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Palavras do Editor

Como muitos já sabem, nesse ano comemora-se
o 250o aniversário da publicação póstuma do en-
saio de Thomas Bayes sobre o problema da prob-
abilidade inversa no Philosophical Transactions of
the Royal Society of London. E nós, como uma so-
ciedade Bayesiana, não podeŕıamos deixar esse acon-
tecimento passar despercebido. Entretanto, não vou
escrever muito sobre esse fato. Não farei isso pois
tive o privilégio de receber beĺıssimas contribuições
sobre esse tema, apresentadas a seguir.

A primeira delas foi de um ilustre pesquisador: o
professor “Jay” Kadane, da Carnegie-Mellon Uni-
versity, um dos convidados da última edição do
EBEB. O professor Kadane é um dos grandes de-
fensores da abordagem bayesiana subjetivista, tendo
publicado mais de 270 artigos e contribúıdo com
as mais diversas áres do conhecimento, como direi-
to, econometria, medicina, ciência poĺıtica, socio-
logia, ciência da computação, arqueologia, ciências
ambientais, entre outras. Em seu artigo, ele lem-
bra as principais proposições da publicação do Rev.
Thomas Bayes em uma linguagem mais atual e re-
sume um pouco da história decorrente.

Outra beĺıssima contribuição dessa edição é a
da jornalista e escritora Sharon Bertsch McGrayne,
autora de diversos livros relacionados a descober-
tas cient́ıficas. Dentre outros, ela publicou os livros
The Theory That Would Not Die: How Bayes’ Rule
Cracked the Enigma Code, Hunted Down Russian
Submarines, and Emerged Triumphant from Two
Centuries of Controversy, lançado pela Yale Univer-
sity Press em 2011, e Nobel Prize Women in Sci-
ence: Their Lives, Struggles and Momentous Dis-

coveries, pela Joseph Henry Press em 2001. Esse
último ganhou uma versão em português pela Marco
Zero Editora. Em seu texto, ela fala um pouco das
implicações do Teorema de Bayes nos dias atuais.

A terceira mas não menos importante con-
tribuição é do professor Frank Lad (University of
Canterbury, Nova Zelândia), que também esteve pre-
sente no último EBEB. Frank Lad também é um en-
tusiasta da abordagem bayesiana subjetivista, sendo
fortemente influenciado pelos trabalhos de Bruno de
Finetti. No artigo, Frank faz uma cŕıtica as abor-
dagens utilizadas no estudo de causalidade baseadas
em redes bayesianas, apresenta uma aplicação em
genética e propõe uma solução.

Como de costume, a seção Eventos no final do
boletim apresenta uma lista de encontros cient́ıficos
que ocorrerão no próximo semestre. Além dessa, no
ińıcio do boletim teremos uma seção especial com
as primeiras not́ıcias do próximo EBEB, que ocor-
rerá no ińıcio do próximo ano. Essa edição conta
também com um relato da professora Cibele Maria
Russo Noveli (ICMC–USP) sobre o evento BAYES
2013, ocorrido em maio na Holanda.

Aproveito para agradecer a todos que me aju-
daram com essa edição. Além das pessoas que con-
tribúıram com seus textos, agradeço também aos
professores Carlos A. B. Pereira, Sérgio Wechsler
(IME–USP), Adriano Polpo e Márcio Diniz (DEs–
UFSCar) que revisaram os manuscritos e auxiliaram
na comunicação com alguns pesquisadores interna-
cionais.

Espero que, assim como eu, divirtam-se com essa
edição. Boa leitura!
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EBEB 2014 - XII Encontro Brasileiro de Estat́ıstica Bayesiana
Atibaia – Brasil, 10 a 14 de março de 2014. (www.ime.usp.br/ isbra/ebeb/)

Caros leitores, é com satisfação que fazemos o
anúncio do EBEB 2014.

O evento será realizado no Hotel Fazenda Hı́pica
Atibaia (www.hotelfazendaatibaia.com.br), no inte-
rior do estado de São Paulo. O local é muito
agradável e similar ao do EBEB 2012.

O evento ocorrerá de 10 a 14 de março de 2014,
na semana após ao carnaval. Lembrando que 2014

é uma ano de grandes evento no Brasil, ocorrendo
primeiro o EBEB e posteriormente a Copa do Mundo
de Futebol!

Estamos trabalhando bastante para termos um
grande evento e em breve divulgaremos mais detal-
hes. Todas as informações sobre o evento serão di-
vulgados em sua página web.

Nos vemos em Atibaia!

BAYES 2013

Cibele Maria Russo Noveli
(ICMC - USP)

De 21 a 23 de maio de 2013 aconteceu na Erasmus
University Rotterdam, Holanda, o workshop BAYES
2013. A quarta edição do evento reuniu cerca de
80 participantes, com o objetivo de apresentar estu-
dos bayesianos aplicados no ambiente cĺınico e não
cĺınico e introduzir aos participantes os primeiros
passos de histórias de sucesso utilizando o pensa-
mento bayesiano. A ideia inicial do encontro é
propagar o pensamento e as práticas bayesianas na
indústria farmacêutica e, de forma mais importante,
enfatizar as vantagens da modelagem bayesiana em
áreas de ciência e negócios, bem como apresen-
tar técnicas alternativas aos estat́ısticos dentro do
mundo (bio)farmacêutico.

Aplicações práticas do pensamento bayesiano na
investigação farmacêutica vinham sendo introduzi-
das lentamente, devido aos desafios computacionais,
carência de educação estat́ıstica bayesiana na comu-
nidade bioestat́ıstica e relutância das autoridades
reguladoras sobre a utilização da abordagem. No
entanto, desenvolvimentos recentes no cenário pré-
cĺınico e baseado no paradigma conhecido como
“model based drug development” indicam o crescente
interesse e valor agregado de aplicações bayesianas.

O comitê organizador foi composto por Em-

manuel Lesaffre (Erasmus Medical Center Rot-
terdam, Holanda) e Eline van Gent (Erasmus
Medical Center Rotterdam, Holanda) em conjunto
com a Adolphe Quetelet Society (IBS-Belgian Re-
gion). O comitê cient́ıfico foi composto por Em-
manuel Lesaffre, Brad Carlin (University of Min-
nesota, EUA), Gianluca Baio (University College
London, Reino Unido), Julien Cornebise (Deep-
Mind Technologies, Reino Unido), Muriel Boul-
ton (Grünenthal, Alemanha), Christel Faes (Has-
selt University, Bélgica), Bruno Boulanger (Arlenda,
Bélgica), Tom Jacobs (Janssen, Bélgica), Astrid
Jullion (Arlenda, Bélgica), Philippe Lambert (Uni-
versity of Liège, Bélgica) e Sophie Vanbelle (Uni-
versity of Maastrich, Holanda). O evento contou
com os palestrantes convidados Emmanuel Lesaf-
fre, Gianluca Baio, Pierre Lebrun (University of
Liège, Bélgica), Veronika Rockova (Erasmus Medical
Center Rotterdam, Holanda), Nicky Best (Univer-
sity College London, Reino Unido), Alexina Mason
(University College London, Reino Unido) e David
Ohlssen (Novartis, EUA) e ainda com 20 comu-
nicações orais. Como programação adicional foi ofe-
recido o curso “Bayesian statistics” por Emmanuel
Lesaffre, baseado em seu livro publicado recente-
mente em coautoria com A. B. Lawson (Lesaffre, E.
and Lawson, A. B. Bayesian Biostatistics. Wiley,
2012).

A quinta edição do BAYES está prevista para
acontecer em 2014 em Londres, Reino Unido.

Bayes at 250
Joseph B. (“Jay”) Kadane Department of Statistics, Carnegie-Mellon University, Pittsburgh, EUA

kadane@stat.cmu.edu

In 1763, Rev. Richard Price, a friend of Rev. Thomas Bayes, submitted Bayes’ posthumous paper “An Essay
Toward Solving a Problem in the Doctrine of Chances” to the Royal Society. How much of this essay is due to
Bayes and how much to Price is still debated. Certainly Price was a formidable figure. Bayes’ Theorem, the
germ of which can be found in the paper, is now understood to be a simple, almost trivial application of the
definition of conditional probability.

Bayes’ paper is hard for modern readers to appreciate. For example, where we writeintegrals, Bayes writes
about areas under curves. However, in modern notation, the heart of the matter is his propositions 8, 9 and
10, as follows:

http://www.ime.usp.br/~isbra/ebeb/
http://www.hotelfazendaatibaia.com.br
kadane@stat.cmu.edu
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Proposition 8 Suppose x has a uniform distribution and suppose n independent Bernouilli trials with proba-
bility x of success. Then, for fixed 0 ≤ x1 < x < x2, P{x1 < x < x2 and p successes in n trials} =

(1)

∫ x2

x1

(
n

p

)
xp(1− x)n−pdx.

Proposition 9 Let 0 ≤ x1 < x2 ≤ 1. Then

P{x1 < x < x2|p successes in n trials} =∫ x2

x1

(
n
p

)
xp(1− x)n−pdx

/∫ 1

0

(
n
p

)
xp(1− x)n−pdx.(2)

Proposition 10: Let x be the probability of an event R. Then {x1 < x < x2|R has occurred p times in n
trials} has probability given in (2).

Bayes (I conjecture) had two sources of discomfort about his results. Mathematically, the incomplete beta
function was not well understood at the time, and he explored some ways of approximating it. Philosophically,
he seems to have been concerned about the assumption of a uniform prior, and added a further “scholium” to
justify it. This assumption, later called “Bayes’ Postulate,” has been the source of continual controversy since.
(In philosophy, the same idea is called “the principle of insufficient reason.”) The notion, roughly, is that if I
“know nothing,” my prior should be uniform.

A simple example can illustrate why this is problematic. Suppose I flip a coin twice, and “know nothing”
about its probability of heads. I could code the events in the usual way, {(HH), (HT ), (TH), (TT )} as four
events, which by the principle I should regard as equally likely, ı.e. probability 1/4. But suppose instead I code
the events according to the number of heads: 0, 1, and 2, and take them to be equally likely. What makes
the former correct and the latter incorrect? What principle underlies the choice of a coding of the outcomes to
which I am supposed to have a uniform distribution?

Apparently independently, Laplace used Bayes’ Theorem in conjunction with flat priors, a usage that became
popular in the 19th century. Called “inverse probability” because it permits the reversal of the event being
conditioned upon with the event whose probability is stated, this became the dominant method in statistical
inference.

In the early 20th century, Fisher, and later Neyman and Pearson, laid the foundation for sampling theory,
an alternative approach that purported to be objective. Thus Fisher, for example, recognized Bayes’ Theorem
as valid, but would use it only when the prior distribution had an empirical basis.

The work of Jeffreys is an attempt to use the sampling distribution itself as a source of enlightenment about
what prior “should” be used. In this he is followed by various proposals of reference priors, etc., and the current
vogue of “objective” rationale for the use of particular prior distributions.

The modern subjectivist Bayesian movement, associated with deFinetti, Savage, Lindley and DeGroot, takes
probability to be a statement of personal belief. In this view there is no single prior distribution a statistician is
obliged to use, just as there is no single sampling distribution or likelihood one must use on a particular applied
problem.

So Happy Birthday to Bayes’ paper! We are all beneficiaries of Bayes, and also of Price, Laplace, Fisher,
Neyman, Pearson, Jeffreys, deFinetti, Savage, DeGroot and Lindley. What we learn from each of them, and
how we shape our intellectual inheritance into a useable and practical viewpoint to address applied problems,
is an issue worthy of our continued attention.

Some references discussing Bayes’ paper:

Dale, A.I. (1991). A History of Inverse Probability, from Thomas Bayes to Karl Pearson, Springer-Verlag,
New York.

Bayes, T. (1958). “An essay towards solving a problem in the doctrine of chances,” Biometrika, 45, 293–315,
(with a biographical note by G.A. Barnard).

Pearson, K. (1921–1933, 1978). The History of Statistics in the 17th and 18th Centuries against the Changing
Background of Intellectual, Scientific and Religious Thought, (edited by E.S. Pearson), MacMillan Publishing
Co., New York.



BOLETIM ISBrA. Volume 6, Número 1, Junho 2013. 4

Bayesian Revolution
Sharon Bertsch McGrayne

www.McGrayne.com

This year, we are celebrating the
250th anniversary of the day when
Thomas Bayes’ paper about his the-
ory was read aloud to members of
the Royal Society in London.
The anniversary celebration is par-
ticularly exciting because for much
of the 20th century, Bayes was too
déclassé to be mentioned, much less
lauded.
In the excitement over giving the
Rev. Bayes’ his due, however, I
hope we can remember to mention
his friend Richard Price. Because
without Price, we wouldn’t be cele-
brating Bayes’ discovery at all.
The Rev. Bayes, a wealthy min-
ister and amateur mathematician
in early 18th century England, filed
his discovery away in a notebook
and died in 1761 without publish-
ing it. It was his younger friend
– another minister and amateur
mathematician Richard Price – who
went through the dead man’s papers,
spent two years correcting and edit-
ing it, and sent it to the secretary of
the Royal Society on November 10,
1763. A month later on December
23, 1763, it was read aloud at the
Royal Society. The following year,
it was published in the Philosophical
Transactions, then a journal for the
British gentry. From there, it sank
rapidly from view.
Today, given Price’s extensive re-
working of Bayes’ work, he would
be listed as co-author of the paper
and we’d be calling Bayes’ rule the
Bayes-Price rule.
In fact, without Price, we’d be call-
ing Bayes’ rule “Laplace’s rule”, be-
cause it was the great French math-
ematician Pierre-Simon who devel-
oped the general form of Bayes’ the-
ory employed today.
Price is worthy of study in his own
right. He became a British sup-
porter of both the American and the
French revolutions, a friend of al-
most every American founding fa-
ther you can think of, and a founder
of the insurance industry.

In the early years of this century, the reputation of Bayes’ rule
flipped almost overnight from controversial to chic – and did so for
highly pragmatic reasons.

When I first started writing Bayes’ story ten years ago, I was
thrilled to search for the word “Bayesian” on the web and find
100,000 websites. This summer, I did it again and got 12.3 mil-
lion.

For much of the 20th century, Bayes was so taboo that its name
could not be mentioned in public. For example, when I started my
project almost ten years ago and asked a statistics professor about
Bayes’ rule, the man erupted in rage.

During the 2008 election, though, pollster Nate Silver correctly
forecast not only the winner in 49 out of 50 states but also the
outcome of 35 U.S. Senate races – and announced that he used
Bayes’ rule. Last year, the chairman of President Obama’s Council
of Economic Advisers could volunteer to The New York Times that
he’d read my book and that Bayes is “important in decision making
– how tightly should you hold on to your view and how much should
you update your view based on the new information that’s coming
in. We intuitively use Bayes’s rule every day.” And I recently sat
next to a physician at dinner while he told me how he used Bayesian
search theory to find his wife’s lost cell phone.

So why this sea change in attitude about a very fundamental sci-
entific issue: how we analyze information, evaluate data, and make
rational data-based decisions even when we don’t know everything
there is to know about a problem?

First, it seems to have become trendy, a political shorthand
for data-based decision-making as opposed to ideologically-driven
decision-making.

More important, Bayes has swept through almost every aspect
of our technological, computerized world. It’s in our spam filters.
It’s embedded in Microsoft and Google and in Google’s driverless
car. It searches the internet for the web pages we want, clarifies
our MRI’s1 and PET2 scans, and sharpens the images from drones
flying overhead. It’s used on Wall Street and in genetics, artificial
intelligence, astronomy, and physics, machine translation of foreign
languages, and increasingly, in evaluating the probability of evidence
to be submitted in trials. The list goes on and on.

To understand this explosion of interest in Bayes we have to go
back to the beginning with Thomas Bayes and – I would add – with
Richard Price (see sidebar). We’ll see two patterns emerge: first,
Bayes became an extreme example of the gap between academia
and the real world. And second, military super-secrecy during the
Second World War and the Cold War affected Bayes profoundly.

Bayes’ rule, of course, is named for the Reverend Thomas Bayes,
a Presbyterian minister and amateur mathematician who lived near
London in the early 1700s. We know little about him. However, we
do know that he discovered his theorem during the 1740s in the midst
of an inflammatory religious controversy over whether scientists and
others could use evidence about the natural world to make rational
conclusions about God the creator, what they called The Cause.

1Magnetic Resonance Imaging
2Positron Emission Tomography

www.McGrayne.com
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We don’t know that Bayes wanted to prove the existence of God the Cause. But we do know that Bayes
tried to deal with the problem of cause and effect mathematically. In so doing, he produced his simple one-line
theorem that allows us to start with an initial half-baked idea – Bayes actually used the word “guess” and
suggested assigning it 50-50 odds. But then Bayes committed us mathematically to modifying that initial idea
with objective new information and even – horror of horrors – to changing our minds.

But Bayes didn’t believe in his theorem enough to publish it. He filed it away in a notebook and died
10 or 15 years later. Going through Bayes’ papers, his young friend Richard Price, – another Presbyterian
minister-mathematician – decided that the theorem could help prove the existence of God the Cause. Price (see
sidebar) spent 2 years off and on editing Bayes’ theorem and got it published in a journal that, unfortunately,
few mathematicians read.

A few years later, a young professional French mathematician, Pierre Simon Laplace – best known today
for the Laplace transform – discovered the rule in 1774 independently of Bayes and called it the probability of
causes. Laplace mathematized every science known to his era and over the course of 40 years gave what we call
Bayes’ rule its modern form. Then he actually used it to produce big numbers and ways to calculate them in
the days before computers. Until about 50 years ago, Laplace was credited with what we now call Bayes’ rule.

During 1700s and early 1800s, improved instrumentation and algebraic techniques as well as international
scientific expeditions produced an explosion of precise and trustworthy objective data about the natural world.
By the mid-1800s, up-to-date statisticians had so much reliable data that they could reject the uncertainties
of Bayes’ rule and judge the probability of something according to how frequently it occurred. They become
known as frequentists and were the great opponents of Bayes’ rule right up until the end of the 20th century.
The professor who erupted over the telephone at me was obviously a frequentist.

For them, modern science required both objectivity and precise answers. Bayes, on the other hand, dealt
with initial subjective guesses and ended up – not with precise answers – but with probabilities. By 1920, most
scientists thought Bayes “smacked of astrology, of alchemy.”

To me, the surprising thing was that all the time that theorists and philosophers denounced Bayes’ rule
as subjective, people who had to deal with real-world emergencies, who had to make one-time decisions based
on incomplete information, kept right on using Bayes’ rule. Simply put, Bayes helped them make do with
what they had. For example, Bayes rule helped free Dreyfus from a French prison during the 1890s. It helped
artillery officers in France, Russia, and the U.S. aim their fire and test their ammunition and cannons during
two World Wars; helped the Bell telephone system survive the financial panic of 1907; and helped the U.S.
insurance industry start workers’ compensation insurance almost overnight.

As far as sophisticated statisticians were concerned, however, Bayes was virtually taboo by the time the
Second World War began in 1939. Fortunately, Alan Mathison Turing was not a statistician. He was a
mathematician and besides fathering the modern computer, computer science, software, artificial intelligence,
the Turing machine, the Turing test – he would father the modern Bayesian revival. Turing’s story is also told
at some length in The Theory That Would Not Die, so here I will say only that Turing developed Bayesian
methods to decode the Enigma messages sent from German headquarters to the U-boats that were sinking
unarmed freighters shipping food and supplies to Britain. Bayesian methods were also used to build the Colossi
computers that broke the code used by the Berlin Supreme Command.

After the peace, Bayes’ wartime successes in code-breaking and operations’ research were classified, however.
Bayes emerged from the Second World War even more suspect than before, and for 30 or 40 years during the
Cold War a small group of maybe a 100 or more believers struggled for acceptance. During this period, many
Bayesians concentrated on theory in order to make Bayes a respectable branch of mathematics. And Bayes itself
survived in various niche specialties outside the statistical mainstream, for example, in insurance, paternity, law,
and business schools. Again, these are stories told in The Theory That Would Not Die.

During the Cold War – when the military continued to use Bayes but kept it secret and when civilian
Bayesians were under attack – there were very few public acknowledgments of Bayes’ power. For example, one
of the first nuclear power plant safety studies in the United States used Bayesian analysis in 1974 to predict
the kind of accident that actually happened at Three Mile Island. The safety report, however, hid the big
bad word Bayes in the appendix of volume III. The only extensive public Bayesian application determined the
authorship of the Federalist Papers, newspaper essays written to convince New Yorkers to approve the American
Constitution in 1787 and 1788.

By the late 1980s, industrial automation, the military, and medical diagnostics were using ultrasound ma-
chines, PET scans, MRIs, electron micrographs, telescopes, military aircraft and infrared sensors to produce
blurry images that needed sharpening. People wanted to know what the original object in the picture looked like
– which of course was ideal for Bayes and Laplace’s probability of causes. However, with computers churning
out masses of unknowns, Laplace’s method using integration of functions was too complicated to be practical.
Bayesians did not yet realize that the key to making Bayes useful in the workplace would be computational
ease, not more polished theory.

In 1989, Adrian F. M. Smith and Alan Gelfand finally put the pieces together: Bayes, Gibbs sampling,
Monte Carlo, chains, and iterations. They wrote their watershed synthesis – now called MCMC for Markov
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Chain Monte Carlo – very fast, but also very carefully. In 12 pages, they used the word “Bayes” only 5 times.
“There was always some concern about using the b-word,” Gelfand told me, “a natural defensiveness on the
part of Bayesians in terms of rocking the boat. ... We were always an oppressed minority, trying to get some
recognition. And even if we thought we were doing things the right way, we were only a small component of
the statistical community and we didn’t have much outreach into the scientific community.”

The next decade passed in a frenzy of activity as Bayesians and others used MCMC, new powerful worksta-
tions, and off-the-shelf computer software to finally – after two and a half centuries – calculate complex realistic
problems. Statistics became a combination of applied mathematics and applied computing. Statisticians be-
came the keepers of the scientific method helping scientists understand what they can reasonably conclude from
their data. And outsiders from computer science, physics, and artificial intelligence refreshed and broadened
Bayes. In the excitement, it was adopted almost overnight.

The Bayesian revolution was a modern paradigm shift for a very pragmatic age. It happened overnight –
not because people changed their minds about Bayes as a philosophy of science – but because suddenly Bayes
worked.

Reassessing causal networks:
rejection and reconstruction

Frank Lad
Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand

F.Lad@math.canterbury.ac.nz

1 Introduction

Over its long history, Bayes’ Theorem has sometimes been said to represent a computational form for
determining the probabilities of several possible causes of a specified effect. Moreover, during the last twenty
years there has been a proliferation of statistical work devoted to causal analysis via Bayesian networks. Seminal
works in the field are due to Pearl (1988, 2000 and 2009) and Jensen (1996, 2001) though a large host of leading
statisticians have participated in these developments. Notable among recognised research is the article of
Greenland, Robins and Pearl (1999).

Despite their evident popularity and the widespread use of several computational packages devoted to appli-
cations of the concepts, I have been an outspoken critic of these developments of “causal modeling.” In April,
1997 I presented a critical review of specific arguments in Jensen’s (1996) Introduction to Bayesian Networks
at the Centre Ettore Majorana for the Peaceful Uses of Science in Erice, Sicily. Professor Jensen was an active
participant in the discussions at this meeting of the International School of Mathematics “G. Stampacchia”.
The presentation was published under the title “Assessing the foundations of Bayesian networks: a challenge
to the principles and the practice” (Lad, 1999), and is meant to be read in conjunction with Jensen’s book.
During the course of the lively discussions I was challenged with an applied problem that was presented as a
paradigmatic example of causal modeling in genetics which typifies structures that have been proposed and
which purportedly requires such concepts for its fruitful analysis.

In this present contribution to further discussion I plan firstly to offer a summary statement of the bold
claims that are fully substantiated in my published critique. Then I shall expand more extensively on the
challenge problem that was proposed at Erice. I contend that a coherent analysis of this problem can be made
within the framework of de Finetti’s subjective construction of probability, and that the concept of causal
relations is completely irrelevant to the analysis. Indeed, some principles such as (conditional) independence
conditions that have been proposed as fundamental to the analysis of the problem via a causal network are both
misleading as presented, and irrelevant to a coherent analysis.

I should identify my perspective on matters of probability as that of an operational subjectivist, in the
tradition championed by Bruno de Finetti (1974, 1975). All probabilities and, more generally, previsions
(expectations) are recognised as the assertions of someone (you, perhaps, or someone else whose opinions you
would like to analyse); and the constraints on their combination are those imposed by the condition of their
coherency. Operationally, one’s previsions are defined by one’s willingness to price the value of a risky transaction
whose outcome depends on the quantities in question. This viewpoint bears explicit mention because of its non-
congruity with the supposition of many network constructors ... that their network probabilities somehow
represent structural features of nature that can be discovered. In this context, they typically think of statistical
analysis engaging the practice of determining a sound network representation of this structure. A detailed

F.Lad@math.canterbury.ac.nz
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exposition of the operational subjective viewpoint and its computational application appears in the text of
Lad (1996). Some numerical applications of the fundamental theorem of prevision, which governs most every
statistical problem, appear in the article of Lad, Dickey, and Rahman (1992). I shall rely on the reader’s
familiarity with some details of this perspective as I develop my argument here. Primary among these are the
construction of a realm matrix for a vector of logically dependent quantities, and the recognition of the linearity
of coherent prevision assertions. If you are unfamiliar with this terminology, you may appreciate its relevant
detail when we study the genetical problem in Section 3.

2 Critique of Bayesian networks: a precis

Again, I invite you to read the full text of the critique presented in the article I’ve mentioned. Both to
intrigue you to such an endeavor and to prepare you for analysis of the problem in genetics that will follow, I
present here merely nine summary statements of the critique. The anagram DAG to which they refer is a label
for a “directed a-cyclic graph”, touted as an underlying feature of causal modeling.
1. The notion of “cause” is observationally meaningless. The modern origins of this understanding come from
the works of David Hume, especially his Enquiry concerning Human Understanding (1748, 1988 edition, Section
VII, Part 2, pp 113-118).
2. The “directions” proposed in DAGs are both misleading and groundless. I discuss this in the context of
Jensen’s simple DAG for “icy roads.”
3. The axiomatic assertion of conditional independence at “causal nodes” in a DAG is misplaced. What might
be appropriate in a problem such as the icy roads example is conditional exchangeability.
4. The notion of independence itself is commonly misconstrued by proponents of causality, as in Jensen’s
example of the “wet grass” DAG.
5. Common constructions of “causal diagrams” routinely ignore relevant arrows when they are inconvenient, as
in the example of the “burglar or earthquake alarm”.
6. The metaphysical concept of causation is the source of the problems with the application of DAGs.
7. Claims to the “completeness” of serial, converging, and diverging connections for characterising information
structures are erroneous.
8. Supposedly “problematic” directed graphs with feedback cycles can be analysed routinely using de Finetti’s
fundamental theorem of prevision.
9. As opposed to the nomenclature of “directed a-cyclic graphs” used by network theorists, I conclude that the
information structures that are really relevant to the problems they propose would be better recognised and
analysed as “non-directed, non-cyclic, and a-causal graphs.”

Foundational difficulties with the principles underlying the proclaimed practice of the network theorists
are fairly deep. I believe that everything substantive they have to offer for consideration is subsumed in the
fundamental theorem of prevision, and grounded properly in the operational subjective foundation of coherent
probability. As a matter of producing efficient computation, their achievements are laudable. As a matter of
sensible thinking about real problems of inference, their prescriptions leave something to be desired. Let us now
proceed to the problem with which I was challenged.

3 An Example from Genetics

In the discussion at Erice, the following example was proposed to display a problem purportedly portraying
an obvious situation of a recognisably causal relationship. Consider a hereditary disease carried through a
dominant gene denoted by A, with the recessive gene denoted by a. If carried by an individual, however, the
disease may or may not exhibit itself symptomatically during the person’s lifetime. We wonder whether a specific
person (called hereafter “the child”) carries the disease genetically. That is, we wonder whether this person is
constituted with the gene pair AA or Aa as opposed to aa. Numerically, we define the quantity GC = 0, 1, or
2 to denote the child’s genetic makeup as aa, aA, or AA, respectively. We are also uncertain about the genetic
makeup of the father and mother, denoted by GF and GM , whose numerical values are defined in the same
way. A medical test is available which yields a value of T = 1, corresponding to a positive signal that the child
carries the disease, or T = 0 corresponding to a negative signal. The test is not perfect, however, allowing both
true and false positive, and true and false negative results.

Such a situation is proposed to be describable by a DAG of the form displayed in Figure 1.
The genetic makeup of the parents is said to cause, probabilistically, the genetic makeup of the child. Several

relevant probabilities are accorded widely agreed upon values prescribed by the theory of genetics. These include
assertions such as

P [GC = 0|(GF , GM = 0, 0)] = 1 and P [GC = 0|(GF , GM = 0, 1)] = 1
2 .
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Figure 1: The DAG for genotypes (GF , GM , GC) and the test result, T .

In the former case the conditioning event specifies that both parents have a pair of recessive genes, making
it certain that the child’s pair of genes are both recessive as well. In the latter case the condition is that the
female parent’s gene pair is doubly recessive, while the male’s pair is mixed, dominant and recessive. In such
a case, either of the male parent paired genes may join with a gene from the female’s pair, which are both
recessive. The probability that the resulting offspring’s gene pair is doubly recessive then equals 1

2 , while the
probability the resulting gene pair is mixed dominant and recessive also equals 1

2 . Following is an exhaustive
list of such conditional probabilities specified by genetic theory, enumerating all conditional probabilities of the
form P (GC = z|(GF , GM ) = (x, y)) for (x, y, z) ∈ {0, 1, 2}3:

Table 1. Conditional Probabilities Induced by Genetic Theory
P [GC = 0|(GF , GM = 0, 0)] = 1 P [GC = 1|(GF , GM = 0, 0)] = 0 P [GC = 2|(GF , GM = 0, 0)] = 0
P [GC = 0|(GF , GM = 0, 1)] = 1

2
P [GC = 1|(GF , GM = 0, 1)] = 1

2
P [GC = 2|(GF , GM = 0, 1)] = 0

P [GC = 0|(GF , GM = 0, 2)] = 0 P [GC = 1|(GF , GM = 0, 2)] = 1 P [GC = 2|(GF , GM = 0, 2)] = 0
P [GC = 0|(GF , GM = 1, 0)] = 1

2
P [GC = 1|(GF , GM = 1, 0)] = 1

2
P [GC = 2|(GF , GM = 1, 0)] = 0

P [GC = 0|(GF , GM = 1, 1)] = 1
4

P [GC = 1|(GF , GM = 1, 1)] = 1
2

P [GC = 2|(GF , GM = 1, 1)] = 1
4

P [GC = 0|(GF , GM = 1, 2)] = 0 P [GC = 1|(GF , GM = 1, 2)] = 1
2

P [GC = 2|(GF , GM = 1, 2)] = 1
2

P [GC = 0|(GF , GM = 2, 0)] = 0 P [GC = 1|(GF , GM = 2, 0)] = 1 P [GC = 2|(GF , GM = 2, 0)] = 0
P [GC = 0|(GF , GM = 2, 1)] = 0 P [GC = 1|(GF , GM = 2, 1)] = 1

2
P [GC = 2|(GF , GM = 2, 1)] = 1

2

P [GC = 0|(GF , GM = 2, 2)] = 0 P [GC = 1|(GF , GM = 2, 2)] = 0 P [GC = 2|(GF , GM = 2, 2)] = 1

Finally, the genetic makeup of the child is said to cause, probabilistically, the outcome of the test through
specifiable probabilities of the form P (T |GC = 0) and P (T |GC > 0). What else could cause the result of the
test?

According to causal network theorists, the “causal structure” embedded in the DAG shown in Figure 1 is
supposed to imply that the quantities GF and GM are independent, because they are identified as the exclusive
causes of GC . In the context of a DAG such as that shown in Figure 1, Jensen says (2001, p.7) “If nothing
is known about GC (the nodal quantity) except what may be inferred from knowledge of its parents GF and
GM then the parents are independent: evidence on one of them has no influence on the certainty of the others.
Knowledge of one possible cause of an event does not tell us anything about other possible causes.” A second
causal construct that is said to be seen in the DAG, is that the value of GC , whatever it may be, is supposed
to cause, probabilistically, the outcome of the test variable T , no matter whether T = 0 or T = 1. On the face
of it, nothing could be simpler to proponents of probabilistic causality in network structures.

My concerns are firstly that the claim to a causal relation of GC to T is vacuous, since it cannot be denied on
the basis of any conceivable empirical observation! The only observable relations between the values of T and the
event that (GC > 0) are exhausted by the possibilities composing the cartesian product: (0, 0), (0, 1), (1, 0), and
(1, 1). Secondly, the supposed independence of GF and GM induced by their proclaimed causal relation to GC

(which is an axiom of the causality proponents’ causal modeling) is not at all merited by a considered scientific
assessment of the situation. In the context that we are only learning about the incidence of the dominant gene in
the population gene pool, even in an individual via testing, the incidence of genetic makeup regarding this gene
in the population is unknown. For the disease does not necessarily exhibit itself in an individual symptomatically
when its gene is carried. Much more reasonable would be a judgment of exchangeability regarding the values
of GF and GM . This is an assessed symmetry structure that allows for extraction of information about any
members of an exchangeable group from observations of the others.

The remainder of this Section will show how the operational subjective characterisation of logical relations
among the quantities concerned, along with the conditional probabilities motivated by knowledge of genetics,
provides a complete representation of what is known and what is not known in this problem. As we shall see,
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the conditional probability assertions merited by our experience with the test observation T have nothing to do
with claims of causality.

3.1 The realm matrix for the genetic composition of (GF , GM , GC)

We begin by producing the realm matrix of all the quantities that shall be relevant to our analysis. This
matrix is presented in divided sections that shall be considered in sequential stages of the discussion. The
first section of three rows lists as columns the 15 possibilities for the observable triple (GF , GM , GC)T . This
realm matrix of dimension 3× 15 exhibits the “logical dependence” among the three quantities. Quantities are
said to be logically dependent if and only if the realm of possibilities for the vector of their values is a proper
subset of the cartesian product of the realms for each component. In the case we address here, the realm for
each quantity denoting a genetic-makeup is the set {1, 2, 3}. The three quantities we are considering would be
“logically independent” only if the column vectors of their possible measurement values specified a realm matrix
of dimension 3× 27, whose columns would be the elements of {0, 1, 2}3. It is apparent that this condition does
not hold in our problem, since the columns (0, 0, 1)T and (0, 0, 2)T do not appear in the matrix, for examples.
These triples would represent impossible occurrences. If both parents were to have genotype aa, identified by
GF = GM = 0, it would be impossible that the child has either genotype aA or AA, identified by GC = 1
or GC = 2. Similarly, although (1, 0, 0)T and (1, 0, 1)T do appear as columns 2 and 3 of the realm matrix, no
column of the form (1, 0, 2)T appears, since it also would represent a situation that is impossible genetically. In
contrast, the complexity of the logical relation here is identifiable through the presence of all three vectors of
the form (1, 1, 0)T , (1, 1, 1)T , and (1, 1, 2)T , which appear as columns 7, 8, and 9 of the realm matrix.

Realm Matrix for all quantities assessed in the problem

R



GF

GM

GC

∗ ∗ ∗ ∗ ∗
(G3 = 0, 1, 0) − 1

2 (G2 = 0, 1)
(G3 = 1, 0, 0) − 1

2 (G2 = 1, 0)
(G3 = 1, 1, 0) − 1

4 (G2 = 1, 1)
(G3 = 1, 1, 1) − 1

2 (G2 = 1, 1)
(G3 = 1, 2, 1) − 1

2 (G2 = 1, 2)
(G3 = 2, 1, 1) − 1

2 (G2 = 2, 1)
(G3 = 1, 1, 2) − 1

4 (G2 = 1, 1)
∗ ∗ ∗ ∗ ∗

(G2 = 0, 1) − (G2 = 1, 0)
(G2 = 0, 2) − (G2 = 2, 0)
(G2 = 1, 2) − (G2 = 2, 1)

∗ ∗ ∗ ∗ ∗
Column Number



=



0 1 1 2 0 0 1 1 1 2 2 0 1 1 2
0 0 0 0 1 1 1 1 1 1 1 2 2 2 2
0 0 1 1 0 1 0 1 2 1 2 1 1 2 2
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 1

2 − 1
2 0 0 0 0 0 0 0 0 0

0 1
2 − 1

2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 3

4 − 1
4 − 1

4 0 0 0 0 0 0
0 0 0 0 0 0 − 1

2
1
2 − 1

2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1

2 − 1
2 0

0 0 0 0 0 0 0 0 0 1
2 − 1

2 0 0 0 0
0 0 0 0 0 0 − 1

4 − 1
4

3
4 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 −1 −1 0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 −1 −1 0 1 1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



.

Figure 2 displays the realm matrix for (GF , GM , GC) geometrically. Coherency of any prevision (expectation)
assertion requires only that the vector P (GF , GM , GC) lies within the convex hull of the realm members.
Algebraically, this means that if X is a quantity vector with realm matrix R(X), a cohering prevision vector
P (X) must equal some convex combination of the columns of R. That is, P (X) = R(X) q15, where q15 is an
element of the unit simplex S14 = {q15|each qi ≥ 0 and

∑
qi = 1}. Geometrically, the convex hull displayed in

Figure 2 is a 3-dimensional polytope produced by removing the twelve “impossible” vertices from the cube of
points in {0, 1, 2}3.

In order to acknowledge the probabilistic content of what genetic theory and observation tell us about the
genotypes GF , GM , and GC , we need now turn to an algebraic specification of conditional probabilities of the
form P (GC = z|(GF , GM ) = (x, y)).

3.2 Linear restrictions on P (GF , GM , GC) deriving from genetic theory

Recalling the conditional probabilities induced by genetic theory, we can now introduce them via functions
of the G3 vector. The bold vector notation G3 appearing in the second and third banks of quantities for the
realm matrix denotes the vector (GF , GM , GC) while G2 denotes the subvector (GF , GM ). This notation shall
be used in the discussion of Section 3.2. Parentheses around any expression that may be true or may be false
denotes an event quantity that equals 1 if the expression turns out to be true, and equals 0 if it is found to be
false, e.g., (G2 = 0, 1).

To begin, consider any one of the conditional probabilities asserted with value 0, such as P [GC = 0|(GF , GM =
0, 2)] = 0. The multiplication rule for coherent conditional probabilities that P (AB) = P (A|B)P (B), applied to
this assertion, yields the requirement that P (GF , GM , GC = 0, 2, 0) = P [GC = 0|(GF , GM = 0, 2)]P (GF , GM =
0, 2), which must thus equal 0. However, this condition is already assured by the fact that the column (0, 2, 0)T

does not appear at all in the realm matrix we have displayed, neither algebraically nor geometrically. This same
situation arises for each of the twelve conditional probabilities that equal 0, listed in Table 1.
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Figure 2: Convex hull of the 15 points constituting the columns of the realm of (GF , GM , GC)T . Column
numbers are listed in the row at the bottom of the realm matrix. The labels qi on the realm elements identify
the convexity weights they would be accorded to identify a coherent prevision vector inside the hull.

Next, consider any one of the conditional probabilities in the Table that are shown assessed as equal to
the value 1, for example P [GC = 0|(GF , GM = 0, 0)] = 1. In this case the multiplication rule then implies
that P (GF , GM , GC = 0, 0, 0) = P [GC = 0|(GF , GM = 0, 0)]P (GF , GM = 0, 0), which then must equal
P (GF , GM = 0, 0). This feature can be identified in the convex hull polytope shown in Figure 2 by noticing
that the only vertex of the polytope appearing in the GC dimension for which (GF , GM ) = (0, 0) is the point
(GF , GM , GC) = (0, 0, 0). This same situation characterises each of the singleton points in the GC dimension
corresponding to the four conditional probabilities shown equal to 1 in Table 1. These are vertex numbers with
coefficient labels of q1, q4, q12, and q15. Examine which points these are in the Figure.

Finally, consider the genetically motivated conditional probabilities in Table 1 that equal neither 0 nor 1,
for examples P [GC = 0|(GF , GM = 0, 1)] and P [GC = 1|(GF , GM = 0, 1)], both of which equal 1

2 . Applying
the multiplication rule to these two probabilities yields the requirements that P (GF , GM , GC = 0, 1, 0) =
1
2P (GF , GM = 0, 1) in the former case, and that P (GF , GM , GC = 0, 1, 1) = 1

2P (GF , GM = 0, 1) in the
latter case. To understand how this information is incorporated into the realm matrix, consider for example
the former equality. The linearity of coherent prevision (expectation), applied to this equality implies that
P [(GF , GM , GC = 0, 1, 0) − 1

2
(GF , GM = 0, 1)] = P (GF , GM , GC = 0, 1, 0) − 1

2
P (GF , GM = 0, 1) = 0. Using the

summary notation we used to define G3 and G2 = (GF , GM ), this quantity whose prevision must equal 0 can
be identified as the quantity [(G3 = 0, 1, 0) − 1

2 (G2 = 0, 1)]. In any column of the realm matrix R for which
G2 6= (0, 1) this quantity equals 0. However when G3 = (0, 1, 0), this quantity equals 1 − 1

21 = 1
2 , and when

G3 = (0, 1, 1), this quantity equals 0− 1
21 = − 1

2 . This explains why that row of the realm matrix has the values
that it does. Similar considerations explain the row values of the remaining six rows of the second panel of the
realm matrix.

Following from the same type of derivation, each of the 7 quantities that appears in the second bank of the
realm matrix has an assessed prevision equaling 0 on the basis of genetic theory. Denoting possible probabilities
for the observation of each of the 15 columns of R(G3) by the letters {qi}15i=1, the coherency conditions deriving
from these seven conditions are, in order as they appear in the rows of the realm matrix, q5 = q6, q2 = q3,
3q7 = q8 + q9, q8 = q7 + q9, q12 = q13, q10 = q11, and 3q9 = q7 + q8. The four equalities of individual qi’s in
this list are easily understood. The three equalities that involve sums contain one redundancy, and are better
understood by their equivalent conditions that q7 = q9 and q8 = 2q7.

Geometrically, these algebraic conditions on the vertex probabilities of the realm matrix are displayed in
Figure 3. For example, the condition that q5 = q6 means that the convexity coefficients on vertices 5 and 6
in Figure 2 can be replaced by a single coefficient on a vertex of the constrained polytope in Figure 3 that is
equidistant between them. A similar reduction is made for each of the other 3 direct equalities qi = qj induced
by the genetic conditions. Moreover, the three summation conditions containing one redundancy mean that
the three coefficients on the vertices numbered 7, 8 and 9 become reduced to a single coefficient attached to
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the center point of the polytope, (1, 1, 1). Recognising these reductions implied by genetic theory, any cohering
assertion of P (GF , GM , GC)T must lie on the rectangular plane that sits inside the convex hull of the realm
elements, as seen in Figure 3.

Figure 3: The reduced polytope of coherent previsions (P (GF ), P (GM ), P (GC)) induced by the seven conditional
probabilities motivated by genetic theory is the inlaid magenta coloured plane. It includes the centerpoint
(1, 1, 1). Further reduction of cohering P (GF , GM , GC) possibilities to the diagonal bluish-coloured line within
this plane derives from regarding (GF , GM ) exchangeably, discussed in Section 3.3.

3.3 Implications of regarding GF and GM exchangeably

At this stage we should note again that I categorically deny the independence of the quantities GF and GM

that is presumed by causal network theorists. The values of GF and GM are definitely informative about each
other. They denote genetic observations for two members of their gene pool with whom we would regard them
exchangeably. Asserting the exchangeability of these two would amount to three conditions: that P (GF , GM =
0, 1) = P (GF , GM = 1, 0), that P (GF , GM = 0, 2) = P (GF , GM = 2, 0), and that P (GF , GM = 1, 2) =
P (GF , GM = 2, 1). In terms of the vertex coefficients, these conditions amount to the restrictions that q2 +q3 =
q5 + q6, q4 = q12, and that q10 + q11 = q13 + q14. This can be seen by examining the columns of the realm
matrix that correspond to these specific values of (GF , GM = x, y). It should be apparent that these three
further restrictions on the convexity coefficients reduce the domain of coherent prevision for the G3 vector to
the diagonal line running from (0, 0, 0) through to (2, 2, 2).

Our analysis of the situation corresponding to the proposed DAG in Figure 1 is now complete. The convexity
coefficients q15 have been reduced to only five free components. These are identifiable in six constrained groups:
q1; q2 = q3 = q5 = q6; q4 = q12; q7 = q9 = q8/2; q10 = q11 = q13 = q14; and q15. Of course all 15 qi’s must
sum to 1, so this reduces the six free components of q15 to five. Specifying the values of these qi’s would be
equivalent to specifying probabilities for the genetic composition of any two members of the gene pool. The six
relevant possibilities for G2 would be (0,0), (0,1), (0,2), (1,1), (1,2), and (2,2). Undefinable notions of causality
are irrelevant.

3.4 On the relation of GC to the test statistic T

My second comment on the DAG of Figure 1 concerns the proclaimed causal relation of the genotype GC

to the test result, T . More generally, it concerns the coherent implications of conditional probability assertions
pertaining to any array of quantities relevant to a problem of uncertain information. The analysis is couched in
terms that involve only GC and T. However it should be recognised that this is just a part of a complete analysis
of all the quantities involved, including those we have already discussed. If the event T were appended to the
vector of quantities whose realm we have identified, the realm matrix for the full vector would be composed of
two side-by-side copies of the realm we have already identified. The final row of this concatenated matrix would
contain fifteen 0’s followed by fifteen 1’s. This would denote that no matter which of the fifteen columns of the
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realm is the one that corresponds to the actual value of (GF , GM , GC)T , the test result T might be equal to
either 0 or 1. This merely recognizes the possibility of false positive and false negative test results.

Suppose we denote the event that the child carries the disease in question by D ≡ (GC > 0). We shall consider
its information structure with the event T , denoting a positive result on the test for presence of the disease.
Asserting conditional probabilities of such as P (T |D) = .8 and P (T |D̃) = .3 would place two cohering linear
conditions on probabilities P (D), P (T ), and P (DT ). Deriving from the multiplication rules, these would be
P (DT ) = .8P (D) and P (D̃T ) = .3P (D̃). The latter is equivalent to the statement P (DT ) = P (T )+.3P (D)−.3.

The realm matrix of possibilities for the vector of quantities (D,T,DT ) contains only four columns:

R

 D
T
DT

 =

 0 0 1 1
0 1 0 1
0 0 0 1

 .

The convex hull of these column vectors is displayed as the boldly outlined tetrahedron in Figure 4, and contains
all coherent probability assertions for this unknown vector of events.

Figure 4: The convex tetrahedron contains all coherent probability vectors for the events D (the child carries
the dominant gene), T (the test result is positive), and the product of these two events, DT (the conjunction
of D and T ). Points on the green plane contain all such vectors cohering with the assertion P (T |D) = .8;
points on the reddish plane contain all vectors cohering with the assertion P (T |D̃) = .3. The dashed blue line
connecting the points (0, .3, 0) and (1, .8, .8) is the intersection of these planes, identifying all probability vectors
that cohere with both of these assertions.

However, the two asserted conditional probabilities P (T |D) = .8 and P (T |D̃) = .3 specify the two linear relations
among the cohering probabilities P (D), P (T ), and P (DT ), which we noted above. These linear relations are
represented in Figure 4 by the green and red lined triangular planes as they intersect the hull. Thus, any vector
of probabilities P (D,T,DT ) that coheres with both of these conditional probability assertions must lie on the
intersection of these two planes, the line segment connecting the points (0, .3, 0) and (1, .8, .8). A more detailed
presentation of this type of geometrical analysis can be found in the text of Lad (1996, Chapter 3).

The substantive point to be appreciated here is that the concept of cause is completely irrelevant to either the
motivation for the conditional probabilities asserted in the problem or to their technical algebraic/geometrical
consequences. P (T |D) and P (T |D̃) represent only someone’s (or the scientific community’s, “our”) assessment
of the information content of a positive and a negative test conducted on a carrier and on a non-carrier of the
gene in question. The very notion of a “direction” in a DAG such as shown in Figure 1 appears completely
arbitrary, both in respect to the relation of the child’s genetic condition with the test result, and also with
respect to the parents’ and the child’s genotypes. Conditional probabilities of the reverse form, such as P (D|T )
and P (GF = x|GC = z), are embedded into any probability assessment of the problem, even if it is supposed
to be representable by the DAG proposed in Figure 1. With the limited extent of probability specification we
have addressed in this problem, the conditional probability P (D|T ) may lie anywhere within the interval [0, 1],
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according to the linear bound on the the probability vector (P (D), P (T ), P (DT )) that we found to govern the
coherent implications of the assertions P (T |D) = .8 and P (T |D̃) = .3.

4 Concluding remarks

A joint probability mass function for a vector of N quantities can be factored into the product of conditional
mass functions in N ! different ways. Each of these factorisations can be represented by a graph. This much
is agreed by everyone. Causal network theorists attribute a preeminent character to the shortest graph among
all these possibilities, and ascribe “causal” properties to the relations that are exhibited at some nodes. They
then proclaim various types of (conditional) independence relations to be required among quantities that appear
around these nodes, both among the ancestors of nodal quantities and among their progeny.

I regard the attribution of the shortest graph with special unobservable causal properties, and the declaration
of (conditional) independence properties among certain configurations of these graphs to be arbitrary and
misleading. I hope to have displayed here an example of how the substantive probabilistic content of the type
of problems they consider can be treated coherently without any reference at all to the meaningless assertion
of cause.

The operational subjective construction of probability specifies a linear programming structure as appropri-
ate to resolve computationally the coherent implications of any array of probability and conditional probability
assertions for any other assertions of interests. The basis for the specification derives from de Finetti’s funda-
mental theorem of prevision. The limited structures of coherent assessment that adhere to all specifications
merited in a DAG representation can be handled in a straightforward way by this computational programme.
The causal direction arrows are irrelevant to this procedure. Probabilistic restrictions on inferential conclusions
must be motivated by the real setup of the problem that is being assessed, rather than by arbitrary “rules of
causation”.

It is true that many applied problems would imply very large computations for the FTP procedures if they
are set up in a naive and ham-fisted way. Nonetheless, independence assertions of the severity that are proposed
by causal DAG structures cannot be motivated merely by the desire to get out a numerical result. Whenever
(conditional) independencies are appropriate, suitable linear programming routines can take advantage of the
speed of computation they would naturally allow. There are several ways to deal with computational pre-
scriptions of operational subjective statistical analysis. There have been major advances in the computational
practicality of large problems using software such as GAMS, which are worth your investigation. An application
to the diagnosis of asbestosis via x-rays assessed by three radiologists appears in the article of Capotorti et al.
(2007). “Ballpark” computations can be achieved in the manner of full Bayesian analysis using complete dis-
tributions motivated by relevant theory specific to applied problems. An example appears in Lad and Brabyn
(1993). Finally, computational flexibility can be achieved in subjective Bayesian analysis by approximate linear
procedures such as those exposed by Goldstein and Wooff (2007). But that would take us to still another topic.

Many thanks to the ISBrA chapter of ISBA for your invitation to present these ideas to you. I hope they
will stimulate serious discussion.
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Eventos

• Statistics2013 - The International
Year of Statistics
(www.statistics2013.org)

Como dito no número anterior, o ano de 2013 foi
escolhido como o Ano Internacional da Estat́ıstica,
uma celebração mundial em reconhecimento das con-
tribuições da estat́ıstica. Através de um esforço con-
junto de diversas organizações mundiais, o Statis-
tics2013 pretende promover a importância da es-
tat́ıstica para a comunidade cient́ıfica, estudantes,
empresas, governo, poĺıtica, mı́dia e o público em
geral.

Os objetivos do Statistics2013 incluem a sensibi-
lização do público para o poder e o impacto das es-
tat́ısticas sobre todos os aspectos da sociedade; for-
talecer a estat́ıstica como uma profissão, especial-
mente entre os jovens; e promover a criatividade e
o desenvolvimento das áreas de probabilidade e es-
tat́ıstica. Um v́ıdeo de divulgação foi criado pelo
SAS Institute, retratando as muitas maneiras que a
estat́ıstica afeta nossas vidas.

Muitos eventos estão programados ao redor do
mundo e podem ser encontrados na seção Activities
do site do Statistics2013. Não é posśıvel citar to-
dos esses eventos e apenas uma amostra dessas ativi-
dades são apresentadas ao longo dessa seção.

• 29th European Meeting of Statisti-
cians, Budapeste – Hungria, 20 a 25 de julho
de 2013.
(ems2013.eu/)

O European Meeting of Statisticians é a maior
e mais prestigiada reunião de estat́ısticos na Eu-
ropa. Além de propiciar um ambiente para a troca
de ideias entre estat́ısticos e probabilistas europeus,
nessa edição a organização está se esforçando para

que pesquisadores da Índia, China, Sudeste Asiático,
Oriente Médio, América do Norte e América Latina
participem em maior número que o habitual. Há
também uma ambição dos organizadores de que as
disciplinas de probabilidade e estat́ıstica sejam igual-
mente representadas no evento.

O ano de 2013 marca o aniversário de 300 anos
das publicação póstumas de Jacob Bernoulli, “Ars
Conjectandi” e o Paradoxo de São Petersburgo.
Além disso, ocorre o 250o aniversário da publicação
póstuma do ensaio de Thomas Bayes sobre o pro-
blema da probabilidade inversa pela Royal Society.
A Bernoulli Society vê o EMS2013 como a ocasião
perfeita para celebrar esses acontecimentos.

• 58a RBRAS e 15o SEAGRO, Camp-
ina Grande – Brasil, 20 a 26 de julho de 2013.
(www.rbras.org.br/rbras58/)

A 58a Reunião Anual da Região Brasileira da So-
ciedade Internacional de Biometria (RBras) e o 15o

Simpósio de Estat́ıstica Aplicada à Experimentação
Agronômica (SEAGRO) serão realizados na cidade
de Campina Grande, Estado da Paráıba, durante os
dias 22 a 26 de Julho de 2013. A organização do
evento está a cargo do Departamento de Estat́ıstica
da Universidade Estadual da Paráıba - UEPB.

As reuniões da RBras ocorrem anualmente e,
a cada dois anos, é realizada conjuntamente com
o SEAGRO. A 58a Reunião Anual da RBras fo-
cará o tema “Modelagem Estat́ıstica em áreas mul-
tidisciplinares: Impactos causados pelas mudanças
climáticas na Região Nordeste”. O programa
cient́ıfico contemplará palestrantes do Brasil e do
Exterior, minicursos, tutoriais, sessões temáticas, co-
municações e pôsteres. Tradicionalmente, duas out-
ras sessões ocorrerão no evento: a Sessão da Asso-
ciação Brasileira de Estat́ıstica (ABE) e a Sessão

http://www.statistics2013.org
http://www.youtube.com/watch_popup?v=nTBZuQR7dRc
http://www.statistics2013.org/activities.cfm
http://ems2013.eu/
http://www.rbras.org.br/rbras58/
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EMBRAPA. A participação da Embrapa no evento
é de fundamental importância, pelo fato da in-
teração com a instituição promover o contato dos
estat́ısticos com a extensa base de dados da em-
presa permitindo uma discussão rica com possibil-
idade de aprimoramento de metodologias, com re-
flexos positivos para pesquisa agronômica brasileira,
em especial no Nordeste. A Embrapa é ĺıder em
pesquisa no tema agricultura tropical no mundo,
tendo grande responsabilidade frente à sociedade.
Assim, a participação da Embrapa é oportuna para
se estabelecerem parcerias com as universidades, in-
stituições de pesquisas atráırem professores, estu-
dantes de graduação e pós-graduação para formação
de equipes multidisciplinares.

• SPA 2013 - 36th Stochastic Pro-
cesses and Applications, Boulder –
EUA, 29 de julho a 02 de agosto de 2013.
(math.colorado.edu/spa2013/)

SPA é uma conferência internacional anual, or-
ganizada pela Sociedade Bernoulli de Estat́ıstica
Matemática e Probabilidade, co-patrocinado pela
IMS.

Esse ano, a ISBA está endossando uma sessão
em inferência em processos estocásticos, organizada
por Gareth Roberts (University of Warwick, Reino
Unido). Além disso, a ISBA patrocinará uma sessão,
com Sergio Bacallado (Stanford University, EUA),
Peter Orbanz (Columbia University, EUA) e Mat-
teo Ruggiero (University de Torino, Itália) como
palestrantes.

• XV Escola de Séries Temporais e
Econometria, Teresópolis – Brasil, 11 a 14
de agosto de 2013.
(www.este2013.dme.ufrj.br)

Escola de Séries Temporais e Econometria é re-
alizada a cada dois anos, promovido pela Asso-
ciação Brasileira de Estat́ıstica (ABE) e pela So-
ciedade Brasileira de Econometria (SBE). A orga-
nização desta edição do evento está sob responsabil-
idade do Departamento de Métodos Estat́ısticos da
Universidade Federal do Rio de Janeiro (UFRJ), com
apoio do Departamento de Estat́ıstica da Universi-
dade Federal Fluminense (UFF).

O evento contribui para o desenvolvimento de
séries temporais e econometria no Brasil, integrando
pesquisadores de todas as áreas de séries temporais
e econometria de diversas instituições, estudantes de
pós-graduação de áreas correlatas, profissionais de
empresas públicas e privadas e também estudantes
de graduação de universidades públicas e privadas.

• 4th ESOBE - European Seminar
on Bayesian Econometrics, Oslo –

Noruega, 22 a 23 de agosto de 2013.
(www.norges-bank.no/en/about/conferences/2013-
esobe/)

Organizado pelo Norges Bank, em colaboração
com o ESOBE, e apoiada pela Seção de Economia,
Finanças e Negócios (EFaB) da ISBA, esse evento
pretende ser um fórum de discussão sobre pesquisas
recentes em uma vasta gama de tópicos de econome-
tria sob a abordagem bayesiana.

O programa cient́ıfico inclui palestras proferidas
pelo professor Christopher Sims (Princeton Univer-
sity, EUA, ganhador do Prêmio Nobel de Economia
em 2011) e pelo professor Tilmann Gneiting (Univer-
sity of Heidelberg, Alemanha), além de uma sessão
especial sobre “problemas e desafios em macroecono-
mia estrutural” com o Professor Frank Schorfheide
(University of Pennsylvania, EUA).

• 59th WSC - World Statistics
Congress, Hong Kong – China, 25 a 30 de
agosto de 2013.
(www.isi2013.hk/en/)

Organizado pelo International Statistics Institute
(ISI), a 59th WSC fornece uma plataforma para a co-
munidade estat́ıstica internacional compartilhar os
mais recentes conhecimentos em estat́ıstica. O pro-
grama cient́ıfico inclui uma ampla gama de tópicos,
facilitando intercâmbios profissionais e comparti-
lhamento entre os especialistas e profissionais em
várias áreas da estat́ıstica. Uma série de sessões
serão organizadas em um “dia temático” na WSC,
onde o tema “Juventude” será abordado a partir de
várias perspectivas da estat́ıstica.

Como um encontro satélite da WCS, ocorrerá
o ISI Young Statisticians Meeting (YSI 2013), nos
dias 23 e 24 de agosto. A YSI dará a oportu-
nidade para os jovens estat́ısticos apresentarem seus
trabalhos em um ambiente mais compacto e infor-
mal, proporcionando-lhes um fórum onde podem
construir laços cient́ıficos com ĺıderes em suas respec-
tivas áreas. Maiores informações podem ser encon-
tradas em www.saasweb.hku.hk/conference/ysi2013/

• ICNAAM 2013 - 11th International
Conference of Numerical Analysis
and Applied Mathematics, Rhodes –
Grécia, 21 a 27 de setembro de 2013.
(www.icnaam.org)

O objetivo ICNAAM 2013 é reunir os principais
cientistas da comunidade internacional ná área de
matemática numérica e aplicada e atrair trabalhos
de pesquisa originais de alta qualidade.

Os tópicos abordados no evento incluem quase
todas as áreas da análise numéria e matemática apli-
cada e computacional. Em destaque, está a sessão
“Highlights in Copula Modeling”, organizada pela
professora Verónica Andrea González-López da Uni-
camp.

http://math.colorado.edu/spa2013/
http://www.este2013.dme.ufrj.br
http://www.norges-bank.no/en/about/conferences/2013-esobe/
http://www.norges-bank.no/en/about/conferences/2013-esobe/
http://www.isi2013.hk/en/
http://www.saasweb.hku.hk/conference/ysi2013/
http://www.icnaam.org/
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Os trabalhos podem ser submetidos até o dia
20 de Julho e, se aceitos, serão publicados no AIP
(American Institute of Physics) Conference Proceed-
ings.

• AS 2013 - 10th Applied Statistics,
Bled – Eslovênia, 22 a 25 de setembro de 2013.
(conferences.nib.si/AS2013)

O principal objetivo da conferência Applied
Statistics 2013 é proporcionar uma oportunidade
para que pesquisadores de estat́ısticas e outros
profissionais de diversas áreas relacionadas à es-
tat́ıstica se reúnam, apresentem suas pesquisas e
aprendam uns com os outros. Um programa de qua-
tro dias consiste de apresentações de palestrantes
convidados, seções de diversos temas, e com um
workshop.

Os artigos completos podem ser enviados para
publicação na Advances in Methodology and Statis-
tics, uma revista da Sociedade de Estat́ıstica da
Eslovénia.

• XLI Coloquio Argentino de Es-
tad́ıstica, Mendoza – Argentina, 15 a 18 de
outubro de 2013.
(www.xlicoloquiodeestadistica.com/)

Este ano, o Coloquio Argentino de Estad́ıstica
será realizado na Faculdade de Economia da Univer-
sidad Nacional de Cuyo, na cidade de Mendoza. Este
evento pretende envolver expoentes estat́ısticas na-
cionais e internacionais, como Maria Dolores Ugarte
(Universidad Pública de Navarra, Espanha).

A submissão de resumos extendidos para apre-
sentação oral pode ser feita até dia 31 de julho e
os resumos para apresentação de posteres podem ser
enviados até dia 31 de agosto.

• IV ESAMP - Escola de
Amostragem e Metodologia de
Pesquisa, Braśılia – Brasil, 05 a 08 de
novembro de 2013.
(www.xlicoloquiodeestadistica.com/)

A IV ESAMP tem como principal objetivo ofer-
ecer uma oportunidade para congregar estat́ısticos,
pesquisadores e profissionais de pesquisa social das
universidades e de diversos órgãos produtores de in-
formação visando discutir suas experiências à luz
dos mais recentes desenvolvimentos metodológicos
em planejamento amostral e análise de dados de lev-
antamentos amostrais.

Como na edição anterior, o evento contará com
cursos curtos, conferências, sessões temáticas e apre-
sentações de trabalhos em sessões orais e pôster. A
realização é do Departamento de Estat́ıstica da UnB
e o evento conta com o apoio da ABE.

A submissão de trabalhos pode ser realizada até
o dia 12 de agosto.

• O-Bayes 2013: Celebrating 250
Years of Bayes, Durham – EUA, 15 a
19 de dezembro de 2013.
(bayesian.org/sections/OB/obayes-2013-
celebrating-250-years-bayes)

Esta O-Bayes é uma celebração aos 250 anos da
publicação póstuma do artigo de Thomas Bayes in-
troduzindo seu famoso teorema e quase 200 anos de
aniversário de Laplace.

Além disso, a décima edição do encontro marca
uma transição; doravante o O-Bayes será o encontro
bi-anual oficial da Seção Objetiva da ISBA.

É posśıvel submeter posters e não há um deadline
oficial. Contudo, trabalhos enviados tardiamente po-
dem não entrar no livro de resumos.

• EFaB@Bayes 250, Durham – EUA, 15 a
17 de dezembro de 2013.
(bayesian.org/sections/EFaB/efab-bayes-250-
workshop)

Esta é a primeira reunião da nova seção ISBA em
Economia, Finanças e Negócios (EFaB).

Esta reunião inaugural inclui tutoriais ministra-
dos por importantes nomes nestas áreas, palestras
em sessões cient́ıficas abrangendo uma vasta gama
de tópicos de pesquisa e aplicações, uma sessão es-
pecial para novos pesquisadores, apresentações de
pôsteres e muito mais. Premiações para estudantes
e novos pesquisadores, incluindo a EFaB@Bayes250
BEST e IBM Awards, serão anunciadas no banquete
do Bayes 250 Day.

O prazo para a submissão de trabalhos é dia 15
de setembro.

• Bayes 250 Day, Durham – EUA, 17 de
dezembro de 2013.
(bayesian.org/meetings/Bayes250)

A ISBA anuncia uma celebração especial do 250o

aniversário da publicação (23 de dezembro de 1763)
do artigo An Essay towards solving a Problem in the
Doctrine of Chances de Thomas Bayes, que será rea-
lizada na Duke University, EUA, em conjunto com
o O-Bayes 13 e o EFaB@Bayes250.

Os palestrantes convidados são importantes con-
tribuidores para a literatura bayesiana: Stephen
Fienberg (Carnegie-Mellon University, EUA),
Michael Jordan (University of California, Berke-
ley, EUA), Christopher Sims (Princeton University,
EUA), Adrian Smith (University of London, Reino
Unido) e Stephen Stigler (University of Chicago,
EUA).

Haverá um banquete à noite, com um discurso
de Sharon Bertsch McGrayne, conhecida jornalista

http://conferences.nib.si/AS2013
http://www.xlicoloquiodeestadistica.com/
http://www.xlicoloquiodeestadistica.com/
http://bayesian.org/sections/OB/obayes-2013-celebrating-250-years-bayes
http://bayesian.org/sections/OB/obayes-2013-celebrating-250-years-bayes
http://bayesian.org/sections/EFaB/efab-bayes-250-workshop
http://bayesian.org/sections/EFaB/efab-bayes-250-workshop
http://bayesian.org/meetings/Bayes250
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e escritora que contribuiu com esse número do bole-
tim.

• 2013 ICSA International Confer-
ence, Hong Kong, 20 a 23 de dezembro de
2013.
(www.math.hkbu.edu.hk/ICSA2013/)

A 9a Conferência Internacional trienal da Asso-
ciação Internacional de Estat́ıstica Chinesa (ICSA),
será realizada na Hong Kong Baptist University no
peŕıodo de 20 a 23 de dezembro. O evento é
co-patrocinado pela American Statistical Associa-
tion (ASA) e do Institute of Mathematical Statis-
tics (IMS). O comitê organizador é co-presidido pelo
Jiqian Fang (Sun Yat-Sen University at Guangzhou,
China), Ji Zhu (University of Michigan, EUA) e Lix-
ing Zhu (Hong Kong Baptist University, China).

Os seis palestrantes principais serão Raymond
Carroll (Texas A&M University, EUA), Ching-
Shui Cheng (University of California, Berkeley and
Academia Sinica, EUA), Hengjian Cui (Capital Nor-
mal University, China), Peter Hall (Melbourne Uni-
versity, Austrália), Tze Leung Lai (Stanford Uni-
versity, EUA), Howell Tong (London School of Eco-
nomics, Reino Unido). Haverá cerca de 60 sessões
técnicas e os tópicos incluem a estat́ıstica bayesiana,
bioestat́ıstica, ensaios cĺınicos, biologia computa-
cional, dados de grande dimensão, probabilidade,
estat́ıstica espacial, ensino de estat́ıstica, teoria es-
tat́ıstica e estat́ıstica em economia e finanças.

Trabalhos podem ser submetidos até o dia 31 de
agosto.

• MCMSki IV, Chamonix Mont-Blanc –
França, 06 a 08 de Janeiro de 2014.
(www.pages.drexel.edu/ mwl25/mcmski/)

A quarta edição do MCMSki será realizado
em Chamonix Mont-Blanc, França, em janeiro de

2014. Como nos eventos anteriores, a realização
é uma parceria entre o Institute of Mathemati-
cal Statistics (IMS) e a ISBA, e será a primeira
reunião oficial da recém-criada seção BayesComp
da ISBA. Vai concentrar-se em todos os aspectos
teóricos e metodológicos do MCMC, incluindo áreas
afins como Monte Carlo sequencial, computação
bayesiana aproximada (ABC) e Monte Carlo Hamil-
toniano. Em contraste com as reuniões anteri-
ores, vai mesclar o evento principal com o workshop
satélite Adap’ski, por ter sessões paralelas sobre os
diferentes temas.

• 2014 American Statistical Asso-
ciation Conference on Statistical
Practice, Tampa – EUA, 20 a 22 de
Fevereiro de 2014.
(www.amstat.org/meetings/csp/2014/)

Statistical Practice 2014 pretende reunir cente-
nas de profissionais de estat́ıstica, incluindo analistas
de dados, pesquisadores e cientistas, que se dedicam
à aplicação da estat́ıstica para resolver problemas do
mundo real em seu dia a dia. A conferência será uma
oportunidade para aprender sobre as mais recentes
metodologias e melhores práticas de planejamento,
análise, programação e consultoria estat́ıstica.

A submissão de resumos para a presentação de
posteres pode ser feita de 15 a 28 de agosto.

• ISBA 2014 - Twelfth World Meet-
ing of ISBA, Cancun – México, 14 a 18 de
Julho de 2014.
(bayesian.org/content/twelfth-world-meeting-
isba-isba2014)

O 12o encontro mundial da ISBA, em 2014, de-
verá ocorrer em Cancun, no México. A data pro-
visória é de 14 a 18 de julho. Novas informações de-
vem ser disponibilizadas em breve no site da ISBA.

Diretoria da ISBrA:
Presidente: Adriano Polpo (DEs – UFSCar)
Secretário: Francisco Louzada Neto (ICMC – USP)
Tesoureira: Laura Ramos Rifo (IMECC – Unicamp)
site: http://www.ime.usp.br/∼isbra/
e-mail: isbra@ime.usp.br

http://www.math.hkbu.edu.hk/ICSA2013/
http://www.pages.drexel.edu/~mwl25/mcmski/
http://www.amstat.org/meetings/csp/2014/
http://bayesian.org/content/twelfth-world-meeting-isba-isba2014
http://bayesian.org/content/twelfth-world-meeting-isba-isba2014
http://www.ime.usp.br/~isbra/
isbra@ime.usp.br
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