Exercício 3.

Let  $Q = 1 \rightarrow 2$  be the Dynkin quiver of type  $A_2$ . Let S(1) and S(2) be the two simple modules of the path algebra.

- (i) Compute [S(1)] \* [S(2)] and [S(2)] \* [S(1)] in twisted Hall algebra.
- (ii) Show that the quantum Serre relations hold.

## Exercício 4.

Let Q be a finite quiver with no oriented cycles. Let i and j be two vertices i and j in Q such that there is no arrow between i and j, and n - 1 arrows from j to i. We want to show the quantum Serre relation

$$\sum_{t=0}^{n} (-1)^{t} {\binom{n}{r}}_{q} q^{t(t-1)/2} [S(\mathfrak{i})]^{t} * [S(\mathfrak{j})] * [S(\mathfrak{i})]^{(n-t)} = 0$$

in the twisted Hall algebra of  $\mathbb{F}_q Q$ , where S(i) denotes the simple 1- dimensional representation associated to i.

(i) Let V be an n-dimensional  $\mathbb{F}_q$ -vector space. For  $d \leq n$ , show that the number of flags  $0 \subset V_1 \subset V_2 \subset \cdots \subset V_d \subset V$  such that dim  $V_i = i$  is equal to

$$[n]_q \cdot [n-1]_q \cdot \dots \cdot [n-d+1]_q = \frac{[n]_q!}{[n-d]_q!}$$

Show that it is also the number of flags  $V \supset V_1 \supset V_2 \supset \cdots \supset V_d \supset 0$  such that  $codimV_i = i$ .

- (ii) Let R be the full subquiver of Q with vertices  $\{i, j\}$ . Let M be a representation of R such that  $\dim M_i = n$  and  $\dim M_j = 1$ . Show that there is an indecomposable representation N of R such that  $M = N \oplus S(i)^d$ .
- (iii) Let M be a representation of Q such that the coefficient of [M] in  $[S(i)]^t * [S(j)] * [S(i)]^{(n-t)}$  is non-zero. Show that  $M_k = 0$  for  $k \in \{i, j\}$  so that M can be viewed as a representation of R of the form  $N \oplus S(i)^d$  with N indecomposable. Show that  $1 \leq d$  and  $t \leq d$ .
- (iv) The coefficient of [M] in  $[S(i)]^t * [S(j)] * [S(i)]^{(n-t)}$  counts the number of composition series  $M = M_0 \supset M_1 \supset \cdots \supset M_{n+1} = 0$  such that  $M_{s-1}/M_s \cong S(i)$  for  $s \neq t+1$  and  $M_t/M_{t+1} \cong S(j)$ .
- (v) Deduce from (i) and (iv) that the coefficient of [M] in  $[S(i)]^t * [S(j)] * [S(i)]^{(n-1)}$  equals

$$\frac{[d]_q![n-t]_q!}{[d-t]q!}.$$

(vi) Conclude.

## Exercício 5.

Describe Coxeter matrix (the one that corresponds for Coxeter element) for all Euclidian quivers canonically orientated (orientation is toward unique root vertex).

#### Exercício 6.

Let  $Q = \widetilde{D}_4$  canonically orientated. Describe possible defects of indecomposable kQ-modules. Descibe all possible dimensions of indecomposable modules. Do the same for  $Q = \widetilde{E}_6$  canonically orientated.

## Exercício 7.

Let  $Q = \widetilde{D}_4$  canonically orientated. Describe preprojective modules.

## Exercício 8.

Describe simple regular representations of period 1 for  $Q = \tilde{E}_6$  canonically orientated.

#### Exercício 9.

Let A, B be finite-dimensional algebras and F :  $mod(A) \rightarrow mod(B)$  be immersion functor. Show that F preserves indecomposability and reflects isomorphisms.

## Exercício 10.

Let A be a finite-dimensional algebra. Show that the canonical projection functor  $modA \rightarrow modA/J(A)$  preserves indecomposability and reflects isomorphisms.

## Exercício 11.

Show that there exists a functor  $F : repQ^{(2)} \to mod(k[x, y])$  which preserves indecomposability and reflects isomorphisms. (*Hint:* Define ideal  $I = \langle \alpha_1 \alpha_2 - \alpha_2 \alpha_1 \rangle$  of the infinite dimensional algebra  $kQ^{(2)}$ . For a representation V of  $Q^{(2)}$  define representation F(V) of  $Q^{(2)}$  by setting  $F(V)_0 = V_0^3$  and

$$F(V)_{\alpha_{i}} = \begin{bmatrix} 0 & id_{V_{0}} & V_{\alpha_{i}} \\ 0 & 0 & id_{V_{0}} \\ 0 & 0 & 0 \end{bmatrix}$$

Show that F(V) satisfies the ideal I and define F on morphisms to get a functor. Show that the functor satisfies the required properties).

## Exercício 12.

Show (constructing embedding of  $mod(k\langle x, y \rangle)$  into mod(kQ)) that kQ is wild if Q is given by



#### Exercício 13.

Show (constructing embedding of  $mod(k\langle x, y \rangle)$  into mod(kQ)) that kQ is wild if Q is given by



## Exercício 14.

Show (constructing embedding of  $mod(k\langle x, y \rangle)$  into mod(kQ)) that kQ is wild if Q is given by

