Lista 7. Gabaritos

Autovalores e Autovetores.

- 1. Temos $p_{\lambda}(T)=\lambda^2-2$, assim $\lambda_1=\sqrt{2},\lambda_2=-\sqrt{2}$ são autovalores e $u_1=(1+\sqrt{2},1)$ e $u_2=(1-\sqrt{2},1)$ são autovetores correspondentes.
- 2. Neste caso é facil ver que os polinomios característicos são $p_{\lambda}(A) = p_{\lambda}(B) = (\lambda a_{11}) \dots (\lambda a_{nn})$.
- 3. Se λ é autovalor do T assim existe um vetor não-nulo u tal que $T(u) = \lambda u$. Assim teremos

$$T^{n}(u) = T^{n-1}(T(u)) = \lambda T^{n-1}(u) = \lambda^{2} T^{n-2}(u) = \dots = \lambda^{n} u.$$

Assim λ^n é autovalor de T^n com autovetor correspondente u.

4. Temos que em base canônica a matrix da T tem forma

$$(T)_{can} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}^{-1}$$
$$\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}^{-1} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

Assim temos

$$(T^{10})_{can}(5,1) = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{2}^{10} & 0 \\ 0 & 2^{10} \end{pmatrix} \frac{1}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2^9} + 3 \cdot 2^{10} \\ -\frac{1}{2^9} + 3 \cdot 2^{10} \end{pmatrix}.$$

- 5. Se λ é autovalor do T assim existe um vetor coluna não-nulo u tal que $A(u) = \lambda u$. Assim $A^{-1}(\lambda u) = u$, ou equivalente $A^{-1}(u) = \lambda^{-1}u$ e λ^{-1} é autovalor da A.
- 6. a) $\lambda_1 = 3$, $\lambda_2 = 2$, $\lambda_3 = -1$. E $u_1 = (5, 1, 1)$, $u_2 = (1, 0, 0)$, $u_3 = (-1, -3, 3)$.

b)
$$\lambda_1 = 5$$
, $\lambda_2 = 0$, $\lambda_3 = 0$. E $u_1 = (5, -1, 2)$, $u_2 = (1, 0, 0)$, $u_3 = (0, 1, 0)$.

Diagonalização.

- 1. a) Não, por exemplo $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$
 - b) Não, por exemplo $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 - c) Sim:
 - d) Sim, pois existe vetor não nulo u tal que $A(u) = 0 \cdot u$;
 - e) Sim, se existir $S \in M_n(\mathbb{R})$ tal que $A = SBS^{-1}$ assim temos que $A^k = SB^kS^{-1}$.
- 2. A matriz de T em base canônica tem forma

$$(T)_{can} = \left(\begin{array}{ccc} 1 & -2 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & -1 \end{array}\right).$$

Temos que $\lambda_1 = 3$, $\lambda_2 = -1$, $\lambda_3 = -1$ são autovalores de A e $u_1 = (-1, 1, 0)$, $u_2 = (0, 0, 1)$, $u_3 = (1, 1, 0)$ são autovetores correspondentes. T tem três autovalores $\lambda = 0, 2, -2$ e multiplicidades algebricas deles são iguais a multiplicidades geometricas assim T é diagonalizavel.

- 3. $p_{\lambda}(A) = (1 \lambda)^2$. Assim temos $\lambda = 1$ é autovalor com multiplicidade algebrica 2. Agora facil ver que seu multiplicidade geometrica, isto é dim V_1 , é 2 se e só se $c \neq 0$.
- 4. a) Se $A^2 = A$ assim $A^2(u) = A(u)$ e se λ é autovalor temos que $\lambda^2 = \lambda$ ou $\lambda = 0, 1$.
 - b) Se A é diagonalizavel e todos autovalores são 0 ou 1 assim existe uma matriz inversivel S tal que $A=S\cdot \mathrm{diag}\{0,\ldots,0,1\ldots,1\}\cdot S^{-1}$. Portanto $A^2=S\cdot \mathrm{diag}\{0^2,\ldots,0^2,1^2\ldots,1^2\}\cdot S^{-1}=A$
- 5. a) Se $A^{-1} = A$ e λ é autovalor de A assim $\lambda = \frac{1}{\lambda}$ (veja Ex.5 nesta lista) assim $\lambda = \pm 1$.
- 6. Temos $p_{\lambda}(A) = (a \lambda)(c \lambda)(1 \lambda)$. Assim A tem autovalores $\lambda_1 = 1, \lambda_2 = a, \lambda_3 = c$. Em caso $a \neq c \neq 1$ claro que A é diagonalizavel para qualquer b.

Em caso a=c=1 temos que A não é diagonalizavel para qualquer b, pois multiplicação algebrica de $\lambda=1$ é 3 mas $\dim V_1=2$.

Em caso $a=1, c\neq 1$ temos que A não é diagonalizavel para qualquer b, pois multiplicação algebrica de $\lambda=1$ é 2 e $\dim V_1=1$ para qualquer b.

Em caso $a \neq 1, c = 1$ temos que A é diagonalizavel para qualquer b, pois multiplicação algebrica de $\lambda = 1$ é 2 e $\dim V_1 = 2$ para qualquer b.

- 7. a) Não, pois $p_T(\lambda) = \lambda^4 1$ possui os raizes complexas.
 - b) Não, pois multiplicidade algebrica de $\lambda = 0$ é 2 e multiplicidade geometrica de $\lambda = 0$ é 3.
 - c) Sim. T tem três autovalores $\lambda=0,2,-2$ e multiplicidades algebricas deles são iguais a multiplicidades geometricas.
- 8. Temos que $\lambda_1=2,\ \lambda_2=1,\ \lambda_3=0$ são autovalores de A e $u_1=(1,0,1),\ u_2=(1,-1,1),\ u_3=(-1,1,0)$ são autovetores correspondentes. Assim A escreva-se como $A=S\cdot \mathrm{diag}\{2,1,0\}\cdot S^{-1}$ com

$$S = \begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Portanto temos

$$A^{20} = \begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2^{20} & 0 & 0 \\ 0 & 1^{20} & 0 \\ 0 & 0 & 0^{20} \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 0 \\ -1 & -1 & 1 \\ -1 & 0 & 1 \end{pmatrix}$$

9. a). Autovalores $\lambda_1 = 5$, $\lambda_2 = 3$, $\lambda_3 = 2$, autovetores correspondentes $u_1 = (0, 1, 0)$, $u_2 = (-5, 0, 4)$, $u_3 = (-1, 0, 1)$. Assim A escreva-se como $A = S \cdot \text{diag}\{-5, 0, 4\} \cdot S^{-1}$ com

$$S = \begin{pmatrix} 0 & -5 & -1 \\ 1 & 0 & 0 \\ 0 & 4 & 1 \end{pmatrix}$$

b). Autovalores $\lambda_1 = 3$, $\lambda_2 = 3$, $\lambda_3 = 1$, autovetores correspondentes $u_1 = (4, 0, 1)$, $u_2 = (-1, 1, 0)$, $u_3 = (2, 1, 1)$. Assim A escreva-se como $A = S \cdot \text{diag}\{-5, 0, 4\} \cdot S^{-1}$ com

$$S = \begin{pmatrix} 4 & -1 & 2 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

2

10. Autovalores $\lambda_1 = 3$, $\lambda_2 = -2$, $\lambda_3 = 2$, autovetores correspondentes $u_1 = (2, 1, 0)$, $u_2 = (-1, 2, 0)$, $u_3 = (0, 0, 1)$. Os autovetores u_1, u_2, u_3 formam uma base ortogonal em \mathbb{R}^3 , nesta base a matrix da $A \notin (A)_B = \text{diag}\{3, -2, 2\}$. Tomando matriz M como

$$M = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} & 0\\ \frac{-1}{\sqrt{5}} & \frac{2}{\sqrt{5}} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Temos que $M^{-1} = M^t$ e $M^t A M = \text{diag}\{3, -2, 2\}$.

- 11. a). Autovalores $\lambda_1 = 4(1+\sqrt{3}), \ \lambda_2 = 4(1-\sqrt{3}), \ \lambda_3 = -2$, autovetores correspondentes $u_1 = (4(1+\sqrt{3}), 4-4\sqrt{3}, -2), \ u_2 = (4(1+\sqrt{3}), -4(\sqrt{3}-1), -2), \ u_3 = (-1,0,3). \ u_1, u_2, u_3$ são l.i. assim eles formam uma base em \mathbb{R}^3 . Mas eles não são ortogonais.
- 12. a) Sejam $v_n = \begin{pmatrix} L_n \\ L_{n+1} \end{pmatrix}$, $n = 0, \ldots, A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$. Assim temos que $v_n = A^n \cdot v_0$. Por outra lado A pode ser escrito como

$$A = \begin{pmatrix} \varphi_2 & -\varphi_1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \varphi_1 & 0 \\ 0 & \varphi_2 \end{pmatrix} \begin{pmatrix} \varphi_2 & -\varphi_1 \\ 1 & 1 \end{pmatrix}^{-1}$$

com $\varphi_1 = \frac{1+\sqrt{5}}{2}, \varphi_2 = \frac{1-\sqrt{5}}{2}$. Assim

$$A^{n} = \begin{pmatrix} -\varphi_{2} & -\varphi_{1} \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \varphi_{1}^{n} & 0 \\ 0 & \varphi_{2}^{n} \end{pmatrix} \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & \varphi_{1} \\ -1 & -\varphi_{2} \end{pmatrix}$$

Temos

$$v_n = \frac{1}{\sqrt{5}} \begin{pmatrix} -\varphi_2 & -\varphi_1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \varphi_1^n & 0 \\ 0 & \varphi_2^n \end{pmatrix} \begin{pmatrix} 1 & \varphi_1 \\ -1 & -\varphi_2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} \varphi_1^n + \varphi_2^n \\ \varphi_1^{n+1} + \varphi_2^{n+1} \end{pmatrix}$$

Portando $L_n = \left(\frac{1+\sqrt{5}}{2}\right)^n + \left(\frac{1-\sqrt{5}}{2}\right)^n$.

b) Faz na mesma maneira considerando $v_n = \begin{pmatrix} J_n \\ J_{n+1} \end{pmatrix}$, e $A = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}$.