Lista 3

Equações Diofantinas

- 1. Resolva as seguintes equações diofantinas:
 - a) 3x + 5y = 47,
 - b) 47x + 29y = 99.
- 2. Determine todas as soluções inteiros das equações abaixo que verificam $x \ge 0$, e $y \ge 0$.
 - a) 54x + 21y = 906,
 - b) 30x + 17y = 300.
- 3. Seja p um primo. Prove que a equação $x^4 + 4y^4 = p$ tem solução inteira se e só se p = 5. Nesse caso, determine suas soluções.
- 4. Determine todos os múltiplos positivos de 11 e 9 cuja some seja 270.
- 5. Determine todos os inteiros positivos menores de que 1000 que têm restos 9 e 15 quando divididos respectivamente por 37 e 52.
- 6. Somando-se um certo múltiplo 6x de 6 com certo múltiplo 9x de 9, obtém-se 126. Trocando x por y e y por x, a nova some é 114. Determine x e y.
- 7. Se x e y são inteiros tais que 2x + 3y é multiplo de 17, prove que então 9x + 5y é também múltiplo de 17.
- 8. Certo senhor, ao descontar um cheque, recebeu sem notar o número de reais trocado pelo número de centavos e vice-versa. Em seguida, gastou 68 centavos e observou, supreso, que tinha o dobro da quinta original do cheque. Determine o menor valor possível para o cheque.
- 9. Um pescador tenta pescar um cardume jogando diversas redes na água. Se cair exatamente em peixe em cada rede, salvam-se ainda n peixes. Se cairem n peixes em cada rede, sobram n redes vazias. Quantas são redes? Quantas são os peixes?
- 10. Uma pessoa tem R\$ 13,60 para gastar em cervejas e refrigerantes. Se cada cerveja custa R\$ 1,50 e cada refrigerante custa R\$ 0,70 quantas cervejas e quantos refrigerantes ela poderá comprar?
- 11. Uma certa tinta pode ser comprada em galões de 18l ou em latas de 3l. Precisa-se de 250l dessa tinta. De quantas maneiras se pode comprar latas e galões para que a quantidade de sobra seja minima?
- 12. Um hospital deseja adquirir medicamentos A e B de modo a distribuí-los entre alguns pacientes. Cada paciente receberá 20 vidros de cada medicamento devendo ainda sobrar 84 vidros de cada medicamento. Sabendo que A é vendido em caixas de 132 vidros e B, em caixas de 242 vidros, determine:
 - a) o número mínimo de caixas de cada medicamento que o hospital deve comprar;
 - b) o número de pacientes que receberão os medicamentos.

Números primos e Teorema Fundamental da Aritmética

13. Encontre todos os inteiros positivos a tais que

$$\begin{cases} mmc(120, a) = 360 \\ mdc(450, a) = 90 \end{cases}$$

14. Resolva em ℤ o sistema abaixo

$$\begin{cases} \operatorname{mmc}(x,y) &= 420 \\ \operatorname{mdc}(x,y) &= 20 \end{cases}$$

- 15. Seja n um inteiro positivo. Mostre que se n divide (n-1)!+1, então n é primo. (*Dica:* Tome um divisor primo p de n e mostre que $p \ge n$.)
- 16. Seja $a, b \in \mathbb{Z}$ tais que mdc(a, b) = p, um inteiro primo. O que se pode dizer sobre $mdc(a^2, b)$ e $mdc(a^2, b^2)$?
- 17. Mostrar que três inteiros positivos impares consecutivos não podem ser todos primos, com exceção de 3,5, e 7.
- 18. Sejam p, q primos tais que $p \ge q \ge 5$. Provar que $24|p^2 q^2$.
- 19. Seja n um inteiro positivo. Provar que
 - a) Se $2^n 1$ é primo entáo n é primo;
 - b) $n^4 + 4$ é composto, para todo n > 1;
 - c) todo inteiro positivo da forma 3n + 2 tem um fator primo dessa forma;
 - d) Se $n^3 1$ é primo, entáo n = 2;
 - e) Se n é primo e 3n + 1 é um quadrado, então n = 5.
- 20. a) Determinar a maior potência de 14 que divide 100!.
 - b) Determinar todos os primos que dividem 50!;
- 21. Mostre que existem infinitos primos da forma 3n+2, com $n \in \mathbb{Z}$.
- 22. Mostre que se $2^m + 1$ é primos para algum m > 0 então m é uma potência de 2.
- 23. Seja $p_1=2, p_2=3, p_3=5, \ldots, p_n, \ldots$ a sequência dos números primos positivos em sua ordem natural.
 - a) Mostre que $p_{n+1} \leq p_1 \cdot p_2 \cdot \cdots \cdot p_n + 1$;
 - b) Mostre que $p_n \leq 2^{2^{n-1}}$, para todo $n \geq 1$. (Dica: use indução.)
 - c) Conclua que existem pelo menos n+1 primos menores 2^{2^n} .
- 24. Prove que em inteiro é divisivel por 3 se, e somente se, a some de seus digitos for divisível por 3. Prove que em inteiro é divisivel por 9 se, e somente se, a some de seus digitos for divisível por 9.
- 25. Prove que em inteiro é divisivel por 11 se, e somente se, a diferença entre a soma dos seus digitos nas posições impares e a soma dos seus digitos nas posições pares for divisível por 11.

2

Congruências

- 26. a) Encontre $x \in \mathbb{Z}$, $0 \le x \le 6$, tal que $11 \cdot 18 \cdot 2322 \cdot 13 \cdot 19 \equiv x \pmod{7}$
 - b) Encontre $x \in \mathbb{Z}$, $0 \le x \le 3$, tal que $(1+2+2^2+\cdots+2^{19}) \equiv x \pmod{4}$
- 27. Sejam a, b inteiros e r, s inteiros positivos. Prove que

$$a \equiv b \pmod{r} \Leftrightarrow as \equiv bs \pmod{rs}$$

- 28. Sejam a, b inteiros e d, m inteiros positivos. Mostre que se $a \equiv b \pmod{m}$ e d divide m assim $a \equiv b \pmod{d}$
- 29. Sejam a, b inteiros e r, s inteiros positivos. Mostre que se $a \equiv b \pmod{r}$ e $a \equiv b \pmod{s}$ então $a \equiv b \pmod{mmc(r, s)}$
- 30. Sejam a, b inteiros e r, m inteiros positivos. Mostre que se $ra \equiv rb \pmod{m}$ e $\mathrm{mdc}(r, m) = 1$ então $a \equiv b \pmod{m}$
- 31. Mostre que se $x \equiv y \pmod{m}$ assim mdc(x, m) = mdc(y, m).
- 32. Mostre que $6 \cdot 4^m \equiv 6 \pmod{9}$, para todo inteiro $m \ge 0$
- 33. Mostre que $5^n + 6^n \equiv 0 \pmod{11}$ para todo inteiro positivo impar m.
- 34. Seja a um inteiro. Mostre as afirmações abaixo.
 - a) $a^2 \equiv 0, 1 \text{ ou } 8 \pmod{8}$.
 - b) Se a é cubo, então a^2 é congruente a 0, 1, 9 ou 28 modulo 36
 - c) Se $2 \nmid a$ e $3 \nmid a$ então $a^2 \equiv 1 \pmod{24}$.
- 35. Prove que $n^7 \equiv n \pmod{42}$ para todo $n \in \mathbb{Z}$.
- 36. Determine o resto das divições de:
 - a) 2^{50} por 7;
 - b) 41^{65} por 7;
 - c) $(1^5 + 2^5 + \dots + 100^5)$ por 4;
 - d) 57383⁵ por 19.
- 37. Use congruências para vereficar que:
 - a) $89 \mid 2^{44} 1$;
 - b) $23 \mid 2^{11} 1$.
- 38. Resolva as seguintes congruências lineares:
 - a) $25x \equiv 15 \pmod{29}$;
 - b) $140x \equiv 133 \pmod{301}$.
- 39. Usando congruências, resolva as seguintes equações diofantinas:
 - a) 4x + 51y = 9;
 - b) 12x + 25y = 331.
- 40. Deternime todas as soluções das congruências abaixo:
 - a) $3x 7y \equiv 11 \pmod{13}$;
 - b) $17x \equiv 3 \pmod{2 \cdot 3 \cdot 5 \cdot 7}$.